1
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Würtemberger U, Rau A, Diebold M, Becker L, Hohenhaus M, Beck J, Reinacher PC, Erny D, Reisert M, Urbach H, Demerath T. Advanced diffusion MRI provides evidence for altered axonal microstructure and gradual peritumoral infiltration in GBM in comparison to brain metastases. Clin Neuroradiol 2024; 34:703-711. [PMID: 38683350 PMCID: PMC11339137 DOI: 10.1007/s00062-024-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE In contrast to peritumoral edema in metastases, GBM is histopathologically characterized by infiltrating tumor cells within the T2 signal alterations. We hypothesized that depending on the distance from the outline of the contrast-enhancing tumor we might reveal imaging evidence of gradual peritumoral infiltration in GBM and predominantly vasogenic edema around metastases. We thus investigated the gradual change of advanced diffusion metrics with the peritumoral zone in metastases and GBM. METHODS In 30 patients with GBM and 28 with brain metastases, peritumoral T2 hyperintensity was segmented in 33% partitions based on the total volume beginning at the enhancing tumor margin and divided into inner, middle and outer zones. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy and mean diffusivity as well as Diffusion Microstructure Imaging (DMI)-based parameters Dax-intra, Dax-extra, V‑CSF and V-intra were employed to assess group-wise differences between inner and outer zones as well as within-group gradients between the inner and outer zones. RESULTS In metastases, fractional anisotropy and Dax-extra were significantly reduced in the inner zone compared to the outer zone (FA p = 0.01; Dax-extra p = 0.03). In GBM, we noted a reduced Dax-extra and significantly lower intraaxonal volume fraction (Dax-extra p = 0.008, V‑intra p = 0.006) accompanied by elevated axial intraaxonal diffusivity in the inner zone (p = 0.035). Between-group comparison of the outer to the inner zones revealed significantly higher gradients in metastases over GBM for FA (p = 0.04) as well as the axial diffusivity in the intra- (p = 0.02) and extraaxonal compartment (p < 0.001). CONCLUSION Our findings provide evidence of gradual alterations within the peritumoral zone of brain tumors. These are compatible with predominant (vasogenic) edema formation in metastases, whereas our findings in GBM are in line with an axonal destructive component in the immediate peritumoral area and evidence of tumor cell infiltration with accentuation in the tumor's vicinity.
Collapse
Affiliation(s)
- U Würtemberger
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
- Dept. of Neuroradiology, University Medical Center Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - A Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Diebold
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - L Becker
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Hohenhaus
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - P C Reinacher
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074, Aachen, Germany
| | - D Erny
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - T Demerath
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
3
|
Chen J, Hu J, Li X, Zong S, Zhang G, Guo Z, Jing Z. Enhydrin suppresses the malignant phenotype of GBM via Jun/Smad7/TGF-β1 signaling pathway. Biochem Pharmacol 2024; 226:116380. [PMID: 38945276 DOI: 10.1016/j.bcp.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
GBM is the most threatening form of brain tumor. The advancement of GBM is propelled by the growth, infiltration, and movement of cancer cells. Understanding the underlying mechanisms and identifying new therapeutic agents are crucial for effective GBM treatment. Our research focused on examining the withhold influence of Enhydrin on the destructive activity of GBM cells, both in laboratory settings and within living organisms. By employing network pharmacology and bioinformatics analysis, we have determined that Jun serves as the gene of interest, and EMT as the critical signaling pathway. Mechanistically, Enhydrin inhibits the activity of the target gene Jun to increase the expression of Smad7, which is infinitively regulated by the transcription factor Jun, and as the inhibitory transcription factor, Smad7 can down-regulate TGF-β1 and the subsequent Smad2/3 signaling pathway. Consequently, this whole process greatly hinders the EMT mechanism of GBM, leading to the notable decline in cell proliferation, invasion, and migration. In summary, our research shows that Enhydrin hinders EMT by focusing on the Jun/Smad7/TGF-β1 signaling pathway, presenting a promising target for treating GBM. Moreover, Enhydrin demonstrates encouraging prospects as a new medication for GBM treatment.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Wang L, Zheng Z, Zheng J, Zhang G, Wang Z. The Potential Significance of the EMILIN3 Gene in Augmenting the Aggressiveness of Low-Grade Gliomas is Noteworthy. Cancer Manag Res 2024; 16:711-730. [PMID: 38952353 PMCID: PMC11215280 DOI: 10.2147/cmar.s463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.
Collapse
Affiliation(s)
- Li`ao Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300203, People’s Republic of China
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jia Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 252004, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
5
|
Al-Qadhi MA, Yahya TAA, El-Nassan HB. Recent Advances in the Discovery of CK2 Inhibitors. ACS OMEGA 2024; 9:20702-20719. [PMID: 38764653 PMCID: PMC11097362 DOI: 10.1021/acsomega.3c10478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
CK2 is a vital enzyme that phosphorylates a large number of substrates and thereby controls many processes in the body. Its upregulation was reported in many cancer types. Inhibitors of CK2 might have anticancer activity, and two compounds are currently under clinical trials. However, both compounds are ATP-competitive inhibitors that may have off-target side effects. The development of allosteric and dual inhibitors can overcome this drawback. These inhibitors showed higher selectivity and specificity for the CK2 enzyme compared to the ATP-competitive inhibitors. The present review summarizes the efforts exerted in the last five years in the design of CK2 inhibitors.
Collapse
Affiliation(s)
- Mustafa A. Al-Qadhi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Sana’a University, 18084 Sana’a, Yemen
| | - Tawfeek A. A. Yahya
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Sana’a University, 18084 Sana’a,Yemen
| | - Hala B. El-Nassan
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Arias-Ramos N, Vieira C, Pérez-Carro R, López-Larrubia P. Integrative Magnetic Resonance Imaging and Metabolomic Characterization of a Glioblastoma Rat Model. Brain Sci 2024; 14:409. [PMID: 38790388 PMCID: PMC11118082 DOI: 10.3390/brainsci14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) stands as the most prevalent and lethal malignant brain tumor, characterized by its highly infiltrative nature. This study aimed to identify additional MRI and metabolomic biomarkers of GBM and its impact on healthy tissue using an advanced-stage C6 glioma rat model. Wistar rats underwent a stereotactic injection of C6 cells (GBM group, n = 10) or cell medium (sham group, n = 4). A multiparametric MRI, including anatomical T2W and T1W images, relaxometry maps (T2, T2*, and T1), the magnetization transfer ratio (MTR), and diffusion tensor imaging (DTI), was performed. Additionally, ex vivo magnetic resonance spectroscopy (MRS) HRMAS spectra were acquired. The MRI analysis revealed significant differences in the T2 maps, T1 maps, MTR, and mean diffusivity parameters between the GBM tumor and the rest of the studied regions, which were the contralateral areas of the GBM rats and both regions of the sham rats (the ipsilateral and contralateral). The ex vivo spectra revealed markers of neuronal loss, apoptosis, and higher glucose uptake by the tumor. Notably, the myo-inositol and phosphocholine levels were elevated in both the tumor and the contralateral regions of the GBM rats compared to the sham rats, suggesting the effects of the tumor on the healthy tissue. The MRI parameters related to inflammation, cellularity, and tissue integrity, along with MRS-detected metabolites, serve as potential biomarkers for the tumor evolution, treatment response, and impact on healthy tissue. These techniques can be potent tools for evaluating new drugs and treatment targets.
Collapse
Affiliation(s)
| | | | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.)
| |
Collapse
|
7
|
Liang J, Yun D, Jin W, Fan J, Wang X, Wang X, Li Y, Yu S, Zhang C, Li T, Yang X. NCAPH serves as a prognostic factor and promotes the tumor progression in glioma through PI3K/AKT signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-04976-4. [PMID: 38587786 DOI: 10.1007/s11010-024-04976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) has been shown to facilitate progression and predict adverse prognostic outcome in many cancer types. However, the function of NCAPH in gliomas is still unclear. Series of experiments were taken to uncover the function of NCAPH in glioma. The expression of NCAPH and potential mechanism regulating progression of glioma was verified by bioinformatics analysis. Lentiviral transfection was used for establishment of loss-of-function and gain-of-function cell lines. CCK-8 assay and Colony-formation assay were used to evaluate proliferation. Transwell assay and Cell wound healing assay were used to assess migration and invasion. Cell cycle and apoptosis were measured by flow cytometry. Protein and RNA were quantified by WB and RT-PCR, respectively. The nude mice model of glioma was used to evaluate the effect of NCAPH in vivo. The expression of NCAPH increased significantly in glioma tissues and correlated with WHO grade, IDH wild-type and non-1p/19q codeletion. Glioma patients with high expression of NCAPH had an undesirable prognosis. Functionally, upregulated NCAPH promotes the malignant hallmarks of glioma cells in vivo and in vitro. NCAPH correlated with DNA damage repair ability of glioma cells and facilitated the proliferation, invasion, and migration of glioma cells by promoting the PI3K/AKT signaling pathway. This study identifies the important pro-tumor role of NCAPH in glioma and suggests that NCAPH is a potential therapeutic target.
Collapse
Affiliation(s)
- Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Debo Yun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Wenzhe Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300000, China.
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
8
|
Boewe AS, Wrublewsky S, Hoppstädter J, Götz C, Kiemer AK, Menger MD, Laschke MW, Ampofo E. C-Myc/H19/miR-29b axis downregulates nerve/glial (NG)2 expression in glioblastoma multiforme. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102120. [PMID: 38318212 PMCID: PMC10839451 DOI: 10.1016/j.omtn.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Nerve/glial antigen (NG)2 is highly expressed in glioblastoma multiforme (GBM). However, the underlying mechanisms of its upregulated expression are largely unknown. In silico analyses reveal that the tumor-suppressive miR-29b targets NG2. We used GBM-based data from The Cancer Genome Atals databases to analyze the expression pattern of miR-29b and different target genes, including NG2. Moreover, we investigated the regulatory function of miR-29b on NG2 expression and NG2-related signaling pathways. We further studied upstream mechanisms affecting miR-29b-dependent NG2 expression. We found that miR-29b downregulates NG2 expression directly and indirectly via the transcription factor Sp1. Furthermore, we identified the NG2 coreceptor platelet-derived growth factor receptor (PDGFR)α as an additional miR-29b target. As shown by a panel of functional cell assays, a reduced miR-29b-dependent NG2 expression suppresses tumor cell proliferation and migration. Signaling pathway analyses revealed that this is associated with a decreased ERK1/2 activity. In addition, we found that the long noncoding RNA H19 and c-Myc act as upstream repressors of miR-29b in GBM cells, resulting in an increased NG2 expression. These findings indicate that the c-Myc/H19/miR-29b axis crucially regulates NG2 expression in GBM and, thus, represents a target for the development of future GBM therapies.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
9
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
11
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
12
|
Dinevska M, Widodo SS, Mantamadiotis T. High-Throughput Multiplex Immunohistochemistry of Glioma Organoids. Methods Mol Biol 2024; 2746:57-65. [PMID: 38070079 DOI: 10.1007/978-1-0716-3585-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The invasive capacity and progression of glioblastoma cells and neoplastic cells in other are dependent on interactions with the surrounding tumor microenvironment. In particular, cancer cells form a reciprocal relationship with noncellular dysregulated extracellular matrix in the tumors. Here, we describe a protocol that can be used to model the functional relationship between tumor cells and extracellular matrix. We demonstrate how 3D organoids, including glioma tumor organoids, can be processed, embedded, and sectioned in a high-throughput setup that enables investigation of the organoids by histopathological methods, multiplex immunohistochemistry, and spatial analysis within the same section.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Cha J, Ding EA, Carvalho EM, Fowler A, Aghi MK, Kumar S. Glioma Cells Secrete Collagen VI to Facilitate Invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571198. [PMID: 38168332 PMCID: PMC10760023 DOI: 10.1101/2023.12.12.571198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
While glioblastoma (GBM) progression is associated with extensive extracellular matrix (ECM) secretion, the causal contributions of ECM secretion to invasion remain unclear. Here we investigate these contributions by combining engineered materials, proteomics, analysis of patient data, and a model of bevacizumab-resistant GBM. We find that GBM cells cultured in engineered 3D hyaluronic acid hydrogels secrete ECM prior to invasion, particularly in the absence of exogenous ECM ligands. Proteomic measurements reveal extensive secretion of collagen VI, and collagen VI-associated transcripts are correspondingly enriched in microvascular proliferation regions of human GBMs. We further show that bevacizumab-resistant GBM cells deposit more collagen VI than their responsive counterparts, which is associated with marked cell-ECM stiffening. COL6A3 deletion in GBM cells reduces invasion, β-catenin signaling, and expression of mesenchymal markers, and these effects are amplified in hypoxia. Our studies strongly implicate GBM cell-derived collagen VI in microenvironmental remodeling to facilitate invasion.
Collapse
Affiliation(s)
- Junghwa Cha
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Annabelle Fowler
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences University of California San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Haydo A, Wehle A, Herold-Mende C, Kögel D, Pampaloni F, Linder B. Combining organotypic tissue culture with light-sheet microscopy (OTCxLSFM) to study glioma invasion. EMBO Rep 2023; 24:e56964. [PMID: 37938214 DOI: 10.15252/embr.202356964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Glioblastoma is a very aggressive tumor and represents the most common primary brain malignancy. Key characteristics include its high resistance against conventional treatments, such as radio- and chemotherapy and its diffuse tissue infiltration, preventing complete surgical resection. The analysis of migration and invasion processes in a physiological microenvironment allows for enhanced understanding of these phenomena and can lead to improved therapeutic approaches. Here, we combine two state-of-the-art techniques, adult organotypic brain tissue slice culture (OTC) and light-sheet fluorescence microscopy (LSFM) of cleared tissues in a combined method termed OTCxLSFM. Using this methodology, we can show that glioblastoma tissue infiltration can be effectively blocked through treatment with arsenic trioxide or WP1066, as well as genetic depletion of the tetraspanin, transmembrane receptor CD9, or signal transducer and activator of transcription 3 (STAT3). With our analysis pipeline, we gain single-cell level, three-dimensional information, as well as insights into the morphological appearance of the tumor cells.
Collapse
Affiliation(s)
- Alicia Haydo
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrej Wehle
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner site Frankfurt/Main, a partnership between DKFZ and Goethe University Hospital, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Garcia JH, Akins EA, Jain S, Wolf KJ, Zhang J, Choudhary N, Lad M, Shukla P, Rios J, Seo K, Gill SA, Carson WH, Carette LR, Zheng AC, Raleigh DR, Kumar S, Aghi MK. Multiomic screening of invasive GBM cells reveals targetable transsulfuration pathway alterations. J Clin Invest 2023; 134:e170397. [PMID: 37971886 PMCID: PMC10849762 DOI: 10.1172/jci170397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Among oncologic ROS, H2O2 specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine γ-lyase (CTH), which converts cystathionine to the nonessential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.
Collapse
Affiliation(s)
- Joseph H. Garcia
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Erin A. Akins
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
- Graduate Program in Bioengineering, UC Berkeley–UCSF, San Francisco, California, USA
| | - Saket Jain
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Kayla J. Wolf
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Jason Zhang
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Nikita Choudhary
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Meeki Lad
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Poojan Shukla
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Jennifer Rios
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Kyounghee Seo
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sabraj A. Gill
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | | | - Luis R. Carette
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Allison C. Zheng
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - David R. Raleigh
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sanjay Kumar
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
- Graduate Program in Bioengineering, UC Berkeley–UCSF, San Francisco, California, USA
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- California Institute for Quantitative Biosciences at UC Berkeley (QB3-Berkeley), Berkeley, California, USA
| | - Manish K. Aghi
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| |
Collapse
|
16
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
17
|
Whitehead CA, Morokoff AP, Kaye AH, Drummond KJ, Mantamadiotis T, Stylli SS. Invadopodia associated Thrombospondin-1 contributes to a post-therapy pro-invasive response in glioblastoma cells. Exp Cell Res 2023; 431:113743. [PMID: 37591452 DOI: 10.1016/j.yexcr.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Amereh M, Seyfoori A, Dallinger B, Azimzadeh M, Stefanek E, Akbari M. 3D-Printed Tumor-on-a-Chip Model for Investigating the Effect of Matrix Stiffness on Glioblastoma Tumor Invasion. Biomimetics (Basel) 2023; 8:421. [PMID: 37754172 PMCID: PMC10526170 DOI: 10.3390/biomimetics8050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma multiform (GBM) tumor progression has been recognized to be correlated with extracellular matrix (ECM) stiffness. Dynamic variation of tumor ECM is primarily regulated by a family of enzymes which induce remodeling and degradation. In this paper, we investigated the effect of matrix stiffness on the invasion pattern of human glioblastoma tumoroids. A 3D-printed tumor-on-a-chip platform was utilized to culture human glioblastoma tumoroids with the capability of evaluating the effect of stiffness on tumor progression. To induce variations in the stiffness of the collagen matrix, different concentrations of collagenase were added, thereby creating an inhomogeneous collagen concentration. To better understand the mechanisms involved in GBM invasion, an in silico hybrid mathematical model was used to predict the evolution of a tumor in an inhomogeneous environment, providing the ability to study multiple dynamic interacting variables. The model consists of a continuum reaction-diffusion model for the growth of tumoroids and a discrete model to capture the migration of single cells into the surrounding tissue. Results revealed that tumoroids exhibit two distinct patterns of invasion in response to the concentration of collagenase, namely ring-type and finger-type patterns. Moreover, higher concentrations of collagenase resulted in greater invasion lengths, confirming the strong dependency of tumor behavior on the stiffness of the surrounding matrix. The agreement between the experimental results and the model's predictions demonstrates the advantages of this approach in investigating the impact of various extracellular matrix characteristics on tumor growth and invasion.
Collapse
Affiliation(s)
- Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Briana Dallinger
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Evan Stefanek
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 91367, USA
| |
Collapse
|
19
|
Tamas C, Tamas F, Kovecsi A, Serban G, Boeriu C, Balasa A. The Role of Ketone Bodies in Treatment Individualization of Glioblastoma Patients. Brain Sci 2023; 13:1307. [PMID: 37759908 PMCID: PMC10526163 DOI: 10.3390/brainsci13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. According to the 2021 WHO CNS, glioblastoma is assigned to the IDH wild-type classification, fulfilling the specific characteristic histopathology. We have conducted a prospective observational study to identify the glucose levels, ketone bodies, and the glucose-ketone index in three groups of subjects: two tumoral groups of patients with histopathological confirmation of glioblastoma (9 male patients, 7 female patients, mean age 55.6 years old) or grade 4 astrocytoma (4 male patients, 2 female patients, mean age 48.1 years old) and a control group (13 male patients, 9 female patients, mean age 53.9 years old) consisting of subjects with no personal pathological history. There were statistically significant differences between the mean values of glycemia (p value = 0.0003), ketones (p value = 0.0061), and glucose-ketone index (p value = 0.008) between the groups of patients. Mortality at 3 months in glioblastoma patients was 0% if the ketone levels were below 0.2 mM and 100% if ketones were over 0.5 mM. Patients with grade 4 astrocytoma and the control subjects all presented with ketone values of less than 0.2 mM and 0.0% mortality. In conclusion, highlighting new biomarkers which are more feasible to determine such as ketones or glucose-ketone index represents an essential step toward personalized medicine and survival prolongation in patients suffering from glioblastoma and grade 4 astrocytoma.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Department of Anesthesiology and Intensive Care, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Cristian Boeriu
- Department of Emergency Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
- Department of Emergency Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Adrian Balasa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
20
|
Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res 2023; 28:297. [PMID: 37626424 PMCID: PMC10464434 DOI: 10.1186/s40001-023-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Xiang Gao
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China.
| | - Gao Chen
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Behrooz AB, Latifi-Navid H, Nezhadi A, Świat M, Los M, Jamalpoor Z, Ghavami S. Molecular mechanisms of microRNAs in glioblastoma pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119482. [PMID: 37146725 DOI: 10.1016/j.bbamcr.2023.119482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is human's most prevalent and severe brain cancer. Epigenetic regulators, micro(mi)RNAs, significantly impact cellular health and disease because of their wide range of targets and functions. The "epigenetic symphony" in which miRNAs perform is responsible for orchestrating the transcription of genetic information. The discovery of regulatory miRNA activities in GBM biology has shown that various miRNAs play a vital role in disease onset and development. Here, we summarize our current understanding of the current state-of-the-art and latest findings regarding the interactions between miRNAs and molecular mechanisms commonly associated with GBM pathogenesis. Moreover, by literature review and reconstruction of the GBM gene regulatory network, we uncovered the connection between miRNAs and critical signaling pathways such as cell proliferation, invasion, and cell death, which provides promising hints for identifying potential therapeutic targets for the treatment of GBM. In addition, the role of miRNAs in GBM patient survival was investigated. The present review, which contains new analyses of the previous literature, may lead to new avenues to explore in the future for the development of multitargeted miRNA-based therapies for GBM.
Collapse
Affiliation(s)
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Akram Nezhadi
- Cognitive Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maciej Świat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Marek Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
22
|
Magalhaes YT, Boell VK, Cardella GD, Forti FL. Downregulation of the Rho GTPase pathway abrogates resistance to ionizing radiation in wild-type p53 glioblastoma by suppressing DNA repair mechanisms. Cell Death Dis 2023; 14:283. [PMID: 37085490 PMCID: PMC10121706 DOI: 10.1038/s41419-023-05812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Glioblastoma (GBM), the most common aggressive brain tumor, is characterized by rapid cellular infiltration and is routinely treated with ionizing radiation (IR), but therapeutic resistance inevitably recurs. The actin cytoskeleton of glioblastoma cells provides their high invasiveness, but it remains unclear whether Rho GTPases modulate DNA damage repair and therapeutic sensitivity. Here, we irradiated glioblastoma cells with different p53 status and explored the effects of Rho pathway inhibition to elucidate how actin cytoskeleton disruption affects the DNA damage response and repair pathways. p53-wild-type and p53-mutant cells were subjected to Rho GTPase pathway modulation by treatment with C3 toxin; knockdown of mDia-1, PFN1 and MYPT1; or treatment with F-actin polymerization inhibitors. Rho inhibition increased the sensitivity of glioma cells to IR by increasing the number of DNA double-strand breaks and delaying DNA repair by nonhomologous end-joining in p53-wild-type cells. p53 knockdown reversed this phenotype by reducing p21 expression and Rho signaling activity, whereas reactivation of p53 in p53-mutant cells by treatment with PRIMA-1 reversed these effects. The interdependence between p53 and Rho is based on nuclear p53 translocation facilitated by G-actin and enhanced by IR. Isolated IR-resistant p53-wild-type cells showed an altered morphology and increased stress fiber formation: inhibition of Rho or actin polymerization decreased cell viability in a p53-dependent manner and reversed the resistance phenotype. p53 silencing reversed the Rho inhibition-induced sensitization of IR-resistant cells. Rho inhibition also impaired the repair of IR-damaged DNA in 3D spheroid models. Rho GTPase activity and actin cytoskeleton dynamics are sensitive targets for the reversal of acquired resistance in GBM tumors with wild-type p53.
Collapse
Affiliation(s)
- Yuli Thamires Magalhaes
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Viktor Kalbermatter Boell
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giovanna Duo Cardella
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Vítovcová B, Skarková V, Havelek R, Soukup J, Pande A, Caltová K, Rudolf E. Flubendazole exhibits anti-glioblastoma effect by inhibiting STAT3 and promoting cell cycle arrest. Sci Rep 2023; 13:5993. [PMID: 37045903 PMCID: PMC10097688 DOI: 10.1038/s41598-023-33047-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells. FLU exerted its effect by affecting microtubule structure and our results also suggest that FLU influences tubulins expression to a certain degree. Moreover, FLU effects decreased activation of STAT3 and also partially inhibited its expression, leading to upregulation of p53 signaling pathway and subsequent cell cycle arrest at G2/M phase as well as caspase-dependent cell death in GBM cells. These results suggest FLU as a promising agent to be used in GBM treatment and prompting further testing of its effects on GBM.
Collapse
Affiliation(s)
- Barbora Vítovcová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic.
| | - Veronika Skarková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Jiří Soukup
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Ananya Pande
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies. Brain Sci 2023; 13:brainsci13040542. [PMID: 37190507 DOI: 10.3390/brainsci13040542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.
Collapse
|
25
|
TRIM56 acts through the IQGAP1-CDC42 signaling axis to promote glioma cell migration and invasion. Cell Death Dis 2023; 14:178. [PMID: 36870986 PMCID: PMC9985612 DOI: 10.1038/s41419-023-05702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Diffuse invasion is an important factor leading to treatment resistance and a poor prognosis in gliomas. Herein, we found that expression of the tripartite motif containing 56 (TRIM56), a RING-finger domain containing E3 ubiquitin ligase, was markedly higher in glioma than in normal brain tissue, and was significantly correlated with malignant phenotypes and a poor prognosis. In vitro and in vivo experimental studies revealed that TRIM56 promoted the migration and invasion of glioma cells. Mechanistically, TRIM56 was transcriptionally regulated by SP1 and promoted the K48-K63-linked poly-ubiquitination transition of IQGAP1 at Lys-1230 by interacting with it, which in turn promoted CDC42 activation. This mechanism was confirmed to mediate glioma migration and invasion. In conclusion, our study provides insights into the mechanisms through which TRIM56 promotes glioma motility, i.e., by regulating IQGAP1 ubiquitination to promote CDC42 activation, which might be clinically targeted for the treatment of glioma.
Collapse
|
26
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
27
|
Szymczak B, Czarnecka J, Czach S, Nowak W, Roszek K. Purinergic approach to effective glioma treatment with temozolomide reveals enhanced anti-cancer effects mediated by P2X7 receptor. Cell Signal 2023; 106:110641. [PMID: 36858191 DOI: 10.1016/j.cellsig.2023.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The purinergic signaling pathway is the oldest evolutionary transmitter system that regulates a wide array of physiological and pathophysiological processes in central nervous system. However, the question of how the purinergic compounds interact with administrated drugs is rarely addressed. We aimed to clarify the interplay between purinergic signaling and chemotherapeutic drug temozolomide (TMZ) in human glioma cell line. We applied an initial retinoic acid-induced differentiation of A172 glioma cells and tested the P2X7 receptor expression in undifferentiated and differentiated gliomas. We compared the P2X7 receptor agonists/antagonists influence and their co-action with TMZ in both cell types through assessment of cell proliferation, viability and migrative properties. Molecular docking allowed to indicate the potential binding site for TMZ in the structure of hP2X7 receptor. Differentiated cells turned out to be more susceptible to ATP and TMZ alone but also to the concerted action of TMZ and ATP. Enhanced effects triggered by ATP and TMZ treatment include the decreased by 70% viability, and reduced migration ability of differentiated A172 glioma cells. Noteworthy, these results can be achieved already at low non-toxic ATP concentration and at reduced to 125 μM effective concentration of TMZ. Therefore, ATP molecules must be present and maintained at appropriate concentration in glioma cells microenvironment to achieve their co-action with TMZ and enhanced anti-cancer activity. All that, in turn, could shorten the therapy, increase its efficacy and limit the side effects for the patient. Our purinergic approach creates a promising perspective for developing novel combined oncological therapies.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland.
| |
Collapse
|
28
|
Garcia JH, Akins EA, Jain S, Wolf KJ, Zhang J, Choudhary N, Lad M, Shukla P, Gill S, Carson W, Carette L, Zheng A, Kumar S, Aghi MK. Multi-omic screening of invasive GBM cells in engineered biomaterials and patient biopsies reveals targetable transsulfuration pathway alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529575. [PMID: 36865128 PMCID: PMC9980149 DOI: 10.1101/2023.02.23.529575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multi-omics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Amongst oncologic ROS, hydrogen peroxide specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine gamma lyase (CTH), which converts cystathionine to the non-essential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Erin A Akins
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
- UC Berkeley-UCSF Graduate Program in Bioengineering; Berkeley, CA 94720
| | - Saket Jain
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Kayla J Wolf
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
| | - Jason Zhang
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
| | - Nikita Choudhary
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Meeki Lad
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Poojan Shukla
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Sabraj Gill
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Will Carson
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Luis Carette
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Allison Zheng
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Sanjay Kumar
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering; UC Berkeley
- Department of Bioengineering and Therapeutic Sciences; UCSF
- The California Institute for Quantitative Biosciences at UC Berkeley (QB3-Berkeley)
- UC Berkeley-UCSF Graduate Program in Bioengineering; Berkeley, CA 94720
| | - Manish K Aghi
- Department of Neurosurgery; University of California San Francisco (UCSF)
| |
Collapse
|
29
|
Joshua J, Caswell J, O’Sullivan ML, Wood G, Fonfara S. Feline myocardial transcriptome in health and in hypertrophic cardiomyopathy-A translational animal model for human disease. PLoS One 2023; 18:e0283244. [PMID: 36928240 PMCID: PMC10019628 DOI: 10.1371/journal.pone.0283244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heart disease in cats, characterized by primary left ventricular hypertrophy. Feline HCM closely resembles human HCM and is suggested as translational animal model for the human disease. A genetic cause is established in humans and suspected for cats, but little is known about the gene expression and pathways involved in the pathogenesis of HCM. To investigate the myocardial transcriptome changes in HCM, RNA sequencing was conducted on left ventricle (LV) and left atrium (LA) samples of healthy cats and cats with HCM (each n = 5; 20 samples). Ingenuity Pathway Analysis was used to determine functional pathways, regulators, and networks. Distinct gene expression profiles were identified in the LV and LA of the feline healthy and HCM myocardium. Analysis of differentially expressed mRNAs (>2 fold; FDR < 0.01) found chamber-specific (LV vs. LA) expression in both healthy and HCM groups, with higher transcriptional activity in the LA. Genes that contribute to the distinct structure and function of each chamber in health and HCM were identified in the regional comparison. The gene expression profiles of HCM compared to healthy hearts revealed disease related genes, including THBS4 and KLHL33 (LV), FAM177B and THRSP (LA), the latter 3 have not been reported for the myocardium so far, as the top differently expressed genes in the HCM heart. Differently expressed genes and functional pathways found in the HCM heart are associated with cardiac remodeling and fibrosis, inflammation, microvascular changes, calcium signaling and cardiac metabolism, with some regional differences. RhoGDI-RhoGTPase signaling, integrin and ILK signaling pathways, the LXR/RXR pathway in the LA, and the PPARα/RXRα, HIF1α and CXCR4 pathways in the LV might be of particular importance in the HCM disease process. This study identified region-specific myocardial gene transcription patterns as well as novel genes and pathways associated with HCM.
Collapse
Affiliation(s)
- Jessica Joshua
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
| | - Jeff Caswell
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
| | - M. Lynne O’Sullivan
- University of Prince Edward Island, Department of Companion Animals, Charlottetown, Prince Edward Island, Canada
| | - Geoffrey Wood
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Ontario, Canada
| | - Sonja Fonfara
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
31
|
Saurty-Seerunghen MS, Daubon T, Bellenger L, Delaunay V, Castro G, Guyon J, Rezk A, Fabrega S, Idbaih A, Almairac F, Burel-Vandenbos F, Turchi L, Duplus E, Virolle T, Peyrin JM, Antoniewski C, Chneiweiss H, El-Habr EA, Junier MP. Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase. Cell Death Dis 2022. [PMID: 36310164 DOI: 10.1038/s41419-022-05358-8.pmid:36310164;pmcid:pmc9618559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities. These cells were characterized by enhanced mitochondrial load and oxidative stress coupled with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). Functional assays with patients' tumor-derived cells and -tissue organoids, and genetic and pharmacological manipulations confirmed that the cells depend on enhanced ROS production and MPST activity for their motility. MPST action involved protection of protein cysteine residues from damaging hyperoxidation. Its knockdown translated in reduced tumor burden, and a robust increase in mice survival. Starting from cell-by-cell analyses of the patients' tumors, our work unravels metabolic dependencies of cell malignancy maintained across heterogeneous genomic landscapes.
Collapse
Affiliation(s)
- Mirca S Saurty-Seerunghen
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Thomas Daubon
- CNRS UMR5095, Inserm U1029, Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Team Bioenergetics and dynamics of mitochondria, Bordeaux, France
| | - Léa Bellenger
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Virgile Delaunay
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Gloria Castro
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Joris Guyon
- Inserm U1312, Université de Bordeaux, Pessac, France
| | - Ahmed Rezk
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, Université Paris Descartes-Structure Fédérative de Recherche Necker, CNRS UMS3633, Inserm US24, Paris, France
| | - Ahmed Idbaih
- CNRS UMR 7225, Inserm U1127, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabien Almairac
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, Nice, 06107, France
| | - Fanny Burel-Vandenbos
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- Service d'anatomopathologie, Hôpital Pasteur, CHU de Nice, Nice, 06107, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- DRCI, CHU de Nice, Nice, 06107, France
| | - Eric Duplus
- CNRS UMR8256, INSERM ERL1164, Sorbonne Université, Biological adaptation and aging-IBPS Laboratory, Team Integrated cellular aging and inflammation, Paris, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
| | - Jean-Michel Peyrin
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Axonal degeneration and regeneration, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France.
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France.
| |
Collapse
|
32
|
Saurty-Seerunghen MS, Daubon T, Bellenger L, Delaunay V, Castro G, Guyon J, Rezk A, Fabrega S, Idbaih A, Almairac F, Burel-Vandenbos F, Turchi L, Duplus E, Virolle T, Peyrin JM, Antoniewski C, Chneiweiss H, El-Habr EA, Junier MP. Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase. Cell Death Dis 2022; 13:913. [PMID: 36310164 PMCID: PMC9618559 DOI: 10.1038/s41419-022-05358-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/23/2023]
Abstract
Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities. These cells were characterized by enhanced mitochondrial load and oxidative stress coupled with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). Functional assays with patients' tumor-derived cells and -tissue organoids, and genetic and pharmacological manipulations confirmed that the cells depend on enhanced ROS production and MPST activity for their motility. MPST action involved protection of protein cysteine residues from damaging hyperoxidation. Its knockdown translated in reduced tumor burden, and a robust increase in mice survival. Starting from cell-by-cell analyses of the patients' tumors, our work unravels metabolic dependencies of cell malignancy maintained across heterogeneous genomic landscapes.
Collapse
Affiliation(s)
- Mirca S. Saurty-Seerunghen
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Thomas Daubon
- grid.462122.10000 0004 1795 2841CNRS UMR5095, Inserm U1029, Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Team Bioenergetics and dynamics of mitochondria, Bordeaux, France
| | - Léa Bellenger
- grid.503253.20000 0004 0520 7190ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Virgile Delaunay
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Gloria Castro
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Joris Guyon
- grid.412041.20000 0001 2106 639XInserm U1312, Université de Bordeaux, Pessac, France
| | - Ahmed Rezk
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Sylvie Fabrega
- grid.508487.60000 0004 7885 7602Plateforme Vecteurs Viraux et Transfert de Gènes, Université Paris Descartes-Structure Fédérative de Recherche Necker, CNRS UMS3633, Inserm US24, Paris, France
| | - Ahmed Idbaih
- grid.425274.20000 0004 0620 5939CNRS UMR 7225, Inserm U1127, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabien Almairac
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.464719.90000 0004 0639 4696Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, Nice, 06107 France
| | - Fanny Burel-Vandenbos
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.464719.90000 0004 0639 4696Service d’anatomopathologie, Hôpital Pasteur, CHU de Nice, Nice, 06107 France
| | - Laurent Turchi
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.410528.a0000 0001 2322 4179DRCI, CHU de Nice, Nice, 06107 France
| | - Eric Duplus
- grid.462844.80000 0001 2308 1657CNRS UMR8256, INSERM ERL1164, Sorbonne Université, Biological adaptation and aging-IBPS Laboratory, Team Integrated cellular aging and inflammation, Paris, France
| | - Thierry Virolle
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
| | - Jean-Michel Peyrin
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Axonal degeneration and regeneration, Paris, France
| | - Christophe Antoniewski
- grid.503253.20000 0004 0520 7190ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Hervé Chneiweiss
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Elias A. El-Habr
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Marie-Pierre Junier
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| |
Collapse
|
33
|
Ramírez E, Jara N, Ferrada L, Salazar K, Martínez F, Oviedo MJ, Tereszczuk J, Ramírez-Carbonell S, Vollmann-Zwerenz A, Hau P, Nualart F. Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxid Redox Signal 2022; 37:538-559. [PMID: 35166128 DOI: 10.1089/ars.2021.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.
Collapse
Affiliation(s)
- Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Joanna Tereszczuk
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Sebastián Ramírez-Carbonell
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
34
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
35
|
Li J, Wang X, Chen L, Zhang J, Zhang Y, Ren X, Sun J, Fan X, Fan J, Li T, Tong L, Yi L, Chen L, Liu J, Shang G, Ren X, Zhang H, Yu S, Ming H, Huang Q, Dong J, Zhang C, Yang X. TMEM158 promotes the proliferation and migration of glioma cells via STAT3 signaling in glioblastomas. Cancer Gene Ther 2022; 29:1117-1129. [PMID: 34992215 PMCID: PMC9395270 DOI: 10.1038/s41417-021-00414-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most common primary intracranial malignant tumor in adults and has high morbidity and high mortality. TMEM158 has been reported to promote the progression of solid tumors. However, its potential role in glioma is still unclear. Here, we found that TMEM158 expression in human glioma cells in the tumor core was significantly higher than that in noncancerous cells at the tumor edge using bioinformatics analysis. Cancer cells in patients with primary GBMs harbored significantly higher expression of TMEM158 than those in patients with WHO grade II or III gliomas. Interestingly, regardless of tumor grading, human glioma samples that were IDH1-wild-type (IDH1-WT) exhibited higher expression of TMEM158 than those with IDH1-mutant (IDH1-Mut). We also illustrated that TMEM158 mRNA expression was correlated with poor overall survival in glioma patients. Furthermore, we demonstrated that silencing TMEM158 inhibited the proliferation of glioma cells and that TMEM158 overexpression promoted the migration and invasion of glioma cells by stimulating the EMT process. We found that the underlying mechanism involves STAT3 activation mediating TMEM158-driven glioma progression. In vivo results further confirmed the inhibitory effect of the TMEM158 downregulation on glioma growth. Collectively, these findings further our understanding of the oncogenic function of TMEM158 in gliomas, which represents a potential therapeutic target, especially for GBMs.
Collapse
Affiliation(s)
- Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Lulu Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jinzhang Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiaoguang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Luqing Tong
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| |
Collapse
|
36
|
Margarido AS, Uceda-Castro R, Hahn K, de Bruijn R, Kester L, Hofland I, Lohuis J, Seinstra D, Broeks A, Jonkers J, Broekman MLD, Wesseling P, Vennin C, Vizoso M, van Rheenen J. Epithelial-to-Mesenchymal Transition Drives Invasiveness of Breast Cancer Brain Metastases. Cancers (Basel) 2022; 14:cancers14133115. [PMID: 35804890 PMCID: PMC9264851 DOI: 10.3390/cancers14133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.
Collapse
Affiliation(s)
- Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lennart Kester
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jeroen Lohuis
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Marike L. D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan, 2512 VA The Hague, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| |
Collapse
|
37
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
38
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
39
|
Wang M, Chen B, Zhang W, Zhang F, Qiu Y, Lin Y, Yang S. Dematin inhibits glioblastoma malignancy through RhoA-mediated CDKs downregulation and cytoskeleton remodeling. Exp Cell Res 2022; 417:113196. [PMID: 35561787 DOI: 10.1016/j.yexcr.2022.113196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.
Collapse
Affiliation(s)
- Mengying Wang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Binghong Chen
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, PR China
| | - Wenrui Zhang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yongming Qiu
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yingying Lin
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Shaofeng Yang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
40
|
Histone Deacetylase Inhibitors Impair Glioblastoma Cell Motility and Proliferation. Cancers (Basel) 2022; 14:cancers14081897. [PMID: 35454804 PMCID: PMC9027190 DOI: 10.3390/cancers14081897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is considered the deadliest brain tumor; with patients displaying a high incidence of relapse and a 3-year survival of only 3–5%. For these reasons, investigation of the molecular basis of the disease could provide novel targets for therapy and improve patient prognoses. Based on our previous data, demonstrating that high levels of the transcription factor TCF4 (TCF7L2) sustain the aggressiveness and the stem cell features of these tumors, in this study we tested the ability of the histone deacetylase inhibitors (HDI) Trichostatin-A and Vorinostat to suppress TCF4 levels. We demonstrated that HDI treatment impairs proliferation and viability of GBM cells. Moreover, molecular analysis of HDI effects disclosed their ability to counteract tumor cell motility by affecting the RhoA-GTPase and the interferon pathways, supporting their further characterization as potential anti-GBM agents. Abstract Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the β-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features. Since histone deacetylase inhibitors (HDI) have been reported to strongly reduce TCF4 levels in colon cancer cells, we hypothesized that they could also exert a similar therapeutic action in GBM. Here, we treated primary GBM cultures with Trichostatin-A and Vorinostat, demonstrating their ability to strongly suppress the Wnt-dependent pathways; thus, promoting CSC differentiation and concomitantly impairing GBM cell viability and proliferation. More interestingly, analysis of their molecular effects suggested a prominent HDI action against GBM cell motility/migration, which we demonstrated to rely on the inhibition of the RhoA-GTPase and interferon intracellular cascades. Our results suggest HDI as potential therapeutic agents in GBM, through their action on multiple cancer hallmarks.
Collapse
|
41
|
PT109, a novel multi-kinase inhibitor suppresses glioblastoma multiforme through cell reprogramming: Involvement of PTBP1/PKM1/2 pathway. Eur J Pharmacol 2022; 920:174837. [PMID: 35218719 DOI: 10.1016/j.ejphar.2022.174837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type and lethal form of primary malignant brain tumor, accounting for about 40-50% of intracranial tumors and without effective treatments now. Cell reprogramming is one of the emerging treatment approaches for GBM, which can reprogram glioblastomas into non-tumor cells to achieve therapeutic effects. However, anti-GBM drugs through reprogramming can only provide limited symptom relief, and cannot completely cure GBM. Here we showed that PT109, a novel multi-kinase inhibitor, suppressed GBM's proliferation, colony formation, migration and reprogramed GBM into oligodendrocytes. Analysis of quantitative proteomics data after PT109 administration of human GBM cells showed significant influence of energy metabolism, cell cycle, and immune system processes of GBM-associated protein. Metabolomics analysis showed that PT109 improved the aerobic respiration process in glioma cells. Meanwhile, we found that PT109 could significantly increase the ratio of Pyruvate kinase M1/2 (PKM1/2) by reducing the level of polypyrimidine tract-binding protein 1 (PTBP1). Altogether, this work developed a novel anti-GBM small molecule PT109, which reprogramed GBM into oligodendrocytes and changed the metabolic pattern of GBM through the PTBP1/PKM1/2 pathway, providing a new strategy for the development of anti-glioma drugs.
Collapse
|
42
|
McCutcheon S, Spray DC. Glioblastoma-Astrocyte Connexin 43 Gap Junctions Promote Tumor Invasion. Mol Cancer Res 2022; 20:319-331. [PMID: 34654721 PMCID: PMC8816813 DOI: 10.1158/1541-7786.mcr-21-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM), classified as World Health Organization grade IV astrocytoma, is the deadliest adult cancer of the central nervous system. An important contributing factor to poor survival rates in GBM is extensive invasion, which decreases the efficacy of resection and subsequent adjuvant therapies. These treatments could be markedly improved with increased resolution of the genetic and molecular initiators and effectors of invasion. Connexin 43 (Cx43) is the principal astrocytic gap junction (GJ) protein. Despite the heterogeneity of GBM, a subpopulation of cells in almost all GBM tumors express Cx43. Functional GJs between GBM cells and astrocytes at the tumor edge are of critical interest for understanding invasion. In this study, we find that both in vitro and in ex vivo slice cultures, GBM is substantially less invasive when placed in a Cx43-deficient astrocyte environment. Furthermore, when Cx43 is deleted in GBM, the invasive phenotype is recovered. These data strongly suggest that there are opposing roles for Cx43 in GBM migration. We find that Cx43 is localized to the tumor edge in our ex vivo model, suggesting that GBM-astrocyte GJ communication at the tumor border is a driving force for invasion. Finally, we find that by a Cx43-dependent mechanism, but likely not direct channel-mediated diffusion, miRNAs associated with cell-matrix adhesion are transferred from GBM to astrocytes and miR-19b promotes invasion, revealing a role for post-transcriptional manipulation of astrocytes in fostering an invasion-permissive peritumoral niche. IMPLICATIONS: Cx43-mediated communication, specifically miRNA transfer, profoundly impacts glioblastoma invasion and may enable further therapeutic insight.
Collapse
Affiliation(s)
- Sean McCutcheon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
43
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
44
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
45
|
Patient-Oriented Perspective on Chemokine Receptor Expression and Function in Glioma. Cancers (Basel) 2021; 14:cancers14010130. [PMID: 35008294 PMCID: PMC8749846 DOI: 10.3390/cancers14010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Chemokines and their receptors have been pointed out as key actors in a variety of human cancers, playing pivotal roles in multiples processes and pathways. The present study aims at deciphering the functions of several chemokine receptors in gliomas, starting from publicly available patient-derived transcriptomic data with support from the current literature in the field, and sheds light on the clinical relevance of chemokine receptors in targeted therapeutic approaches for glioma patients. Abstract Gliomas are severe brain malignancies, with glioblastoma (GBM) being the most aggressive one. Despite continuous efforts for improvement of existing therapies, overall survival remains poor. Over the last years, the implication of chemokines and their receptors in GBM development and progression has become more evident. Recently, large amounts of clinical data have been made available, prompting us to investigate chemokine receptors in GBM from a still-unexplored patient-oriented perspective. This study aims to highlight and discuss the involvement of chemokine receptors—CCR1, CCR5, CCR6, CCR10, CX3CR1, CXCR2, CXCR4, ACKR1, ACKR2, and ACKR3—most abundantly expressed in glioma patients based on the analysis of publicly available clinical datasets. Given the strong intratumoral heterogeneity characterizing gliomas and especially GBM, receptor expression was investigated by glioma molecular groups, by brain region distribution, emphasizing tissue-specific receptor functions, and by cell type enrichment. Our study constitutes a clinically relevant and patient-oriented guide that recapitulates the expression profile and the complex roles of chemokine receptors within the highly diversified glioma landscape. Additionally, it strengthens the importance of patient-derived material for development and precise amelioration of chemokine receptor-targeting therapies.
Collapse
|
46
|
Martins EP, Gonçalves CS, Pojo M, Carvalho R, Ribeiro AS, Miranda‐Gonçalves V, Taipa R, Pardal F, Pinto AA, Custódia C, Faria CC, Baltazar F, Sousa N, Paredes J, Costa BM. Cadherin‐3
is a novel oncogenic biomarker with prognostic value in glioblastoma. Mol Oncol 2021; 16:2611-2631. [PMID: 34919784 PMCID: PMC9297769 DOI: 10.1002/1878-0261.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The prognosis of patients is very poor, with a median overall survival of ~ 15 months after diagnosis. Cadherin‐3 (also known as P‐cadherin), a cell–cell adhesion molecule encoded by the CDH3 gene, is deregulated in several cancer types, but its relevance in GBM is unknown. In this study, we investigated the functional roles, the associated molecular signatures, and the prognostic value of CDH3/P‐cadherin in this highly malignant brain tumor. CDH3/P‐cadherin mRNA and protein levels were evaluated in human glioma samples. Knockdown and overexpression models of P‐cadherin in GBM were used to evaluate its functional role in vitro and in vivo. CDH3‐associated gene signatures were identified by enrichment analyses and correlations. The impact of CDH3 in the survival of GBM patients was assessed in independent cohorts using both univariable and multivariable models. We found that P‐cadherin protein is expressed in a subset of gliomas, with an increased percentage of positive samples in grade IV tumors. Concordantly, CDH3 mRNA levels in glioma samples from The Cancer Genome Atlas (TCGA) database are increased in high‐grade gliomas. P‐cadherin displays oncogenic functions in multiple knockdown and overexpression GBM cell models by affecting cell viability, cell cycle, cell invasion, migration, and neurosphere formation capacity. Genes that were positively correlated with CDH3 are enriched for oncogenic pathways commonly activated in GBM. In vivo, GBM cells expressing high levels of P‐cadherin generate larger subcutaneous tumors and cause shorter survival of mice in an orthotopic intracranial model. Concomitantly, high CDH3 expression is predictive of shorter overall survival of GBM patients in independent cohorts. Together, our results show that CDH3/P‐cadherin expression is associated with aggressiveness features of GBM and poor patient prognosis, suggesting that it may be a novel therapeutic target for this deadly brain tumor.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Ana S. Ribeiro
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Vera Miranda‐Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ricardo Taipa
- Neuropathology Unit Department of Neurosciences Centro Hospitalar do Porto Porto Portugal
| | - Fernando Pardal
- Department of Pathology, Hospital de Braga 4710‐243 Braga Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga 4710‐243 Braga Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Neurosurgery Department Hospital de Santa Maria Centro Hospitalar Lisboa Norte (CHLN) Lisbon Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joana Paredes
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
- Faculty of Medicine University of Porto Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
47
|
Du K, Xia Q, Sun J, Feng F. Visible Light and Glutathione Dually Responsive Delivery of a Polymer-Conjugated Temozolomide Intermediate for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55851-55861. [PMID: 34788006 DOI: 10.1021/acsami.1c16962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Al-Mubarak H, Vallatos A, Gallagher L, Birch J, Chalmers AJ, Holmes WM. Evaluating potential of multi-parametric MRI using co-registered histology: Application to a mouse model of glioblastoma. Magn Reson Imaging 2021; 85:121-127. [PMID: 34687852 DOI: 10.1016/j.mri.2021.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/23/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conventional MRI fails to detect regions of glioblastoma cell infiltration beyond the contrast-enhanced T1 solid tumor region, with infiltrating tumor cells often migrating along host blood vessels. PURPOSE MRI is capable of generating a range of image contrasts which are commonly assessed individually by qualitative visual inspection. It has long been hypothesized that better diagnoses could be achieved by combining these multiple images, so called multi-parametric or multi-spectral MRI. However, the lack of clinical histology and the difficulties of co-registration, has meant this hypothesis has never been rigorously tested. Here we test this hypothesis, using a previously published multi-dimensional dataset consisting of registered MR images and histology. STUDY TYPE Animal Model. SUBJECTS Mice bearing orthotopic glioblastoma xenografts generated from a patient-derived glioblastoma cell line. FIELD STRENGTH/SEQUENCES 7 Tesla, T1/T2 weighted, T2 mapping, contrast enhance T1, diffusion-weighted, diffusion tensor imaging. ASSESSMENT Immunohistochemistry sections were stained for Human Leukocyte Antigen (probing human-derived tumor cells). To achieve quantitative MRI-tissue comparison, multiple histological slices cut in the MRI plane were stacked to produce tumor cell density maps acting as 'ground truth'. STATISTICAL TESTS Sensitivity, specificity, accuracy and Dice similarity indices were calculated. ANOVA, t-test, Bonferroni correction and Pearson coefficients were used for statistical analysis. RESULTS Correlation coefficient analysis with co-registered 'ground truth' histology showed interactive regression maps had higher correlation coefficients and sensitivity values than T2W, ADC, FA, and T2map. Further, the interaction regression maps showed statistical improved detection of tumor volume. DATA CONCLUSION Voxel-by-voxel analysis provided quantitative evidence confirming the hypothesis that mpMRI can, potentially, better distinguish between the tumor region and normal tissue.
Collapse
Affiliation(s)
- H Al-Mubarak
- Glasgow Experimental MRI centre, Institute of Neuroscience and Psychology, University of Glasgow, G61 1QH, UK; Department of Physics, College of Science, University of Misan, Iraq.
| | - A Vallatos
- Centre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB,UK.
| | - L Gallagher
- Glasgow Experimental MRI centre, Institute of Neuroscience and Psychology, University of Glasgow, G61 1QH, UK.
| | - J Birch
- Beatson Institute for Cancer Research, UK.
| | - A J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences University of Glasgow, G61 1QH, UK.
| | - W M Holmes
- Glasgow Experimental MRI centre, Institute of Neuroscience and Psychology, University of Glasgow, G61 1QH, UK.
| |
Collapse
|
49
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
50
|
Liu H, Sun Q, Chen S, Chen L, Jia W, Zhao J, Sun X. DYRK1A activates NFATC1 to increase glioblastoma migration. Cancer Med 2021; 10:6416-6427. [PMID: 34309232 PMCID: PMC8446559 DOI: 10.1002/cam4.4159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive glioma, and is prone to develop resistance to chemotherapy and radiotherapy; hence, patients with glioblastoma have a high recurrence rate and a low 1-year survival rate. In addition, the pathogenesis of glioblastoma is complex and largely unknown, and the available treatments are limited. Here, we uncovered a fundamental role of DYRK1A in regulating NFATC1 in GBMs. We found that DYRK1A was highly expressed in glioma and glioblastoma cells, and its expression was positively correlated with that of NFATC1. Moreover, inhibition of DYRK1A promoted NFATC1 degradation in GBM cells and sharply reduced the transactivation of NFATC1, not only by decreasing the expression of NFATC1-targeted genes, but also by reducing the luciferase activity, and vice versa. However, DYRK1A had the opposite effect on NFATC2. Most importantly, our data suggest that DYRK1A inhibition reduces glioblastoma migration. Polypeptides derived from the DYRK1A-targeted motif of NFATC1, by competitively blocking DYRK1A kinase activity on NFATC1, clearly destabilized NFATC1 protein and impaired glioblastoma migration. We propose that the recovery of NFATC1 stability is a key oncogenic event in a large proportion of gliomas, and pharmacological inhibition of DYRK1A by polypeptides could represent a promising therapeutic intervention for GBM.
Collapse
Affiliation(s)
- Heng Liu
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Immunology InstituteSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Shuai Chen
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Immunology InstituteSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Long Chen
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wenming Jia
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Xiulian Sun
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|