1
|
Muthuraja R, Ou B, Thangavelu M, Narhayanan TN, Chittamart N, Janjaroen D. Effects of particle size and aging on heavy metal adsorption by polypropylene and polystyrene microplastics under varying environmental conditions. CHEMOSPHERE 2024; 369:143843. [PMID: 39617328 DOI: 10.1016/j.chemosphere.2024.143843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Microplastics have become a major environmental issue because of their widespread presence and tendency to adsorb heavy metals, which can have harmful effects on aquatic ecosystems and human health. The present study investigates the adsorption mechanisms of Pb2+ and Cu2+ ions on both pristine and artificially aged microplastics (MPs) made of polystyrene (PS) and polypropylene (PP). Furthermore, the influence of MP size on the adsorption capacity under different environmental conditions was evaluated. According to the characterization of MPs, aging leads to physical damage and an increase in the number of oxygen-containing functional groups on their surface. The experimental results highlight the significantly higher adsorption ability of smaller and aged MPs compared with that of pristine MPs for both the heavy metal ions. The pseudo-second-order equation provided a better fit for the adsorption kinetics study (R2 = 0.95), suggesting that chemisorption governs the rate-limiting phase in the adsorption mechanism on the MP surfaces. The concordance between the adsorption isotherm model and Freundlich model (R2 > 0.95) indicated a predominance of multilayer adsorption. The environmental factors such as pH, humic acid, temperature, and SO42- concentration significantly affected the adsorption of Pb2⁺ and Cu2⁺ onto PP and PS MPs. These variables play a crucial role in determining the nature of the interactions between heavy metal ions and the microplastic particles under diverse environmental conditions. Electrostatic interactions, surface complexation and van der Waals forces were identified as two factors that could either improve or diminish the metal ion adsorption capacity of MPs.
Collapse
Affiliation(s)
- Raji Muthuraja
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Bunlong Ou
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muthukumar Thangavelu
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Thaiyal Nayahi Narhayanan
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Natthapol Chittamart
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Dao Janjaroen
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Senko O, Maslova O, Stepanov N, Aslanli A, Lyagin I, Efremenko E. Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions. Microorganisms 2024; 12:2024. [PMID: 39458333 PMCID: PMC11509615 DOI: 10.3390/microorganisms12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs). HSs constitute a macrocomponent of natural non-living organic matter of aquatic and soil ecosystems, formed and transformed in the processes of mineralization of bio-organic substances in environmental conditions. Analysis of the main mechanisms of their influence on each other and the effects produced that accelerate or inhibit polymer degradation can create the basis for scientifically based approaches to the most effective solution to the problem of degradation of SPs, including in the form of microplastics. This review is aimed at comparing various aspects of interactions of SPs, MOs, and HSs in laboratory experiments (in vitro) and environmental investigations (in situ) aimed at the biodegradation of polymers, as well as pollutants (antibiotics and pesticides) that they absorb. Comparative calculations of the degradation velocity of different SPs in different environments are presented. A special place in the analysis is given to the elemental chemical composition of HSs, which are most successfully involved in the biodegradation of SPs. In addition, the role of photo-oxidation and photoaging of polymers under the influence of the ultraviolet spectrum of solar radiation under environmental conditions on the (bio)degradation of SPs in the presence of HSs is discussed.
Collapse
Affiliation(s)
- Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| |
Collapse
|
3
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
4
|
Karwadiya J, Lützenkirchen J, Darbha GK. Retention of ZnO nanoparticles onto polypropylene and polystyrene microplastics: Aging-associated interactions and the role of aqueous chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124097. [PMID: 38703985 DOI: 10.1016/j.envpol.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.
Collapse
Affiliation(s)
- Jayant Karwadiya
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Gopala Krishna Darbha
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
5
|
Mao Y, Hu Z, Li H, Zheng H, Yang S, Yu W, Tang B, Yang H, He R, Guo W, Ye K, Yang A, Zhang S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123863. [PMID: 38565391 DOI: 10.1016/j.envpol.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Aoguang Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
6
|
Yang X, Huang G, Chen Z, Feng Q, An C, Lyu L, Bi H, Zhou S. Spotlight on the vertical migration of aged microplastics in coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134040. [PMID: 38503206 DOI: 10.1016/j.jhazmat.2024.134040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Coastal waters are complex and dynamic areas with unique environmental attributes that complicate the vertical migration of microplastics (MPs). The MPs that enter coastal waters from diverse sources, including terrestrial, riverine, oceanic, and shoreline inputs undergo various aging pathways. In this study, the variations in the physiochemical characteristics of MPs undergoing various aging pathways and their vertical migration under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were comprehensively explored. Opposite effects of aging on the vertical migration of hydrophobic and hydrophilic MPs were observed, with aging appearing to promote the dispersion of hydrophobic MPs but enhance the vertical migration of hydrophilic ones. The positive role of salinity and the negative role of humic acid (HA) concentrations on MP vertical migration were identified, and the mechanisms driving these effects were analyzed. Notably, intense turbulence not only promoted the floating of positively buoyant MPs but also reversed the migration direction of negatively buoyant MPs from downward to upward. Aging-induced changes in MP characteristics had a limited effect on MP vertical migration. The inherent characteristics of MPs and the surrounding environmental features, however, played major roles in their vertical migration dynamics. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have emerged as a significant global environmental concern and the coastal zones are the hotspots for MP pollution due to their high population density. This study comprehensively investigated the variations in the physiochemical characteristics of MPs undergoing various aging pathways. Their vertical migration patterns under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were revealed. The roles of turbulence and MP density in their migration were identified. The findings of this study have important implications for understanding the transport and determining the ecological risks of MPs in coastal waters.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
7
|
Zafar R, Lee YK, Li X, Hur J. Environmental condition-dependent effects of aquatic humic substances on the distribution of phenanthrene in microplastic-contaminated aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123809. [PMID: 38493869 DOI: 10.1016/j.envpol.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
8
|
Gao W, Wang X, Diao Y, Gong Y, Miao J, Sang W, Yuan H, Shen Z, El-Sayed MEA, Abdelhafeez IA. Co-impacts of cation type and humic acid on migration of polystyrene microplastics in saturated porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120918. [PMID: 38643625 DOI: 10.1016/j.jenvman.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The aging process of microplastics (MPs) could significantly change their physical and chemical characteristics and impact their migration behavior in soil. However, the complex effects of different cations and humic acids (HA) on the migration of aged MPs through saturated media are not clear. In this research, the migration and retention of pristine/aged PSMPs (polystyrene microplastics) under combined effects of cations (Na+, Ca2+) (ionic strength = 10 mM) and HA (0, 5, 15 mg/L) were investigated and analyzed in conjunction with the two-site kinetic retention model and DLVO theory. The findings showed that the aging process accelerated PSMPs migration under all tested conditions. Aged PSMPs were less susceptible to Ca2+ than pristine PSMPs. Under Ca2+ conditions, pristine/aged PSMPs showed higher retention than under Na+ conditions in the absence of HA. Furthermore, under Na+ conditions, the migration of aged PSMPs significantly increased at higher concentrations of HA. However, under Ca2+ conditions, the migration of aged PSMPs decreased significantly at higher concentrations of HA. In higher HA conditions, HA, Ca2+, and PSMPs interact to cause larger aggregations, resulting in the sedimentation of aged PSMPs. The DLVO calculations and two-site kinetic retention models' results showed the detention of PSMPs was irreversible under higher HA conditions (15 mg/L) with Ca2+, and aged PSMPs were more susceptible to clogging. These findings may help to understand the potential risk of migration behavior of PSMPs in the soil-groundwater environment.
Collapse
Affiliation(s)
- Wenxin Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqun Gong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Miao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hui Yuan
- Tianjin Eco-Environmental Monitoring Center, 19 Fukang Road, Nankai District, Tianjin, 300191, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mohamed E A El-Sayed
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Islam A Abdelhafeez
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
9
|
Zhou Y, Zeng Z, Fu J, Gao Y, Ma J, Zhang Z, Zu D, Han B, Lu X, Ma J, Jiang J. New Insights into the Role of Humic Acid in Permanganate Oxidation of Diclofenac: A Novel Electron Transfer Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4019-4028. [PMID: 38366980 DOI: 10.1021/acs.est.3c10703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.
Collapse
Affiliation(s)
- Yang Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhu Zeng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Fu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixin Lu
- China MCC17 Group Co., Ltd., Ma'anshan 243000, Anhui, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Zhang Y, Ju J, Long X, Zhu M, Jiang Y, Yang H. Length-dependent toxic effects of microplastic fibers on Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123037. [PMID: 38030106 DOI: 10.1016/j.envpol.2023.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs), a pervasive pollutant in aquatic environments, are increasingly recognized for their detrimental effects on aquatic organisms. However, the present understanding of their impact on phytoplankton, particularly freshwater microalgae, remains limited. Furthermore, previous studies have predominantly focused on MP particles, largely overlooking the most prevalent form of MPs in aquatic settings-fibers. In this study, we scrutinized the toxicological implications of microplastic fibers (MFs) spanning four distinct lengths (50 μm, 100 μm, 150 μm, and 200 μm) on the protein-nucleated algae Chlorella pyrenoidosa over a six-day period. The study unequivocally demonstrated that MFs markedly impeded C. pyrenoidosa growth, diminished photosynthetic pigment content, and induced oxidative stress, with all observed effects exhibiting a length-dependent correlation. Electron microscopy further revealed notable damage to algal cell membranes. Cell membrane shrinkage, cytoplasm outflow, and abnormalities in cell division were observed in the 150 μm and 200 μm groups. Furthermore, C. pyrenoidosa clustered around the 200 μm MF were notably denser compared to other groups. The present study demonstrated that MFs had length-dependent toxic effects on C. pyrenoidosa. These findings offer novel insights into the deleterious impact of MFs on aquatic organisms, underscoring the pivotal role of length in influencing their toxicity.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodong Long
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mingzhen Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
11
|
Chen Y, Li H, Yin Y, Shan S, Huang T, Tang H. Effect of microplastics on the adherence of coexisting background organic contaminants to natural organic matter in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167175. [PMID: 37730023 DOI: 10.1016/j.scitotenv.2023.167175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Microplastics (MPs) may interact with background organic substances (including natural organic matter and organic pollutants) after entering the aquatic environment and affect their original binding. Thus, the interaction of MPs with background organic substances (i.e., humic acid (HA), polychlorinated biphenyls (PCBs), and hydroxy PCBs) were elucidated. According to the results, PCB and hydroxy PCB displayed a strong propensity to adhere to HAs in the absence of MPs. However, the PCBs and hydroxy PCBs that were initially bound to HAs shifted from HAs to MPs in the presence of MPs. Further analysis demonstrated that this transfer was dominated by van der Waals interactions, with hydrogen bond interactions as an additional driving force. Upon the interaction, large MPs-HA-PCB/ hydroxy PCB aggregates with MPs as the core and HAs as the outermost layer were formed. Significant changes in the properties of background organic matter, including the distribution of PCB/hydroxy PCB around HA, diffusion coefficient, and hydrogen bond networks in the HA-PCB/ hydroxy PCB domains, occurred during the MP-HA-PCB/hydroxy PCB interaction. These results provide molecular-level evidence that the intrusion of MPs changes the binding preference of background organic pollutants and can lead to a redistribution of background organic pollutants.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hangzhe Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
12
|
Wen Q, Liu N, Qu R, Ge F. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165741. [PMID: 37487889 DOI: 10.1016/j.scitotenv.2023.165741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The photoaging of microplastics (MPs) accumulated in the sea can be influenced by humic acid (HA). However, the role of salinity cannot be ignored, as it may potentially disrupt the interaction between MPs and HA, thereby altering the photoaging of MPs. Herein, this study investigated how salinity influences the effect of humic acid (HA, derived from lignite) on the photoaging of polystyrene microplastics (PS MPs) in artificial and natural seawater. The results revealed that HA promoted the photoaging of PS MPs under both low (5 PSU) and high salinity (35 PSU) in light conditions (L), reflected in the formation of fragments, the production of oxygen-containing functional groups (OH, CO, and OCO), and the increase in hydrophilicity of PS MPs. Furthermore, high salinity promoted the photoaging of PS MPs with HA more significantly, as evidenced by the similar indicators and the order of oxygen/carbon atom ratio (O/C): L-HA-High (0.15) > L-HA-Low (0.10) > Unaged (0.02). Interestingly, due to the reduction of electrostatic repulsion, the adsorption of HA on photoaged PS MPs in natural and artificial high salinity seawater was 1.77 mg/g and 0.39 mg/g, respectively, which was significantly higher than those PS MPs photoaged in the low salinity seawater. Furthermore, the electron spin resonance (ESR) results confirmed that more hydroxyl radicals (OH) were generated after adsorbing HA under high salinity conditions, thus promoting the fragmentation and oxidation of PS MPs. Overall, our findings highlight the crucial role of salinity in influencing the photoaging of MPs with HA and help to assess the marine risk of MPs accurately.
Collapse
Affiliation(s)
- Qiong Wen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ruohua Qu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China.
| |
Collapse
|
13
|
Shahi NK, Kim JY, Dockko S. Process analysis of microplastic aging during the photochemical oxidation process and its effect on the adsorption behavior of dissolved organic matter. CHEMOSPHERE 2023; 341:139980. [PMID: 37648171 DOI: 10.1016/j.chemosphere.2023.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Information on microplastics (MPs) interactions with dissolved organic matter (DOM) is essential for understanding their environmental impacts. However, research is scarce regarding the adsorption behavior of DOM with different characteristics onto pristine and aged MPs. This research thus investigates MPs aging behavior accelerated by UV/Persulfate and UV/chlorine oxidation processes and the adsorption behavior of organic matter with low-specific ultraviolet absorbance (L-SUVA) and high-SUVA (H-SUVA) characteristics. MPs were degraded by UV/Cl and UV/Persulfate for 30 days. Changes in thermal properties, surface morphology, and chemistry were studied using different analytical techniques. The adsorption behavior was assessed by adsorption kinetic and isotherm study. After oxidation, the surface of the MPs showed a significant increase in the oxygen-containing functional groups, contact angle, surface roughness, and surface energy, and a decrease in crystallinity. The oxidation effect follows the order of UV/Cl > UV/Persulfate. The kinetic and equilibrium data of H-SUVA adsorption on pristine and aged MPs well-fitted the pseudo-second-order and Langmuir model. In contrast, L-SUVA well-fitted the pseudo-first-order and Freundlich model. The adsorption capacity (qm) increased in the following orders: 8.11 > 5.87>4.29 mg g-1 for H-SUVA and 19.81 > 6.662>5.315 mg g-1 for L-SUVA by MPs aged with UV/Cl, UV/Persulfate and pristine MPs, respectively. The larger the surface damage of MPs, the greater the adsorption affinity of DOM. The result was attributed to the physical adsorption process, hydrophobic interactions, electrostatic, hydrogen, and halogen bonding. These findings are beneficial to provide new insights involving the adsorption behavior and interaction mechanisms of DOM onto MPs for the environmental risk assessment.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
14
|
Sodré FF, Arowojolu IM, Canela MC, Ferreira RS, Fernandes AN, Montagner CC, Vidal C, Dias MA, Abate G, da Silva LC, Grassi MT, Bertoldi C, Fadini PS, Urban RC, Ferraz GM, Schio NS, Waldman WR. How natural and anthropogenic factors should drive microplastic behavior and fate: The scenario of Brazilian urban freshwater. CHEMOSPHERE 2023; 340:139813. [PMID: 37586495 DOI: 10.1016/j.chemosphere.2023.139813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Brazil maintains its position at the top of the global ranking of plastic producers, yet recycling efforts have been incipient. Recent data reveals an annual production of approximately 14 million tons of plastic waste, not accounting for the surge in the usage of plastic masks and related materials due to the COVID-19 pandemic. However, what remains largely unreported is that over half of post-consumer plastic packaging in Brazil is managed without any monitoring, and it remains unclear how this will contribute to the occurrence of plastic waste and microplastics in Brazilian freshwaters. This scenario requires the consideration of several other crucial factors. Studies have been carried out mainly in marine and estuarine waters, while data on freshwaters are lacking. Brazil has continental dimensions and the highest water availability on the planet, yet the demand for water is greatest in regions with medium to low supply. Many densely populated Brazilian urban areas face chronic flood problems, possess inadequate levels of wastewater treatment, and display inadequate solid waste management practices. Consequently, urban freshwater with tropical characteristics in Brazil presents an intriguing scenario and is complementary to the most commonly studied marine environments. In this study, we explore the nuances of pollution in Brazilian urban freshwater and discuss how various parameters, such as organic matter, suspended solids, temperature, and pH, among others, influence the behavior of microplastics and their interactions with organic and inorganic contaminants. Furthermore, we address how microplastic conditions, such as biofouling, the type of plastic, or degradation level, may impact their behavior. By analyzing how these conditions change, we propose priority themes for investigating the occurrence of microplastics in Brazilian urban freshwater systems under different degrees of human impact. Ultimately, this study aims to establish a network dedicated to standardized monitoring of microplastic pollution in Brazilian urban freshwaters.
Collapse
Affiliation(s)
- Fernando F Sodré
- Institute of Chemistry, University of Brasília, Brasília, DF, Brazil.
| | - Imisi M Arowojolu
- Institute of Chemistry, University of Brasília, Brasília, DF, Brazil
| | - Maria C Canela
- Exact Sciences and Technology Center, State University of the North Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil
| | - Rodrigo S Ferreira
- Exact Sciences and Technology Center, State University of the North Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil
| | - Andreia N Fernandes
- Institute of Chemistry, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | - Cristiane Vidal
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Mariana A Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Gilberto Abate
- Chemistry Department, Federal University of Paraná, PR, Brazil
| | | | - Marco T Grassi
- Chemistry Department, Federal University of Paraná, PR, Brazil
| | - Crislaine Bertoldi
- Institute of Chemistry, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil; Chemistry Department, Federal University of Paraná, PR, Brazil
| | - Pedro S Fadini
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Roberta C Urban
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Gabriel M Ferraz
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Natalí S Schio
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Walter R Waldman
- Science and Technology Center for Sustainability, Federal University of São Carlos, Sorocaba, SP, Brazil
| |
Collapse
|
15
|
Liu B, Gao Y, Yue Q, Guo K, Gao B. Microcosmic mechanism analysis of the combined pollution of aged polystyrene with humic acid and its efficient removal by a composite coagulant. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132272. [PMID: 37573824 DOI: 10.1016/j.jhazmat.2023.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
16
|
Schefer RB, Armanious A, Mitrano DM. Eco-Corona Formation on Plastics: Adsorption of Dissolved Organic Matter to Pristine and Photochemically Weathered Polymer Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14707-14716. [PMID: 37722069 DOI: 10.1021/acs.est.3c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Plastic fate in freshwater systems is dependent on particle size, morphology, and physicochemical surface properties (e.g., charge, surface roughness, and hydrophobicity). Environmental aging processes, such as photochemical weathering and eco-corona formation due to dissolved organic matter (DOM) adsorption on plastic surfaces, can alter their physicochemical properties, affecting fate and transport. While plastic aging has been studied from a materials science perspective, its specific implications in environmental contexts remain less understood. Although photochemical weathering and eco-corona formation occur simultaneously in the environment, in this work, we systematically assessed the effects of photochemical weathering on the physicochemical properties of polymers (polyethylene, polypropylene, polyethylene terephthalate, and polystyrene) and how this influences the adsorption of DOMs (Suwannee River humic acid, fulvic acid, and natural organic matter) relative to pristine polymers. Pristine polymers initially had different and distinct physicochemical surface properties, but upon aging, they became more similar in terms of surface properties. Photochemical weathering resulted in a decrease in polymer film thickness, an increase in surface roughness, and hydrophilicity. DOM adlayers on the polymer surfaces resulted in more comparable wettability, effectively masking the initial polymer properties. Collectively, this study explores the physiochemical changes polymers undergo in laboratory studies mimicking environmental conditions. Understanding these changes is the initial step to rationalizing and predicting processes and interactions such as heteroaggregation that dictate the fate of plastics in the environment.
Collapse
Affiliation(s)
- Roman B Schefer
- Environmental Systems Science Department, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Antonius Armanious
- Department of Health Science and Technology, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
17
|
Guo K, Yu C, Gao B, Liu B, Wang Z, Wang Y, Yue Q, Gao Y. Intrinsic mechanism for the removal of antibiotic pollution by a dual coagulation process from the perspective of the interaction between NOM and antibiotic. WATER RESEARCH 2023; 244:120483. [PMID: 37633212 DOI: 10.1016/j.watres.2023.120483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
Antibiotics bring potential risks to human health and ecosystem, and their coexistence with natural organic matters (NOMs) could have harmful impacts on the environment. Herein, a polyaluminium chloride (PAC)-polydimethyl diallyl ammonium chloride (PDMDAAC) dual coagulation process was designed to remove the co-pollutants of chlortetracycline (CTC) and humic acid (HA), representing antibiotics and NOMs, respectively. The main research strength was given to understand molecular interactions and their mechanisms associated with the coagulation and flocculation. We found that the co-existing HA and CTC increased the hydrophily and stability of contaminants, and generated HA@CTC complexes with large particles size. The interaction mechanism between CTC and HA was mainly hydrogen bonding, hydrophobic association action, n-π* electron donor-acceptor interaction, and π-π* conjugation. Lewis acid-base interaction was the main force between HA and CTC. The bonding energies of OH…N, OH…O, and hydrophobic association were -12.2 kcal/mol, -13.1 kcal/mol, and -11.4 kcal/mol, respectively, indicating that hydrogen bonding was stronger than hydrophobic association. The interactions between HA and CTC could improve their removal efficiency in the coagulation process. This is due to that the functional groups (COOH and OH) in the HA@CTC could be adsorbed by Al based hydrolysates. Polar interaction dominated the CTC and HA removal, and PAC was more efficient than PDMDAAC to remove HA@CTC complexes due to its higher complexing capacity. Thanks to the low concentration of residual contaminants and the formation of large and loose flocs, the interaction of HA and CTC could alleviate membrane fouling during ultrafiltration process. This study will provide new insight into the efficient removal of combined pollution and membrane fouling control.
Collapse
Affiliation(s)
- Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Chenghui Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| |
Collapse
|
18
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|
19
|
Fan X, Li W, Alam E, Cao B, Qian S, Shi S, Yang Y. Investigation of the adsorption-desorption behavior of antibiotics by polybutylene succinate and polypropylene aged in different water conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36619-36630. [PMID: 36562965 DOI: 10.1007/s11356-022-24693-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are widely present in aqueous environments and aged by natural components of complex water environments, such as salinity (SI) and dissolved organic matter (DOM). However, the effects of multicondition aging on the physicochemical properties and environmental behavior of MPs have not been completely investigated. In this study, the degradable MP polybutylene succinate (PBS) was used to investigate the environmental behavior of sulfamethoxazole (SMZ) and was compared with polypropylene (PP). The results showed that the single-factor conditions of DOM and SI, particularly DOM, promoted the aging process of MPs more significantly, especially for PBS. The degrees of MP aging under multiple conditions were lower than those under single-factor conditions. Compared with PP, PBS had greater specific surface area, crystallinity, and hydrophilicity and thus a stronger SMZ adsorption capacity. The adsorption behavior of MPs fitted well with the pseudo-second-order kinetic and Freundlich isotherm models, indicating multilayer adsorption. Compared with PP, PBS showed relatively a higher adsorption capacity, for example, for MPs aged under DOM conditions, the adsorption of SMZ by PBS was up to 5.74 mg/g, whereas that for PP was only 3.41 mg/g. The desorption experiments showed that the desorption amount of SMZ on MPs in the simulated intestinal fluid was greater than that in Milli-Q water. In addition, both the original PBS and the aged PBS had stronger desorption capacities than that of PP. The desorption quantity of PBS was 1.23-1.84 times greater than PP, whereas the desorption rates were not significantly different. This experiment provides a theoretical basis for assessing the ecological risks of degradable MPs in complex water conditions.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
- Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Weiyi Li
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Easar Alam
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shenwen Qian
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shang Shi
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
20
|
An effective strategy to synthesize water-soluble iron heterocomplexes containing Dubb humic acid chelating agent as efficient micronutrients for iron-deficient soils of high pH levels. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wang X, Diao Y, Dan Y, Liu F, Wang H, Sang W, Zhang Y. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media. CHEMOSPHERE 2022; 309:136658. [PMID: 36183879 DOI: 10.1016/j.chemosphere.2022.136658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are susceptible to aging in the environment, and aged MPs are highly migratory in soil due to their smaller particle size and more negative surface charge, but the effects of soil environmental factors on the fate and transport of aged MPs are still unclear. In this study, the transport behavior of pristine/aged MPs in unsaturated sandy porous media was examined under different ionic strength (IS), cationic type (Na+, Ca2+) and humic acid (HA) conditions. The results indicated that the surface charge, surface oxygen-containing functional groups and surface morphology of MPs changed significantly after aging, and that the mobility of aged MPs was significantly enhanced than the pristine MPs under all test conditions. The retention amounts of pristine/aged MPs in unsaturated porous media increased with IS, and IS had a less inhibitory effect on the transport of aged MPs than pristine MPs. The mobility of pristine/aged MPs in Ca2+ solutions was significantly weaker than that in Na+ solutions due to enhanced straining and electrostatic adsorption. HA promoted the mobility of pristine/aged MPs in unsaturated porous media under all IS Na+ (1, 10, and 25 mM) solutions and lower IS (1 mM) Ca2+ solutions, and the ability of HA to promote the transport of aged MPs was significantly stronger than that of pristine MPs due to the higher adsorption of HA on the surface of aged MPs. However, at higher IS (10 mM) Ca2+ solution conditions, the bridging effect of Ca2+ led to the formation of HA-MPs complexes, which altered the hydrophobicity of the pristine/aged MPs surface and the pristine/aged MPs were mainly retained on the air-water interface (AWI). CFT theory and two-site kinetic retention models indicated that the retention of pristine/aged MPs in unsaturated media was dominated by monolayer adsorption, straining and clogging effects. The current research findings may provide insights into the fate and transport of aged MPs in soil and their potential risk of groundwater contamination.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
23
|
Luo H, Liu C, He D, Sun J, Zhang A, Li J, Pan X. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. WATER RESEARCH 2022; 222:118921. [PMID: 35932707 DOI: 10.1016/j.watres.2022.118921] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
As an emerging pollutant, microplastics (MPs) may interact with dissolved organic matter (DOM) which is prevalent in the aqueous environment. Meanwhile, the aging of MPs in the actual environment increases the uncertainty of their environmental fate. Here, the interaction mechanisms between pristine and aged polypropylene microplastics (PP-MPs) and humic acid (HA) at pH 7.0 were explored. Microstructural changes of HA were examined by fluorescence and Fourier transformation infrared (FT-IR) spectroscopy. Atomic force microscopy coupled with infrared (AFM-IR) and micro-Raman techniques were used to characterize and analyze the interacted PP-MPs. The addition of HA increased the surface roughness of both pristine and aged PP-MPs. Results of AFM-IR and Raman spectra showed that the interaction of PP-MPs with HA accelerated their surface oxidation and enhanced the characteristic signals. XPS spectra showed that the oxygen content ratio of pristine and aged PP-MPs increased by 0.95% and 1.48% after the addition of HA, respectively. PP-MPs after aging interacted more strongly with HA and there was a higher affinity between them. Two-dimensional correlation spectroscopy (2D-COS) combined with FT-IR spectra further elucidated the interaction mechanism at the molecular level. This work will help to evaluate the environmental impact of MPs in ecosystems and understand their interactions with DOM.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|