1
|
Toxqui-Rodríguez S, Estensoro I, Domingo-Bretón R, Del Pozo R, Pérez-Sánchez J, Sipkema D, Sitjà-Bobadilla A, Piazzon MC. Interactions between gilthead seabream intestinal transcriptome and microbiota upon Enteromyxum leei infection: a multi-omic approach. Anim Microbiome 2025; 7:22. [PMID: 40050956 PMCID: PMC11884135 DOI: 10.1186/s42523-025-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The enteric myxozoan parasite Enteromyxum leei is an important problem in gilthead seabream aquaculture invading the intestinal epithelium and leading to chronic intestinal inflammation, poor food conversion rates, cachexia, and mortalities, with no treatments available, resulting in significant economic losses. It is known that myxozoan infections are affected by factors such as temperature, duration of exposure, stocking densities, and seasonality. Gut microbiota has key effects on host health, including disease resistance and immune system training and development, tightly interacting with the host, affecting systemic and local physiological functions. This study aimed to gain insights into the host-microbiota-parasite interactions integrating metataxonomics, host transcriptomics, and metatranscriptomics within this disease model. RESULTS Exposure to E. leei together with temperature and age differences led to alterations in gilthead seabream intestinal microbiota. Samples from 240 g fish kept at 18ºC during a winter trial at 10 weeks post-parasite exposure showed the highest significant changes in their microbial composition with Proteobacteria increasing in abundance from 32.3% in the control group up to 89.8% in the infected group, while Firmicutes and Actinobacteria significantly decreased in relative abundance from 23% and 37.8-2.4% and 1.1%, respectively. After LEfSe analysis, Acinetobacter was identified as the best biomarker for the parasite-exposed group. Parasite exposure also altered the expression of 935 host genes, highlighting genes involved in immune responses such as pathways related to Interleukins, MHCI and Interferons. Microbial transcripts, also showed significant changes upon parasite infection. Integration of the results revealed differential effects on the host induced directly by the parasite or indirectly by parasite-induced microbial shift. CONCLUSIONS Intestinal microbiota and local host gene expression showed significant changes upon en enteromyxosis. The detected activation of the host immune response was not exclusively linked to the parasite infection but also to changes in microbiota, demonstrating the key role of the different components of the mucosal system during disease. These results provided different datasets of bacterial taxa and microbial and host transcripts that will allow a better understanding of host-microbiota-parasite interactions and can serve as starting points for studying and evaluating mucosal health in aquaculture during parasitosis or other diseases.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Ricardo Domingo-Bretón
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain.
| |
Collapse
|
2
|
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int J Mol Sci 2024; 25:5683. [PMID: 38891869 PMCID: PMC11171596 DOI: 10.3390/ijms25115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| |
Collapse
|
3
|
Basak C, Chakraborty R. Gut-immunity modulation in Lepidocephalichthys guntea during Aeromonas hydrophila-infection and recovery assessed with transcriptome data. Heliyon 2023; 9:e22936. [PMID: 38130423 PMCID: PMC10735050 DOI: 10.1016/j.heliyon.2023.e22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| |
Collapse
|
4
|
Wang Y, Bass AL, Hinch SG, Li S, Di Cicco E, Kaukinen KH, Ferguson H, Ming TJ, Patterson DA, Miller KM. Infectious agents and their physiological correlates in early marine Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2023; 11:coad031. [PMID: 37701371 PMCID: PMC10494280 DOI: 10.1093/conphys/coad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 09/14/2023]
Abstract
The early marine life of Pacific salmon is believed to be a critical period limiting population-level survival. Recent evidence suggests that some infectious agents are associated with survival but linkages with underlying physiological mechanisms are lacking. While challenge studies can demonstrate cause and effect relationships between infection and pathological change or mortality, in some cases pathological change may only manifest in the presence of environmental stressors; thus, it is important to gain context from field observations. Herein, we examined physiological correlates with infectious agent loads in Chinook salmon during their first ocean year. We measured physiology at the molecular (gene expression), metabolic (plasma chemistry) and cellular (histopathology) levels. Of 46 assayed infectious agents, 27 were detected, including viruses, bacteria and parasites. This exploratory study identified. a strong molecular response to viral disease and pathological change consistent with jaundice/anemia associated with Piscine orthoreovirus,strong molecular signals of gill inflammation and immune response associated with gill agents `Candidatus Branchiomonas cysticola' and Parvicapsula pseudobranchicola,a general downregulation of gill immune response associated with Parvicapsula minibicornis complementary to that of P. pseudobranchicola.Importantly, our study provides the first evidence that the molecular activation of viral disease response and the lesions observed during the development of the PRV-related disease jaundice/anemia in farmed Chinook salmon are also observed in wild juvenile Chinook salmon.
Collapse
Affiliation(s)
- Yuwei Wang
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC, V6J 4S6, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Hugh Ferguson
- School of Veterinary Medicine, St. George’s University, University Centre Grenada, W. Indies, Grenada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Mangement, Simon Fraser University, Science Branch, 643A Science Rd, Burnaby, BC, V5A 1S6, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| |
Collapse
|
5
|
Infection by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) Suppresses the Immune System of Hybrid Tilapia. Microorganisms 2022; 10:microorganisms10101893. [DOI: 10.3390/microorganisms10101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.
Collapse
|
6
|
Liu S, Luo L, Zuo F, Geng Y, Ou Y, Chen D, Yang S, Luo W, Wang Y, Wang J, Huang X. Immunosuppression and apoptosis activation mediated by p53-Bcl2/Bax signaling pathway -The potential mechanism of goldfish ( Carassius auratus Linnaeus) gill disease caused by Myxobolus ampullicapsulatus. Front Immunol 2022; 13:998975. [PMID: 36110839 PMCID: PMC9469021 DOI: 10.3389/fimmu.2022.998975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Myxobolus, a major harmful type of myxospora, is one of the main parasitic pathogens of freshwater fish. Once myxoboliosis occurs, treatment can be extremely difficult. Therefore, clear understandings of the etiology of myxoboliosis and its pathological mechanism are keys for prevention and control. Here, histology, transmission electron microscopy, transcriptome study, tunel assay, and immunohistochemistry were carried out, revealing the morphology, pathological effects as well as host response mechanism of goldfish gill to Myxobolus ampullicapsulatus. Histological studies showed that the mature spores of Myxobolus ampullicapsulatus were composed of three parts, the spore shell, sporoplasm and bottle shaped polar capsule containing double S-shaped polar filaments. Transcriptome analysis revealed that Myxobolus ampullicapsulatus -infected (Myx) goldfish gills were characterized by apoptosis activation mediated by "p53 signaling pathway" with significantly up-regulated apoptosis-related differential genes dominated by p53-Bcl2/Bax signaling pathway. In addition, tunel assay revealed severe gill apoptosis in the Myx group. Transcriptome analysis also revealed that Myx group showed changes in immune response and significantly down-regulated immune-related differential genes. Beyond that, immunohistochemistry showed that there was no significant increase in the number of gill lymphocyte after parasite infection. These results suggest that the pathological mechanism of Myxobolus ampullicapsulatus infection on gills of goldfish may be related to apoptosis and immunosuppression. Subsequent qRT-PCR showed that apoptosis-related genes (Caspase3,Bad, Bax) and anti-inflammatory gene IL-10 were significantly increased, while immune-related pro-inflammatory genes (IL-1β, IL-8) were markedly down-regulated, further verifying the transcriptome results. Based on the above results, we concluded that p53-Bcl2/Bax related networks that dominant the expression of apoptosis genes were activated while immunity was suppressed in the gills of Myxobolus ampullicapsulatus infected goldfish. Our study is not only of benefit to enrich the taxonomy of Myxobolus but also clarifies its pathogenic mechanism, thus providing targets for prevention and control of myxoboliosis.
Collapse
Affiliation(s)
- Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Department of Aquaculture, College of Life Science, Neijiang Normal University, Neijiang, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
8
|
A tale of two fish: Comparative transcriptomics of resistant and susceptible steelhead following exposure to Ceratonova shasta highlights differences in parasite recognition. PLoS One 2021; 16:e0234837. [PMID: 33621237 PMCID: PMC7901748 DOI: 10.1371/journal.pone.0234837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Diseases caused by myxozoan parasites represent a significant threat to the health of salmonids in both the wild and aquaculture setting, and there are no effective therapeutants for their control. The myxozoan Ceratonova shasta is an intestinal parasite of salmonids that causes severe enteronecrosis and mortality. Most fish populations appear genetically fixed as resistant or susceptible to the parasite, offering an attractive model system for studying the immune response to myxozoans. We hypothesized that early recognition of the parasite is a critical factor driving resistance and that susceptible fish would have a delayed immune response. RNA-seq was used to identify genes that were differentially expressed in the gills and intestine during the early stages of C. shasta infection in both resistant and susceptible steelhead (Oncorhynchus mykiss). This revealed a downregulation of genes involved in the IFN-γ signaling pathway in the gills of both phenotypes. Despite this, resistant fish quickly contained the infection and several immune genes, including two innate immune receptors were upregulated. Susceptible fish, on the other hand, failed to control parasite proliferation and had no discernible immune response to the parasite, including a near-complete lack of differential gene expression in the intestine. Further sequencing of intestinal samples from susceptible fish during the middle and late stages of infection showed a vigorous yet ineffective immune response driven by IFN-γ, and massive differential expression of genes involved in cell adhesion and the extracellular matrix, which coincided with the breakdown of the intestinal structure. Our results suggest that the parasite may be suppressing the host’s immune system during the initial invasion, and that susceptible fish are unable to recognize the parasite invading the intestine or mount an effective immune response. These findings improve our understanding of myxozoan-host interactions while providing a set of putative resistance markers for future studies.
Collapse
|
9
|
Byadgi O, Massimo M, Dirks RP, Pallavicini A, Bron JE, Ireland JH, Volpatti D, Galeotti M, Beraldo P. Innate immune-gene expression during experimental amyloodiniosis in European seabass (Dicentrarchus labrax). Vet Immunol Immunopathol 2021; 234:110217. [PMID: 33647857 DOI: 10.1016/j.vetimm.2021.110217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 01/28/2023]
Abstract
The ectoparasite protozoan Amyloodinium ocellatum (AO) is the causative agent of amyloodiniosis in European seabass (ESB, Dicentrarchus labrax). There is a lack of information about basic molecular immune response mechanisms of ESB during AO infestation. Therefore, to compare gene expression between experimental AO-infested ESB tissues and uninfested ESB tissues (gills and head kidney) RNA-seq was adopted. The RNA-seq revealed multiple differentially expressed genes (DEG), namely 679 upregulated genes and 360 downregulated genes in the gills, and 206 upregulated genes and 170 downregulated genes in head kidney. In gills, genes related to the immune system (perforin, CC1) and protein binding were upregulated. Several genes involved in IFN related pathways were upregulated in the head kidney. Subsequently, to validate the DEG from amyloodiniosis, 26 ESB (mean weight 14 g) per tank in triplicate were bath challenged for 2 h with AO (3.5 × 106/tank; 70 dinospores/mL) under controlled conditions (26-28 °C and 34‰ salinity). As a control group (non-infested), 26 ESB per tank in triplicate were also used. Changes in the expression of innate immune genes in gills and head kidney at 2, 3, 5, 7 and 23 dpi were analysed using real-time PCR. The results indicated that the expression of cytokines (CC1, IL-8) and antimicrobial peptide (Hep) were strongly stimulated and reached a peak at 5 dpi in the early infestation stage, followed by a gradual reduction in the recovery stage (23 dpi). Noticeably, the immunoglobulin (IgM) expression was higher at 23 dpi compared to 7 dpi. Furthermore, in-situ hybridization showed positive signals of CC1 mRNA in AO infested gills compared to the control group. Altogether, chemokines were involved in the immune process under AO infestation and this evidence allows a better understanding of the immune response in European seabass during amyloodiniosis.
Collapse
Affiliation(s)
- Omkar Byadgi
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy.
| | - Michela Massimo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Alberto Pallavicini
- Laboratory of Genetics, Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126, Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151, Trieste, Italy
| | - James E Bron
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Jacquie H Ireland
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Paola Beraldo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| |
Collapse
|
10
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
11
|
Bai J, Hu X, Lü A, Wang R, Liu R, Sun J, Niu Y. Skin transcriptome, tissue distribution of mucin genes and discovery of simple sequence repeats in crucian carp (Carassius auratus). JOURNAL OF FISH BIOLOGY 2020; 97:1542-1553. [PMID: 32885862 DOI: 10.1111/jfb.14524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Crucian carp (Carassius auratus) is one of the major freshwater species and important food fish in China. Fish skin acts as the first line of defence against pathogens, yet its molecular and immune mechanism remains unclear. In this study, a de novo transcriptome assembly of C. auratus skin was performed with the Illumina Hiseq 2000 platform. A total of 49,154,776 clean reads were assembled, among which 60,824 (46.86%), 37,103 (28.59%), 43,269 (33.33%) unigenes were annotated against National Center for Biotechnology Information, Gene Onotology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. KEGG Orthology categories were significantly involved in immune system (20.50%), signal transduction (18.04%) and mucosal mucin genes (e.g., muc2, muc5AC, muc5B, muc17, muc18). The high expression of muc18 gene was observed in brain; that of muc2 in intestine; and that of muc5AC in skin, liver, spleen, intestine and muscle. Moreover, the potential 28,928 simple sequence repeats with the three most abundant dinucleotide repeat motifs (AC/GT, AG/CT, AT/AT) were detected in C. auratus. To authors' knowledge, this is the first report to describe the transcriptome analysis of C. auratus skin, and the outcome of this study contributed to the understanding of mucosal immune response of the skin and molecular markers in cyprinid species.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Rongrong Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yuchen Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Zhao Y, Liu X, Sato H, Zhang Q, Li A, Zhang J. RNA-seq analysis of local tissue of Carassius auratus gibelio with pharyngeal myxobolosis: Insights into the pharyngeal mucosal immune response in a fish-parasite dialogue. FISH & SHELLFISH IMMUNOLOGY 2019; 94:99-112. [PMID: 31476388 DOI: 10.1016/j.fsi.2019.08.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The lack of practical control measures for pharyngeal myxobolosis is becoming an important limiting factor for the sustainable development of the gibel carp (Carassius auratus gibelio) culture industry in China. Myxobolus honghuensis has been identified as the causative agent of this pandemic disease, which exclusively infects the pharynx of gibel carp, a potential important mucosal lymphoid-associated tissue (MLAT). Myxozoa generally initiate invasion through the mucosal tissues of fish, where some of them also complete their sporogonial stages. However, the pharynx-associated immune responses of teleost against myxosporeans infection remain unknown. Here, a de novo transcriptome assembly of the pharynx of gibel carp naturally infected with M. honghuensis was performed for the first time, using RNA-seq. Comparative analysis of severely infected and mildly infected pharyngeal tissues (SI group and MI group) from the same fish individuals and control pharyngeal tissues (C group) from the uninfected fish was carried out to investigate the potential mucosal immune function of the fish pharynx, and characterize the panoramic picture of pharynx local mucosal immune responses of gibel carp against the M. honghuensis infection. A total of 242,341 unigenes were obtained and pairwise comparison resulted in 13,009 differentially-expressed genes (DEGs) in the SI/C group comparison, 6014 DEGs in the MI/C group comparison, and 9031 DEGs in the SI/MI group comparison. Comprehensive analysis showed that M. honghuensis infection elicited a significant parasite load-dependent alteration of the expression of numerous innate and adaptive immune-related genes in the local lesion tissue. Innate immune molecules, including mucins, toll-like receptors, C-type lectin, serum amyloid A, cathepsins and complement components were significantly up-regulated in the SI group compared with the C group. Up-regulation of genes involved in apoptosis signaling pathway and the IFN-mediated immune system were found in the SI group, suggesting these two pathways played a crucial role in innate immune response to M. honghuensis infection. Up-regulation of chemokines and chemokine receptors and the induction of the leukocyte trans-endothelial migration pathways in the severely and mildly infected pharynx suggested that many leucocytes were recruited to the local infected sites to mount a strong mucosal immune responses against the myxosporean infection. Up-regulation of CD3D, CD22, CD276, IL4/13A, GATA3, arginase 2, IgM, IgT and pIgR transcripts provided strong evidences for the presence of T/B cells and specific mucosal immune responses at local sites with M. honghuensis infection. Our results firstly demonstrated the mucosal function of the teleost pharynx and provided evidences of intensive local immune defense responses against this mucosa-infecting myxosporean in the gibel carp pharynx. Pharyngeal myxobolosis was shaped by a prevailing anti-inflammatory response pattern during the advanced infection stages. Further understanding of the functional roles of fish immune molecules involved in the initial invasion and/or final sporogony site may facilitate future development of control strategies for this myxobolosis.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhua Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
14
|
Wu XM, Cao L, Hu YW, Chang MX. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2019; 94:355-372. [PMID: 31533079 DOI: 10.1016/j.fsi.2019.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S. agalactiae-infected and non-infected groups were obtained using RNA-seq techniques. In the intestines, 6735 and 12908 differently expressed genes (DEGs) were identified at 24 hpi and 48 hpi, respectively. Among 66 and 116 significantly enriched pathways, 15 and 21 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. A number of genes involved in Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Antigen processing and presentation, NF-kappa B signaling pathway and PI3K-Akt signaling pathway were significantly downregulated. In the skins, 3113 and 4467 DEGs were identified at 24 hpi and 48 hpi, respectively. Among 24 and 56 significantly enriched pathways, 4 and 13 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. More immune-related signaling pathways including Leukocyte transendothelial migration, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, Complement and coagulation cascades, Hematopoietic cell lineage and Jak-STAT signaling pathway were differently enriched for upregulated DEGs at 48 hpi, which were completely different from that in the intestines. Furthmore, comparative transcriptome analysis revealed that the downregulated 1618 genes and upregulated 1622 genes existed both at 24 hpi and 48 hpi for the intestine samples. In the skins, the downregulated 672 genes and upregulated 428 genes existed both at 24 hpi and 48 hpi. Three pathways related to immune processes were significantly enriched for downregulated DEGs both in the intestines and skins collected at 24 hpi and 48 hpi, which included Antigen processing and presentation, Intestinal immune network for IgA production and Hematopoietic cell lineage. Interaction network analysis of DEGs identified the main DEGs in the sub-network of complement and coagulation cascades both in the intestines and skins. Twenty of DEGs involved in complement and coagulation cascades were further validated by Real-time quantitative PCR. Altogether, the results obtained in this study will provide insight into the immune response of zebrafish against S. agalactiae XQ-1 infection in fatal conditions, and reveal the discrepant expression pattern of complement and coagulation cascades in the intestines and skins.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Kumar G, Hummel K, Razzazi-Fazeli E, El-Matbouli M. Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Vet Res 2019; 50:54. [PMID: 31315687 PMCID: PMC6637484 DOI: 10.1186/s13567-019-0673-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. In fish, the intestine represents an important site of nutrient uptake, host-pathogen interactions, and defense. The posterior intestine can be inflamed, reddened, and filled with an opaque, yellowish fluid during Y. ruckeri infection. Herein, we report an investigation on the proteome alteration in the posterior intestinal mucosa of rainbow trout (Oncorhynchus mykiss) after exposure to Y. ruckeri. The intestinal mucosal proteins were identified and quantified by a shotgun proteomic approach by applying data-independent quantification with sequential windowed acquisition of all theoretical mass spectra (SWATH). A total of 437 proteins were found to be differentially up- or downregulated in the posterior intestine. Gene ontology of upregulated proteins pointed to their involvement into exopeptidase, endopeptidase, and hydrolase activities, while the downregulated proteins were involved in lipid metabolism, actin binding, and translation processes. Additionally, upregulated proteins were predicted to be involved in lysosome, oxidative phosphorylation, and metabolic pathways, while downregulated proteins were implicated in focal adhesion, regulation of actin cytoskeleton, protein digestion and absorption pathways. This study showed that Y. ruckeri infection can alter protein abundance involved in serine-type carboxypeptidase, cysteine and aspartic-type endopeptidases, metallopeptidases, antioxidant defense, calcium ion binding, glycolytic and carbohydrate metabolic processes in the proteome of the intestinal mucosa of rainbow trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Picard-Sánchez A, Estensoro I, Del Pozo R, Piazzon MC, Palenzuela O, Sitjà-Bobadilla A. Acquired protective immune response in a fish-myxozoan model encompasses specific antibodies and inflammation resolution. FISH & SHELLFISH IMMUNOLOGY 2019; 90:349-362. [PMID: 31067499 DOI: 10.1016/j.fsi.2019.04.300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α expression).
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain.
| |
Collapse
|
17
|
Korytář T, Wiegertjes GF, Zusková E, Tomanová A, Lisnerová M, Patra S, Sieranski V, Šíma R, Born-Torrijos A, Wentzel AS, Blasco-Monleon S, Yanes-Roca C, Policar T, Holzer AS. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit Vectors 2019; 12:208. [PMID: 31060624 PMCID: PMC6501462 DOI: 10.1186/s13071-019-3462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expansion of the infection in the fish host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life-cycle stages are available throughout the year. RESULTS We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63-day period. Our study shows activation of innate immune responses followed by B cell-mediated immune responses. We observed rapid parasite efflux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinflammatory response for about 1-2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post-infection (dpi) and was associated with a massive lymphocyte response. Our data further revealed a switch to a massive anti-inflammatory response (up to 1456-fold expression of il-10), a strong increase in the expression of IgM transcripts and increased number of IgM+ B lymphocytes, which produce specific antibodies for the elimination of most of the parasites from the fish at 35 dpi. However, despite the presence of these antibodies, S. molnari invades the liver 42 dpi, where an increase in parasite cell number and indistinguishable outer cell membranes are indicative of effective exploitation and disguise mechanisms. From 49 dpi onwards, the acute infection changes to a chronic one, with low parasite numbers remaining in the fish. CONCLUSIONS To our knowledge, this is the first time myxozoan early development and immune modulation mechanisms have been analyzed along with innate and adaptive immune responses of its fish host, in a controlled laboratory system. Our study adds important information on host-parasite interaction and co-evolutionary adaptation of early metazoans (Cnidaria) with basic vertebrate (fish) immune systems and the evolution of host adaptation and parasite immune evasion strategies.
Collapse
Affiliation(s)
- Tomáš Korytář
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Eliška Zusková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Tomanová
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martina Lisnerová
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Sneha Patra
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Viktor Sieranski
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Faculty of Engineering and Natural Sciences, Johannes Kepler University, Linz, Austria
| | - Radek Šíma
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Annelieke S. Wentzel
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Sandra Blasco-Monleon
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Carlos Yanes-Roca
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Policar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Astrid S. Holzer
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Ronza P, Robledo D, Bermúdez R, Losada AP, Pardo BG, Martínez P, Quiroga MI. Integrating Genomic and Morphological Approaches in Fish Pathology Research: The Case of Turbot ( Scophthalmus maximus) Enteromyxosis. Front Genet 2019; 10:26. [PMID: 30766546 PMCID: PMC6365611 DOI: 10.3389/fgene.2019.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
Enteromyxosis, caused by Enteromyxum scophthalmi, is one of the most devastating diseases stemming from myxozoan parasites in turbot (Scophthalmus maximus L.), being a limiting factor for its production. The disease develops as a cachectic syndrome, associated to catarrhal enteritis and leukocytic depletion, with morbidity and mortality rates usually reaching 100%. To date, no effective treatment exists and there are different unknown issues concerning its pathogenesis. The gross and microscopic lesions associated to enteromyxosis have been thoroughly described, and several morphopathological studies have been carried out to elucidate the mechanisms of this host-parasite interaction. More recently, efforts have been focused on a multidisciplinary approach, combining histopathology and transcriptome analysis, which has provided significant advances in the understanding of the pathogenesis of this parasitosis. RNA-Seq technology was applied at early and advanced stages of the disease on fishes histologically evaluated and classified based on their lesional degree. In the same way, the transcriptomic data were analyzed in relation to the morphopathological picture and the course of the disease. In this paper, a comprehensive review of turbot enteromyxosis is presented, starting from the disease description up to the most novel information extracted by an integrated approach on the infection mechanisms and host response. Further, we discuss ongoing strategies toward a full understanding of host-pathogen interaction and the identification of suitable biomarkers for early diagnosis and disease management strategies.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
19
|
Lu Y, Johnston PR, Dennis SR, Monaghan MT, John U, Spaak P, Wolinska J. Daphnia galeata responds to the exposure to an ichthyosporean gut parasite by down-regulation of immunity and lipid metabolism. BMC Genomics 2018; 19:932. [PMID: 30547741 PMCID: PMC6295042 DOI: 10.1186/s12864-018-5312-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulatory circuits of infection in the emerging experimental model system, water flea Daphnia and their microparasites, remain largely unknown. Here we provide the first molecular insights into the response of Daphnia galeata to its highly virulent and common parasite Caullerya mesnili, an ichthyosporean that infects the gut epithelium. We generated a transcriptomic dataset using RNAseq from parasite-exposed (vs. control) Daphnia, at two time points (4 and 48 h) after parasite exposure. RESULTS We found a down-regulation of metabolism and immunity-related genes, at 48 h (but not 4 h) after parasite exposure. These genes are involved in lipid metabolism and fatty acid biosynthesis, as well as microbe recognition (e.g. c-type lectins) and pathogen attack (e.g. gut chitin). CONCLUSIONS General metabolic suppression implies host energy shift from reproduction to survival, which is in agreement with the known drastic reduction in Daphnia fecundity after Caullerya infection. The down-regulation of gut chitin indicates a possible interaction between the peritrophic matrix and the evading host immune system. Our study provides the first description of host transcriptional responses in this very promising host-parasite experimental system.
Collapse
Affiliation(s)
- Yameng Lu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany. .,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.
| | - Paul R Johnston
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Stuart R Dennis
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Uwe John
- Alfred Wegener Institut Helmholtz Zentrum für Polar und Meeresforschung (AWI), Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Piet Spaak
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Justyna Wolinska
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kumar G, Hummel K, Noebauer K, Welch TJ, Razzazi-Fazeli E, El-Matbouli M. Proteome analysis reveals a role of rainbow trout lymphoid organs during Yersinia ruckeri infection process. Sci Rep 2018; 8:13998. [PMID: 30228307 PMCID: PMC6143608 DOI: 10.1038/s41598-018-31982-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 11/23/2022] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. Head kidney and spleen are major lymphoid organs of the teleost fish where antigen presentation and immune defense against microbes take place. We investigated proteome alteration in head kidney and spleen of the rainbow trout following Y. ruckeri strains infection. Organs were analyzed after 3, 9 and 28 days post exposure with a shotgun proteomic approach. GO annotation and protein-protein interaction were predicted using bioinformatic tools. Thirty four proteins from head kidney and 85 proteins from spleen were found to be differentially expressed in rainbow trout during the Y. ruckeri infection process. These included lysosomal, antioxidant, metalloproteinase, cytoskeleton, tetraspanin, cathepsin B and c-type lectin receptor proteins. The findings of this study regarding the immune response at the protein level offer new insight into the systemic response to Y. ruckeri infection in rainbow trout. This proteomic data facilitate a better understanding of host-pathogen interactions and response of fish against Y. ruckeri biotype 1 and 2 strains. Protein-protein interaction analysis predicts carbon metabolism, ribosome and phagosome pathways in spleen of infected fish, which might be useful in understanding biological processes and further studies in the direction of pathways.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| | - Karin Hummel
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Katharina Noebauer
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Timothy J Welch
- National Center for Cool and Cold Water Aquaculture, Kearneysville, USA
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research/Proteomics Unit, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
21
|
Han Z, Sun J, Lv A, Xian JA, Sung YY, Sun X, Hu X, Xing K. Transcriptome profiling of immune-responsive genes in the intestine of Cynoglossus semilaevis Günther challenged with Shewanella algae. FISH & SHELLFISH IMMUNOLOGY 2018; 80:291-301. [PMID: 29886138 DOI: 10.1016/j.fsi.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
To better understand gene expression in the intestine after Shewanella algae infection and provide insights into its immune roles in the tongue sole, Cynoglossus semilaevis, sequencing-based high-throughput RNA analysis (RNA-Seq) for the intestines between the control group and 12 h post-injection group was performed. After assembly, there was an average of 23,957,159 raw sequencing reads, and 23,943,491 clean reads were obtained after filtering out low-quality reads. Then, 383 differentially expressed genes (DEGs) in the intestines in response to S. algae infection were identified. Subsequently, gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs were conducted to further explore their functions. Among all of the pathways involved, sixteen pathways were related to the immune system, among which the complement and coagulation cascades pathway was the most prominent for immunity-related DEGs, followed by the leukocyte transendothelial migration pathway. Furthermore, the expression levels of twelve selected DEGs in the immune-related pathways were identified by quantitative real-time polymerase chain reaction, substantiating the reliability and reproducibility of the RNA-Seq results. In summary, this study represents an important genomic resource for understanding the potential immune role of the tongue sole intestine from the perspective of gene expression.
Collapse
Affiliation(s)
- Zhuoran Han
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Aijun Lv
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jian-An Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Yeong Yik Sung
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, 21030, Malaysia.
| | - Xueliang Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Kezhi Xing
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
22
|
Piazzon MC, Estensoro I, Calduch-Giner JA, Del Pozo R, Picard-Sánchez A, Pérez-Sánchez J, Sitjà-Bobadilla A. Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of T cell signature molecules depending on the organ and the infection status. Parasit Vectors 2018; 11:443. [PMID: 30064468 PMCID: PMC6069777 DOI: 10.1186/s13071-018-3007-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUD Enteromyxum leei is a myxozoan parasite that produces a slow-progressing intestinal disease. This parasite invades the paracellular space of the intestinal epithelium and progresses from the posterior to the anterior intestine. The aim of the present study was to gain insights into fish T cell responses in the gilthead sea bream-E. leei infection model using a PCR-array with 30 signature molecules for different leukocyte responses in head kidney, spleen, anterior and posterior intestine. RESULTS The PCR-array results suggest that E. leei induced migration of T cells from head kidney to intestines where TH1, CTL and TH17 profiles were activated and kept in balance by the upregulation of regulatory cytokines. These results were partially validated by the use of cross-reacting antibodies and BrdU immunostaining to monitor proliferation. Zap70 immunostaining supported the increased number of T cells in the anterior intestine detected by gene expression, but double staining with BrdU did not show active proliferation of this cell type at a local level, supporting the migration from lymphohaematopoietic tissues to the site of infection. Global analyses of the expression profiles revealed a clear separation between infected and exposed, but non-infected fish, more evident in the target organ. Exposed, non-infected animals showed an intermediate phenotype closer to the control fish. CONCLUSIONS These results evidence a clear modulation of the T cell response of gilthead sea bream upon E. leei infection. The effects occurred both at local and systemic levels, but the response was stronger and more specific at the site of infection, the intestine. Altogether, this research poses a promising basis to understand the response against this important parasite and establish effective preventive or palliative measures.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
23
|
Estensoro I, Pérez-Cordón G, Sitjà-Bobadilla A, Piazzon MC. Bromodeoxyuridine DNA labelling reveals host and parasite proliferation in a fish-myxozoan model. JOURNAL OF FISH DISEASES 2018; 41:651-662. [PMID: 29265424 DOI: 10.1111/jfd.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Enteromyxum leei is a myxozoan parasite responsible for enteritis in gilthead sea bream (Sparus aurata). The parasite proliferates in the paracellular space of the intestinal epithelium and induces an inflammatory reaction. To assess intestinal cell turnover and parasite proliferation, fish were infected with the parasite by anal intubation; after 17 and 64 days, the cell proliferative marker bromodeoxyuridine (BrdU) was administered; and after 24 hr, tissue samples were taken for immunohistochemical detection. Parasite exposure induced increased epithelial and immune cell proliferation in all intestinal segments at all time points, even before parasite establishment. This increased turnover was triggered early after intubation and mainly at a local level, as shown by an increased proliferating cell nuclear antigen (pcna) gene expression only at the posterior intestine after 17 days (not found in lymphohaematopoietic organs). Incorporation of BrdU in parasite secondary and tertiary daughter cells indicated that parasite endogeny is not by schizogonial division, which uses de novo synthesis pathway of pyrimidines. Altogether, BrdU immunolabelling and pcna gene expression showed the rapid proliferative response of the fish intestines upon a myxozoan infection and how this response is effectively triggered even before the parasite reaches or establishes in the site.
Collapse
Affiliation(s)
- I Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - G Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK
| | - A Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - M C Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
24
|
Braden LM, Rasmussen KJ, Purcell SL, Ellis L, Mahony A, Cho S, Whyte SK, Jones SRM, Fast MD. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ + CD83 + Antigen-Presenting Cells. Infect Immun 2018; 86:e00556-17. [PMID: 28993459 PMCID: PMC5736826 DOI: 10.1128/iai.00556-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ+ cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83+/MHIIβ+ Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells (mhii/cd83/mcsf), B cells (igm/igt), and cytotoxic T cells (cd8/nkl), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites.
Collapse
Affiliation(s)
- Laura M Braden
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Karina J Rasmussen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Lauren Ellis
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Amelia Mahony
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Steven Cho
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shona K Whyte
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Simon R M Jones
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
25
|
Salinas I, Magadán S. Omics in fish mucosal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:99-108. [PMID: 28235585 DOI: 10.1016/j.dci.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/22/2023]
Abstract
The mucosal immune system of fish is a complex network of immune cells and molecules that are constantly surveilling the environment and protecting the host from infection. A number of "omics" tools are now available and utilized to understand the complexity of mucosal immune systems in non-traditional animal models. This review summarizes recent advances in the implementation of "omics" tools pertaining to the four mucosa-associated lymphoid tissues in teleosts. Genomics, transcriptomics, proteomics, and "omics" in microbiome research require interdisciplinary collaboration and careful experimental design. The data-rich datasets generated are proving really useful at discovering new innate immune players in fish mucosal secretions, identifying novel markers of specific mucosal immune responses, unraveling the diversity of the B and T cell repertoires and characterizing the diversity of the microbial communities present in teleost mucosal surfaces. Bioinformatics, data analysis and storage platforms should be developed to facilitate rapid processing of large datasets, especially when mammalian tools such as bioinformatics analysis software are not available in fishes.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Susana Magadán
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA; Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra 36310, Spain.
| |
Collapse
|
26
|
Telomere length and antioxidant defense associate with parasite-induced retarded growth in wild brown trout. Oecologia 2017; 185:365-374. [PMID: 28900791 DOI: 10.1007/s00442-017-3953-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/02/2017] [Indexed: 02/03/2023]
Abstract
Early growth conditions can have profound impacts on individuals' development, growth and physiology, with subsequent long-term consequences for individuals' fitness and life expectancy. Telomere length (TL) has been suggested to indicate both individual fitness and life expectancy in wide range of species, as the telomere attrition rate at early age can be accelerated due to exposure to various stressors, including parasites and inflammatory diseases, which increase production of reactive oxygen species (ROS) and influence antioxidant (AO) levels. We investigated impacts of Tetracapsuloides bryosalmonae infection, a causative agent of proliferative kidney disease (PKD), on AO status and TL in a natural population of juvenile brown trout (Salmo trutta). The fish with higher parasite load showed more severe kidney hyperplasia, anemia and smaller body size compared to less parasitized fish. Furthermore, fish with severe PKD symptoms had lower SOD-, CAT- and GST activity than fish with milder kidney hyperplasia. However, parasite load was not directly correlated either with AOs or with TL. Smaller fish showed shorter TLs, potentially reflecting lower individual quality. The fish, which were less sensitive to parasite-induced impaired growth, quantified as parasite load-adjusted fork length, showed also longer TLs, lower GR- and GST activity and less GSHtot compared to more sensitive fish. These results provide novel knowledge about the impacts of the PKD in brown trout at the molecular level and support the idea that TL may reflect individual quality and ability to cope with parasitic infections.
Collapse
|
27
|
Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, Zhang M, Ren Y, Dong X, Tan F, Li C. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:159-168. [PMID: 27431928 DOI: 10.1016/j.dci.2016.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The mucosal immune system serves as the frontline barriers of host defense against pathogen infection, especially for the fishes, which are living in the pathogen rich aquatic environment. The intestine constitutes the largest surface body area in constantly contact with the external pathogens, and plays a vital role in the immune defense against inflammation and pathogen infection. Previous studies have revealed that fish intestine might serves as the portal of entry for Vibrio anguillarum. To characterize the immune actors and their associated immune activities in turbot intestine barrier during bacterial infection, here we examined the gene expression profiles of turbot intestine at three time points following experimental infection with V. anguillarum utilizing RNA-seq technology. A total of 122 million reads were assembled into 183,101 contigs with an average length of 1151 bp and the N50 size of 2302 bp. Analysis of differential gene expression between control and infected samples at 1 h, 4 h, and 12 h revealed 2079 significantly expressed genes. Enrichment and pathway analysis of the differentially expressed genes showed the centrality of the pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification and immune activation/inflammation in the pathogen entry and host immune responses. The present study reported the novel gene expression patterns in turbot mucosal immunity, which were overlooked in previous studies. Our results can help to understand the mechanisms of turbot host defense, and may also provide foundation to identify the biomarkers for future selection of disease-resistant broodstock and evaluation of disease prevention and treatment options.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
28
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
29
|
Sitjà-Bobadilla A, Estensoro I, Pérez-Sánchez J. Immunity to gastrointestinal microparasites of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:187-201. [PMID: 26828391 DOI: 10.1016/j.dci.2016.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Fish intestinal parasites cause direct mortalities and also morbidity, poor growth, higher susceptibility to opportunistic pathogens and lower resistance to stress. This review is focused on microscopic parasites (Protozoa and Metazoa) that invade the gastrointestinal tract of fish. Intracellular parasites (mainly Microsporidia and Apicomplexa) evoke almost no host immune reaction while they are concealed in the cytoplasmic and nuclear compartments, and can even use fish cells (macrophages) as Trojan horses to spread in the host. Inflammatory reaction only appears when the parasite bursts infected cells. Immunity against extracellular parasites is depicted for the myxozoans Ceratonova shasta and Enteromyxum spp. The cellular and humoral innate responses and the production of antibodies are crucial for resolving some of these myxozoonoses, but an excessive inflammatory reaction (concerted by cytokines) can become a fatal pathophysiological consequence. The local immune response plays a key role, with numerous genes more strongly regulated in the intestine than at lymphohaematopoietic organs.
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain.
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
30
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
31
|
RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol 2016; 46:507-17. [PMID: 27109557 DOI: 10.1016/j.ijpara.2016.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022]
Abstract
Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis.
Collapse
|
32
|
Martos-Sitcha JA, Mancera JM, Calduch-Giner JA, Yúfera M, Martínez-Rodríguez G, Pérez-Sánchez J. Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. PLoS One 2016; 11:e0148113. [PMID: 26828928 PMCID: PMC4734831 DOI: 10.1371/journal.pone.0148113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
A custom microarray was used for the transcriptomic profiling of liver, gills and hypothalamus in response to hypo- (38‰ → 5‰) or hyper- (38‰ → 55‰) osmotic challenges (7 days after salinity transfer) in gilthead sea bream (Sparus aurata) juveniles. The total number of differentially expressed genes was 777. Among them, 341 and 310 were differentially expressed in liver after hypo- and hyper-osmotic challenges, respectively. The magnitude of changes was lower in gills and hypothalamus with around 131 and 160 responsive genes in at least one osmotic stress condition, respectively. Regardless of tissue, a number of genes were equally regulated in either hypo- and hyper-osmotic challenges: 127 out of 524 in liver, 11 out of 131 in gills and 19 out of 160 in hypothalamus. In liver and gills, functional analysis of differentially expressed genes recognized two major clusters of overlapping canonical pathways that were mostly related to “Energy Metabolism” and “Oxidative Stress”. The later cluster was represented in all the analyzed tissues, including the hypothalamus, where differentially expressed genes related to “Cell and tissue architecture” were also over-represented. Overall the response for “Energy Metabolism” was the up-regulation, whereas for oxidative stress-related genes the type of response was highly dependent of tissue. These results support common and different osmoregulatory responses in the three analyzed tissues, helping to load new allostatic conditions or even to return to basal levels after hypo- or hyper-osmotic challenges according to the different physiological role of each tissue.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
- * E-mail:
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| |
Collapse
|
33
|
Henry MA, Nikoloudaki C, Tsigenopoulos C, Rigos G. Strong effect of long-term Sparicotyle chrysophrii infection on the cellular and innate immune responses of gilthead sea bream, Sparus aurata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:185-193. [PMID: 25825219 DOI: 10.1016/j.dci.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
One thousand healthy recipient gilthead sea bream, Sparus aurata, cohabited with 250 donor fish parasitized by Sparicotyle chrysophrii (Van Beneden and Hesse, 1963) (Monogenea: Polyopisthocotylea), a common parasite of the gills of this fish species. Controls consisted of 1000 healthy fish kept in a separate tank. After 10 weeks, fish were weighed and parasite load, hemoglobin concentration and immunological parameters were assessed. Rather than the absence of parasite, hemoglobin concentration was a better marker of the health status of the fish, because S.chrysophrii had detached from the strongly anemic gills of some animals leaving fish with affected immune system but without parasites. The parasite infection seemed to trigger a cellular response of the fish immune system but to inhibit its humoral components. Thus, parasitized fish may control the parasite infection through the action of reactive oxygen species but they may become more sensitive to potential secondary bacterial or parasitical infections. This phenomenon was demonstrated not only through significant differences between recipient and control fish but also through strong correlations between those parameters and parasite load, fish weight and/or hemoglobin concentration.
Collapse
Affiliation(s)
- M A Henry
- Laboratory of Fish Nutrition and Pathology, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Aghios Kosmas, Helliniko 16777, Greece.
| | - C Nikoloudaki
- Laboratory of Fish Nutrition and Pathology, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Aghios Kosmas, Helliniko 16777, Greece
| | - C Tsigenopoulos
- Laboratory of Fish Nutrition and Pathology, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Aghios Kosmas, Helliniko 16777, Greece
| | - G Rigos
- Laboratory of Fish Nutrition and Pathology, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Aghios Kosmas, Helliniko 16777, Greece
| |
Collapse
|
34
|
Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, Sitjà-Bobadilla A. Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2015; 44:117-128. [PMID: 25681752 DOI: 10.1016/j.fsi.2015.01.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Gilthead sea bream juveniles were fed different doses (0, 50, 100, 200, 300 ppm) of NEXT ENHANCE®150 (NE) for 9 weeks. Feed gain ratio (FGR) was improved by a 10% with all the doses, but feed intake decreased in a dose dependent manner. The optimum inclusion level to achieve maximum growth was set at 100 ppm. The hepatosomatic index did not vary and only at the highest dose, viscerosomatic and splenosomatic indexes were significantly decreased. No significant changes were found in haematological parameters, plasma biochemistry, total antioxidant capacity and respiratory burst. In a second trial, NE was given at 100 ppm alone (D1) or in combination with the prebiotic PREVIDA® (0.5%) (PRE) (D2) for 17 weeks. There were no differences in the growth rates, and FGR was equally improved for D1 and D2. No significant changes in haematology and plasma antioxidant capacity were detected. The histological examination of the liver and the intestine showed no outstanding differences in the liver, but the number of mucosal foldings appeared to be higher in D1 and D2 vs CTRL diet and the density of enterocytes and goblet cells also appeared higher, particularly in the anterior intestine. A 87-gene PCR-array was constructed based on our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) and applied to samples of anterior (AI) and posterior (PI) intestine. It included 54 new gene sequences and other sequences as markers of cell differentiation and proliferation, intestinal architecture and permeability, enterocyte mass and epithelial damage, interleukins and cytokines, pattern recognition receptors (PRR), and mitochondrial function and biogenesis. More than half of the studied genes had significantly different expression between AI and PI segments. The functional significance of this differential tissue expression is discussed. The experimental diets induced significant changes in the expression of 26 genes. The intensity of these changes and the number of genes that were significantly regulated were higher at PI than at AI. At PI, both diets invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, cytokines and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for D1 and D2, except for fatty acid-binding proteins 2 and 6 and the PRR fucolectin, which were higher in D2 and D1 fed fish, respectively. Thus, NE alone or in combination with PRE seems to induce an anti-inflammatory and anti-proliferative transcriptomic profile with probable improvement in the absorptive capacity of the intestine that would explain the improved FGR.
Collapse
Affiliation(s)
- Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain.
| |
Collapse
|
35
|
Kumar G, Gotesman M, El-Matbouli M. Interaction of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease, with host proteins in the kidney of Salmo trutta. Parasitol Res 2015; 114:1721-7. [PMID: 25663070 PMCID: PMC4412511 DOI: 10.1007/s00436-015-4357-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022]
Abstract
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids which are found in Europe and North America. Less information about the interactions of T. bryosalmonae proteins with salmonid proteins during parasite development is known. In this study, anti-T. bryosalmonae monoclonal antibody-linked to N-hydroxysuccinimide-activated spin columns were used to purify parasite and host proteins from the kidneys of infected and non-infected brown trout (Salmo trutta) Linnaeus, 1758. The samples were next analyzed by electrospray ionization coupled to mass spectrometry to identify proteins that may be involved in the infection and proliferation of T. bryosalmonae within the brown trout host. A total of 6 parasite proteins and 40 different host proteins were identified in this analysis. The identified host proteins function in various processes, which include host defense, enzymatic, and structural components. In conjunction with modern molecular based tools, such siRNA, gene replacement, or gene disruption, this data can ultimately be used to develop novel control methods for T. bryosalmonae, based on the proteins or pathways identified in this study.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | |
Collapse
|
36
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa). Parasitol Res 2015; 114:929-39. [PMID: 25563603 PMCID: PMC4336411 DOI: 10.1007/s00436-014-4258-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | |
Collapse
|
37
|
Robledo D, Ronza P, Harrison PW, Losada AP, Bermúdez R, Pardo BG, Redondo MJ, Sitjà-Bobadilla A, Quiroga MI, Martínez P. RNA-seq analysis reveals significant transcriptome changes in turbot (Scophthalmus maximus) suffering severe enteromyxosis. BMC Genomics 2014; 15:1149. [PMID: 25526753 PMCID: PMC4320470 DOI: 10.1186/1471-2164-15-1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Enteromyxosis caused by the intestinal myxozoan parasite Enteromyxum scophthalmi is a serious threat for turbot (Scophthalmus maximus, L.) aquaculture, causing severe catarrhal enteritis leading to a cachectic syndrome, with no therapeutic options available. There are still many aspects of host-parasite interaction and disease pathogenesis that are yet to be elucidated, and to date, no analysis of the transcriptomic changes induced by E. scophthalmi in turbot organs has been conducted. In this study, RNA-seq technology was applied to head kidney, spleen and pyloric caeca of severely infected turbot with the aim of furthering our understanding of the pathogenetic mechanisms and turbot immune response against enteromyxosis. Results A huge amount of information was generated with more than 23,000 identified genes in the three organs, amongst which 4,762 were differently expressed (DE) between infected and control fish. Associate gene functions were studied based on gene ontology terms and available literature, and the most interesting DE genes were classified into five categories: 1) immune and defence response; 2) apoptosis and cell proliferation; 3) iron metabolism and erythropoiesis; 4) cytoskeleton and extracellular matrix and 5) metabolism and digestive function. The analysis of down-regulated genes of the first category revealed evidences of a connexion failure between innate and adaptive immune response, especially represented by a high number of DE interferon-related genes in the three organs. Furthermore, we found an intense activation of local immune response at intestinal level that appeared exacerbated, whereas in kidney and spleen genes involved in adaptive immune response were mainly down-regulated. The apoptotic machinery was only clearly activated in pyloric caeca, while kidney and spleen showed a marked depression of genes related to erythropoiesis, probably related to disorders in iron homeostasis. The genetic signature of the causes and consequences of cachexia was also demonstrated by the down-regulation of the genes encoding structural proteins and those involved in the digestive metabolism. Conclusions This transcriptomic study has enabled us to gain a better understanding of the pathogenesis of enteromyxosis and identify a large number of DE target genes that bring us closer to the development of strategies designed to effectively combat this pathogen. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1149) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - María Isabel Quiroga
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | | |
Collapse
|
38
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa). Vet Res 2014; 45:101. [PMID: 25297457 PMCID: PMC4198790 DOI: 10.1186/s13567-014-0101-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Ahmed Abd-Elfattah
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
39
|
Calduch-Giner JA, Echasseriau Y, Crespo D, Baron D, Planas JV, Prunet P, Pérez-Sánchez J. Transcriptional assessment by microarray analysis and large-scale meta-analysis of the metabolic capacity of cardiac and skeletal muscle tissues to cope with reduced nutrient availability in Gilthead Sea Bream (Sparus aurata L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:423-435. [PMID: 24626932 DOI: 10.1007/s10126-014-9562-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The effects of nutrient availability on the transcriptome of cardiac and skeletal muscle tissues were assessed in juvenile gilthead sea bream fed with a standard diet at two feeding levels: (1) full ration size and (2) 70 % satiation followed by a finishing phase at the maintenance ration. Microarray analysis evidenced a characteristic transcriptomic profile for each muscle tissue following changes in oxidative capacity (heart > red skeletal muscle > white skeletal muscle). The transcriptome of heart and secondly that of red skeletal muscle were highly responsive to nutritional changes, whereas that of glycolytic white skeletal muscle showed less ability to respond. The highly expressed and nutritionally regulated genes of heart were mainly related to signal transduction and transcriptional regulation. In contrast, those of white muscle were enriched in gene ontology (GO) terms related to proteolysis and protein ubiquitination. Microarray meta-analysis using the bioinformatic tool Fish and Chips ( http://fishandchips.genouest.org/index.php ) showed the close association of a representative cluster of white skeletal muscle with some of cardiac and red skeletal muscle, and many GO terms related to mitochondrial function appeared to be common links between them. A second round of cluster comparisons revealed that mitochondria-related GOs also linked differentially expressed genes of heart with those of liver from cortisol-treated gilthead sea bream. These results show that mitochondria are among the first responders to environmental and nutritional stress stimuli in gilthead sea bream, and functional phenotyping of this cellular organelle is highly promising to obtain reliable markers of growth performance and well-being in this fish species.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Gómez D, Bartholomew J, Sunyer JO. Biology and mucosal immunity to myxozoans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:243-56. [PMID: 23994774 PMCID: PMC4216934 DOI: 10.1016/j.dci.2013.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 05/13/2023]
Abstract
Myxozoans are among the most abundant parasites in nature. Their life cycles involve two hosts: an invertebrate, usually an annelid, and a vertebrate, usually a fish. They affect fish species in their natural habitats but also constitute a menace for fish aquaculture. Using different strategies they are able to parasitize and cause damage in multiple organs, including mucosal tissues, which they use also as portals of entry. In fish, the main mucosal sites include the intestine, skin and gills. Recently the finding of a specific mucosal immunoglobulin in teleost (IgT), analogous to mammalian IgA, and the capacity of fish to develop a specific mucosal immune response against different pathogens, has highlighted the importance of studying immune responses at mucosal sites. In this review, we describe the major biological characteristics of myxozoan parasites and present the data available regarding immune responses for species that infect mucosal sites. As models for mucosal immunity we review the responses to Enteromyxum spp. and Ceratomyxa shasta, both of which parasitize the intestine. The immune response at the skin and gills is also described, as these mucosal tissues are used by myxozoans as attaching surfaces and portal of entry, and some species also parasitize these sites. Finally, the development of immunoprophylactic strategies is discussed.
Collapse
Affiliation(s)
- Daniela Gómez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jerri Bartholomew
- Department of Microbiology, Center for Fish Disease Research, Oregon State University, Corvallis, OR, USA.
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Yu H, Yan QG, Wang ZB, Lu YJ, Xu MJ, Li H, Zhu XQ. MH II-DAB gene expression in grass carp Ctenopharyngodon idella (Valenciennes) after infection with the ciliate parasite, Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2014; 37:43-50. [PMID: 24131264 DOI: 10.1111/j.1365-2761.2012.01442.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 06/02/2023]
Abstract
The grass carp, Ctenopharyngodon idella (Valenciennes), is one of the most extensively aquacultured freshwater fish in China. However, because of the lack of effective control measures and the high-density culture environment, considerable economic losses are caused by infection of C. idella with the parasitic ciliate, Ichthyophthirius multifiliis. The major histocompatibility (MH) DAB gene belongs to antigen-presented genes in the class II genomic region, which is associated with parasite resistance. To understand the relationship of the DAB gene with I. multifiliis infection in grass carp, the expression profiles of MH II-DAB were studied in tissues using real-time quantitative polymerase chain reaction. The results showed that expression of the MH II-DAB gene was up-regulated in head kidney after I. multifiliis infection, and the expression peak appeared earlier in the study (case) group than in the control group. The obvious up-regulation peak of MH II-DAB gene was found at days 2 and 4 in skin; at 12 h to day 4 in spleen; at 12 h and days 1 and 6 in gill; and at day 10 in blood, whereas the MH II-DAB gene was down-regulated in liver and intestines after I. multifiliis infection. These results have implications for better understanding C. idella resistance to I. multifiliis infection.
Collapse
Affiliation(s)
- H Yu
- College of Life Science, Foshan University, Foshan, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Modulation of leukocytic populations of gilthead sea bream (Sparus aurata) by the intestinal parasite Enteromyxum leei (Myxozoa: Myxosporea). Parasitology 2013; 141:425-40. [DOI: 10.1017/s0031182013001789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe cellular mucosal and systemic effectors of gilthead sea bream (GSB) (Sparus aurata) involved in the acute immune response to the intestinal parasite Enteromyxum leei were studied in fish experimentally infected by the anal route. In the intestinal inflammatory infiltrates and in lymphohaematopoietic organs (head kidney and spleen) of parasitized fish, the number of plasma cells, B cells (IgM immunoreactive) and mast cells (histamine immunoreactive) were significantly higher, whereas the number of acidophilic granulocytes (G7 immunoreactive) decreased, compared with non-parasitized and unexposed fish. These differences were stronger at the posterior intestine, the main target of the parasite, and no differences were found in the thymus. In non-parasitized GSB, the percentage of splenic surface occupied by melanomacrophage centres was significantly higher. These results suggest that the cellular response of GSB to E. leei includes proliferation of leukocytes in lymphohaematopoietic organs and recruitment into intestines via blood circulation involving elements of innate and adaptive immunity. Acidophilic granulocytes and mast cells presented opposite patterns of response to the parasite infection, with an overall depletion of the former and an increased amount of the latter. Some differences between both cell types were also detected in regard to their granule density and cell morphology.
Collapse
|
43
|
Estensoro I, Álvarez-Pellitero P, Sitjà-Bobadilla A. Antigenic characterization of Enteromyxum leei (Myxozoa: Myxosporea). DISEASES OF AQUATIC ORGANISMS 2013; 106:149-162. [PMID: 24113248 DOI: 10.3354/dao02651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enteromyxum leei, an intestinal myxozoan parasite affecting a wide range of fish, was partially purified, and the immunogenic composition of its glycoproteins as well as the proteolytic activity were studied. Parasite extracts, mainly containing spores, were separated by SDS-PAGE, and thereafter, immunoblots were carried out with a polyclonal antiserum (Pab) raised against E. leei. Periodic acid/Schiff staining of gels, periodate- and Proteinase K-treated Western blots and Lectin blots were performed to analyse the terminal carbohydrate composition of the parasite's antigens. Additionally, the cross-reaction of the parasite extracts with a Pab raised against the polar filament of the myxozoan Myxobolus pendula was studied. Both Pabs detected proteic epitopes on antigenic proteins and glycoproteins of E. leei, ranging between 15 and 280 kDa. In particular, 2 glycoproteic bands (15 and 165 kDa), immunoreactive to both Pabs and with glucose and mannose moieties, could correspond to common antigens shared among myxozoans. The 165 kDa band also presented galactose, N-acetyl-galactosamine and N-acetyl-glucosamine, pointing to its possible origin on chitin-built spore valves and to its possible involvement in host-parasite interactions. The molecular weight of the 15 kDa glycoproteic antigen matches that of minicollagen, a cnidarian-specific protein of nematocysts with a myxozoan homologue. Several proteases with apparent molecular weights ranging between 43 and 245 kDa were found in zymographies of E. leei extracts, and these may have a potential role in the parasite's pathogenesis. This is a useful approach for further studies to detect targets for antiparasitic therapy.
Collapse
Affiliation(s)
- Itziar Estensoro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
44
|
Gorgoglione B, Wang T, Secombes CJ, Holland JW. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Vet Res 2013; 44:55. [PMID: 23865616 PMCID: PMC3733943 DOI: 10.1186/1297-9716-44-55] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023] Open
Abstract
The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
45
|
Fernández CG, Roufidou C, Antonopoulou E, Sarropoulou E. Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:313-320. [PMID: 23053055 DOI: 10.1007/s10126-012-9486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The mechanism of early fish development as well as the control of egg quality is of great importance for the ability of the oocyte to develop after fertilization. Embryonic development is initially regulated by maternally provided mRNAs and later by the zygotic genome. Maternal mRNAs have an important role in initiating processes crucial to patterning the developing fish embryo. Furthermore, it has been shown that maternal RNA plays an important role in egg quality. The identification and characterization of candidate maternal genes in non-model fish species with important aquaculture interest like the gilthead sea bream Sparus aurata L. is of importance for future studies related to egg quality. The broodstock of the gilthead sea bream produces large quantities of eggs with a high and non-controllable quality variation. In the present study, we have studied the gene expression of 16 genes (gapdh 1 and 2, cathepsin D, L, S and Z, erk1, jnk1, p38 alpha and p38 delta, ppar alpha, beta and gamma, tubulin beta, ferritin M, cyclinA2) of different functional categories in seven developmental stages. The 16 genes were chosen based on their putative involvement in egg quality and regulation of early development. In total, 11 showed a characteristic gene expression pattern pinpointing to the possible function as maternal genes and thus may function as molecular biomarker for egg quality.
Collapse
Affiliation(s)
- Carmen García Fernández
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
46
|
Ribas L, Pardo BG, Fernández C, Alvarez-Diós JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC Genomics 2013; 14:180. [PMID: 23497389 PMCID: PMC3700835 DOI: 10.1186/1471-2164-14-180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/27/2013] [Indexed: 02/02/2023] Open
Abstract
Background Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Results Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database (“Turbot 2 database”) was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences (“Turbot 3 database”), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50–90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. Conclusions The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L, Estensoro I, Ballester-Lozano G, Sitjà-Bobadilla A, Pérez-Sánchez J. Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 2013; 14:178. [PMID: 23497320 PMCID: PMC3606596 DOI: 10.1186/1471-2164-14-178] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Background The gilthead sea bream (Sparus aurata) is the main fish species cultured in the Mediterranean area and constitutes an interesting model of research. Nevertheless, transcriptomic and genomic data are still scarce for this highly valuable species. A transcriptome database was constructed by de novo assembly of gilthead sea bream sequences derived from public repositories of mRNA and collections of expressed sequence tags together with new high-quality reads from five cDNA 454 normalized libraries of skeletal muscle (1), intestine (1), head kidney (2) and blood (1). Results Sequencing of the new 454 normalized libraries produced 2,945,914 high-quality reads and the de novo global assembly yielded 125,263 unique sequences with an average length of 727 nt. Blast analysis directed to protein and nucleotide databases annotated 63,880 sequences encoding for 21,384 gene descriptions, that were curated for redundancies and frameshifting at the homopolymer regions of open reading frames, and hosted at http://www.nutrigroup-iats.org/seabreamdb. Among the annotated gene descriptions, 16,177 were mapped in the Ingenuity Pathway Analysis (IPA) database, and 10,899 were eligible for functional analysis with a representation in 341 out of 372 IPA canonical pathways. The high representation of randomly selected stickleback transcripts by Blast search in the nucleotide gilthead sea bream database evidenced its high coverage of protein-coding transcripts. Conclusions The newly assembled gilthead sea bream transcriptome represents a progress in genomic resources for this species, as it probably contains more than 75% of actively transcribed genes, constituting a valuable tool to assist studies on functional genomics and future genome projects.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Institute of Aquaculture Torre de la Sal, Castellón, CSIC, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics 2012; 13:470. [PMID: 22967181 PMCID: PMC3444936 DOI: 10.1186/1471-2164-13-470] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. Results Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. Conclusions The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, 12595, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Estensoro I, Redondo MJ, Salesa B, Kaushik S, Pérez-Sánchez J, Sitjà-Bobadilla A. Effect of nutrition and Enteromyxum leei infection on gilthead sea bream Sparus aurata intestinal carbohydrate distribution. DISEASES OF AQUATIC ORGANISMS 2012; 100:29-42. [PMID: 22885511 DOI: 10.3354/dao02486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of a practical plant protein-based diet containing vegetable oils (VO) as the major lipid source on the mucosal carbohydrate pattern of the intestine was studied in gilthead sea bream Sparus aurata challenged with the myxosporean parasite Enteromyxum leei. Fish fed for 9 mo either a fish oil (FO) diet or a blend of VO at 66% of replacement (66VO diet) were exposed to parasite-contaminated water effluent. Samples of the anterior, middle and posterior intestine (AI, MI and PI, respectively) were obtained for parasite diagnosis and histochemistry. Fish were categorised as control (C, not exposed), early (E) or late (L) infected. Mucin and lectin histochemistry was applied to detect the different types of mucins and sialic acid in goblet cells (GC), the brush border and enterocytes. The number of GC stained with periodic acid Schiff (PAS), alcian blue (AB), aldehyde fuchsin-alcian blue (AF-AB), for the detection of neutral, acidic, sulphated and carboxylic mucins, and with the lectin Sambucus nigra agglutinin (SNA), were counted in digital images. The 66VO diet produced a significant decrease of GC with neutral and acidic mucins in the AI and MI, and also of those with carboxylic mucins and sialic acid in the MI. Sulphated mucins and sialic acid were less abundant in the AI than in the MI and PI in the C-66VO treatment. E. leei infection had a strong effect on the number of GC, as E and L infected fish had a significant decrease of GC positive for all the stains versus C fish in PI. Time and diet effects were also observed, since the lowest values were mostly registered in E-66VO fish in PI. In conclusion, though GC depletion was mainly induced by enteromyxosis, an effect of the diet was also observed. Thus, the diet can be a predisposing factor that worsens the disease course.
Collapse
Affiliation(s)
- Itziar Estensoro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E. RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:816-827. [PMID: 22366064 DOI: 10.1016/j.fsi.2012.02.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
The mucosal surfaces of fish (gill, skin, gastrointestinal tract) are important sites of bacterial exposure and host defense mechanisms. In mammalian systems, the intestinal epithelium is well characterized as both a selectively permeable barrier regulated by junctional proteins and as a primary site of infection for a number of enteric pathogens including viruses, bacteria, and parasites. The causative bacterium of enteric septicemia of catfish, Edwardsiella ictaluri, is believed to gain entry through the intestinal epithelium, with previous research using a rat intestinal epithelial cell line (IEC-6) indicating actin polymerization and receptor-mediated endocytosis as potential mechanisms of uptake. Here, we utilized high-throughput RNA-seq to characterize the role of the intestinal epithelial barrier following E. ictaluri challenge. A total of 197.6 million reads were obtained and assembled into 176,481 contigs with an average length of 893.7 bp and N50 of 1676 bp. The assembled contigs contained 14,457 known unigenes, including 2719 genes not previously identified in other catfish transcriptome studies. Comparison of digital gene expression between challenged and control samples revealed 1633 differentially expressed genes at 3 h, 24 h, and 3 day following exposure. Gene pathway analysis of the differentially expressed gene set indicated the centrality of actin cytoskeletal polymerization/remodelling and junctional regulation in pathogen entry and subsequent inflammatory responses. The expression patterns of fifteen differentially expressed genes related to intestinal epithelial barrier dysfunction were validated by quantitative real-time RT-PCR (average correlation coeff. 0.92, p < 0.001). Our results set a foundation for future studies comparing mechanisms of pathogen entry and mucosal immunity across several important catfish pathogens including E. ictaluri, Edwardsiellatarda, Flavobacterium columnare, and virulent atypical Aeromonas hydrophila. Understanding of molecular mechanisms of pathogen entry during infection will provide insight into strategies for selection of resistant catfish brood stocks against various diseases.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|