1
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Akcay E, Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol. Brain Behav Immun Health 2024; 41:100853. [PMID: 39296605 PMCID: PMC11407962 DOI: 10.1016/j.bbih.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Many patients with depressive disorder do not respond to conventional antidepressant treatment. There is an ongoing interest in investigating potential mechanisms of treatment resistance in depression to provide alternative treatment options involving inflammatory mechanisms. Increasing evidence implicates the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome as a critical factor in neuroinflammation. ATP-induced P2X7 receptor (P2X7R) activation is a major trigger for inflammation, activating the canonical NLRP3 inflammatory cascade. Psychosocial stress, the primary environmental risk factor for depression, is associated with changes in ATP-mediated P2X7R signaling. Depression and stress response can be alleviated by Cannabidiol (CBD). CBD has an anti-inflammatory activity related to the regulation of NLRP3 inflammasome activation. However, CBD's effects on the inflammasome pathway are poorly understood in central nervous system (CNS) cells, including microglia, astrocytes, and neurons. This review will emphasize some findings for neuroinflammation and NLRP3 inflammasome pathway involvement in depression, particularly addressing the ATP-induced P2X7R activation. Moreover, we will underline evidence for the effect of CBD on depression and address its potential impacts on neuroinflammation through the NLRP3 inflammasome cascade.
Collapse
Affiliation(s)
- Elif Akcay
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- University of Health Sciences, Ankara Bilkent City Hospital, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
3
|
Ding W, Wang L, Li L, Li H, Wu J, Zhang J, Wang J. Pathogenesis of depression and the potential for traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1407869. [PMID: 38983910 PMCID: PMC11231087 DOI: 10.3389/fphar.2024.1407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Depression is a prevalent mental disorder that significantly diminishes quality of life and longevity, ranking as one of the primary causes of disability globally. Contemporary research has explored the potential pathogenesis of depression from various angles, encompassing genetics, neurotransmitter systems, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, inflammation, and intestinal flora, among other contributing factors. In addition, conventional chemical medications are plagued by delayed onset of action, persistent adverse effects, and restricted therapeutic efficacy. In light of these limitations, the therapeutic approach of traditional Chinese medicine (TCM) has gained increasing recognition for its superior effectiveness. Numerous pharmacological and clinical studies have substantiated TCM's capacity to mitigate depressive symptoms through diverse mechanisms. This article attempts to summarize the mechanisms involved in the pathogenesis of depression and to describe the characteristics of herbal medicines (including compounded formulas and active ingredients) for the treatment of depression. It further evaluates their effectiveness by correlating with the multifaceted pathogenesis of depression, thereby furnishing a reference for future research endeavors.
Collapse
Affiliation(s)
- Weixing Ding
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- School of Medicine, Changchun Sci-Tech University, Changchun, China
| | - Lei Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hongyan Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jianfa Wu
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Jing Wang
- Jilin Province Faw General Hospital, Changchun, China
| |
Collapse
|
4
|
Zhang JR, Shen SY, Zhai MY, Shen ZQ, Li W, Liang LF, Yin SY, Han QQ, Li B, Zhang YQ, Yu J. Augmented microglial endoplasmic reticulum-mitochondria contacts mediate depression-like behavior in mice induced by chronic social defeat stress. Nat Commun 2024; 15:5199. [PMID: 38890305 PMCID: PMC11189428 DOI: 10.1038/s41467-024-49597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular ATP (eATP) signaling through the P2X7 receptor pathway is widely believed to trigger NLRP3 inflammasome assembly in microglia, potentially contributing to depression. However, the cellular stress responses of microglia to both eATP and stress itself remain largely unexplored. Mitochondria-associated membranes (MAMs) is a platform facilitating calcium transport between the endoplasmic reticulum (ER) and mitochondria, regulating ER stress responses and mitochondrial homeostasis. This study aims to investigate how MAMs influence microglial reaction and their involvement in the development of depression-like symptoms in response to chronic social defeat stress (CSDS). CSDS induced ER stress, MAMs' modifications, mitochondrial damage, and the formation of the IP3R3-GRP75-VDAC1 complex at the ER-mitochondria interface in hippocampal microglia, all concomitant with depression-like behaviors. Additionally, exposing microglia to eATP to mimic CSDS conditions resulted in analogous outcomes. Furthermore, knocking down GRP75 in BV2 cells impeded ER-mitochondria contact, calcium transfer, ER stress, mitochondrial damage, mitochondrial superoxide production, and NLRP3 inflammasome aggregation induced by eATP. In addition, reduced GRP75 expression in microglia of Cx3cr1CreER/+Hspa9f/+ mice lead to reduce depressive behaviors, decreased NLRP3 inflammasome aggregation, and fewer ER-mitochondria contacts in hippocampal microglia during CSDS. Here, we show the role of MAMs, particularly the formation of a tripartite complex involving IP3R3, GRP75, and VDAC1 within MAMs, in facilitating communication between the ER and mitochondria in microglia, thereby contributing to the development of depression-like phenotypes in male mice.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Meng-Ying Zhai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Pegoraro A, Grignolo M, Ruo L, Ricci L, Adinolfi E. P2X7 Variants in Pathophysiology. Int J Mol Sci 2024; 25:6673. [PMID: 38928378 PMCID: PMC11204217 DOI: 10.3390/ijms25126673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
P2X7 receptor activation by extracellular adenosine triphosphate (eATP) modulates different intracellular pathways, including pro-inflammatory and tumor-promoting cascades. ATP is released by cells and necrotic tissues during stressful conditions and accumulates mainly in the inflammatory and tumoral microenvironments. As a consequence, both the P2X7 blockade and agonism have been proposed as therapeutic strategies in phlogosis and cancer. Nevertheless, most studies have been carried out on the WT fully functional receptor variant. In recent years, the discovery of P2X7 variants derived by alternative splicing mechanisms or single-nucleotide substitutions gave rise to the investigation of these new P2X7 variants' roles in different processes and diseases. Here, we provide an overview of the literature covering the function of human P2X7 splice variants and polymorphisms in diverse pathophysiological contexts, paying particular attention to their role in oncological and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| | | | | | | | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| |
Collapse
|
6
|
Liu J, Liu TT, Mou L, Zhang Y, Chen X, Wang Q, Deng BL, Liu J. P2X7 receptor: a potential target for treating comorbid anxiety and depression. Purinergic Signal 2024:10.1007/s11302-024-10007-0. [PMID: 38642324 DOI: 10.1007/s11302-024-10007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5'-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People's Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Mou
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuwen Zhang
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Bin-Lu Deng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China.
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Shuang R, Gao T, Sun Z, Tong Y, Zhao K, Wang H. Tet1/DLL3/Notch1 signal pathway affects hippocampal neurogenesis and regulates depression-like behaviour in mice. Eur J Pharmacol 2024; 968:176417. [PMID: 38346470 DOI: 10.1016/j.ejphar.2024.176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ten-eleven translocation protein 1 (Tet1) is associated with the regulation of depression-like behaviour in mice. However, the mechanism by which Tet1 affects neurogenesis in mice to regulate depression-like behaviours remains unclear. In this study, the chronic social defeat stress (CSDS) paradigm was constructed by overexpressing Tet1 protein in the mouse hippocampus, and 5-ethynyl-2'-deoxyuridine (EdU, 50 mg/kg) was injected on the seventh day to explore the mechanism of the regulation of the Tet1/Delta-like protein 3 (DLL3)/Notch1 protein pathway in mice hippocampal neurogenesis and its influence on depression-like behaviour. Following CSDS, the expression level of Tet1 decreased significantly. Moreover, due to the downregulation of Tet1 protein, the maintenance of the DNA methylation and demethylation balance was affected, resulting in a significant increase in the methylation levels of Notch1 and DLL3 and a significant decrease in the protein expression levels of DLL3, Notch1, and brain-derived neurotrophic factor (BDNF). At the same time, the proliferation and differentiation of neurones were affected, which was related to a significant decrease in the number of EdU+, doublecortin (DCX)+, and Ki67+ cells in the hippocampus of the CSDS model mice. When the Tet1 protein was overexpressed in the mouse hippocampus, DLL3 and Notch1 protein expression levels were upregulated, promoting hippocampal neurogenesis and alleviating depression-like behaviour in mice. These findings suggest that regulation of the hippocampal Tet1/DLL3/Notch1 protein pathway to influence neurogenesis may be a therapeutic strategy for depression.
Collapse
Affiliation(s)
- Ruonan Shuang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tiantian Gao
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhongwen Sun
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Yue Tong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Keke Zhao
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Hanqing Wang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
8
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
9
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Chen J, Li T, Huang D, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Integrating UHPLC-MS/MS quantitative analysis and exogenous purine supplementation to elucidate the antidepressant mechanism of Chaigui granules by regulating purine metabolism. J Pharm Anal 2023; 13:1562-1576. [PMID: 38223448 PMCID: PMC10785246 DOI: 10.1016/j.jpha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
Chaigui granules (CG) are a compound composed of six herbal medicines with significant antidepressant effects. However, the antidepressant mechanism of CG remains unclear. In the present study, we attempted to elucidate the antidepressant mechanism of CG by regulating purine metabolism and purinergic signaling. First, the regulatory effect of CG on purine metabolites in the prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS) rats was analyzed by ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) targeted quantitative analysis. Meanwhile, purinergic receptors (P2X7 receptor (P2X7R), A1 receptor (A1R) and A2A receptor (A2AR)) and signaling pathways (nod-like receptor protein 3 (NLRP3) inflammasome pathway and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway) associated with purine metabolism were analyzed by western blotting and enzyme-linked immunosorbent assay (ELISA). Besides, antidepressant mechanism of CG by modulating purine metabolites to activate purinergic receptors and related signaling pathways was dissected by exogenous supplementation of purine metabolites and antagonism of purinergic receptors in vitro. An in vivo study showed that the decrease in xanthine and the increase in four purine nucleosides were closely related to the antidepressant effects of CG. Additionally, purinergic receptors (P2X7R, A1R and A2AR) and related signaling pathways (NLRP3 inflammasome pathway and cAMP-PKA pathway) were also significantly regulated by CG. The results of exogenous supplementation of purine metabolites and antagonism of purinergic receptors showed that excessive accumulation of xanthine led to activation of the P2X7R-NLRP3 inflammasome pathway, and the reduction of adenosine and inosine inhibited the A1R-cAMP-PKA pathway, which was significantly ameliorated by CG. Overall, CG could promote neuroprotection and ultimately play an antidepressant role by inhibiting the xanthine-P2X7R-NLRP3 inflammasome pathway and activating the adenosine/inosine-A1R-cAMP-PKA pathway.
Collapse
Affiliation(s)
- Jiajun Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Tian Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| |
Collapse
|
11
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
12
|
Zhang R, Su K, Yang L, Tang M, Zhao M, Ye N, Cai X, Jiang X, Li N, Peng J, Zhang X, Wang B, Wu W, Ma L, Ye H. Design, Synthesis, and Biological Evaluation of Novel P2X7 Receptor Antagonists for the Treatment of Septic Acute Kidney Injury. J Med Chem 2023; 66:11365-11389. [PMID: 37582195 DOI: 10.1021/acs.jmedchem.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Sepsis-associated acute kidney injury (AKI) is a serious clinical problem, without effective drugs. Abnormal activation of the purinergic P2X7 receptor (P2X7R) in septic kidneys makes its antagonist a promising therapeutic approach. Herein, a series of novel P2X7R antagonists were designed, synthesized, and structurally optimized. Based on in vitro potency in human/mouse P2X7R using HEK293 cells, hepatic microsomal stability, and pharmacokinetic and preliminary in vivo assessments, compound 14a was identified by respective human and mouse P2X7R IC50 values of 64.7 and 10.1 nM, together with favorable pharmacokinetic properties. Importantly, 14a dose-dependently alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice with a good safety profile. Mechanistically, 14a could suppress NLRP3 inflammasome activation to inhibit the expression of cleaved caspase-1, gasdermin D, IL-1β, and IL-18 in the injured kidneys of septic mice. Collectively, these results highlighted that P2X7R antagonist 14a exerted a therapeutic potential against septic AKI.
Collapse
Affiliation(s)
- Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Letian Yang
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Ren WJ, Zhao YF, Li J, Rubini P, Yuan ZQ, Tang Y, Illes P. P2X7 receptor-mediated depression-like reactions arising in the mouse medial prefrontal cortex. Cereb Cortex 2023:7161772. [PMID: 37183178 DOI: 10.1093/cercor/bhad166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[β-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.
Collapse
Affiliation(s)
- Wen-Jing Ren
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Ya-Fei Zhao
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Jie Li
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Patrizia Rubini
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Zeng-Qiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Medicine, University of South China, Hengyang 421000, Hunan, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 04107, Germany
| |
Collapse
|
15
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Dias L, Pochmann D, Lemos C, Silva HB, Real JI, Gonçalves FQ, Rial D, Gonçalves N, Simões AP, Ferreira SG, Agostinho P, Cunha RA, Tomé AR. Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress. ACS Chem Neurosci 2023; 14:1299-1309. [PMID: 36881648 PMCID: PMC10080657 DOI: 10.1021/acschemneuro.2c00810] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,β-methylene ADP (AOPCP, 100 μM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.
Collapse
Affiliation(s)
- Liliana Dias
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Pochmann
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana I Real
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G Ferreira
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Agostinho
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
17
|
Neuroprotection of exercise: P2X4R and P2X7R regulate BDNF actions. Purinergic Signal 2023; 19:297-303. [PMID: 35821455 PMCID: PMC9275535 DOI: 10.1007/s11302-022-09879-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF), which acts as a transducer, is responsible for improving cerebral stroke, neuropathic pain, and depression. Exercise can alter extracellular nucleotide levels and purinergic receptors in central nervous system (CNS) structures. This inevitably activates or inhibits the expression of BDNF via purinergic receptors, particularly the P2X receptor (P2XR), to alleviate pathological progression. In addition, the significant involvement of sensitive P2X4R in mediating increased BDNF and p38-MAPK for intracerebral hemorrhage and pain hypersensitivity has been reported. Moreover, archetypal P2X7R blockade induces mouse antidepressant-like behavior and analgesia by BDNF release. This review summarizes BDNF-mediated neural effects via purinergic receptors, speculates that P2X4R and P2X7R could be priming molecules in exercise-mediated changes in BDNF, and provides strategies for the protective mechanism of exercise in neurogenic disease.
Collapse
|
18
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
19
|
Zhang Z, Guo H, Hu Z, Zhou C, Hu Q, Peng H, Tang G, Xiao Z, Pi L, Li G. Schisandrin B Alleviates Diabetic Cardiac Autonomic neuropathy Induced by P2X7 Receptor in Superior Cervical Ganglion via NLRP3. DISEASE MARKERS 2023; 2023:9956950. [PMID: 36660202 PMCID: PMC9845055 DOI: 10.1155/2023/9956950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of diabetes mellitus which brings about high mortality, high morbidity, and large economic burden to the society. Compensatory tachycardia after myocardial ischemia caused by DCAN can increase myocardial injury and result in more damage to the cardiac function. The inflammation induced by hyperglycemia can increase P2X7 receptor expression in the superior cervical ganglion (SCG), resulting in nerve damage. It is proved that inhibiting the expression of P2X7 receptor at the superior cervical ganglion can ameliorate the nociceptive signaling dysregulation induced by DCAN. However, the effective drug used for decreasing P2X7 receptor expression has not been found. Schisandrin B is a traditional Chinese medicine, which has anti-inflammatory and antioxidant effects. Whether Schisandrin B can decrease the expression of P2X7 receptor in diabetic rats to protect the cardiovascular system was investigated in this study. After diabetic model rats were made, Schisandrin B and shRNA of P2X7 receptor were given to different groups to verify the impact of Schisandrin B on the expression of P2X7 receptor. Pathological blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were ameliorated after administration of Schisandrin B. Moreover, the upregulated protein level of P2X7 receptor, NLRP3 inflammasomes, and interleukin-1β in diabetic rats were decreased after treatment, which indicates that Schisandrin B can alleviate the chronic inflammation caused by diabetes and decrease the expression levels of P2X7 via NLRP3. These findings suggest that Schisandrin B can be a potential therapeutical agent for DCAN.
Collapse
Affiliation(s)
- Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| |
Collapse
|
20
|
von Mücke-Heim IA, Martin J, Uhr M, Ries C, Deussing JM. The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation. Front Pharmacol 2023; 14:1148190. [PMID: 37101546 PMCID: PMC10123291 DOI: 10.3389/fphar.2023.1148190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: In recent years, purinergic signaling via the P2X7 receptor (P2X7R) on microglia has repeatedly been implicated in depression genesis. However, it remains unclear which role the human P2X7R (hP2X7R) plays in regulating both microglia morphology and cytokine secretion upon different environmental and immune stimuli, respectively. Methods: For this purpose, we used primary microglial cultures derived from a humanized microglia-specific conditional P2X7R knockout mouse line to emulate different gene-environment interactions between microglial hP2X7R and molecular proxies of psychosocial and pathogen-derived immune stimuli. Microglial cultures were subjected to treatments with the agonists 2'(3')-O-(4-benzoylbenzoyl)-ATP (BzATP) and lipopolysaccharides (LPS) combined with specific P2X7R antagonists (JNJ-47965567, A-804598). Results: Morphotyping revealed overall high baseline activation due to the in vitro conditions. Both BzATP and LPS + BzATP treatment increased round/ameboid microglia and decreased polarized and ramified morphotypes. This effect was stronger in hP2X7R-proficient (CTRL) compared to knockout (KO) microglia. Aptly, we found antagonism with JNJ-4796556 and A-804598 to reduce round/ameboid microglia and increase complex morphologies only in CTRL but not KO microglia. Single cell shape descriptor analysis confirmed the morphotyping results. Compared to KO microglia, hP2X7R-targeted stimulation in CTRLs led to a more pronounced increase in microglial roundness and circularity along with an overall higher decrease in aspect ratio and shape complexity. JNJ-4796556 and A-804598, on the other hand, led to opposite dynamics. In KO microglia, similar trends were observed, yet the magnitude of responses was much smaller. Parallel assessment of 10 cytokines demonstrated the proinflammatory properties of hP2X7R. Following LPS + BzATP stimulation, IL-1β, IL-6, and TNFα levels were found to be higher and IL-4 levels lower in CTRL than in KO cultures. Vice versa, hP2X7R antagonists reduced proinflammatory cytokine levels and increased IL-4 secretion. Discussion: Taken together, our results help disentangle the complex function of microglial hP2X7R downstream of various immune stimuli. In addition, this is the first study in a humanized, microglia-specific in vitro model identifying a so far unknown potential link between microglial hP2X7R function and IL-27 levels.
Collapse
Affiliation(s)
| | - Jana Martin
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- *Correspondence: Jan M. Deussing,
| |
Collapse
|
21
|
Hou L, Yang L, Zhu C, Miao J, Zhou W, Tang Y, Meng H, Liu S. Cuscutae semen alleviates CUS-induced depression-like behaviors in mice via the gut microbiota-neuroinflammation axis. Front Pharmacol 2023; 14:1107781. [PMID: 36909192 PMCID: PMC9998491 DOI: 10.3389/fphar.2023.1107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction: Major depressive disorder is a mental disease with complex pathogenesis and treatment mechanisms involving changes in both the gut microbiota and neuroinflammation. Cuscutae Semen (CS), also known as Chinese Dodder seed, is a medicinal herb that exerts several pharmacological effects. These include neuroprotection, anti-neuroinflammation, the repair of synaptic damage, and the alleviation of oxidative stress. However, whether CuscutaeSemen exerts an antidepressant effect remains unknown. Methods: In this study, we evaluated the effect of CS on chronic unpredictable stress (CUS)-induced depression-like behaviors in mice by observing changes in several inflammatory markers, including proinflammatory cytokines, inflammatory proteins, and gliocyte activation. Meanwhile, changes in the gut microbiota were analyzed based on 16 S rRNA sequencing results. Moreover, the effect of CS on the synaptic ultrastructure was detected by transmission electron microscopy. Results: We found that the CS extract was rich in chlorogenic acid and hypericin. And CS relieved depression-like behaviors in mice exposed to CUS. Increased levels of cytokines (IL-1β and TNF-α) and inflammatory proteins (NLRP3, NF-κB, and COX-2) induced by CUS were reversed after CS administration. The number of astrocytes and microglia increased after CUS exposure, whereas they decreased after CS treatment. Meanwhile, CS could change the structure of the gut microbiota and increase the relative abundance of Lactobacillus. Moreover, there was a significant relationship between several Lactobacilli and indicators of depression-like behaviors and inflammation. There was a decrease in postsynaptic density after exposure to CUS, and this change was alleviated after CS treatme. Conclusion: This study found that CS treatment ameliorated CUS-induced depression-like behaviors and synaptic structural defects in mice via the gut microbiota-neuroinflammation axis. And chlorogenic acid and hypericin may be the main active substances for CS to exert antidepressant effects.
Collapse
Affiliation(s)
- Lanwei Hou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Liu Yang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Caiting Zhu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Jingyu Miao
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Wenjuan Zhou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Haiwei Meng
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Schäfer W, Stähler T, Pinto Espinoza C, Danquah W, Knop JH, Rissiek B, Haag F, Koch-Nolte F. Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel. Front Pharmacol 2022; 13:1033135. [DOI: 10.3389/fphar.2022.1033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022] Open
Abstract
P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular “head”-domain of P2X7 (155 Y/H), its “lower body” (270 R/H), and its “tail” in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y—R—T (at 155–270–348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as “wildtype,” differs from the ancestral allele at all three positions, i.e. H—H—A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%–59% for Y155, 59%–77% for R270, and 13%–47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H—R—T for a 50.000 year old Neanderthal, H—R—A for a 24.000 year old Siberian, and Y—R—A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.
Collapse
|
23
|
Zhang Y, Yin HY, Rubini P, Tang Y, Illes P. A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders. Curr Neuropharmacol 2022; 20:2142-2155. [PMID: 35236262 PMCID: PMC9886837 DOI: 10.2174/1570159x20666220302152400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109 Leipzig, Germany,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| |
Collapse
|
24
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
25
|
Sander S, Müller I, Alai MG, Nicke A, Tidow H. New insights into P2X7 receptor regulation: Ca 2+-calmodulin and GDP bind to the soluble P2X7 ballast domain. J Biol Chem 2022; 298:102495. [PMID: 36115462 PMCID: PMC9574498 DOI: 10.1016/j.jbc.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
P2X7 receptors are nonselective cation channels that are activated by extracellular ATP and play important roles in inflammation. They differ from other P2X family members by a large intracellular C-terminus that mediates diverse signaling processes that are little understood. A recent cryo-EM study revealed that the C-terminus of the P2X7 receptor forms a unique cytoplasmic ballast domain that possesses a GDP-binding site as well as a dinuclear Zn2+ site. However, the molecular basis for the regulatory function of the ballast domain as well as the interplay between the various ligands remain unclear. Here, we successfully expressed a soluble trimeric P2X7 ballast domain (P2X7BD) and characterized its ligand binding properties using a biophysical approach. We identified calmodulin (CaM)-binding regions within the ballast domain and found that binding of Ca2+-CaM and GDP to P2X7BD have opposite effects on its stability. Small-angle X-ray scattering experiments indicate that Ca2+-CaM binding disrupts the trimeric state of P2X7BD. Our results provide a possible framework for the intracellular regulation of the P2X7 receptor.
Collapse
Affiliation(s)
- Simon Sander
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Isabel Müller
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maria Garcia Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Henning Tidow
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
26
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
27
|
Urbina-Treviño L, von Mücke-Heim IA, Deussing JM. P2X7 Receptor-Related Genetic Mouse Models – Tools for Translational Research in Psychiatry. Front Neural Circuits 2022; 16:876304. [PMID: 35422688 PMCID: PMC9001905 DOI: 10.3389/fncir.2022.876304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Depression is a common psychiatric disorder and the leading cause of disability worldwide. Although treatments are available, only about 60% of treated patients experience a significant improvement in disease symptoms. Numerous clinical and rodent studies have identified the purinergic P2X7 receptor (P2X7R) as one of the genetic factors potentially contributing to the disease risk. In this respect, genetically engineered mouse models targeting the P2X7R have become increasingly important in studying designated immunological features and subtypes of depression in vivo. This review provides an overview of the P2X7R -related mouse lines currently available for translational psychiatric research and discusses their strengths, weaknesses, and potentials.
Collapse
Affiliation(s)
- Lidia Urbina-Treviño
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Iven-Alex von Mücke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- *Correspondence: Jan M. Deussing,
| |
Collapse
|
28
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
29
|
Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23042380. [PMID: 35216493 PMCID: PMC8875404 DOI: 10.3390/ijms23042380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.
Collapse
|
30
|
High, in Contrast to Low Levels of Acute Stress Induce Depressive-like Behavior by Involving Astrocytic, in Addition to Microglial P2X7 Receptors in the Rodent Hippocampus. Int J Mol Sci 2022; 23:ijms23031904. [PMID: 35163829 PMCID: PMC8836505 DOI: 10.3390/ijms23031904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) in the brain is suggested to be an etiological factor of major depressive disorder (MDD). It has been assumed that stress-released ATP stimulates P2X7 receptors (Rs) at the microglia, thereby causing neuroinflammation; however, other central nervous system (CNS) cell types such as astrocytes also possess P2X7Rs. In order to elucidate the possible involvement of the MDD-relevant hippocampal astrocytes in the development of a depressive-like state, we used various behavioral tests (tail suspension test [TST], forced swim test [FST], restraint stress, inescapable foot shock, unpredictable chronic mild stress [UCMS]), as well as fluorescence immunohistochemistry, and patch-clamp electrophysiology in wild-type (WT) and genetically manipulated rodents. The TST and FST resulted in learned helplessness manifested as a prolongation of the immobility time, while inescapable foot shock caused lower sucrose consumption as a sign of anhedonia. We confirmed the participation of P2X7Rs in the development of the depressive-like behaviors in all forms of acute (TST, FST, foot shock) and chronic stress (UCMS) in the rodent models used. Further, pharmacological agonists and antagonists acted in a different manner in rats and mice due to their diverse potencies at the respective receptor orthologs. In hippocampal slices of mice and rats, only foot shock increased the current responses to locally applied dibenzoyl-ATP (Bz-ATP) in CA1 astrocytes; in contrast, TST and restraint depressed these responses. Following stressful stimuli, immunohistochemistry demonstrated an increased co-localization of P2X7Rs with a microglial marker, but no change in co-localization with an astroglial marker. Pharmacological damage to the microglia and astroglia has proven the significance of the microglia for mediating all types of depression-like behavioral reactions, while the astroglia participated only in reactions induced by strong stressors, such as foot shock. Because, in addition to acute stressors, their chronic counterparts induce a depressive-like state in rodents via P2X7R activation, we suggest that our data may have relevance for the etiology of MDD in humans.
Collapse
|
31
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|
32
|
Hou L, Miao J, Meng H, Liu X, Wang D, Tan Y, Li C. Sirtuin Type 1 Mediates the Antidepressant Effect of S-Ketamine in a Chronic Unpredictable Stress Model. Front Psychiatry 2022; 13:855810. [PMID: 35664490 PMCID: PMC9160425 DOI: 10.3389/fpsyt.2022.855810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) refers to a mental disease with complex pathogenesis and treatment mechanism. S-ketamine exhibited high effectiveness in treating MDD. However, the pharmacological activity of S-ketamine has not been reported yet. MATERIALS AND METHODS In this study, depression-like characteristics were induced by chronic unpredictable stress (CUS). After S-ketamine (15 mg/kg) was intraperitoneally injected, the behaviors of mice were tested by conducting open-field test, elevated plus maze test, tail suspension test, and forced swimming test. Bilateral injection of sirtuin type 1 (SIRT1) inhibitor EX-527 was injected into the medial prefrontal cortex (mPFC) to upregulate the SIRT1 expression. The expression of SIRT1 and brain-derived neurotrophic factor (BDNF) was detected by conducting Western blot and immunofluorescence assays. Meanwhile, the synaptic ultrastructure was detected by transmission electron microscopy. RESULTS In this study, the mice showed depression-like behavior in a series of behavioral tests. After the treatment with S-ketamine, the depression-like behavior stopped. Further, the synaptic ultrastructure in mPFC, including the decreased curvature of the post synaptic density and thinning of the postsynaptic density, improved after the S-ketamine treatment. Moreover, we found that S-ketamine had the possibility of spontaneous binding with SIRT1 at the molecular level and reversed CUS-induced SIRT1 reduction. Meanwhile, a positive relationship between SIRT1 and BDNF expression in mPFC and SIRT1 inhibitor limited the role of S-ketamine in reducing the depression-like behavior and increasing the BDNF level. CONCLUSION S-ketamine upregulated the SIRT1-mediated BDNF in mPFC and reversed the synaptic structural defects caused by CUS. SIRT1 is a mediator of S-ketamine in alleviating depression-like behavior.
Collapse
Affiliation(s)
- Lanwei Hou
- Research Center for Sectional and Imaging Anatomy, Department of Anatomy and Neurobiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyu Miao
- Research Center for Sectional and Imaging Anatomy, Department of Anatomy and Neurobiology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiwei Meng
- Research Center for Sectional and Imaging Anatomy, Department of Anatomy and Neurobiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Liu
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Di Wang
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Yawen Tan
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Chuangang Li
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
33
|
Role of neuroglia in neuropathic pain and depression. Pharmacol Res 2021; 174:105957. [PMID: 34688904 DOI: 10.1016/j.phrs.2021.105957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Patients with neuropathic pain induced by nerve injury usually present with co-morbid affective changes, such as depression. Neuroglia was reported to play an important role in the development and maintenance of neuropathic pain both centrally and peripherally. Meanwhile, there have been studies showing that neuroglia participated in the development of depression. However, the specific role of neuroglia in neuropathic pain and depression has not been reviewed comprehensively. Therefore, we summarized the recent findings on the role of neuroglia in neuropathic pain and depression. Based on this review, we found a bridge-like role of neuroglia in neuropathic pain co-morbid with depression. This review may provide therapeutic implications in the treatment of neuropathic pain and offer potential help in the studies of mechanisms in the future.
Collapse
|
34
|
Li X, Wang H, Li C, Wu J, Lu J, Guo JY, Tu Y. Acupuncture inhibits NLRP3 inflammasome activation in the prefrontal cortex of a chronic stress rat model of depression. Anat Rec (Hoboken) 2021; 304:2470-2479. [PMID: 34636496 DOI: 10.1002/ar.24778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-driven inflammatory response plays a key role in the pathophysiology of depression. Mounting evidence suggests that acupuncture is an effective treatment for depression. In this study, we investigated the effects of acupuncture treatment at the acupoints Baihui (GV20) and Yintang (GV29) on NLRP3 inflammasome in the prefrontal cortex (PFC) of an animal model of depression. Rats that underwent chronic unpredictable mild stress (CUMS) for 6 weeks showed depressive-like behaviors, which were confirmed by sucrose preference and locomotor activity in the open field test. The protein levels of NLRP3, apoptotic speck-containing protein with a card (ASC), and cysteinyl aspartate specific proteinase-1 (Caspase-1) in the PFC were detected by Western blot analysis. The mRNA and protein expressions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the PFC were measured by the real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that the depressive-like behaviors in stressed rats were reversed by acupuncture treatment. Compared with control rats, the protein expression of NLRP3, ASC, and Caspase-1 and the mRNA and protein expressions of IL-1β and IL-18 in the PFC were markedly increased in CUMS rats. Acupuncture treatment significantly decreased the levels of NLRP3 inflammasome components and inflammatory cytokines in the PFC. Acupuncture treatment also reduced the number of TUNEL-positive cells in the PFC. These results suggested that acupuncture has antidepressant-like effects, and its mechanism appears to be involved in the inhibition of NLRP3 inflammasome activation and apoptosis in the PFC.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongmei Wang
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jihong Wu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Lu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-You Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ya Tu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
von Muecke-Heim IA, Ries C, Urbina L, Deussing JM. P2X7R antagonists in chronic stress-based depression models: a review. Eur Arch Psychiatry Clin Neurosci 2021; 271:1343-1358. [PMID: 34279714 PMCID: PMC8429152 DOI: 10.1007/s00406-021-01306-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Depression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist (Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application timing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we propose adherence to the Research Domain Criteria and the STRANGE framework.
Collapse
Affiliation(s)
- Iven-Alex von Muecke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Clemens Ries
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Lidia Urbina
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
36
|
Huang Z, Tan S. P2X7 Receptor as a Potential Target for Major Depressive Disorder. Curr Drug Targets 2021; 22:1108-1120. [PMID: 33494675 DOI: 10.2174/1389450122666210120141908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder. Although the genetic, biochemical, and psychological factors have been related to the development of MDD, it is generally believed that a series of pathological changes in the brain caused by chronic stress is the main cause of MDD. However, the specific mechanisms underlying chronic stress-induced MDD are largely undermined. Recent investigations have found that increased pro-inflammatory cytokines and changes in the inflammatory pathway in the microglia cells in the brain are the potential pathophysiological mechanism of MDD. P2X7 receptor (P2X7R) and its mediated signaling pathway play a key role in microglia activation. The present review aimed to present and discuss the accumulating data on the role of P2X7R in MDD. Firstly, we summarized the research progress in the correlation between P2X7R and MDD. Subsequently, we presented the P2X7R mediated microglia activation in MDD and the role of P2X7R in increased blood-brain barrier (BBB) permeability caused by chronic stress. Lastly, we also discussed the potential mechanism underlying-P2X7R expression changes after chronic stress. In conclusion, P2X7R is a key molecule regulating the activation of microglia. Chronic stress activates microglia in the hippocampus by secreting interleukin- 1β (IL-1β) and other inflammatory cytokines, and increasing the BBB permeability, thus promoting the occurrence and development of MDD, which indicated that P2X7R might be a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| |
Collapse
|
37
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
38
|
Kristof Z, Eszlari N, Sutori S, Gal Z, Torok D, Baksa D, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Juhasz G, Bagdy G, Gonda X. P2RX7 gene variation mediates the effect of childhood adversity and recent stress on the severity of depressive symptoms. PLoS One 2021; 16:e0252766. [PMID: 34111150 PMCID: PMC8191953 DOI: 10.1371/journal.pone.0252766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The P2X purinoceptor 7 (P2RX7) mediates inflammatory microglial responses and is implicated in neuroimmune mechanisms of depression and neurodegenerative disorders. A number of studies suggest that psychosocial stress may precipitate depression through immune activation. Genetic association studies of P2RX7 variants with depression have been inconclusive. However, nearly all studies have focused on only one single-nucleotide polymorphism (SNP) and have not considered interaction with psychosocial stress. We investigated the effect of several variations in P2RX7 gene using a clumping method in interaction with early adversities and recent stress on depression severity. 1752 subjects provided information on childhood adversities, recent life events, and current depression severity. Participants were genotyped for 681 SNPs in the P2RX7 gene, 335 of them passed quality control and were entered into linear regression models followed by a clumping procedure for main effect and interactions. No significant main effect was observed. Rs74892325 emerged as a top SNP for interaction with childhood adversities and rs61953400 for interaction with recent life events. Our study is the first to investigate several variants in the P2RX7 gene and in interaction with two types of stress, extending our understanding of neuroinflammation in depression, and supporting that the majority of genes influence depression by enhancing sensitivity to stressors.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- Faculty of Humanities and Social Sciences, Institute of Psychology, Pazmany Peter Catholic University, Budapest, Hungary
| | - Zsofia Gal
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M. Anderson
- Faculty of Biological, Division of Neuroscience and Experimental Psychology, Neuroscience and Psychiatry Unit, School of Biological Sciences, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - John Francis William Deakin
- Faculty of Biological, Division of Neuroscience and Experimental Psychology, Neuroscience and Psychiatry Unit, School of Biological Sciences, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gabriella Juhasz
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Faculty of Pharmacy, Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
39
|
Jiang LH, Caseley EA, Muench SP, Roger S. Structural basis for the functional properties of the P2X7 receptor for extracellular ATP. Purinergic Signal 2021; 17:331-344. [PMID: 33987781 PMCID: PMC8410900 DOI: 10.1007/s11302-021-09790-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor, originally known as the P2Z receptor due to its distinctive functional properties, has a structure characteristic of the ATP-gated ion channel P2X receptor family. The P2X7 receptor is an important mediator of ATP-induced purinergic signalling and is involved the pathogenesis of numerous conditions as well as in the regulation of diverse physiological functions. Functional characterisations, in conjunction with site-directed mutagenesis, molecular modelling, and, recently, structural determination, have provided significant insights into the structure–function relationships of the P2X7 receptor. This review discusses the current understanding of the structural basis for the functional properties of the P2X7 receptor.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Steve P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
40
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
41
|
Abstract
The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants’ different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.
Collapse
|
42
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
43
|
Silberstein S, Liberman AC, Dos Santos Claro PA, Ugo MB, Deussing JM, Arzt E. Stress-Related Brain Neuroinflammation Impact in Depression: Role of the Corticotropin-Releasing Hormone System and P2X7 Receptor. Neuroimmunomodulation 2021; 28:52-60. [PMID: 33845478 DOI: 10.1159/000515130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Depression and other psychiatric stress-related disorders are leading causes of disability worldwide. Up to date, treatments of mood disorders have limited success, most likely due to the multifactorial etiology of these conditions. Alterations in inflammatory processes have been identified as possible pathophysiological mechanisms in psychiatric conditions. Here, we review the main features of 2 systems involved in the control of these inflammatory pathways: the CRH system as a key regulator of the stress response and the ATP-gated ion-channel P2X7 receptor (P2X7R) involved in the control of immune functions. The pathophysiology of depression as a stress-related psychiatric disorder is depicted in terms of the impact of CRH and P2X7R function on inflammatory pathways in the brain. Understanding pathogenesis of affective disorders will lead to the development of therapies for treatment of depression and other stress-related diseases.
Collapse
Affiliation(s)
- Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Paula Ayelén Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maria Belén Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
44
|
Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Sci Rep 2020; 10:19876. [PMID: 33199725 PMCID: PMC7669894 DOI: 10.1038/s41598-020-76428-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ATP-gated P2X7 receptor is highly expressed in microglia and has been involved in diverse brain diseases. P2X7 effects were also described in neurons and astrocytes but its localisation and function in these cell types has been challenging to demonstrate in situ. BAC transgenic mouse lines have greatly advanced neuroscience research and two BAC-transgenic P2X7 reporter mouse models exist in which either a soluble EGFP (sEGFP) or an EGFP-tagged P2X7 receptor (P2X7-EGFP) is expressed under the control of a BAC-derived P2rx7 promoter. Here we evaluate both mouse models and find striking differences in both P2X expression levels and EGFP reporter expression patterns. Most remarkably, the sEGFP model overexpresses a P2X4 passenger gene and sEGFP shows clear neuronal localisation but appears to be absent in microglia. Preliminary functional analysis in a status epilepticus model suggests functional consequences of the observed P2X receptor overexpression. In summary, an aberrant EGFP reporter pattern and possible effects of P2X4 and/or P2X7 protein overexpression need to be considered when working with this model. We further discuss reasons for the observed differences and possible caveats in BAC transgenic approaches.
Collapse
|
45
|
Zhang L, Wang H. FTY720 in CNS injuries: Molecular mechanisms and therapeutic potential. Brain Res Bull 2020; 164:75-82. [DOI: 10.1016/j.brainresbull.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/23/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022]
|
46
|
Kong Y, Wang Q, Wu DY, Hu J, Zang WS, Li XW, Yang JM, Gao TM. Involvement of P2X2 receptor in the medial prefrontal cortex in ATP modulation of the passive coping response to behavioral challenge. GENES BRAIN AND BEHAVIOR 2020; 19:e12691. [PMID: 32761745 DOI: 10.1111/gbb.12691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
P2X2 and P2X3 receptors are widely expressed in both the peripheral nervous system and the central nervous system and have been proven to participate in different peripheral sensory functions, but there are few studies on the involvement of P2X2 and P2X3 receptors in animal behaviors. Here we used P2X2 and P2X3 knockout mice to address this issue. P2X2 knockout mice showed normal motor function, exploratory behavior, anxiety-like behaviors, learning and memory behaviors and passive coping response to behavioral challenge. Nevertheless, the effect of ATP infusion in the medial prefrontal cortex (mPFC) on the passive coping response was blocked by P2X2 but not P2X3 receptor deletion. Additionally, no deficits in a wide variety of behavioral tests were observed in P2X3 knockout mice. These findings demonstrate a role of P2X2 receptor in the mPFC in adenosine-5'-triphosphate modulation of the passive coping response to behavioral challenge and show that the P2X2/P2X3 receptor is dispensable for behaviors.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Si Zang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Marotta G, Basagni F, Rosini M, Minarini A. Memantine Derivatives as Multitarget Agents in Alzheimer's Disease. Molecules 2020; 25:molecules25174005. [PMID: 32887400 PMCID: PMC7504780 DOI: 10.3390/molecules25174005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors.
Collapse
|
48
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
49
|
Murata S, Murphy M, Hoppensteadt D, Fareed J, Welborn A, Halaris A. Effects of adjunctive inflammatory modulation on IL-1β in treatment resistant bipolar depression. Brain Behav Immun 2020; 87:369-376. [PMID: 31923551 DOI: 10.1016/j.bbi.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adjunctive inflammatory modulation improved remission rates in treatment-resistant bipolar depression (TRBDD), but reliable biomarkers must be established to characterize the biosignature of TRBDD and the mechanisms underlying treatment response. In this molecular profiling study, we describe TRBDD and treatment response from the standpoint of interleukin-1 Beta (IL-1β) and KYN/TRP. METHODS 47 TRBDD patients with moderately severe HAMD-17 scores were randomized to receive either escitalopram (ESC) (10 mg-40 mg daily dose range) + celecoxib (CBX) (200 mg twice daily), or ESC (10 mg-40 mg daily dose range) + placebo (PBO) (twice daily). Plasma cytokine levels were measured in both treatment arms at baseline and week 8, and in a healthy control (HC) group of subjects (N = 43) once. A linear mixed model (LMM) was applied to evaluate whether clinical outcome is related to CBX and changes to biomarkers throughout treatment. A binary logistic regression model was formulated from this series to predict both the primary outcome of treatment response to CBX, and the secondary outcome of diagnosis of TRBDD using age, BMI, gender, and IL-1β at baseline. RESULTS Patients receiving ESC + CBX had 4.278 greater odds of responding (p = 0.021) with NNT = 3, and 15.300 times more likely to remit (p < 0.001) with NNT = 2, compared with ESC + PBO patients. Patient BMI (p = 0.003), baseline IL-1β (p = 0.004), and baseline KYN/TRP (p = 0.001) were most predictive of TRBDD diagnosis. By Week 8, responders showed a downtrend in IL-1β compared to non-responders in the ESC + CBX treatment arm. However, there was no statistical difference in the IL-1β or KYN/TRP change after treatment between placebo and ESC + CBX group responders/non-responders (p = 0.239, and p = 0.146, respectively). While baseline IL-1β was elevated in TRBDD compared to HC (p < 0.001), there was no difference in IL-1β between treatment responders at Week 8 compared to HC (p = 0.067). CONCLUSIONS Elevated IL-1β and low KYN/TRP at baseline are components of the TRBDD molecular signature. CBX but not baseline IL-1β or KYN/TRP predict treatment response. Change in IL-1β and KYN/TRP did not predict treatment response.
Collapse
Affiliation(s)
- Stephen Murata
- Department of Psychiatry and Behavioral Neuroscience, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Michael Murphy
- Department of Orthopaedic Surgery, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Jawed Fareed
- Department of Pathology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Amanda Welborn
- Department of Public Health Sciences, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neuroscience, Loyola University Stritch School of Medicine, Chicago, IL, USA.
| |
Collapse
|
50
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|