1
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
2
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
3
|
Joseph CR. Progressive Age-Associated Blood-Brain Barrier Leak/Dysfunction-Nexus of Neurodegenerative Disease Using MRI Markers to Identify Preclinical Disease and Potential New Targets for Future Treatments. Diagnostics (Basel) 2024; 14:726. [PMID: 38611639 PMCID: PMC11011559 DOI: 10.3390/diagnostics14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This review article focuses on the upstream pertinent pathophysiology leading to neurodegenerative disease. Specifically, the nexus appears to be blood-brain barrier (BBB) leakiness resulting in a two-prong inflammatory disease spectrum damaging the microvasculature and corrupting protein synthesis and degradation with accumulating misfolded toxic proteins. The suboptimal results of removing misfolded proteins mean a new approach to disease in the preclinical state is required aimed at other targets. Validated noninvasive imaging and serologic biomarkers of early preclinical disease implemented in the high-risk patient cohort along with periodic surveillance once effective treatments are developed will be required. This review discusses the physiology and pathophysiology of the BBB, new MRI imaging techniques identifying the leak, and altered fluid dynamic effects in the preclinical state. The risk factors for disease development, preventative measures, and potential treatment targets are also discussed.
Collapse
Affiliation(s)
- Charles R Joseph
- Neurology and Internal Medicine, College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24502, USA
| |
Collapse
|
4
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
5
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Qi X, Liu Y, Chi H, Yang Y, Xiong Q, Li M, Yao R, Sun H, Li Z, Zhang J. Complement proteins in serum astrocyte-derived exosomes are associated with mild cognitive impairment in type 1 diabetes mellitus patients. Neurosci Lett 2023; 810:137318. [PMID: 37271220 DOI: 10.1016/j.neulet.2023.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The complement system plays a crucial role in cognitive impairment. The aim of this study is to investigate the correlation between the complement proteins levels in serum astrocyte-derived exosomes (ADEs) and mild cognitive impairment (MCI) in type 1 diabetes mellitus (T1DM) patients. METHODS In this cross-sectional study, the patients with immune-mediated T1DM were enrolled. Healthy subjects matched for age and sex with T1DM patients were selected as controls. The cognitive function was evaluated by a Beijing version of the Montreal Cognitive Assessment (MoCA) questionnaire. The complement proteins including C5b-9, C3b and Factor B in serum ADEs were measured by ELISA kits. RESULTS This study recruited 55 subjects immune-mediated T1DM patients without dementia, including 31 T1DM patients with MCI, 24 T1DM patients without MCI. 33 healthy subjects were enrolled as controls. The results showed higher complement proteins including C5b-9, C3b and Factor B levels in ADEs from T1DM patients with MCI than those in the controls (P < 0.001, P < 0.001, P = 0.006) and T1DM patients without MCI (P = 0.02, P = 0.02, P = 0.03). The C5b-9 levels in ADEs were independently associated with MCI in T1DM patients(OR: 1.20, 95% CI: 1.00-1.44, P = 0.04). The C5b-9 levels in ADEs were significantly correlated with global cognitive scores (β = -0.360, P<0.001) and visuo-executive (β = -0.132, P<0.001), language(β = -0.036, P = 0.026) and delayed recall score (β = -0.090,P = 0.007). There was no correlation between the C5b-9 levels in ADEs and the fasting glucose, HbA1c, fasting c-peptide and GAD65 antibody in T1DM patients. Furthermore, the C5b-9, C3b and Factor B levels in ADEs exhibited a fair combined diagnostic value for MCI, with an area under the curve of 0.76 (95% CI: 0.63-0.88, P = 0.001). CONCLUSION The elevated C5b-9 levels in ADEswere significantly associated with theMCI in T1DM patients. The C5b-9 in ADEs may be used as a marker of MCI in T1DM patients.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yingxiao Liu
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Haiyan Chi
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Qiao Xiong
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
7
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
8
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
9
|
Kim S, Sharma C, Jung UJ, Kim SR. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051383. [PMID: 37239054 DOI: 10.3390/biomedicines11051383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer's disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
11
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
12
|
The differences in serum C1q levels between first-episode patients with bipolar disorder and major depressive disorder. J Psychosom Res 2022; 162:111042. [PMID: 36156342 DOI: 10.1016/j.jpsychores.2022.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed at exploring the changes of serum complement C1q levels in patients with Bipolar Disorder (BD) using a cross-sectional design, and the differences between Major Depressive Disorder (MDD) and BD. Moreover, the correlation between complement C1q and bech-rafaelsdn mania rating scales (BRMS) in patients with MDD and BD was assessed. METHODS Serum complement C1q levels were measured by ADVIA 2400 biochemical analyser in 104 patients with MDD, 71 patients with BD type I and 42 patients with BD type II diagnosed by Diagnostic and Statistical of Mental Disorder 5 (DSM-5). Then simple and multivariate linear regression analysis was conducted between the level of serum C1q and BRMS among patients with BD. RESULTS The serum complement C1q levels were higher in BD type I than BD type II (P < 0.001); Serum complement C1q levels were higher in MDD than BD type II (P < 0.001). We discovered that there was a positive correlation relationship between serum complement C1q levels and BRMS in BD type I (r = 0.756, P < 0.001). CONCLUSION We confirmed that serum complement C1q levels were higher in patients with BD type II than in MDD patients. These current results support the view that the complement C1q may play an important role in the pathophysiology of BD. Serum complement C1q was strongly associated with BD and is worth investigating in future studies.
Collapse
|
13
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
14
|
Xu W, Kumar V, Cui CS, Li XX, Whittaker AK, Xu ZP, Smith MT, Woodruff TM, Han FY. Success in navigating hurdles to oral delivery of a bioactive peptide complement antagonist through use of nanoparticles to increase bioavailability and in vivo efficacy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Vinod Kumar
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Cedric S. Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Xaria X. Li
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Maree T. Smith
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Felicity Y Han
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| |
Collapse
|
15
|
King A, Doyle KM. Implications of COVID-19 to Stroke Medicine: An Epidemiological and Pathophysiological Perspective. Curr Vasc Pharmacol 2022; 20:333-340. [PMID: 36324222 DOI: 10.2174/1570161120666220428101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023]
Abstract
The neurological complications of Coronavirus 2019 (COVID-19) including stroke have been documented in the recent literature. COVID-19-related inflammation is suggested to contribute to both a hypercoagulable state and haemorrhagic transformation, including in younger individuals. COVID-19 is associated with a heightened risk of ischaemic stroke. Haemorrhagic stroke in COVID-19 patients is associated with increased morbidity and mortality. Cerebral venous sinus thrombosis (CVST) accounts for <1% of stroke cases in the general population but has come to heightened public attention due to the increased risk associated with adenoviral COVID-19 vaccines. However, recent evidence suggests the prevalence of stroke is less in vaccinated individuals than in unvaccinated COVID-19 patients. This review evaluates the current evidence of COVID-19-related ischaemic and haemorrhagic stroke, with a focus on current epidemiology and inflammatory-linked pathophysiology in the field of vascular neurology and stroke medicine.
Collapse
Affiliation(s)
- Alan King
- Department of Medicine, University of Limerick, Limerick, Ireland
| | - Karen M Doyle
- Department of Physiology, CURAM, Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13:261-284. [PMID: 35668839 PMCID: PMC9160520 DOI: 10.1007/s13167-022-00285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Fatma H Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt
| |
Collapse
|
17
|
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040742. [PMID: 35453494 PMCID: PMC9029506 DOI: 10.3390/biomedicines10040742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the brain tissue. It facilitates communication while separating the peripheral circulation system from the brain parenchyma. However, normal aging and neurodegenerative diseases can alter and damage the physiological properties of the BBB. In this review, we first briefly present the essential pathways maintaining and regulating BBB integrity, and further review the mechanisms of BBB breakdown associated with normal aging and peripheral inflammation-causing neurodegeneration and cognitive impairments. We also discuss how BBB disruption can cause or contribute to Alzheimer’s disease (AD), the most common form of dementia and a devastating neurological disorder. Next, we document overlaps between AD and vascular dementia (VaD) and briefly sum up the techniques for identifying biomarkers linked to BBB deterioration. Finally, we conclude that BBB breakdown could be used as a biomarker to help diagnose cognitive impairment associated with normal aging and neurodegenerative diseases such as AD.
Collapse
|
18
|
Li Z, Zhang W, Gao F, Tang Q, Kang D, Shen Y. Different Complement Activation Pathways Underly Cognitive Impairment and Type 2 Diabetes Mellitus Combined With Cognitive Impairment. Front Aging Neurosci 2022; 14:810335. [PMID: 35370615 PMCID: PMC8967361 DOI: 10.3389/fnagi.2022.810335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background The immune response and the complement system are associated with cognitive impairment and diabetes mellitus, respectively. Activation of the complement system in these diseases occurs mainly through either the classical pathway or the alternative pathway. However, the specific complement proteins involved in the development of the type 2 diabetes mellitus (T2DM) and cognitive impairment are still unclear. Here, we investigated complement proteins in serum from patients with T2DM, cognitive impairment, or both T2DM and cognitive impairment. Objective To investigate the levels of serum immune complement proteins in patients with T2DM, cognitive impairment, or T2DM combined with cognitive impairment and the associations between these complement proteins and risk factors for T2DM or cognitive impairment. Methods Clinical markers were collected from blood samples of 264 participants. Luminex multiplex assays were used to detect serum complement proteins. All statistical analyses were performed using Prism or R studio. Results There was a difference in serum levels of the complement proteins C1q, C3, C3b, and FH between the three different groups. Hyperglycemia was significantly correlated with elevated C3b or reduced C3, C1q, and FH. In addition, hyperlipidemia was positively correlated with elevated levels of C3, C4, C1q, and FH proteins. There was an association between C1q, C3, C4, and FH and β-pancreas cell function, whereas only FH was associated with insulin resistance. Higher serum C1q was significantly associated with an increased risk of cognitive impairment. Conclusion Serum levels of complement proteins were closely associated with hyperglycemia and hyperlipidemia. We found that classical complement pathway activation mainly occurred in the cognitive impairment only group, whereas the alternative pathway may reflect T2DM and T2DM with cognitive impairment.
Collapse
Affiliation(s)
- Zhenxing Li
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiqiang Tang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yong Shen,
| | - Dongmei Kang
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yong Shen,
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yong Shen,
| |
Collapse
|
19
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
20
|
Vanner RJ, Dobson SM, Gan OI, McLeod J, Schoof EM, Grandal I, Wintersinger JA, Garcia-Prat L, Hosseini M, Xie SZ, Jin L, Mbong N, Voisin V, Chan-Seng-Yue M, Kennedy JA, Waanders E, Morris Q, Porse B, Chan SM, Guidos CJ, Danska JS, Minden MD, Mullighan CG, Dick JE. Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target. Blood Cancer Discov 2022; 3:16-31. [PMID: 35019858 PMCID: PMC9783958 DOI: 10.1158/2643-3230.bcd-20-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations. CNS leukemia cells were exquisitely sensitive to the translation inhibitor omacetaxine mepesuccinate, which reduced xenograft leptomeningeal disease burden. Proteomics demonstrated greater abundance of secreted proteins in CNS-infiltrating cells, including complement component 3 (C3), and drug targeting of C3 influenced CNS disease in xenografts. CNS-infiltrating cells also exhibited selection for stemness traits and metabolic reprogramming. Overall, our study identifies targeting of mRNA translation as a potential therapeutic approach for B-ALL leptomeningeal disease. SIGNIFICANCE: Cancer metastases are often driven by distinct subclones with unique biological properties. Here we show that in B-ALL CNS disease, the leptomeningeal environment selects for cells with unique functional dependencies. Pharmacologic inhibition of mRNA translation signaling treats CNS disease and offers a new therapeutic approach for this condition.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Robert J Vanner
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie M Dobson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Ildiko Grandal
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jeff A Wintersinger
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Veronique Voisin
- Terrence Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center, Utrecht, the Netherlands
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quaid Morris
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
23
|
Local complement factor H protects kidney endothelial cell structure and function. Kidney Int 2021; 100:824-836. [PMID: 34139209 DOI: 10.1016/j.kint.2021.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
Factor H (FH) is a critical regulator of the alternative complement pathway and its deficiency or mutation underlie kidney diseases such as dense deposit disease. Since vascular dysfunction is an important facet of kidney disease, maintaining optimal function of the lining endothelial cells is important for vascular health. To investigate the molecular mechanisms that are regulated by FH in endothelial cells, FH deficient and sufficient mouse kidney endothelial cell cultures were established. Endothelial FH deficiency resulted in cytoskeletal remodeling, increased angiogenic potential, loss of cellular layer integrity and increased cell proliferation. FH reconstitution prevented these FH-dependent proliferative changes. Respiratory flux analysis showed reduced basal mitochondrial respiration, ATP production and maximal respiratory capacity in FH deficient endothelial cells, while proton leak remained unaltered. Similar changes were observed in FH deficient human glomerular endothelial cells indicating the translational potential of these studies. Gene expression analysis revealed that the FH-dependent gene changes in mouse kidney endothelial cells include significant upregulation of genes involved in inflammation and the complement system. The transcription factor nuclear factor-kB, that regulates many biological processes, was translocated from the cytoplasm to the nucleus in the absence of FH. Thus, our studies show the functional relevance of intrinsic FH in kidney endothelial cells in man and mouse.
Collapse
|
24
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Iriondo A, García-Sebastian M, Arrospide A, Arriba M, Aurtenetxe S, Barandiaran M, Clerigue M, Ecay-Torres M, Estanga A, Gabilondo A, Izagirre A, Saldias J, Tainta M, Villanua J, Mar J, Goñi FM, Martínez-Lage P. Plasma lipids are associated with white matter microstructural changes and axonal degeneration. Brain Imaging Behav 2021; 15:1043-1057. [PMID: 32748320 DOI: 10.1007/s11682-020-00311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dislipidemia is a risk factor for cognitive impairment. We studied the association between interindividual variability of plasma lipids and white matter (WM) microstructure, using diffusion tensor imaging (DTI) in 273 healthy adults. Special focus was placed on 7 regions of interest (ROI) which are structural components of cognitive neurocircuitry. We also investigated the effect of plasma lipids on cerebrospinal fluid (CSF) neurofilament light chain (NfL), an axonal degeneration marker. Low density lipoprotein (LDL) and triglyceride (TG) levels showed a negative association with axial diffusivity (AxD) in multiple regions. High density lipoproteins (HDL) showed a positive correlation. The association was independent of Apolipoprotein E (APOE) genotype, blood pressure or use of statins. LDL moderated the relation between NfL and AxD in the body of the corpus callosum (p = 0.041), right cingulum gyrus (p = 0.041), right fornix/stria terminalis (p = 0.025) and right superior longitudinal fasciculus (p = 0.020) and TG in the right inferior longitudinal fasciculus (p = 0.004) and left fornix/stria terminalis (p = 0.001). We conclude that plasma lipids are associated to WM microstructural changes and axonal degeneration and might represent a risk factor in the transition from healthy aging to disease.
Collapse
Affiliation(s)
- Ane Iriondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Maite García-Sebastian
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Arantzazu Arrospide
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria Arriba
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Sara Aurtenetxe
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Myriam Barandiaran
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Montserrat Clerigue
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mirian Ecay-Torres
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Ainara Estanga
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Alazne Gabilondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Andrea Izagirre
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.,Department of Nursing II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Saldias
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Jorge Villanua
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Javier Mar
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Felix M Goñi
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), Leioa, Spain
| | - Pablo Martínez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.
| |
Collapse
|
26
|
Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Front Immunol 2021; 12:665300. [PMID: 33981312 PMCID: PMC8107207 DOI: 10.3389/fimmu.2021.665300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its rapid spread and virulence. COVID-19 patients experience respiratory, digestive and neurological symptoms. Distinctive symptom as anosmia, suggests a potential neurotropism of this virus. Amongst the several pathways of entry to the nervous system, we propose an alternative pathway from the infection of the gut, involving Toll-like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain receptor. Possible use of zonulin antagonists could be investigated to attenuate neurological manifestations caused by SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Sílvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Eduardo Nava
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Mónica Muñoz-López
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | - Tomás Segura
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain.,Servicio de Neurología, Hospital General Universitario de Albacete, Albacete, Spain.,Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
27
|
Jacob A, Nina Peralta L, Pegues D, Okamura K, Chang A, McSkimming D, Alexander J. Exercise alleviates symptoms of CNS lupus. Brain Res 2021; 1765:147478. [PMID: 33852888 DOI: 10.1016/j.brainres.2021.147478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (lupus) is a global health problem where 20-80% patients display cognitive problems and central nervous system (CNS) dysfunction. Early diagnosis and treatment of lupus remains a clinical challenge. Exercise improves experimental lupus nephritis. However, the effects of exercise in CNS lupus remains unknown. This study investigates the effects of controlled exercise (CE) that consisted of treadmill walking (5 m/min for 10 min everyday) on experimental CNS lupus using the well-established mouse model, MRL/lpr mice. The MRL/lpr mice were subjected to CE from 8 weeks (preclinical) to 16 weeks (disease). Multiplex gene expression analysis revealed significant upregulation of genes involved in neurite growth, proliferation and synaptic plasticity, and a decrease in inflammatory genes including complement proteins, NFkB, chemokines and cytokines in exercised mice compared to the unmanipulated, age-matched controls. The loss of blood-brain barrier integrity, astrogliosis and edema seen in MRL/lpr mice were reduced with exercise. Exercised mice performed better in behavioral assessments such as open field, nesting, and tail suspension test. For the first time our results show that a supervised, well-regulated and controlled exercise regimen alleviates CNS lupus and could potentially serve as an intervention strategy to improve the quality of life. Exercise could also serve as an adjunct therapy for lupus and other neuroinflammatory diseases, thereby reducing the need for the current therapies with toxic side effects. The validity of the findings and a safe exercise regimen needs to be established by additional studies in patients.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | | | - Deja Pegues
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Kazuki Okamura
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Jessy Alexander
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA.
| |
Collapse
|
28
|
Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res 2021; 99:750-777. [PMID: 33217763 PMCID: PMC7753416 DOI: 10.1002/jnr.24752] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Fatma Elrashdy
- Department of Endemic Medicine and HepatogastroenterologyKasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Abdullah Aljadawi
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Elrashdy M. Redwan
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
29
|
The Possible Importance of Glutamine Supplementation to Mood and Cognition in Hypoxia from High Altitude. Nutrients 2020; 12:nu12123627. [PMID: 33255790 PMCID: PMC7760805 DOI: 10.3390/nu12123627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia induced by low O2 pressure is responsible for several physiological and behavioral alterations. Changes in physiological systems are frequent, including inflammation and psychobiological declines such as mood and cognition worsening, resulting in increased reaction time, difficulty solving problems, reduced memory and concentration. The paper discusses the possible relationship between glutamine supplementation and worsening cognition mediated by inflammation induced by high altitude hypoxia. The paper is a narrative literature review conducted to verify the effects of glutamine supplementation on psychobiological aspects. We searched MEDLINE/PubMed and Web of Science databases and gray literature by Google Scholar for English articles. Mechanistic pathways mediated by glutamine suggest potential positive effects of its supplementation on mood and cognition, mainly its potential effect on inflammation. However, clinical studies are scarce, making any conclusions impossible. Although glutamine plays an important role and seems to mitigate inflammation, clinical studies should test this hypothesis, which will contribute to a better mood and cognition state for several people who suffer from problems mediated by hypoxia.
Collapse
|
30
|
Matzen JS, Krogh CL, Forman JL, Garred P, Møller K, Bache S. Lectin complement pathway initiators after subarachnoid hemorrhage - an observational study. J Neuroinflammation 2020; 17:338. [PMID: 33183322 PMCID: PMC7661172 DOI: 10.1186/s12974-020-01979-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background This exploratory study investigated the time-course of lectin complement pathway (LCP) initiators in cerebrospinal fluid (CSF) and plasma in patients with subarachnoid hemorrhage (SAH), as well as their relationship to delayed cerebral ischemia (DCI) and functional outcome. Methods Concentrations of ficolin-1, ficolin-2, ficolin-3, and mannose-binding lectin (MBL) were analyzed in CSF and plasma from patients with SAH. Samples were collected daily from admission until day 9 (CSF; N_PATIENTS = 63, n_SAMPLES = 399) and day 8 (plasma; N_PATIENTS = 50, n_SAMPLES = 358), respectively. Twelve neurologically healthy patients undergoing spinal anesthesia and 12 healthy blood donors served as controls. The development of DCI during hospitalization and functional outcome at 3 months (modified Rankin Scale) were registered for patients. Results On admission, CSF levels of all LCP initiators were increased in SAH patients compared with healthy controls. Levels declined gradually over days in patients; however, a biphasic course was observed for ficolin-1. Increased CSF levels of all LCP initiators were associated with a poor functional outcome in univariate analyses. This relationship persisted for ficolin-1 and MBL in multivariate analysis after adjustments for confounders (age, sex, clinical severity, distribution and amount of blood on CT-imaging) and multiple testing (1.87 ng/mL higher in average, 95% CI, 1.17 to 2.99 and 1.69 ng/mL higher in average, 95% CI, 1.09 to 2.63, respectively). In patients who developed DCI compared with those without DCI, CSF levels of ficolin-1 and MBL tended to increase slightly more over time (p_interaction = 0.021 and 0.033, respectively); however, no association was found after adjustments for confounders and multiple testing (p-adj_interaction = 0.086 and 0.098, respectively). Plasma ficolin-1 and ficolin-3 were lower in SAH patients compared with healthy controls on all days. DCI and functional outcome were not associated with LCP initiator levels in plasma. Conclusion Patients with SAH displayed elevated CSF levels of ficolin-1, ficolin-2, ficolin-3, and MBL. Increased CSF levels of ficolin-1 and MBL were associated with a poor functional outcome. Trial registration This study was a retrospective analysis of samples, which had been prospectively sampled and stored in a biobank. Registered at clinicaltrials.gov (NCT01791257, February 13, 2013, and NCT02320539, December 19, 2014). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-01979-y.
Collapse
Affiliation(s)
- Jeppe Sillesen Matzen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.
| | - Charlotte Loumann Krogh
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
31
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Nguyen VA, Riddell N, Crewther SG, Faou P, Rajapaksha H, Howells DW, Hankey GJ, Wijeratne T, Ma H, Davis S, Donnan GA, Carey LM. Longitudinal Stroke Recovery Associated With Dysregulation of Complement System-A Proteomics Pathway Analysis. Front Neurol 2020; 11:692. [PMID: 32849183 PMCID: PMC7399641 DOI: 10.3389/fneur.2020.00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Currently the longitudinal proteomic profile of post-ischemic stroke recovery is relatively unknown with few well-accepted biomarkers or understanding of the biological systems that underpin recovery. We aimed to characterize plasma derived biological pathways associated with recovery during the first year post event using a discovery proteomics workflow coupled with a topological pathway systems biology approach. Blood samples (n = 180, ethylenediaminetetraacetic acid plasma) were collected from a subgroup of 60 first episode stroke survivors from the Australian START study at 3 timepoints: 3-7 days (T1), 3-months (T2) and 12-months (T3) post-stroke. Samples were analyzed by liquid chromatography mass spectrometry using label-free quantification (data available at ProteomeXchange with identifier PXD015006). Differential expression analysis revealed that 29 proteins between T1 and T2, and 33 proteins between T1 and T3 were significantly different, with 18 proteins commonly differentially expressed across the two time periods. Pathway analysis was conducted using Gene Graph Enrichment Analysis on both the Kyoto Encyclopedia of Genes and Genomes and Reactome databases. Pathway analysis revealed that the significantly differentiated proteins between T1 and T2 were consistently found to belong to the complement pathway. Further correlational analyses utilized to examine the changes in regulatory effects of proteins over time identified significant inhibitory regulation of clusterin on complement component 9. Longitudinal post-stroke blood proteomics profiles suggest that the alternative pathway of complement activation remains in a state of higher activation from 3-7 days to 3 months post-stroke, while simultaneously being regulated by clusterin and vitronectin. These findings also suggest that post-stroke induced sterile inflammation and immunosuppression could inhibit recovery within the 3-month window post-stroke.
Collapse
Affiliation(s)
- Vinh A Nguyen
- Department of Occupational Therapy, La Trobe University, Bundoora, VIC, Australia.,Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia.,Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,Western Health, Department of Neurology, Sunshine, VIC, Australia
| | - Nina Riddell
- Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - David W Howells
- Medical Sciences Precinct, University of Tasmania, Hobart, TAS, Australia
| | - Graeme J Hankey
- Faculty of Health and Medical Sciences, Internal Medicine, University of Western Australia, Perth, WA, Australia.,Clinical Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Tissa Wijeratne
- Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,Department of Medicine, The University of Melbourne, Sunshine, VIC, Australia
| | - Henry Ma
- Monash Health, Neurology and Stroke, Clayton, VIC, Australia
| | - Stephen Davis
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Geoffrey A Donnan
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leeanne M Carey
- Department of Occupational Therapy, La Trobe University, Bundoora, VIC, Australia.,Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia
| |
Collapse
|
33
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
34
|
Goldim MPDS, Della Giustina A, Petronilho F. Using Evans Blue Dye to Determine Blood-Brain Barrier Integrity in Rodents. ACTA ACUST UNITED AC 2020; 126:e83. [PMID: 31483106 DOI: 10.1002/cpim.83] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is an active and selective barrier that shields the brain from endogenous and exogenous insults. Different stimuli may lead to the disruption of this barrier, including inflammation and trauma. Several methods are used to evaluate BBB disruption. The most widely used method is Evans blue (EB) dye extravasation. EB cannot normally pass through the BBB and thus its presence in brain tissue indicates alterations in permeability. This protocol details the steps of EB extravasation in rodents. Important aspects regarding critical steps and advantages are also provided. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
35
|
Increased serum levels of complement C1q in major depressive disorder. J Psychosom Res 2020; 133:110105. [PMID: 32272297 DOI: 10.1016/j.jpsychores.2020.110105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The complement system is involved in multiple biological processes including inflammation, synaptic pruning, and apoptosis. However, it is not well understood whether peripheral complement C1q levels are altered in major depressive disorder (MDD) patients. OBJECTIVE This study aimed at assessing serum levels of complement C1q in MDD patients using a cross-sectional, case-control design. Also, the correlations between complement C1q and inflammation and lipid profile in patients with MDD were also assessed. METHODS Serum complement C1q levels were measured by ADVIA 2400 biochemical analyzer in 160 patients with MDD diagnosed using International Classification of Diseases-10 criteria (ICD-10) and were compared with those of 159 healthy controls between January 2017 to May 2019. Then correlation analysis was carried out between the level of serum complement C1q among MDD patients with inflammation and lipid profile. RESULTS Serum complement C1q levels were higher in MDD patients than in controls (P < .0001) and the difference between the two groups was small (r = 0.239 [0.128 to 0.350]). We found that serum complement C1q concentrations was positively correlated with HAMD-24 score (r = 0.234, P = .003) and log hs-CRP (r = 0.334, P < .001). CONCLUSION We found serum complement C1q levels were significantly higher in MDD patients than in controls. The current results suggest that the dysfunction of complement C1q may be involved in the pathophysiology of MDD.
Collapse
|
36
|
Schulz M, Michels B, Niesel K, Stein S, Farin H, Rödel F, Sevenich L. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. iScience 2020; 23:101178. [PMID: 32480132 PMCID: PMC7262568 DOI: 10.1016/j.isci.2020.101178] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Brain-resident microglia and bone marrow-derived macrophages represent the most abundant non-cancerous cells in the brain tumor microenvironment with critical functions in disease progression and therapeutic response. To date little is known about genetic programs that drive disease-associated phenotypes of microglia and macrophages in brain metastases. Here we used cytometric and transcriptomic analyses to define cellular and molecular changes of the myeloid compartment at distinct stages of brain metastasis and in response to radiotherapy. We demonstrate that genetic programming of tumor education in myeloid cells occurs early during metastatic onset and remains stable throughout tumor progression. Bulk and single cell RNA sequencing revealed distinct gene signatures in brain-resident microglia and blood-borne monocytes/macrophages during brain metastasis and in response to therapeutic intervention. Our data provide a framework for understanding the functional heterogeneity of brain metastasis-associated myeloid cells based on their origin.
Collapse
Affiliation(s)
- Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Birgitta Michels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Henner Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Sp1 in Astrocyte Is Important for Neurite Outgrowth and Synaptogenesis. Mol Neurobiol 2019; 57:261-277. [PMID: 31317491 DOI: 10.1007/s12035-019-01694-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/03/2019] [Indexed: 02/04/2023]
Abstract
In this study, we found that Sp1 was highly expressed in astrocytes, implying that Sp1 might be important for the function of astrocytes. Sp1/GFAP-Cre-ERT2 conditional knockout mice were constructed to study the role of Sp1 in astrocytes. Knockout of Sp1 in astrocytes altered astrocytic morphology and decreased GFAP expression in the cortex and hippocampus but did not affect cell viability. Loss of Sp1 in astrocytes decreased the number of neurons in the cortex and hippocampus. Conditioned medium from primary astrocytes with Sp1 knockout disrupted neuronal dendritic outgrowth and synapse formation, resulting in abnormal learning, memory, and motor behavior. Sp1 knockout in astrocytes altered gene expression, including decreasing the expression of Toll-like receptor 2 and Cfb and increasing the expression of C1q and C4Bp, thereby affecting neurite outgrowth and synapse formation, resulting in disordered neuron function. Studying these gene regulations might be beneficial to understanding neuronal development and brain injury prevention.
Collapse
|
38
|
The Role of Complement C3a Receptor in Stroke. Neuromolecular Med 2019; 21:467-473. [PMID: 31102134 DOI: 10.1007/s12017-019-08545-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
The complement system is a key regulator of the innate immune response against diseased tissue that functions across multiple organ systems. Dysregulation of complement contributes to the pathogenesis of a number of neurological diseases including stroke. The C3a anaphylatoxin, via its cognate C3a receptor (C3aR), mediates inflammation by promoting breakdown of the blood-brain barrier and the massive infiltration of leukocytes into ischemic brain in experimental stroke models. Studies utilizing complement deficient mice as well as pharmacologic C3aR antagonists have shown a reduction in tissue injury and mortality in murine stroke models. The development of tissue-specific C3aR knockout mice and more specific C3aR antagonists is warranted to facilitate our understanding of the role of the C3aR in brain ischemia with the ultimate goal of clinical translation of therapies targeting C3aR in stroke patients.
Collapse
|
39
|
Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmun Rev 2019; 18:426-432. [DOI: 10.1016/j.autrev.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
|
40
|
Laskaris L, Zalesky A, Weickert CS, Di Biase MA, Chana G, Baune BT, Bousman C, Nelson B, McGorry P, Everall I, Pantelis C, Cropley V. Investigation of peripheral complement factors across stages of psychosis. Schizophr Res 2019; 204:30-37. [PMID: 30527272 DOI: 10.1016/j.schres.2018.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/02/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
The complement cascade has been proposed to contribute to the pathogenesis of schizophrenia. However, it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms. Complement factors C1q, C3 and C4 were quantified in 183 participants [n = 83 Healthy Controls (HC), n = 10 Ultra-High Risk (UHR) for psychosis, n = 40 First Episode Psychosis (FEP), n = 50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms. C4 was significantly increased in chronic schizophrenia patients, while C3 and C4 were significantly increased in UHR patients. There were no differences in C1q, C3 and C4 in FEP patients when adjusting for BMI. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Our findings indicate that peripheral complement concentration is increased across specific stages of psychosis and its imbalance may be associated with symptom severity. Given the small sample size of the UHR group, these findings should be regarded as exploratory, requiring replication.
Collapse
Affiliation(s)
- Liliana Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Cynthia Shannon Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Neuroscience Research Australia, Randwick, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Brain & Mind Centre, The University of Sydney, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Gursharan Chana
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, The University of Adelaide, SA, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia; Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ian Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; North Western Mental Health, Melbourne Health, Parkville, VIC, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia; Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, VIC, Australia.
| |
Collapse
|
41
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
42
|
Alexander JJ. Blood-brain barrier (BBB) and the complement landscape. Mol Immunol 2018; 102:26-31. [PMID: 30007547 DOI: 10.1016/j.molimm.2018.06.267] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
The brain is an immune privileged organ, uniquely placed in the body. Two systems involved in maintaining brain homeostasis and in protecting the brain are the blood-brain barrier (BBB) and the complement system. The BBB is present in the vasculature of the brain and is the dynamic interface between brain and body that regulates what enters and leaves the brain, thereby maintaining the brain microenvironment optimal for brain function. The complement system is ubiquitous, being present systemically and in the brain, both membrane bound and in circulation. It is an important arm of the body's defense that helps maintain homeostasis by eliminating debris and damaged cells, participating in destroying pathogens, promoting inflammation and conveying 'danger signals'. Recent studies reveal that the complement system plays an important role in normal brain development. However, when the complement system is overwhelmed, complement activation could contribute to loss of BBB integrity resulting in brain pathology. Studies support an association between complement proteins and BBB dysfunction, with the mechanisms being slowly unraveled. This review will provide an overview of both these systems, how they intersect and interact with each other.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott Street, 8-022A Buffalo, New York, NY, 14203, United States.
| |
Collapse
|
43
|
Kjældgaard AL, Pilely K, Olsen KS, Pedersen SW, Lauritsen AØ, Møller K, Garred P. Amyotrophic lateral sclerosis: The complement and inflammatory hypothesis. Mol Immunol 2018; 102:14-25. [PMID: 29933890 DOI: 10.1016/j.molimm.2018.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, neurodegenerative motor neuron disease. The aetiology of ALS remains an enigma which hinders the design of an effective treatment to prevent, postpone, or reverse the pathophysiological changes occurring during the aggressive progression of this disease. During the last decade, basic research within the innate immune system, and in particular the complement system, has revealed new, important roles of the innate immune system during development, homeostasis, and ageing within as well as outside the central nervous system. Several lines of evidence indicate that aberrant activation of the complement system locally in the central nervous system as well as systemically may be involved in the pathophysiology of ALS. This exciting new knowledge could point towards the innate immune system as a potential target of medical intervention in ALS. Recently, the historic perception of ALS as a central neurodegenerative disease has been challenged due to the significant amount of evidence of a dying-back mechanism causing the selective destruction of the motor neurons, indicating that disease onset occurs outside the borders of the blood-brain-barrier. This review addresses the function of the innate immune system during ALS. We emphasize the role of the complement system and specifically suggest the involvement of ficolin-3 from the lectin pathway in the pathophysiology of ALS.
Collapse
Affiliation(s)
- Anne-Lene Kjældgaard
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631; Department of Neuroanaesthesiology.
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631
| | | | - Stephen Wørlich Pedersen
- Department of Neurology, Neuroscience Centre, Rigshospitalet, Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631
| |
Collapse
|
44
|
Mahajan SD, Aalinkeel R, Parikh NU, Jacob A, Cwiklinski K, Sandhu P, Le K, Loftus AW, Schwartz SA, Quigg RJ, Alexander JJ. Immunomodulatory Role of Complement Proteins in the Neuropathology Associated with Opiate Abuse and HIV-1 Co-Morbidity. Immunol Invest 2018; 46:816-832. [PMID: 29058550 DOI: 10.1080/08820139.2017.1371891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The complement system which is a critical mediator of innate immunity plays diverse roles in the neuropathogenesis of HIV-1 infection such as clearing HIV-1 and promoting productive HIV-1 replication. In the development of HIV-1 associated neurological disorders (HAND), there may be an imbalance between complement activation and regulation, which may contribute to the neuronal damage as a consequence of HIV-1 infection. It is well recognized that opiate abuse exacerbates HIV-1 neuropathology, however, little is known about the role of complement proteins in opiate induced neuromodulation, specifically in the presence of co-morbidity such as HIV-1 infection. Complement levels are significantly increased in the HIV-1-infected brain, thus HIV-induced complement synthesis may represent an important mechanism for the pathogenesis of AIDS in the brain, but remains underexplored. Anti-HIV-1 antibodies are able to initiate complement activation in HIV-1 infected CNS cells such as microglia and astrocytes during the course of disease progression; however, this complement activation fails to clear and eradicate HIV-1 from infected cells. In addition, the antiretroviral agents used for HIV therapy cause dysregulation of lipid metabolism, endothelial, and adipocyte cell function, and activation of pro-inflammatory cytokines. We speculate that both HIV-1 and opiates trigger a cytokine-mediated pro-inflammatory stimulus that modulates the complement cascade to exacerbate the virus-induced neurological damage. We examined the expression levels of C1q, SC5b-9, C5L2, C5aR, C3aR, and C9 key members of the complement cascade both in vivo in post mortem brain frontal cortex tissue from patients with HAND who used/did not use heroin, and in vitro using human microglial cultures treated with HIV tat and/or heroin. We observed significant expression of C1q and SC5b-9 by immunofluorescence staining in both the brain cortical and hippocampal region in HAND patients who abused heroin. Additionally, we observed increased gene expression of C5aR, C3aR, and C9 in the brain tissue of both HIV-1 infected patients with HAND who abused and did not abuse heroin, as compared to HIV negative controls. Our results show a significant increase in the expression of complement proteins C9, C5L2, C5aR, and C3aR in HIV transfected microglia and an additional increase in the levels of these complement proteins in heroin-treated HIV transfected microglia. This study highlights the a) potential roles of complement proteins in the pathogenesis of HIV-1-related neurodegenerative disorders; b) the combined effect of an opiate, like heroin, and HIV viral protein like HIV tat on complement proteins in normal human microglial cells and HIV transfected microglial cells. In the context of HAND, targeting selective steps in the complement cascade could help ameliorating the HIV burden in the CNS, thus investigations of complement-related therapeutic approaches for the treatment of HAND are warranted.
Collapse
Affiliation(s)
- Supriya D Mahajan
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Ravikumar Aalinkeel
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Neil U Parikh
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Alexander Jacob
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| | - Katherine Cwiklinski
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Prateet Sandhu
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Kevin Le
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Alexander W Loftus
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Stanley A Schwartz
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Richard J Quigg
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| | - Jessy J Alexander
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| |
Collapse
|
45
|
Zelek WM, Watkins LM, Howell OW, Evans R, Loveless S, Robertson NP, Beenes M, Willems L, Brandwijk R, Morgan BP. Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59. Mult Scler 2018; 25:523-531. [DOI: 10.1177/1352458518758927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). Objectives: We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. Methods: sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. Results: CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. Conclusion: CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Lewis M Watkins
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - Owain W Howell
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - Rhian Evans
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - B Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Kuperberg SJ, Wadgaonkar R. Sepsis-Associated Encephalopathy: The Blood-Brain Barrier and the Sphingolipid Rheostat. Front Immunol 2017; 8:597. [PMID: 28670310 PMCID: PMC5472697 DOI: 10.3389/fimmu.2017.00597] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Sepsis is not only a significant cause of mortality worldwide but has particularly devastating effects on the central nervous system of survivors. It is therefore crucial to understand the molecular structure, physiology, and events involved in the pathogenesis of sepsis-associated encephalopathy, so that potential therapeutic advances can be achieved. A key determinant to the development of this type of encephalopathy is morphological and functional modification of the blood–brain barrier (BBB), whose function is to protect the CNS from pathogens and toxic threats. Key mediators of pathologic sequelae of sepsis in the brain include cytokines, including TNF-α, and sphingolipids, which are biologically active components of cellular membranes that possess diverse functions. Emerging data demonstrated an essential role for sphingolipids in the pulmonary vascular endothelium. This raises the question of whether endothelial stability in other organs systems such as the CNS may also be mediated by sphingolipids and their receptors. In this review, we will model the structure and vulnerability of the BBB and hypothesize mechanisms for therapeutic stabilization and repair following a confrontation with sepsis-induced inflammation.
Collapse
Affiliation(s)
- Stephen J Kuperberg
- Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston Salem, NC, United States
| | - Raj Wadgaonkar
- SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
47
|
Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models. Sci Rep 2017; 7:45989. [PMID: 28383046 PMCID: PMC5382667 DOI: 10.1038/srep45989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression.
Collapse
|
48
|
Johnsen E, Fathian F, Kroken RA, Steen VM, Jørgensen HA, Gjestad R, Løberg EM. The serum level of C-reactive protein (CRP) is associated with cognitive performance in acute phase psychosis. BMC Psychiatry 2016; 16:60. [PMID: 26973142 PMCID: PMC4790054 DOI: 10.1186/s12888-016-0769-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory processes have been implicated in the etiology of schizophrenia and related psychoses, in which cognitive deficits represent core symptoms. The aim of the present study was to investigate possible associations between the level of the inflammation marker C-reactive protein (CRP) and cognitive performance in patients through the acute phase of psychosis. METHODS A total of 124 patients were assessed at admittance to hospital and 62 patients were retested at discharge or after 6 weeks at the latest, with measurements of the CRP levels and alternative forms of the Repeatable Battery for the Assessment of Neuropsychological Status. RESULTS There was an inverse relationship between overall cognitive performance and CRP level at admittance. The association increased in sub-analyses including only patients with schizophrenia. In cognitive subdomain analyses statistically significant inverse associations were found between the CRP level and Delayed memory and Attention, respectively. No associations were found between CRP level and other measures of psychopathology including psychosis symptoms, depression, or functioning. At follow-up the association between CRP level and cognition was no longer present. There was a significant increase in cognitive performance between baseline and follow-up. There was a stronger increase in overall cognition scores in patients with higher baseline CRP levels. CONCLUSIONS The findings indicate that signs of inflammation may serve as a state-dependent marker of cognitive dysfunctions in acute psychosis. TRIAL REGISTRATION ClinicalTrials.gov ID; NCT00932529 , registration date: 02.07.2009.
Collapse
Affiliation(s)
- Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Medicine, Section Psychiatry, University of Bergen, Bergen, Norway.
| | | | - Rune A. Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway ,Department of Clinical Medicine, Section Psychiatry, University of Bergen, Bergen, Norway
| | - Vidar M. Steen
- NORMENT and KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway ,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hugo A. Jørgensen
- Department of Clinical Medicine, Section Psychiatry, University of Bergen, Bergen, Norway
| | - Rolf Gjestad
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Else-Marie Løberg
- Department of Clinical Psychology, University of Bergen, Bergen, Norway ,Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
49
|
Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W, Funkhouser WK, Howell MC, Howell GR. APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. PLoS Biol 2015; 13:e1002279. [PMID: 26512759 PMCID: PMC4626092 DOI: 10.1371/journal.pbio.1002279] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's disease, but little is known about the processes that lead to age-related decline of brain structures and function. Here we use RNA-seq in combination with high resolution histological analyses to show that aging leads to a significant deterioration of neurovascular structures including basement membrane reduction, pericyte loss, and astrocyte dysfunction. Neurovascular decline was sufficient to cause vascular leakage and correlated strongly with an increase in neuroinflammation including up-regulation of complement component C1QA in microglia/monocytes. Importantly, long-term aerobic exercise from midlife to old age prevented this age-related neurovascular decline, reduced C1QA+ microglia/monocytes, and increased synaptic plasticity and overall behavioral capabilities of aged mice. Concomitant with age-related neurovascular decline and complement activation, astrocytic Apoe dramatically decreased in aged mice, a decrease that was prevented by exercise. Given the role of APOE in maintaining the neurovascular unit and as an anti-inflammatory molecule, this suggests a possible link between astrocytic Apoe, age-related neurovascular dysfunction and microglia/monocyte activation. To test this, Apoe-deficient mice were exercised from midlife to old age and in contrast to wild-type (Apoe-sufficient) mice, exercise had little to no effect on age-related neurovascular decline or microglia/monocyte activation in the absence of APOE. Collectively, our data shows that neurovascular structures decline with age, a process that we propose to be intimately linked to complement activation in microglia/monocytes. Exercise prevents these changes, but not in the absence of APOE, opening up new avenues for understanding the complex interactions between neurovascular and neuroinflammatory responses in aging and neurodegenerative diseases such as Alzheimer’s disease. Ileana Soto, Gareth Howell, and coauthors find that age-related deterioration of the neurovascular unit and increased neuroinflammation in aging mice is prevented by long-term exercise, but not in the absence of apolipoprotein E. Aging is frequently accompanied with frailty and cognitive decline. In recent years, increasing evidence has linked physical inactivity with the development of dementias such as Alzheimer’s disease. In fact, it is recognized that exercise combats frailty and cognitive decline in older adults, but the biological mechanisms involved are not completely known. Understanding the biological changes that trigger cognitive deterioration during aging and the mechanisms by which exercise improves health and brain function is key to ensuring the quality of life of the elderly population and to reducing risk of dementias such as Alzheimer’s disease. Here, we show that the cerebrovascular system in mice significantly deteriorates with age, and the structure and function of the blood brain barrier is progressively compromised. These age-related neurovascular changes are accompanied by neuroinflammation and deficits in common and spontaneous behaviors in mice. We found, however, that exercise from middle to older age preserves the cerebrovascular health, prevents behavioral deficits and reduces the age-related neuroinflammation in the cortex and hippocampus in aged mice. Mice deficient in Apoe, a gene associated with longevity and Alzheimer’s disease, are resistant to the beneficial effects of exercise, suggesting a possible mediating role for APOE in the maintenance and function of the neurovascular system during aging.
Collapse
Affiliation(s)
- Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah C. Graham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | | | | | - Jake E. Radell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Megan C. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Therapeutic Effects of PPAR α on Neuronal Death and Microvascular Impairment. PPAR Res 2015; 2015:595426. [PMID: 25705219 PMCID: PMC4326216 DOI: 10.1155/2015/595426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/30/2022] Open
Abstract
Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.
Collapse
|