1
|
Ayyubova G, Madhu LN. Microglial NLRP3 Inflammasomes in Alzheimer's Disease Pathogenesis: From Interaction with Autophagy/Mitophagy to Therapeutics. Mol Neurobiol 2025; 62:7124-7143. [PMID: 39951189 DOI: 10.1007/s12035-025-04758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, discovered 20 years ago, is crucial in controlling innate immune reactions in Alzheimer's disease (AD). By initiating the release of inflammatory molecules (including caspases, IL-1β, and IL-18), the excessively activated inflammasome complex in microglia leads to chronic inflammation and neuronal death, resulting in the progression of cognitive deficiencies. Even though the involvement of NLRP3 has been implicated in neuroinflammation and widely explored in several studies, there are plenty of controversies regarding its precise roles and activation mechanisms in AD. Another prominent feature of AD is impairment in microglial autophagy, which can be either the cause or the consequence of NLRP3 activation and contributes to the aggregation of misfolded proteins and aberrant chronic inflammatory state seen in the disease course. Studies also demonstrate that intracellular buildup of dysfunctional and damaged mitochondria due to defective mitophagy enhances inflammasome activation, further suggesting that restoration of impaired autophagy and mitophagy can effectively suppress it, thereby reducing inflammation and protecting microglia and neurons. This review is primarily focused on the role of NLRP3 inflammasome in the etiopathology of AD, its interactions with microglial autophagy/mitophagy, and the latest developments in NLRP3 inflammasome-targeted therapeutic interventions being implicated for AD treatment.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
2
|
Costa RM, Bruder-Nascimento A, Alves JV, Awata WMC, Singh S, Rodrigues D, Bruder-Nascimento T, Tostes RC. Beclin-1-dependent autophagy protects perivascular adipose tissue function from hyperaldosteronism effects. Am J Physiol Heart Circ Physiol 2025; 328:H1253-H1266. [PMID: 40327449 DOI: 10.1152/ajpheart.00829.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Hyperaldosteronism (HA), characterized by excessive production of aldosterone (Aldo), contributes to cardiovascular damage and perivascular adipose tissue (PVAT) dysfunction. Previous studies have shown that Aldo can impair autophagy in various tissues. However, it remains unclear whether this impairment occurs specifically in PVAT and whether it involves disruption of autophagic flux through Beclin-1 (BCN1), a key regulator of autophagosome formation and maturation. We hypothesize that BCN1-dependent autophagy plays a protective role in PVAT by limiting inflammation and preserving its anticontractile function in the context of HA. Male and female C57BL/6J [wild type (WT)] and BCN1 knock-in mice, aged 10-12 wk, underwent 14-day aldosterone infusion (600 µg/kg/day) using an osmotic minipump. Vascular function was assessed in PVAT-intact thoracic aortae, and blood pressure was monitored via radiotelemetry. HA disrupted PVAT autophagic flux, leading to the accumulation of LC3II/I and p62 proteins and reduced BCN1 expression/activity. In WT mice, PVAT exhibited an anticontractile effect, which was abolished by HA. In contrast, BCN1-knock-in mice were protected from this loss of PVAT function. HA also induced oxidative stress and inflammation in PVAT, as evidenced by increased reactive oxygen species generation and elevated mRNA levels of TNF-α, IL-6, IL-1β, and IL-17. These proinflammatory and prooxidative changes were not observed in BCN1-knock-in mice, indicating preserved PVAT homeostasis. Furthermore, pharmacological induction of autophagy via spermidine and activation of BCN1 with TB peptide improved PVAT function in HA-treated WT mice. Finally, BCN1-knock-in mice exhibited partial protection against HA-induced hypertension, highlighting the systemic vascular benefits of enhanced autophagic flux. In summary, our findings demonstrate that the activation of autophagy provides protection against HA-induced PVAT inflammation, dysfunction, and hypertension. Consequently, the activation of BCN1 could serve as a pharmacological strategy to prevent the harmful cardiovascular effects associated with HA.NEW & NOTEWORTHY Elevated aldosterone levels, as seen in primary hyperaldosteronism, obesity, and hypertension, impair autophagic flux in perivascular adipose tissue (PVAT), leading to increased inflammation and loss of anticontractile function. The Beclin-1-dependent autophagic pathway plays a key role in maintaining PVAT homeostasis and vascular tone. Disrupted autophagy contributes to oxidative stress and hypertension. Activating this pathway may offer a novel therapeutic strategy to mitigate aldosterone's harmful vascular effects in hypertension by restoring PVAT function and vascular inflammation.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Institute of Health Sciences, Federal University of Jatai, Jatai, Brazil
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Wanessa M C Awata
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shubhnita Singh
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
3
|
Zhang Q, Zheng M, Sun W, Loers G, Wen M, Wang Q, Zheng X, Siebert HC, Zhang R, Zhang N. Ketogenic diet attenuates microglia-mediated neuroinflammation by inhibiting NLRP3 inflammasome activation via HDAC3 inhibition to activate mitophagy in experimental autoimmune encephalomyelitis. Food Funct 2025. [PMID: 40421817 DOI: 10.1039/d5fo00422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in multiple sclerosis (MS). NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated signaling plays a decisive role in microglial activation. Mitophagy is closely related to NLRP3-mediated neuroinflammation. Previous studies have shown that ketogenic diet (KD) suppresses microglial NLRP3 inflammasome activation and exerts mitophagy-stimulating effects, but the specific mechanism remains unclear. The current study examined the mechanism underlying the anti-inflammatory effect of KD on experimental autoimmune encephalomyelitis (EAE). Our data show that KD inhibited demyelination, increased co-staining of the translocase of the outer mitochondrial membrane (TOM20) and microtubule-associated protein 1A/1B-light chain 3 (LC3II), and decreased microglial NLRP3 inflammasome activation and histone deacetylase 3 (HDAC3) in the hippocampus of EAE mice. Further correlation analysis showed that the reduction of HDAC3 was negatively correlated with NLRP3 activation and positively correlated with the induction of mitophagy in KD-fed EAE mice. In BV2 microglial cells, we confirmed that the inhibition of HDAC3 promoted 5' adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/unc-51-like autophagy activating kinase (ULK)1 and PTEN-induced putative kinase 1 (PINK1)/Parkin-meditated mitophagy, which led to the up-regulation of acetylated AMPK, acetylated ULK1 and acetylated Parkin, and subsequently reduced ROS accumulation and inhibited the activation of the NLRP3 inflammasome. In addition, treatment with 3-methyladenine (3-MA), a specific autophagy inhibitor, abolished the anti-inflammatory effect of HDAC3 inhibition in BV2 cells. The study illustrates that KD ameliorates EAE by reducing NLRP3-mediated inflammation in microglial cells via HDAC3 inhibition and enhancement of mitophagy-related protein acetylation.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Mingxiao Zheng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center, Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Xuexing Zheng
- Department of Virology, School of Public Health Shandong University, Jinan, Shandong 250012, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
4
|
Qi L, Lan B, Zhao Z, Ma Y, Song J, Jia Q, Zhao P, Du X. Research advances of PANoptosis in gastrointestinal tumors. Int Immunopharmacol 2025; 159:114931. [PMID: 40414073 DOI: 10.1016/j.intimp.2025.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Gastric and colorectal cancers are acknowledged as the predominant types of gastrointestinal malignancies, significantly impacting the global cancer burden. Despite advancements in basic and clinical research on gastrointestinal cancer, the pathophysiological mechanisms and developmental processes underlying these diseases remain incompletely understood. The dysregulation of programmed cell death (PCD) has been identified as a crucial factor in the progression and metastasis of malignant tumors. The effective induction of cancer cell death continues to present a major challenge in contemporary cancer research. PANoptosis, a distinctive form of PCD integrating apoptosis, pyroptosis, and necroptosis, was introduced in 2019. Upon detecting relevant stimuli, PANoptosis sensors recruit key molecules from the three death modalities through domain-specific interactions to form a PANoptosome, which executes cell death. Recent discoveries suggest that PANoptosis plays a pivotal role in the development, progression, and drug resistance of gastrointestinal cancer. Enhancing PANoptosis will provide superior control over gastrointestinal tumors through multi-pathway crosstalk and inflammatory microenvironment modulation. This review aims to serve as a comprehensive resource for researchers by exploring the molecular foundation of PANoptosis, emphasizing its importance in gastrointestinal tumor development, and addressing current challenges as well as potential future research directions in this field.
Collapse
Affiliation(s)
- Lin Qi
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Bin Lan
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Zhenting Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yizhao Ma
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiachun Song
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qingzhe Jia
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Pengyue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaohui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Wang H, Feng X, He H, Li L, Wen Y, Liu X, He B, Hua S, Sun S. Crosstalk between autophagy and other forms of programmed cell death. Eur J Pharmacol 2025; 995:177414. [PMID: 39986593 DOI: 10.1016/j.ejphar.2025.177414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cell death occurs continuously throughout individual development. By removing damaged or senescent cells, cell death not only facilitates morphogenesis during the developmental process, but also contributes to maintaining homeostasis after birth. In addition, cell death reduces the spread of pathogens by eliminating infected cells. Cell death is categorized into two main forms: necrosis and programmed cell death. Programmed cell death encompasses several types, including autophagy, pyroptosis, apoptosis, necroptosis, ferroptosis, and PANoptosis. Autophagy, a mechanism of cell death that maintains cellular equilibrium via the breakdown and reutilization of proteins and organelles, is implicated in regulating almost all forms of cell death in pathological contexts. Notably, necroptosis, ferroptosis, and PANoptosis are directly classified as autophagy-mediated cell death. Therefore, regulating autophagy presents a therapeutic approach for treating diseases such as inflammation and tumors that arise from abnormalities in other forms of programmed cell death. This review focuses on the crosstalk between autophagy and other programmed cell death modalities, providing new perspectives for clinical interventions in inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Huaiyuan Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, class 3, 2022 Grade, Kunming Medical University, Kunming, China
| | - Xiran Feng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, Kunming Medical University-Shanghai Jiaotong University Joint Program, 2022 Grade, Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lingyu Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Bifeng He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Zhao Y, Sun X, Shao F, Li L, Xiao W, Gu C, Zhang Y, Jia Y, Dai L, Li H, Bao H. Evodiamine inhibits NLRP3 inflammasome-mediated microglial pyroptosis and promotes remyelination via SLC2A4-regulated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156866. [PMID: 40393245 DOI: 10.1016/j.phymed.2025.156866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Activation of the NLRP3 inflammasome triggers pyroptosis, a pro-inflammatory type of cell death, in multiple sclerosis (MS). Evodiamine (EVO) possesses anti-inflammatory and neuroprotective properties; however, its potential molecular and signaling pathways in MS remain to be elucidated. This study aimed to explore the therapeutic potential of EVO for remyelination in MS and elucidated its underlying mechanisms. METHODS We utilized cuprizon (CPZ)/experimental autoimmune encephalomyelitis (EAE)-induced demyelinated mice and lipopolysaccharide+adenosine triphosphate (LPS+ATP)-induced pyroptosis of BV2 cells to investigate the potential of EVO in MS treatment. Various analyses were conducted, including rotarod fatigue test, RNA sequence, luxol fast blue, molecular docking, SPR, immunoblotting, qRT-PCR, immunofluorescence, and transmission electron microscopy, to analysis the targets and signaling pathways involved in EVO treatment. RESULTS EVO emerged as a promising remyelination agent in the CPZ/EAE demyelination models, acting through SLC2A4. Regarding its mechanism, EVO inhibited NLRP3 inflammasome-mediated microglial pyroptosis through SLC2A4 regulation of autophagy during demyelinating disease, but this change was reversed by SLC2A4 inhibitor PGF2α in vivo. Additionally, EVO inhibited LPS+ATP-induced pyroptosis of BV2 cells by preventing NLRP3 inflammasome activity and cleavage of the pyroptosis executive protein gasdermin D. It also promoted autophagy and inhibited NLRP3 inflammasome-mediated pyroptosis in BV2 cells via SLC2A4. Furthermore, an autophagy inhibitor 3-methyladenine reversed the inhibitory effect of EVO on NLRP3 inflammasome-mediated pyroptosis in BV2 cells. CONCLUSION The present study demonstrated that EVO inhibits NLRP3 inflammasome-mediated microglial pyroptosis and promotes remyelination via SLC2A4-regulated autophagy during demyelinating disease, which suggests EVO as a promising drug candidate for the treatment of MS.
Collapse
Affiliation(s)
- Yunjie Zhao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Xingzong Sun
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Faling Shao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Lin Li
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Weilie Xiao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Chengyang Gu
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Yunqian Zhang
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| | - Hongliang Li
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China.
| | - Hongkun Bao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China.
| |
Collapse
|
7
|
de Athaide MM, Leal-Calvo T, Da Silva TP, Rosa TLSA, Ferreira H, Pascarelli BMDO, Siquara de Sousa AC, Jardim MR, Pinheiro RO. Gene expression profiling in pure neural leprosy: insights into pathogenesis and diagnostic biomarkers. Front Immunol 2025; 16:1550687. [PMID: 40421009 PMCID: PMC12104059 DOI: 10.3389/fimmu.2025.1550687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction Leprosy may affect skin and nerves, leading to permanent disabilities and deformities. Pure neural leprosy (PNL) lacks skin lesions, complicating diagnosis. Moreover there is no a specific treatment to control neural damage. Transcriptomic profiling may reveals unique gene expression changes in PNL nerves, shedding light on immune response and pathogenesis. These findings may guide early diagnosis and improve patient outcome. Methods In the present study, we investigated the gene profiling of nerve samples from patients with PNL and revealed significant transcriptomic alterations compared to non-leprosy controls. Results Principal Component Analysis (PCA) of the 500 most differentially expressed genes separated the groups, with 1,199 genes showing differential expression (|log2FC| ≥ 1, FDR ≤ 0.1). Downregulated genes included GAS2L2, TRIM67, IL1RAPL1, MAP1LC3B2, and NTNG1, implicated in neuronal development and autophagy, while upregulated genes were linked to immune responses. Functional analyses highlighted inflammasome activation and autophagy impairment in PNL, correlating with nerve inflammation and architecture loss. Discussion We hope that our data will aid in identifying new markers, fostering strategies for early diagnosis, preventing disabilities, and improving the management of PNL patients.
Collapse
Affiliation(s)
| | - Thyago Leal-Calvo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | | | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Marcia Rodrigues Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Post-graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Neurology, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Chen F, Yang G, Qiu H, Gao S, Hou L, Dong J, Zhao P, Dong W. Deoxynivalenol-induced pyroptosis and autophagy inhibition collectively promote inflammatory injury in the glandular stomach of chicken embryos. Poult Sci 2025; 104:105052. [PMID: 40120248 PMCID: PMC11987648 DOI: 10.1016/j.psj.2025.105052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Glandular stomach plays a crucial role in the digestive system and overall physiological functions of chickens. Mycotoxins, including deoxynivalenol (DON), in contaminated feed damage the immune and digestive systems of chickens and hinder their growth. However, the mechanism underlying DON toxicity on glandular stomach inflammation remains unclear. This study found that DON induced inflammation and injury in the glandular stomach of chicken embryos by regulating pyroptosis and autophagy. DON stimulated proinflammatory factor release, activated NLRP3 inflammasome and its downstream elements, increased caspase-3 and GSDME expression to mediate pyroptosis and injury, and inhibited autophagy in glandular stomach by decreasing ATG5, ATG7, and Beclin-1 expressions and increasing mTOR expression. Besides, DON reduced LC3-II/LC3-I ratio and elevated p62 expression. These results confirmed the association between DON-induced pyroptosis and autophagy inhibition, providing key evidence for understanding DON toxicity and mitigating DON contamination in poultry farming; nevertheless, the underlying mechanism must be further elucidated.
Collapse
Affiliation(s)
- Fu Chen
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Guoming Yang
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Huiling Qiu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, Shandong Province, China
| | - Shansong Gao
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Lele Hou
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Peng Zhao
- College of Ecology and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, 014030, China
| | - Wenxuan Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
9
|
Gupta J, Mohammed MH, Alghazali T, Uthirapathy S, R R, Thakur V, Kaur M, Naidu KS, Kubaev A, Al-Mukhtar MM. Inflammasomes and autophagy in cancer: unlocking targeted therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04184-x. [PMID: 40310530 DOI: 10.1007/s00210-025-04184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
This study clarifies the interaction between autophagy and inflammasome within the cancer framework. The inflammasome generates pro-inflammatory cytokines to direct the immune response to pathogens and cellular stressors. Autophagy maintains cellular homeostasis and can either promote or inhibit cancer. These pathways interact to affect tumorigenesis, immune responses, and therapy. Autophagy controls inflammasome activity by affecting cancer pathogenesis and tumor microenvironment inflammation, highlighting novel cancer therapeutic approaches. Recent studies indicate that modulating autophagy and inflammasome pathways can boost anti-cancer immunity, reduce drug-resistance, and improve therapeutic efficacy. Recent studies indicate modulating inflammasome and autophagy pathways can augment anti-cancer immunity, mitigate therapy resistance, and improve treatment efficacy. Cancer research relies on understanding the inflammasome-autophagy relationship to develop targeted therapies that enhance anti-tumor efficacy and reduce inflammatory symptoms. Customized therapies may improve outcomes based on autophagy gene variations and inflammasome polymorphisms. This study investigates autophagy pathways and the inflammasome in tumor immunopathogenesis, cytokine function, and cancer therapeutic strategies, highlighting their significance in cancer biology and treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Manpreet Kaur
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh- 531162, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Mahmoud Mussleh Al-Mukhtar
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
10
|
Claudio P, Gabriella M. Targeting autophagy in autoimmune glomerular diseases. J Nephrol 2025:10.1007/s40620-025-02267-9. [PMID: 40106213 DOI: 10.1007/s40620-025-02267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Autophagy is a natural process whereby damaged or dying parts of a cell are eliminated and recycled. The term autophagy usually refers to macroautophagy, which is one of three types of autophagy, alongside microautophagy and chaperone-mediated autophagy. Autophagy is activated by adenosine monophosphate-activated protein kinase (AMPK) and inhibited by mammalian target of rapamycin (mTOR) through their interference with Unc-51-like kinase 1 (ULK1). Dysregulated autophagy is deeply involved in autoimmune glomerular diseases. Upregulated autophagy can induce inflammation and activate innate and adaptive immunity. However, autophagy may also exert a protective role on podocytes, enhance endothelial cell function, and preserve proximal tubular epithelial cells during ischemic or endotoxic acute kidney injury (AKI). Hydroxychloroquine (HCQ) can downregulate increased autophagy and is widely used in lupus nephritis. HCQ causes alkalinization, which results in vacuolization of lysosomes and inhibition of their functions. By inhibiting autophagic activity, HCQ may reduce inflammation and innate immunity, inhibit the activation of T cells, restore the T helper 17/T regulator balance, restrict the production of pro-inflammatory cytokines, and modulate co-stimulatory molecules. This reduces the risk of flares, spares the dosage of glucocorticoids, improves lupus activity, and prevents the thrombotic effects of anti-phospholipid antibodies. Recent studies showed that HCQ can also reduce proteinuria in IgA nephropathy (IgAN) and membranous nephropathy (MN). Drugs that improve mitochondrial function or enhance autophagy, such as metformin, sodium-glucose co-transporter 2 (SGLT2) inhibitors or mTOR inhibitors, may exert protective effects on podocytes and reduce proteinuria in MN or focal segmental glomerulosclerosis (FSGS).
Collapse
Affiliation(s)
| | - Moroni Gabriella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4 Pieve Emanuele, 20072, Milan, Italy
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| |
Collapse
|
11
|
Chen K, Ying J, Zhu J, Chen L, Liu R, Jing M, Wang Y, Zhou K, Wu L, Wu C, Xiao J, Ni W. Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury. Int Immunopharmacol 2025; 148:114057. [PMID: 39827665 DOI: 10.1016/j.intimp.2025.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health. Yet, its effects on acute inflammation following SCI remain unclear. In this study, we developed an impact-induced mouse model for SCI and treated the injured mice with UA (50 mg/kg/d, till 8 weeks) via intragastric administration. Furthermore, we subjected BV2 cells to lipopolysaccharide and adenosine 5'-triphosphate to simulate the post-injury inflammatory response. Our results demonstrated that pre-treatment with UA (10 μM) effectively inhibited NLRP3 inflammasome activation in LPS-primed BV2 cells. This inhibition was evidenced by reduced cleaved Caspase-1 and mature IL-1β release, diminished ASC speck formation, and decreased gasdermin D (GSDMD)-mediated pyroptosis. Additionally, UA treatment restored mitochondrial activity and ROS production attenuated by NLRP3 activation, increased LC3-II expression, and enhanced LC3 co-localization with mitochondria. 3-Methyladenine (3-MA), an autophagy inhibitor, can partially reverse the stimulatory effect of UA on mitophagy, as well as the inhibitory effect of UA on pyroptosis. This study highlighted the protective role of UA against SCI through its promotion of mitophagy, which in turn inhibits NLRP3 inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Kongbin Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiahao Ying
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiangwei Zhu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Liang Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Rongjie Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Mengqi Jing
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Yuchao Wang
- Department of Orthopedic, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116600, China
| | - Kailiang Zhou
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Long Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China.
| | - Chenyu Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Jian Xiao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Wenfei Ni
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| |
Collapse
|
12
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Keshri PK, Singh SP. Unraveling the AKT/ERK cascade and its role in Parkinson disease. Arch Toxicol 2024; 98:3169-3190. [PMID: 39136731 DOI: 10.1007/s00204-024-03829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Parkinson disease represents a significant and growing burden on global healthcare systems, necessitating a deeper understanding of their underlying molecular mechanisms for the development of effective treatments. The AKT and ERK pathways play crucial roles in the disease, influencing multiple cellular pathways that support neuronal survival. Researchers have made notable progress in uncovering how these pathways are controlled by upstream kinases and how their downstream effects contribute to cell signalling. However, as we delve deeper into their intricacies, we encounter increasing complexity, compounded by the convergence of multiple signalling pathways. Many of their targets overlap with those of other kinases, and they not only affect specific substrates but also influence entire signalling networks. This review explores the intricate interplay of the AKT/ERK pathways with several other signalling cascades, including oxidative stress, endoplasmic reticulum stress, calcium homeostasis, inflammation, and autophagy, in the context of Parkinson disease. We discuss how dysregulation of these pathways contributes to disease progression and neuronal dysfunction, highlighting potential therapeutic targets for intervention. By elucidating the complex network of interactions between the AKT/ERK pathways and other signalling cascades, this review aims to provide insights into the pathogenesis of Parkinson disease and describe the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Li X, Fu J, Guan M, Shi H, Pan W, Lou X. Biochanin A attenuates spinal cord injury in rats during early stages by inhibiting oxidative stress and inflammasome activation. Neural Regen Res 2024; 19:2050-2056. [PMID: 38227535 DOI: 10.4103/1673-5374.390953] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/10/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00038/figure1/v/2024-01-16T170235Z/r/image-tiff Previous studies have shown that Biochanin A, a flavonoid compound with estrogenic effects, can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury; however, its effect on spinal cord injury is still unclear. In this study, a rat model of spinal cord injury was established using the heavy object impact method, and the rats were then treated with Biochanin A (40 mg/kg) via intraperitoneal injection for 14 consecutive days. The results showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal cord tissue injury, reduced inflammation and oxidative stress in spinal cord neurons, and reduced apoptosis and pyroptosis. In addition, Biochanin A inhibited the expression of inflammasome-related proteins (ASC, NLRP3, and GSDMD) and the Toll-like receptor 4/nuclear factor-κB pathway, activated the Nrf2/heme oxygenase 1 signaling pathway, and increased the expression of the autophagy markers LC3 II, Beclin-1, and P62. Moreover, the therapeutic effects of Biochanin A on early post-spinal cord injury were similar to those of methylprednisolone. These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways. These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.
Collapse
Affiliation(s)
- Xigong Li
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Fu
- Department of Stomatology, Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Ming Guan
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haifei Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wenming Pan
- Department of Orthopedics, and Spine Surgery, the Affiliated Hospital of Xuzhou Medical School, the Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Xianfeng Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Erdem M, Erdem Ş, Alver A, Kıran TR, Karahan SC. β 2-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair. Mol Cell Neurosci 2024; 130:103956. [PMID: 39097250 DOI: 10.1016/j.mcn.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.
Collapse
Affiliation(s)
- Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey; Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey.
| | - Şeniz Erdem
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey
| | - Süleyman Caner Karahan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
16
|
Kim JW, Nam SA, Koh ES, Kim HW, Kim S, Woo JJ, Kim YK. The Impairment of Endothelial Autophagy Accelerates Renal Senescence by Ferroptosis and NLRP3 Inflammasome Signaling Pathways with the Disruption of Endothelial Barrier. Antioxidants (Basel) 2024; 13:886. [PMID: 39199133 PMCID: PMC11351978 DOI: 10.3390/antiox13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal aging. The genetic deletion of Atg7 in the ECs of Atg7flox/flox;Tie2-Cre mice accelerated aging-related glomerulopathy and tubulointerstitial fibrosis. The EC-specific Atg7 deletion in aging mice induced the detachment of EC with the disruption of glomerular basement membrane (GBM) assembly and increased podocyte loss resulting in microalbuminuria. A Transwell co-culture system of ECs and kidney organoids showed that the iron and oxidative stress induce the disruption of the endothelial barrier and increase vascular permeability, which was accelerated by the inhibition of autophagy. This resulted in the leakage of iron through the endothelial barrier into kidney organoids and increased oxidative stress, which led to ferroptotic cell death. The ferritin accumulation was increased in the kidneys of the EC-specific Atg7-deficient aging mice and upregulated the NLRP3 inflammasome signaling pathway. The pharmacologic inhibition of ferroptosis with liproxstatin-1 recovered the disrupted endothelial barrier and reversed the decreased expression of GPX4, as well as NLRP3 and IL-1β, in endothelial autophagy-deficient aged mice, which attenuated aging-related renal injury including the apoptosis of renal cells, abnormal structures of GBM, and tubulointerstitial fibrosis. Our data showed that endothelial autophagy is essential for the maintenance of the endothelial barrier during renal aging and the impairment of endothelial autophagy accelerates renal senescence by ferroptosis and NLRP3 inflammasome signaling pathways. These processes may be attractive therapeutic targets to reduce cellular injury from renal aging.
Collapse
Affiliation(s)
- Jin Won Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun Ah Nam
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun-Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Wook Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Republic of Korea
| | - Sua Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Ju Woo
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Kyun Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Republic of Korea
| |
Collapse
|
17
|
Adiyeke E, Bakan N, Uvez A, Arslan DO, Kilic S, Koc B, Ozer S, Saatci O, Armutak Eİ. The effect of N-acetylcysteine on the neurotoxicity of sevoflurane in developing hippocampus cells. Neurotoxicology 2024; 103:96-104. [PMID: 38843996 DOI: 10.1016/j.neuro.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Sevoflurane, a common pediatric anesthetic, has been linked to neurodegeneration, raising safety concerns. This study explored N-acetylcysteine's protective potential against sevoflurane-induced neurotoxicity in rat hippocampi. Four groups were examined: Control: Received 6 hours of 3 l/min gas (air and 30 % O2) and intraperitoneal saline. NAC: Received 6 hours of 3 l/min gas and 150 mg/kg NAC intraperitoneally. Sev: Exposed to 6 hours of 3 l/min gas and 3 % sevoflurane. Sev+NAC: Received 6 hours of 3 l/min gas, 3 % sevoflurane, and 150 mg/kg NAC. Protein levels of NRF-2, NLRP3, IL-1β, caspase-1, Beclin 1, p62, LC3A, and apoptosis markers were assessed. Sevoflurane and NAC alone reduced autophagy, while Sev+NAC group maintained autophagy levels. Sev group had elevated NRF-2, NLRP3, pNRF2, Caspase-1, and IL-1β, which were reduced in Sev+NAC. Apoptosis was higher in Sev, but Sev+NAC showed reduced apoptosis compared to the control. In summary, sevoflurane induced neurotoxicity in developing hippocampus, which was mitigated by N-acetylcysteine administration.
Collapse
Affiliation(s)
- Esra Adiyeke
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey.
| | - Nurten Bakan
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey
| | - Ayca Uvez
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| | - Devrim Oz Arslan
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Sima Kilic
- Istanbul University-Cerrahpasa, Institude of Nanotechnology and Biotechnology Department of Biotechnology, Turkey
| | - Berkcan Koc
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Samed Ozer
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Physiology, Turkey
| | - Ozlem Saatci
- Sancaktepe Training and Research Hospital Department of Otolaryngology/Head and Neck Surgery, Turkey
| | - Elif İlkay Armutak
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| |
Collapse
|
18
|
Lee J, Kim MY, Kim HJ, Choi WS, Kim HS. Impaired autophagy in myeloid cells aggravates psoriasis-like skin inflammation through the IL-1β/CXCL2/neutrophil axis. Cell Biosci 2024; 14:57. [PMID: 38704587 PMCID: PMC11069248 DOI: 10.1186/s13578-024-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease characterized by the hyperproliferative epidermal keratinocytes and significant immune cells infiltration, leading to cytokines production such as IL-1β, TNF-α, IL-23, and IL-17. Recent study highlights the critical role of IL-1β in the induction and activation of pathogenic Th17 and IL-17-producing γδ T cells, contributing to psoriasis. However, the mechanism underlying IL-1β dysregulation in psoriasis pathogenesis is unclear. Autophagy regulates IL-1β production and has a pleiotropic effect on inflammatory disorders. Previous studies showed controversial role of autophagy in psoriasis pathogenesis, either pro-inflammatory in autophagy-deficient keratinocyte or anti-inflammatory in pharmacologically autophagy-promoting macrophages. Thus, the direct role of autophagy and its therapeutic potential in psoriasis remains unclear. METHODS We used myeloid cell-specific autophagy-related gene 7 (Atg7)-deficient mice and determined the effect of autophagy deficiency in myeloid cells on neutrophilia and disease pathogenesis in an imiquimod-induced psoriasis mouse model. We then assessed the pathogenic mechanism focusing on immune cells producing IL-1β and IL-17 along with gene expression profiles associated with psoriasis in mouse model and public database on patients. Moreover, therapeutic potential of IL-1β blocking in such context was assessed. RESULTS We found that autophagy deficiency in myeloid cells exacerbated neutrophilic inflammation and disease pathogenesis in mice with psoriasis. This autophagy-dependent effect was associated with a significant increase in IL-1β production from myeloid cells, particularly macrophages, Cxcl2 expression, and IL-17 A producing T cells including γδ T cells. Supporting this, treatment with systemic IL-1 receptor blocking antibody or topical saccharin, a disaccharide suppressing pro-IL-1β expression, led to the alleviation of neutrophilia and psoriatic skin inflammation linked to autophagy deficiency. The pathophysiological relevance of this finding was supported by dysregulation of autophagy-related genes and their correlation with Th17 cytokines in psoriatic skin lesion from patients with psoriasis. CONCLUSIONS Our results suggest that autophagy dysfunction in myeloid cells, especially macrophages, along with IL-1β dysregulation has a causal role in neutrophilic inflammation and psoriasis pathogenesis.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi-Yeon Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyo Jeong Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Woo Sun Choi
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hun Sik Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Wang R, Hu X, Liu S, Wang J, Xiong F, Zhang X, Ye W, Wang H. Kaempferol-3-O-sophoroside (PCS-1) contributes to modulation of depressive-like behaviour in C57BL/6J mice by activating AMPK. Br J Pharmacol 2024; 181:1182-1202. [PMID: 37949672 DOI: 10.1111/bph.16283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol-3-O-sophoroside (PCS-1) is the main component in Crocus sativus (Saffron), a herb with mood-enhancing properties. AMP-activated protein kinase (AMPK) is a potential therapeutic target for depression. This study explores the antidepressive-like properties of PCS-1 and its AMPK activation to confirm AMPK as a target for antidepression. EXPERIMENTAL APPROACH Corticosterone (CORT)-induced PC12 cell injury served as an in vitro model to evaluate the neuroprotective effect of PCS-1. Neuro-2a cells and primary neurons were utilized to evaluate the synaptogenesis role of PCS-1. CORT-induced mouse depression model and chronic unpredictable mild stress (CUMS) model were used to assess the antidepressive-like properties of PCS-1 through behavioural tests, magnetic resonance imaging, and biochemical index measurements. Western blot and immunofluorescence assays were used to study the mechanisms of PCS-1. Cellular thermal shift assay was used to confirm the binding target. KEY RESULTS PCS-1 (12.5-50 μM) ameliorated CORT-induced PC12 cell damage, oxidative stress and inflammation. PCS-1 alone promoted an increase in synapses in Neuro-2a cells and primary neurons. Oral administration of PCS-1 (10 and 20 mg·kg-1 ) ameliorated weight loss, dyskinesia, and hippocampal volume reduction induced by CORT and CUMS. PCS-1 bound to AMPK to improve the expression of brain-derived neurotrophic factor (BDNF) and induce autophagy. CONCLUSION AND IMPLICATIONS PCS-1 binds to AMPK to promote BDNF production and autophagy enhancement, ultimately achieving antidepressant effects. This study provides support for the clinical application of saffron petals and provides further evidence for AMPK as a potential target for antidepression.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jingjin Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Xiaoqi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, People's Republic of China
| | - Wencai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Yang Z, Wang X, Dong T, Zhao WJ, Li H. Impact of glucocorticoids and rapamycin on autophagy in Candida glabrata-infected macrophages from BALB/c mice. Front Immunol 2024; 15:1367048. [PMID: 38585259 PMCID: PMC10995521 DOI: 10.3389/fimmu.2024.1367048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Objective In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
23
|
Hong Z, Wang H, Zhang T, Xu L, Zhai Y, Zhang X, Zhang F, Zhang L. The HIF-1/ BNIP3 pathway mediates mitophagy to inhibit the pyroptosis of fibroblast-like synoviocytes in rheumatoid arthritis. Int Immunopharmacol 2024; 127:111378. [PMID: 38141408 DOI: 10.1016/j.intimp.2023.111378] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Synovial hypoxia, a critical pathological characteristic of rheumatoid arthritis (RA), significantly contributes to synovitis and synovial hyperplasia. In response to hypoxic conditions, fibroblast-like synoviocytes (FLS) undergo adaptive changes involving gene expression modulation, with hypoxia-inducible factors (HIF) playing a pivotal role. The regulation of BCL2/adenovirus e1B 19 kDa protein interacting protein 3 (BNIP3) and nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3) expression has been demonstrated to be regulated by HIF-1. The objective of this study was to examine the molecular mechanism that contributes to the aberrant activation of FLS in response to hypoxia. Specifically, the interaction between BNIP3-mediated mitophagy and NLRP3-mediated pyroptosis was conjointly highlighted. METHODS The research methodology employed Western blot and immunohistochemistry techniques to identify the occurrence of mitophagy in synovial tissue affected by RA. Additionally, the levels of mitophagy under hypoxic conditions were assessed using Western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and CUT&Tag assays. Pyroptosis was observed through electron microscopy, fluorescence microscopy, and Western blot analysis. Furthermore, the quantity of reactive oxygen species (ROS) was measured. The silencing of HIF-1α and BNIP3 was achieved through the transfection of short hairpin RNA (shRNA) into cells. RESULTS In the present study, a noteworthy increase in the expression of BNIP3 and LC3B was observed in the synovial tissue of patients with RA. Upon exposure to hypoxia, FLS of RA exhibited BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. It appears that hypoxia regulates the expression of BNIP3 and NLRP3 through the transcription factor HIF-1. Additionally, the activation of mitophagy has been observed to effectively inhibit hypoxia-induced pyroptosis by reducing the intracellular levels of ROS. CONCLUSION In summary, the activation of FLS in RA patients under hypoxic conditions involves both BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. Additionally, mitophagy can suppress hypoxia-induced FLS pyroptosis by eliminating ROS and inhibiting the HIF-1α/NLRP3 pathway.
Collapse
Affiliation(s)
- Zhongyang Hong
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China; Central Laboratory, Affiliated the Jianhu People's Hospital, Yancheng 224700, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Feng Zhang
- Department of Pharmacy, Affiliated the Fuyang Hospital of Anhui Medical University, Fuyang 236000, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
24
|
Tang LQ, Wang W, Tang QF, Wang LL. The molecular mechanism of MiR-26a-5p regulates autophagy and activates NLRP3 inflammasome to mediate cardiomyocyte hypertrophy. BMC Cardiovasc Disord 2024; 24:18. [PMID: 38172711 PMCID: PMC10765805 DOI: 10.1186/s12872-023-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Many studies have found that miR-26a-5p plays an essential role in the progression of pathological cardiac hypertrophy, however, there is still no evidence on whether miR-26a-5p is related to the activation of autophagy and NLRP3 inflammasome. And the mechanism of miR-26a-5p and NLRP3 inflammasome aggravating pathological cardiac hypertrophy remain unclear. METHODS Cardiomyocytes were treated with 200µM PE to induce cardiac hypertrophy and intervened with 10mM NLRP3 inhibitor INF39. In addition, we also used the MiR-26a-5p mimic and inhibitor to transfect PE-induced cardiac hypertrophy. RT-qPCR and western blotting were used to detect the expressions of miR-26a-5p, NLRP3, ASC and Caspase-1 in each group, and we used α-SMA immunofluorescence to detect the change of cardiomyocyte area. The expression levels of autophagy proteins LC3, beclin-1 and p62 were detected by western blotting. Finally, we induced the SD rat cardiac hypertrophy model through aortic constriction (TAC) surgery. In the experimental group, rats were intervened with MiR-26a-5p mimic, MiR-26a-5p inhibitor, autophagy inhibitor 3-MA, and autophagy activator Rapamycin. RESULTS In cell experiments, we observed that the expression of miR-26a-5p was associated with cardiomyocyte hypertrophy and increased surface area. Furthermore, miR-26a-5p facilitated autophagy and activated the NLRP3 inflammasome pathway, which caused changes in the expression of genes and proteins including LC3, beclin-1, p62, ACS, NLRP3, and Caspase-1. We discovered similar outcomes in the TAC rat model, where miR-26a-5p expression corresponded with cardiomyocyte enlargement and fibrosis in the cardiac interstitial and perivascular regions. In conclusion, miR-26a-5p has the potential to regulate autophagy and activate the NLRP3 inflammasome, contributing to the development of cardiomyocyte hypertrophy. CONCLUSION Our study found a relationship between the expression of miR-26a-5p and cardiomyocyte hypertrophy. The mechanism behind this relationship appears to involve the activation of the NLRP3 inflammasome pathway, which is caused by miR-26a-5p promoting autophagy. Targeting the expression of miR-26a-5p, as well as inhibiting the activation of autophagy and the NLRP3 inflammasome pathway, could offer additional treatments for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Li-Qun Tang
- Geriatric Medicine Center, Department of Geriatric Medicine, Zhejiang Provincial People ' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Wei Wang
- Department of Pharmacy, Zhejiang Province People's Hospital, Hangzhou Medical College, No.156 Shangtang Road, Xiacheng District, Hangzhou, 310016, Zhejiang, China
| | - Qi-Feng Tang
- Department of Radiology, Zhejiang Province People's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Ling-Ling Wang
- Department of Critical Care Medicine, Dinghai District Central Hospital, Zhoushan, 316000, Zhejiang, China
| |
Collapse
|
25
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
26
|
Zhang S, Zeng L, Su BQ, Yang GY, Wang J, Ming SL, Chu BB. The glycoprotein 5 of porcine reproductive and respiratory syndrome virus stimulates mitochondrial ROS to facilitate viral replication. mBio 2023; 14:e0265123. [PMID: 38047681 PMCID: PMC10746205 DOI: 10.1128/mbio.02651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant economic concern for the global swine industry due to its connection to serious production losses and increased mortality rates. There is currently no specific treatment for PRRSV. Previously, we had uncovered that PRRSV-activated lipophagy to facilitate viral replication. However, the precise mechanism that PRRSV used to trigger autophagy remained unclear. Here, we found that PRRSV GP5 enhanced mitochondrial Ca2+ uptake from ER by promoting ER-mitochondria contact, resulting in mROS release. Elevated mROS induced autophagy, which alleviated NLRP3 inflammasome activation for optimal viral replication. Our study shed light on a novel mechanism revealing how PRRSV exploits mROS to facilitate viral replication.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
| | - Bing-Qian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan Province, China
| |
Collapse
|
27
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
28
|
Chen H, Xu L, Xu Z, Wu S, Zhang X, Liu S, Zhan Z, Xu Q, Lei X, Cao H, Qin Q, Wei J. Grouper Atg14 promotes Singapore grouper iridovirus (SGIV) replication by inhibiting the host innate immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109067. [PMID: 37689226 DOI: 10.1016/j.fsi.2023.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.
Collapse
Affiliation(s)
- Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Xin Zhang
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
29
|
Gholami M, Hayes AW, Jamaati H, Sureda A, Motaghinejad M. Role of apoptosis and autophagy in mediating tramadol-induced neurodegeneration in the rat hippocampus. Mol Biol Rep 2023; 50:7393-7404. [PMID: 37453963 DOI: 10.1007/s11033-023-08641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity. MATERIALS AND METHODS Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured in rat hippocampal tissue. RESULTS TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1β were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA. CONCLUSION TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1β/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.
Collapse
Affiliation(s)
- Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands and, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Pin C, David L, Oswald E. Modulation of Autophagy and Cell Death by Bacterial Outer-Membrane Vesicles. Toxins (Basel) 2023; 15:502. [PMID: 37624259 PMCID: PMC10467092 DOI: 10.3390/toxins15080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Bacteria, akin to eukaryotic cells, possess the ability to release extracellular vesicles, lipidic nanostructures that serve diverse functions in host-pathogen interactions during infections. In particular, Gram-negative bacteria produce specific vesicles with a single lipidic layer called OMVs (Outer Membrane Vesicles). These vesicles exhibit remarkable capabilities, such as disseminating throughout the entire organism, transporting toxins, and being internalized by eukaryotic cells. Notably, the cytosolic detection of lipopolysaccharides (LPSs) present at their surface initiates an immune response characterized by non-canonical inflammasome activation, resulting in pyroptotic cell death and the release of pro-inflammatory cytokines. However, the influence of these vesicles extends beyond their well-established roles, as they also profoundly impact host cell viability by directly interfering with essential cellular machinery. This comprehensive review highlights the disruptive effects of these vesicles, particularly on autophagy and associated cell death, and explores their implications for pathogen virulence during infections, as well as their potential in shaping novel therapeutic approaches.
Collapse
Affiliation(s)
- Camille Pin
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
| | - Laure David
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Place du Docteur Baylac, 31059 Toulouse, France
| |
Collapse
|
31
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
32
|
Wu Y, Hu A, Shu X, Huang W, Zhang R, Xu Y, Yang C. Lactobacillus plantarum postbiotics trigger AMPK-dependent autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome activation. J Cell Physiol 2023; 238:1336-1353. [PMID: 37052047 DOI: 10.1002/jcp.31016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1β, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
33
|
Liu J, Shao Y, Li D, Li C. N6-methyladenosine helps Apostichopus japonicus resist Vibrio splendidus infection by targeting coelomocyte autophagy via the AjULK-AjYTHDF/AjEEF-1α axis. Commun Biol 2023; 6:547. [PMID: 37210465 DOI: 10.1038/s42003-023-04929-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China.
| |
Collapse
|
34
|
Cachón-González MB, Zhao C, Franklin RJ, Cox TM. Upregulation of non-canonical and canonical inflammasome genes associates with pathological features in Krabbe disease and related disorders. Hum Mol Genet 2023; 32:1361-1379. [PMID: 36519759 PMCID: PMC10077509 DOI: 10.1093/hmg/ddac299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Infantile Krabbe disease is a rapidly progressive and fatal disorder of myelin, caused by inherited deficiency of the lysosomal enzyme β-galactocerebrosidase. Affected children lose their motor skills and other faculties; uncontrolled seizures are a frequent terminal event. Overexpression of the sphingolipid metabolite psychosine is a pathogenic factor, but does not fully account for the pleiotropic manifestations and there is a clear need to investigate additional pathological mechanisms. We examined innate immunity, caspase-11 and associated inflammatory pathways in twitcher mice, an authentic model of Krabbe disease. Combined use of molecular tools, RNAscope in situ hybridization and immunohistochemical staining established that the expression of pro-inflammatory non-canonical caspase-11, canonical caspase-1, gasdermin D and cognate genes is induced in nervous tissue. Early onset and progressive upregulation of these genes accompany demyelination and gliosis and although the molecules are scant in healthy tissue, abundance of the respective translation products is greatly increased in diseased animals. Caspase-11 is found in reactive microglia/macrophages as well as astrocytes but caspase-1 and gasdermin D are restricted to reactive microglia/macrophages. The inflammasome signature is not unique to Krabbe disease; to varying degrees, this signature is also prominent in other lysosomal diseases, Sandhoff and Niemann-Pick Type-C1, and the lysolecithin toxin model of focal demyelination. Given the potent inflammatory response here identified in Krabbe disease and the other neurodegenerative disorders studied, a broad induction of inflammasomes is likely to be a dominant factor in the pathogenesis, and thus represents a platform for therapeutic exploration.
Collapse
Affiliation(s)
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Clinical Neuro sciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Robin J Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Clinical Neuro sciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Cambridge CB2 0QQ, UK
| |
Collapse
|
35
|
Kalantari P, Shecter I, Hopkins J, Pilotta Gois A, Morales Y, Harandi BF, Sharma S, Stadecker MJ. The balance between gasdermin D and STING signaling shapes the severity of schistosome immunopathology. Proc Natl Acad Sci U S A 2023; 120:e2211047120. [PMID: 36943884 PMCID: PMC10068786 DOI: 10.1073/pnas.2211047120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)β production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNβ induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNβ, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA16802
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Jacob Hopkins
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Andrea Pilotta Gois
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Bijan F. Harandi
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
36
|
Pham DV, Shrestha P, Nguyen TK, Park J, Pandit M, Chang JH, Kim SY, Choi DY, Han SS, Choi I, Park GH, Jeong JH, Park PH. Modulation of NLRP3 inflammasomes activation contributes to improved survival and function of mesenchymal stromal cell spheroids. Mol Ther 2023; 31:890-908. [PMID: 36566348 PMCID: PMC10014231 DOI: 10.1016/j.ymthe.2022.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proven to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasome suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmacology, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Prakash Shrestha
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Junhyeung Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
37
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
38
|
Xu YF, Wu YX, Wang HM, Gao CH, Xu YY, Yan Y. Bone marrow-derived mesenchymal stem cell-conditioned medium ameliorates diabetic foot ulcers in rats. Clinics (Sao Paulo) 2023; 78:100181. [PMID: 36948071 PMCID: PMC10040509 DOI: 10.1016/j.clinsp.2023.100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVES This study aimed to explore the effects of bone marrow-derived Mesenchymal Stem Cell-Conditioned Medium (MSC-CM) treating diabetic foot ulcers in rats. METHODS Models of T2DM rats were induced by a high-fat diet and intraperitoneal injection of STZ in SD rats. Models of Diabetic Foot Ulcers (DFUs) were made by operation on hind limbs in diabetic rats. Rats were divided into four groups (n = 6 for each group), i.e., Normal Control group (NC), Diabetes Control group (DM-C), MSC-CM group and Mesenchymal Stem Cells group (MSCs). MSC-CM group was treated with an injection of conditioned medium derived from preconditioned rats' bone marrow MSCs around ulcers. MSCs group were treated with an injection of rats' bone marrow MSCs. The other two groups were treated with an injection of PBS. After the treatment, wound closure, re-epithelialization (thickness of the stratum granulosums of the skin, by H&E staining), cell proliferation (Ki67, by IHC), angiogenesis (CD31, by IFC), autophagy (LC3B, by IFC and WB; autolysosome, by EM) and pyroptosis (IL-1β, NLRP3, Caspase-1, GSDMD and GSDMD-N, by WB) in ulcers were evaluated. RESULTS After the treatment wound area rate, IL-1β by ELISA, and IL-1β, Caspase-1, GSDMD and GSDMD-N by WB of MSC-CM group were less than those of DM group. The thickness of the stratum granulosums of the skin, proliferation index of Ki67, mean optic density of CD31 and LC3B by IFC, and LC3B by WB of MSC-CM group were more than those of DM group. The present analysis demonstrated that the injection of MSC-CM into rats with DFUs enhanced the wound-healing process by accelerating wound closure, promoting cell proliferation and angiogenesis, enhancing cell autophagy, and reducing cell pyroptosis in ulcers. CONCLUSIONS Studies conducted indicate that MSC-CM administration could be a novel cell-free therapeutic approach to treat DFUs accelerating the wound healing process and avoiding the risk of living cells therapy.
Collapse
Affiliation(s)
- Yi-Feng Xu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China.
| | - Yan-Xiang Wu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Hong-Mei Wang
- Department of Hematology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Cui-Hua Gao
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Yang-Yang Xu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Yang Yan
- Department of Hematology, Air Force Hospital of Northern Theater Command of PLA, China
| |
Collapse
|
39
|
Sousa ESA, Queiroz LAD, Guimarães JPT, Pantoja KC, Barros RS, Epiphanio S, Martins JO. The influence of high glucose conditions on macrophages and its effect on the autophagy pathway. Front Immunol 2023; 14:1130662. [PMID: 37122742 PMCID: PMC10130370 DOI: 10.3389/fimmu.2023.1130662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Macrophages are central cells in mediating the inflammatory response. Objective and Methods We evaluated the effect of high glucose conditions on the inflammatory profile and the autophagy pathway in Bone-Marrow Derived Macrophages (BMDM) from diabetic (D-BMDM) (alloxan: 60mg/kg, i.v.) and non-diabetic (ND-BMDM) C57BL/6 mice. BMDM were cultured in medium with normal glucose (5.5 mM), or high glucose (25 mM) concentration and were primed with Nigericin (20µM) stimulated with LPS (100 ng/mL) at times of 30 minutes; 2; 4; 6 and 24 hours, with the measurement of IL-6, IL-1β and TNF-α cytokines. Results We have further identified changes in the secretion of pro-inflammatory cytokines IL-6, IL-1β and TNF-α, where BMDM showed increased secretion of these cytokines after LPS + Nigericin stimulation. In addition, changes were observed in the autophagy pathway, where the increase in the autophagic protein LC3b and Beclin-1 occurred by macrophages of non-diabetic animals in hyperglycemic medium, without LPS stimulation. D-BMDM showed a reduction on the expression of LC3b and Beclin-1, suggesting an impaired autophagic process in these cells. Conclusion The results suggest that hyperglycemia alters the inflammatory pathways in macrophages stimulated by LPS, playing an important role in the inflammatory response of diabetic individuals.
Collapse
Affiliation(s)
- Emanuella S. A. Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz A. D. Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - João P. T. Guimarães
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Kamilla C. Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Rafael S. Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Laboratory of Malaria Cellular and Molecular Immunopathology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
- *Correspondence: Joilson O. Martins,
| |
Collapse
|
40
|
Abstract
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Collapse
Affiliation(s)
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
41
|
Yin L, Tang Y, Lin X, Jiang B. Progress in the mechanism of mitochondrial dysfunction in septic cardiomyopathy. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2156622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Sepsis Translational Medicine Key Lab of Hunan Province, Hunan, People’s Republic of China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Sepsis Translational Medicine Key Lab of Hunan Province, Hunan, People’s Republic of China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Sepsis Translational Medicine Key Lab of Hunan Province, Hunan, People’s Republic of China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, People’s Republic of China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Sepsis Translational Medicine Key Lab of Hunan Province, Hunan, People’s Republic of China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
42
|
Tabibzadeh S. Role of autophagy in aging: The good, the bad, and the ugly. Aging Cell 2022; 22:e13753. [PMID: 36539927 PMCID: PMC9835585 DOI: 10.1111/acel.13753] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy (self-eating) is a conserved catabolic homeostatic process required for cellular metabolic demands by removal of the damaged molecules and organelles and for alleviation of stress initiated by pathology and infection. By such actions, autophagy is essential for the prevention of aging, disease, and cancer. Genetic defects of autophagy genes lead to a host of developmental, metabolic, and pathological aberrations. Similarly, the age-induced decline in autophagy leads to the loss of cellular homeostatic control. Paradoxically, such a valuable mechanism is hijacked by diseases, during tumor progression and by senescence, presumably due to high levels of metabolic demand. Here, we review both the role of autophagy in preventing cellular decline in aging by fulfillment of cellular bioenergetic demands and its contribution to the maintenance of the senescent state and SASP by acting on energy and nutritional sensors and diverse signaling pathways.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and CancerIrvineCaliforniaUSA
| |
Collapse
|
43
|
David L, Taieb F, Pénary M, Bordignon PJ, Planès R, Bagayoko S, Duplan-Eche V, Meunier E, Oswald E. Outer membrane vesicles produced by pathogenic strains of Escherichia coli block autophagic flux and exacerbate inflammasome activation. Autophagy 2022; 18:2913-2925. [PMID: 35311462 PMCID: PMC9673956 DOI: 10.1080/15548627.2022.2054040] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli strains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance. Furthermore, HlyF-associated OMVs were more prone to activate the non-canonical inflammasome pathway. Because autophagy and inflammation are crucial in the host's response to infection especially during sepsis, our findings revealed an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties.Abbreviations: AIEC: adherent-invasive E. coliBDI: bright detail intensityBMDM: bone marrow-derived macrophagesCASP: caspaseE. coli: Escherichia coliEHEC: enterohemorrhagic E. coliExPEC: extra-intestinal pathogenic E. coliGSDMD: gasdermin DGFP: green fluorescent proteinHBSS: Hanks' balanced salt solutionHlyF: hemolysin FIL1B/IL-1B: interleukin 1 betaISX: ImageStreamX systemLPS: lipopolysaccharideMut: mutatedOMV: outer membrane vesicleRFP: red fluorescent proteinTEM: transmission electron microscopyWT: wild-type.
Collapse
Affiliation(s)
- Laure David
- F-31024, IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, France
| | - Frédéric Taieb
- F-31024, IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, France
| | - Marie Pénary
- F-31024, IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, France
| | - Pierre-Jean Bordignon
- F-31400, Institute of Pharmacology and Structural Biology (Ipbs), University of Toulouse, CNRS, France
| | - Rémi Planès
- F-31400, Institute of Pharmacology and Structural Biology (Ipbs), University of Toulouse, CNRS, France
| | - Salimata Bagayoko
- F-31400, Institute of Pharmacology and Structural Biology (Ipbs), University of Toulouse, CNRS, France
| | | | - Etienne Meunier
- F-31400, Institute of Pharmacology and Structural Biology (Ipbs), University of Toulouse, CNRS, France
| | - Eric Oswald
- F-31024, IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, France,F-31059, CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France,CONTACT Eric Oswald IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
44
|
JAK/STAT Pathway Targeting in Primary Sjögren Syndrome. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:95-102. [PMID: 36788973 PMCID: PMC9895869 DOI: 10.2478/rir-2022-0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune systemic disease mainly affecting exocrine glands and resulting in disabling symptoms, as dry eye and dry mouth. Mechanisms underlying pSS pathogenesis are intricate, involving multiplanar and, at the same time, interlinked levels, e.g., genetic predisposition, epigenetic modifications and the dysregulation of both immune system and glandular-resident cellular pathways, mainly salivary gland epithelial cells. Unravelling the biological and molecular complexity of pSS is still a great challenge but much progress has been made in recent years in basic and translational research field, allowing the identification of potential novel targets for therapy development. Despite such promising novelties, however, none therapy has been specifically approved for pSS treatment until now. In recent years, growing evidence has supported the modulation of Janus kinases (JAK) - signal transducers and activators of transcription (STAT) pathways as treatment strategy immune mediated diseases. JAK-STAT pathway plays a crucial role in autoimmunity and systemic inflammation, being involved in signal pathways of many cytokines. This review aims to report the state-of-the-art about the role of JAK-STAT pathway in pSS, with particular focus on available research and clinical data regarding the use of JAK inhibitors in pSS.
Collapse
|
45
|
Chen K, Shao Y, Li C. miR-137 modulates coelomocytes autophagy by targeting Atg13 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104486. [PMID: 35772590 DOI: 10.1016/j.dci.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
46
|
Hasnat MA, Cheang I, Dankers W, Lee JPW, Truong LM, Pervin M, Jones SA, Morand EF, Ooi JD, Harris J. Investigating immunoregulatory effects of myeloid cell autophagy in acute and chronic inflammation. Immunol Cell Biol 2022; 100:605-623. [PMID: 35652357 PMCID: PMC9542007 DOI: 10.1111/imcb.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Studies have highlighted a critical role for autophagy in the regulation of multiple cytokines. Autophagy inhibits the release of interleukin (IL)‐1 family cytokines, including IL‐1α, IL‐1β and IL‐18, by myeloid cells. This, in turn, impacts the release of other cytokines by myeloid cells, as well as other cells of the immune system, including IL‐22, IL‐23, IL‐17 and interferon‐γ. Here, we assessed the impact of genetic depletion of the autophagy gene Atg7 in myeloid cells on acute and chronic inflammation. In a model of acute lipopolysaccharide‐induced endotoxemia, loss of autophagy in myeloid cells resulted in increased release of proinflammatory cytokines, both locally and systemically. By contrast, loss of Atg7 in myeloid cells in the Lyn−/− model of lupus‐like autoimmunity resulted in reduced systemic release of IL‐6 and IL‐10, with no effects on other cytokines observed. In addition, Lyn−/− mice with autophagy‐deficient myeloid cells showed reduced expression of autoantibodies relevant to systemic lupus erythematosus, including anti‐histone and anti‐Smith protein. In vitro, loss of autophagy, through pharmacological inhibition or small interfering RNA against Becn1, inhibited IL‐10 release by human and mouse myeloid cells. This effect was evident at the level of Il10 messenger RNA expression. Our data highlight potentially important differences in the role of myeloid cell autophagy in acute and chronic inflammation and demonstrate a direct role for autophagy in the production and release of IL‐10 by macrophages.
Collapse
Affiliation(s)
- Md Abul Hasnat
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - IanIan Cheang
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Wendy Dankers
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Jacinta PW Lee
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Lynda M Truong
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Mehnaz Pervin
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Sarah A Jones
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - Joshua D Ooi
- Regulatory T Cell Therapies Group, Centre for Inflammatory Diseases Department of Medicine, School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| | - James Harris
- Centre for Inflammatory Diseases, Department of Medicine School of Clinical Sciences at Monash Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton VIC Australia
| |
Collapse
|
47
|
Keitelman IA, Shiromizu CM, Zgajnar NR, Danielián S, Jancic CC, Martí MA, Fuentes F, Yancoski J, Vera Aguilar D, Rosso DA, Goris V, Buda G, Katsicas MM, Galigniana MD, Galletti JG, Sabbione F, Trevani AS. The interplay between serine proteases and caspase-1 regulates the autophagy-mediated secretion of Interleukin-1 beta in human neutrophils. Front Immunol 2022; 13:832306. [PMID: 36091026 PMCID: PMC9458071 DOI: 10.3389/fimmu.2022.832306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1β) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1β) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1β is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1β processing in these cells. We found that although caspase-1 is required for IL-1β secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1β processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1β secretion.
Collapse
Affiliation(s)
- Irene A. Keitelman
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina M. Shiromizu
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nadia R. Zgajnar
- Laboratorio de receptores nucleares, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Silvia Danielián
- Laboratorio de Biología Molecular Inmunología, Hospital de Pediatría “Juan P. Garrahan”, Buenos Aires, Argentina
| | - Carolina C. Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) – CONICET, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Federico Fuentes
- Laboratorio de Microscopía, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Judith Yancoski
- Laboratorio de Biología Molecular Inmunología, Hospital de Pediatría “Juan P. Garrahan”, Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - David A. Rosso
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Verónica Goris
- Unidad de Genómica. Laboratorio de Biología Molecular de Inmunología, Hospital de Pediatría “Juan P. Garrahan”, Buenos Aires, Argentina
| | - Guadalupe Buda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) – CONICET, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María Martha Katsicas
- Servicio de Inmunología y Reumatología, Hospital de Pediatría “Juan P. Garrahan”, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Laboratorio de receptores nucleares, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Jeremías G. Galletti
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Analia S. Trevani
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Analia S. Trevani, ;
| |
Collapse
|
48
|
Lee J, Kim SJ, Choi GE, Yi E, Park HJ, Choi WS, Jang YJ, Kim HS. Sweet taste receptor agonists attenuate macrophage IL-1β expression and eosinophilic inflammation linked to autophagy deficiency in myeloid cells. Clin Transl Med 2022; 12:e1021. [PMID: 35988262 PMCID: PMC9393075 DOI: 10.1002/ctm2.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Eosinophilic inflammation is a hallmark of refractory chronic rhinosinusitis (CRS) and considered a major therapeutic target. Autophagy deficiency in myeloid cells plays a causal role in eosinophilic CRS (ECRS) via macrophage IL-1β overproduction, thereby suggesting autophagy regulation as a potential therapeutic modality. Trehalose is a disaccharide sugar with known pro-autophagy activity and effective in alleviating diverse inflammatory diseases. We sought to investigate the therapeutic potential of autophagy-enhancing agent, trehalose, or related sugar compounds, and the underlying mechanism focusing on macrophage IL-1β production in ECRS pathogenesis. METHODS We investigated the therapeutic effects of trehalose and saccharin on macrophage IL-1β production and eosinophilia in the mouse model of ECRS with myeloid cell-specific autophagy-related gene 7 (Atg7) deletion. The mechanisms underlying their anti-inflammatory effects were assessed using specific inhibitor, genetic knockdown or knockout, and overexpression of cognate receptors. RESULTS Unexpectedly, trehalose significantly attenuated eosinophilia and disease pathogenesis in ECRS mice caused by autophagy deficiency in myeloid cells. This autophagy-independent effect was associated with reduced macrophage IL-1β expression. Various sugars recapitulated the anti-inflammatory effect of trehalose, and saccharin was particularly effective amongst other sugars. The mechanistic study revealed an involvement of sweet taste receptor (STR), especially T1R3, in alleviating macrophage IL-1β production and eosinophilia in CRS, which was supported by genetic depletion of T1R3 or overexpression of T1R2/T1R3 in macrophages and treatment with the T1R3 antagonist gurmarin. CONCLUSION Our results revealed a previously unappreciated anti-inflammatory effect of STR agonists, particularly trehalose and saccharin, and may provide an alternative strategy to autophagy modulation in the ECRS treatment.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - So Jeong Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Go Eun Choi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of Clinical Laboratory ScienceCatholic University of PusanBusanKorea
| | - Eunbi Yi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hyo Jin Park
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Woo Seon Choi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yong Ju Jang
- Department of OtolaryngologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hun Sik Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of MicrobiologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Stem Cell Immunomodulation Research Center (SCIRC)Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
49
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
50
|
Modulation of MAPK- and PI3/AKT-Dependent Autophagy Signaling by Stavudine (D4T) in PBMC of Alzheimer’s Disease Patients. Cells 2022; 11:cells11142180. [PMID: 35883623 PMCID: PMC9322713 DOI: 10.3390/cells11142180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Aβ42 deposition plays a pivotal role in AD pathogenesis by inducing the activation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated clearance of Aβ plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation and in the impairments of Aβ-plaque clearance. On the other hand, stavudine (D4T) downregulates the NLRP3 inflammasome and stimulates autophagy-mediated Aβ-clearing in a THP-1-derived macrophages. Methods: We explored the effect of D4T on Aβ autophagy in PBMC from AD patients that were primed with LPS and stimulated with Aβ oligomers in the absence/presence of D4T. We analyzed the NLRP3 activity by measuring NLRP3-ASC complex formation by AMNIS FlowSight and pro-inflammatory cytokine (IL-1β, IL-18 and Caspase-1) production by ELISA. The phosphorylation status of p38, ERK, AKT, p70, and the protein expression of CREB, LAMP2A, beclin-1, Caspase-3 and Bcl2 were analyzed by Western blot. Results: Data showed that D4T: (1) downregulates NLRP3 inflammasome activation and the production of down-stream pro-inflammatory cytokines in PBMC; (2) stimulates the phosphorylation of AKT, ERK and p70 as well as LAMP2A, beclin-1 and Bcl2 expression and reduces Caspase-3 expression, suggesting an effect of this compound on autophagy; (3) increases phospho-CREB, which is a downstream target of p-ERK and p-AKT, inducing anti-inflammatory cytokine production and resulting in a possible decrease of Aβ-mediated cytotoxicity; and (4) reduces the phosphorylation of p38, a protein involved in the production of pro-inflammatory cytokines and tau hyperphosphorylation. Conclusions: D4T reduces the activation of the NLRP3 inflammasome, and it might stimulate autophagy as well as the molecular mechanism that modulates Aβ cytotoxicity, and D4T might reduce inflammation in the cells of AD patients. It could be very interesting to check the possible beneficial effects of D4T in the clinical scenario.
Collapse
|