1
|
Lovell EAK, Hosking SL, Groome HM, Moldenhauer LM, Robertson SA, Gatford KL, Care AS. Effects of exercise on vascular remodelling and fetal growth in uncomplicated and abortion-prone mouse pregnancies. Sci Rep 2024; 14:31841. [PMID: 39738331 DOI: 10.1038/s41598-024-83329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Studies in humans and rodents show exercise in pregnancy can modulate maternal blood pressure, vascular volume, and placental efficiency, but whether exercise affects early uteroplacental vascular adaptations is unknown. To investigate this, CBA/J female mice mated with BALB/c males to generate healthy uncomplicated pregnancies (BALB/c-mated) or mated with DBA/2J males to generate abortion-prone pregnancies (DBA/2J-mated), were subjected to treadmill exercise (5 days/week, 10 m/min, 30 min/day for 6 weeks before and throughout pregnancy), or remained sedentary. In uncomplicated pregnancies, exercise caused symmetric fetal growth restriction in fetuses evidenced by reductions in fetal weight, crown-to-rump length, abdominal girth and biparietal diameter. Placental insufficiency was indicated by reduced fetal: placental weight ratio and increased glycogen cell content in the junctional zone of placentas of exercised BALB/c-mated mice on gestational day (GD)18.5. In abortion-prone pregnancy, exercise increased placental efficiency, but the number of late-pregnancy resorptions were elevated. Effects of paternal genotype independent of exercise were evidenced by a greater number of resorptions, poorer spiral artery remodelling, and larger placentas in the DBA/2J-mated compared to BALB/c-mated mice. Effects of exercise independent of paternal genotype included increased implantation sites at both mid and late pregnancy, accompanied by decreased junctional zone areas of placentas. Our findings show that exercise before and during pregnancy in mice can have different effects on fetal outcomes, depending on the paternal and/or fetal genotype. This suggests that the underlying mechanisms are responsive to fetal cues.
Collapse
Affiliation(s)
- Evangeline A K Lovell
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Shanna L Hosking
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Holly M Groome
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Alison S Care
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Cochrane ALK, Murphy MP, Ozanne SE, Giussani DA. Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring. Eur Heart J 2024; 45:5127-5145. [PMID: 39508438 DOI: 10.1093/eurheartj/ehae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current interventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are highlighted.
Collapse
Affiliation(s)
- Anna L K Cochrane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
4
|
Burden SJ, Alshehri R, Lamata P, Poston L, Taylor PD. Maternal obesity and offspring cardiovascular remodelling - the effect of preconception and antenatal lifestyle interventions: a systematic review. Int J Obes (Lond) 2024; 48:1045-1064. [PMID: 38898228 PMCID: PMC11281905 DOI: 10.1038/s41366-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Preconception or antenatal lifestyle interventions in women with obesity may prevent adverse cardiovascular outcomes in the child, including cardiac remodelling. We undertook a systematic review of the existing data to examine the impact of randomised controlled trials of lifestyle interventions in pregnant women with obesity on offspring cardiac remodelling and related parameters of cardiovascular health. METHODS This review was registered with PROSPERO (CRD42023454762) and aligns with PRISMA guidelines. PubMed, Embase, and previous reviews were systematically searched. Follow-up studies from randomised trials of lifestyle interventions in pregnant women with obesity, which included offspring cardiac remodelling or related cardiovascular parameters as outcome measures, were included based on pre-defined inclusion criteria. RESULTS Eight studies from five randomised controlled trials were included after screening 3252 articles. Interventions included antenatal exercise (n = 2), diet and physical activity (n = 2), and preconception diet and physical activity (n = 1). Children were <2-months to 3-7-years-old, with sample sizes ranging between n = 18-404. Reduced cardiac remodelling, with reduced interventricular septal wall thickness, was consistently reported. Some studies identified improved systolic and diastolic function and a reduced resting heart rate. Risk of bias analyses rated all studies as 'fair' (some risk of bias). A high loss-to-follow-up was a common limitation. CONCLUSION Although there is some evidence to suggest that lifestyle interventions in women with obesity may limit offspring cardiac remodelling, further high-quality longitudinal studies with larger sample sizes are required to confirm these observations and to determine whether these changes persist to adulthood. Child offspring cardiovascular health benefits of preconception and antenatal lifestyle interventions in women with obesity.
Collapse
Affiliation(s)
- Samuel J Burden
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK.
| | - Rahaf Alshehri
- Cardiovascular Medicine and Science Research, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Pablo Lamata
- Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Gonzalez K, Merlin AC, Roye E, Ju B, Lee Y, Chicco AJ, Chung E. Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. Med Sci Sports Exerc 2024; 56:1378-1389. [PMID: 38595204 PMCID: PMC11250925 DOI: 10.1249/mss.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.
Collapse
Affiliation(s)
- Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Andrea Chiñas Merlin
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
- Biomedical Engineering, Tecnologico de Monterrey, Campus Monterrey, MEXICO
| | - Erin Roye
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Beomsoo Ju
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
6
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
7
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Isadora C. Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lucas C. Pantaleão
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - L W. P. Wong
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- University of Campinas, Faculty of Medical Sciences, Department of Pharmacology, Campinas, Brazil
| | | | - Maria V. Carreira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - John R. B. Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
8
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
9
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
10
|
Zhang Y, Shan M, Ding X, Sun H, Qiu F, Shi L. Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol (Lausanne) 2023; 14:1219194. [PMID: 37501791 PMCID: PMC10368947 DOI: 10.3389/fendo.2023.1219194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal exercise during pregnancy has emerged as a potentially promising approach to protect offspring from cardiovascular disease, including hypertension. Although endothelial dysfunction is involved in the pathophysiology of hypertension, limited studies have characterized how maternal exercise influences endothelial function of hypertensive offspring. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were assigned either to a sedentary lifestyle or to swimming training daily, and fetal histone deacetylase-mediated epigenetic modification and offspring vascular function of mesenteric arteries were analyzed. Maternal exercise ameliorated the impairment of acetylcholine-induced vasodilation without affecting sodium nitroprusside-induced vasodilation in mesenteric arteries from the hypertensive offspring. In accordance, maternal exercise reduced NADPH oxidase-4 (Nox4) protein to prevent the loss of nitric oxide generation and increased reactive oxygen species production in mesenteric arteries of hypertensive offspring. We further found that maternal exercise during pregnancy upregulated vascular SIRT1 (sirtuin 1) expression, leading to a low level of H3K9ac (histone H3 lysine 9 acetylation), resulting in the transcriptional downregulation of Nox4 in mesenteric arteries of hypertensive fetuses. These findings show that maternal exercise alleviates oxidative stress and the impairment of endothelium-dependent vasodilatation via SIRT1-regulated deacetylation of Nox4, which might contribute to improved vascular function in hypertensive offspring.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaozhen Ding
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
11
|
Mohammadkhani R, Komaki A, Karimi SA, Behzad M, Heidarisasan S, Salehi I. Maternal high-intensity interval training as a suitable approach for offspring's heart protection in rat: evidence from oxidative stress and mitochondrial genes. Front Physiol 2023; 14:1117666. [PMID: 37288431 PMCID: PMC10242028 DOI: 10.3389/fphys.2023.1117666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Considerable scientific evidence suggests that the intrauterine environment plays a crucial role in determining the long-term health of offspring. The present study aims to investigate the effects of high-intensity interval training in maternal rats before and during pregnancy on the antioxidant status, mitochondrial gene expression, and anxiety-like behavior of their offspring. A total of thirty-two female rats were assigned to four maternal groups based on the timing of exercise: before pregnancy, before and during pregnancy, during pregnancy, and sedentary. The female and male offspring were allocated to groups that matched their mothers' exercise regimen. Anxiety-like behavior in the offspring was evaluated using the open-field and elevated plus-maze tests. Our findings indicate that maternal HIIT does not have any detrimental effect on the anxiety-related behavior of offspring. Also, maternal exercise before and during pregnancy could improve the general activity of the offspring. Furthermore, our results demonstrate that female offspring exhibit more locomotion activity than males. Besides, maternal HIIT leads to a reduction in the levels of TOS and MDA, while TAC levels increase, and significantly upregulate the gene expression of PGC1-α, NFR1, and NRF2 in both sexes in the heart. Therefore, our study suggests that maternal HIIT is a beneficial maternal behavior and serves as a cardioprotective agent to enhance the health of the next generations.
Collapse
Affiliation(s)
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Heidarisasan
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
13
|
Priviero F. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance. Biochem Pharmacol 2023; 208:115412. [PMID: 36632959 PMCID: PMC10012045 DOI: 10.1016/j.bcp.2023.115412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVD) are the number 1 cause of death in the United States and hypertension is a highly prevalent risk factor for CVD. It is estimated that up to 50 % of the hypertensive trait is genetically inherited while the other 50 % is determined by modifiable factors involving lifestyle, behaviors, and the environment. Interestingly, the hypertensive trait is induced or inhibited by epigenetic modifications modulated by modifiable factors. This review focused on the underlying mechanisms of stress, sleep deprivation, obesity and sedentarism as key players for epigenetic modifications contributing to the development of the hypertensive trait and, on the other hand, how epigenetic modifications induced by physical exercise and healthier habits may contribute to overturn and prevent the inheritance of hypertension trait. Furthermore, adversities during gestation and perinatal life also increase the risk for hypertension and CVD later in life, which can perpetuate the inheritance of the hypertensive trait whereas healthier habits during gestation and lactation may counteract fetal programming to improve the cardiovascular health of the progeny. Therefore, it is promising that a healthier lifestyle causes long-lasting epigenetic modifications and is transmitted to the next generation, strengthening the fight against the inheritance of hypertension.
Collapse
Affiliation(s)
- Fernanda Priviero
- Department of Cell Biology and Anatomy - School of Medicine, University of South Carolina, Columbia, SC, United States; Cardiovascular Translational Research Center - School of Medicine, University of South Carolina, Columbia, SC, United States; College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
14
|
A preconception lifestyle intervention in women with obesity and cardiovascular health in their children. Pediatr Res 2023:10.1038/s41390-022-02443-8. [PMID: 36624285 DOI: 10.1038/s41390-022-02443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Maternal obesity during pregnancy is associated with poorer cardiovascular health (CVH) in children. A strategy to improve CVH in children could be to address preconception maternal obesity by means of a lifestyle intervention. We determined if a preconception lifestyle intervention in women with obesity improved offspring's CVH, assessed by magnetic resonance imaging (MRI). METHODS We invited children born to women who participated in a randomised controlled trial assessing the effect of a preconception lifestyle intervention in women with obesity. We assessed cardiac structure, function and geometric shape, pulse wave velocity and abdominal fat tissue by MRI. RESULTS We included 49 of 243 (20.2%) eligible children, 24 girls (49%) girls, mean age 7.1 (0.8) years. Left ventricular ejection fraction was higher in children in the intervention group as compared to children in the control group (63.0% SD 6.18 vs. 58.8% SD 5.77, p = 0.02). Shape analysis showed that intervention was associated with less regional thickening of the interventricular septum and less sphericity. There were no differences in the other outcomes of interest. CONCLUSION A preconception lifestyle intervention in women with obesity led to a higher ejection fraction and an altered cardiac shape in their offspring, which might suggest a better CVH. IMPACT A preconception lifestyle intervention in women with obesity results in a higher ejection fraction and an altered cardiac shape that may signify better cardiovascular health (CVH) in their children. This is the first experimental human evidence suggesting an effect of a preconception lifestyle intervention in women with obesity on MRI-derived indicators of CVH in their children. Improving maternal preconception health might prevent some of the detrimental consequences of maternal obesity on CVH in their children.
Collapse
|
15
|
Allman BR, McDonald S, May L, Børsheim E. Resistance Training as a Countermeasure in Women with Gestational Diabetes Mellitus: A Review of Current Literature and Future Directions. Sports Med 2022; 52:2871-2888. [PMID: 35810251 PMCID: PMC10043826 DOI: 10.1007/s40279-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Gestational diabetes mellitus (GDM) poses a significant health concern for both mother and offspring. Exercise has emerged as a cornerstone of glycemic management in GDM. However, most research regarding this topic examines aerobic training (AT), despite substantial evidence for the effectiveness of resistance training (RT) in improving dysregulated glucose in other groups of people with diabetes, such as in type 2 diabetes mellitus (T2DM). Thus, the purpose of this paper is to review research that examined the impact of RT on markers of glucose management in GDM, and to discuss future research directions to determine the benefits of RT in GDM. Based on the current evidence, RT is effective in reducing insulin requirement, especially in overweight women, reducing fasting glucose concentrations, and improving short-term postprandial glycemic control. However, the number of studies and findings limit conclusions about the impact of RT on risk of GDM, fasting insulin concentrations, insulin resistance, β-cell function, and intra-exercise glucose management. Overall, current evidence is accumulating to suggest that RT is a promising non-pharmacological tool to regulate circulating glucose concentrations in women with GDM, and a potential alternative or supplement to AT.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, AR, USA.
- Arkansas Children's Research Institute, Little Rock, AR, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Samantha McDonald
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| | - Linda May
- Department of Obstetrics and Gynecology, East Carolina University (ECU), Greenville, NC, USA
- Department of Kinesiology, ECU, Greenville, NC, USA
- Department of Foundational Sciences and Research, ECU, Greenville, NC, USA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Departments of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
17
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
18
|
Chaves A, Weyrauch LA, Zheng D, Biagioni EM, Krassovskaia PM, Davidson BL, Broskey NT, Boyle KE, May LE, Houmard JA. Influence of Maternal Exercise on Glucose and Lipid Metabolism in Offspring Stem Cells: ENHANCED by Mom. J Clin Endocrinol Metab 2022; 107:e3353-e3365. [PMID: 35511592 DOI: 10.1210/clinem/dgac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking. OBJECTIVE To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs). DESIGN Randomized controlled trial. SETTING Clinical research facility. PATIENTS Healthy female adults between 18 and 35 years of age and ≤ 16 weeks' gestation. INTERVENTION Mothers were randomized into 1 of 2 groups: aerobic exercise (AE, n = 10) or nonexercise control (CTRL, n = 10). The AE group completed 150 minutes of weekly moderate-intensity exercise, according to American College of Sports Medicine guidelines, during pregnancy, whereas controls attended stretching sessions. MAIN OUTCOME MEASURES Following delivery, MSCs were isolated from the umbilical cord of the offspring and metabolic tracer and immunoblotting experiments were completed in the undifferentiated (D0) or myogenically differentiated (D21) state. RESULTS AE-MSCs at D0 had an elevated fold-change over basal in insulin-stimulated glycogen synthesis and reduced nonoxidized glucose metabolite (NOGM) production (P ≤ 0.05). At D21, AE-MSCs had a significant elevation in glucose partitioning toward oxidation (oxidation/NOGM ratio) compared with CTRL (P ≤ 0.05). Immunoblot analysis revealed elevated complex I expression in the AE-MSCs at D21 (P ≤ 0.05). Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. CONCLUSIONS These data provide evidence of a programmed metabolic phenotype in human offspring with maternal AE during pregnancy.
Collapse
Affiliation(s)
- Alec Chaves
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Luke A Weyrauch
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Ericka M Biagioni
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Polina M Krassovskaia
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Breanna L Davidson
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas T Broskey
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Kristen E Boyle
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Linda E May
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
19
|
Recent Experimental Studies of Maternal Obesity, Diabetes during Pregnancy and the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23084467. [PMID: 35457285 PMCID: PMC9027277 DOI: 10.3390/ijms23084467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.
Collapse
|
20
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
21
|
Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children. Int J Obes (Lond) 2022; 46:1262-1270. [PMID: 35296791 DOI: 10.1038/s41366-022-01107-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Improving maternal lifestyle before conception may prevent the adverse effects of maternal obesity on their children's future cardiovascular disease (CVD) risk. In the current study, we examined whether a preconception lifestyle intervention in women with obesity could alter echocardiographic indices of cardiovascular health in their children. METHODS Six years after a randomized controlled trial comparing the effects of a 6-month preconception lifestyle intervention in women with obesity and infertility prior to fertility care to prompt fertility care, 315 of the 341 children conceived within 24 months after randomization were eligible for this study. The intervention was aimed at weight loss (≥5% or until BMI < 29 kg/m2). Children underwent echocardiographic assessment of cardiac structure and function, conducted by a single pediatric cardiologist, blinded to group allocation. Results were adjusted for multiple variables including body surface area, age, and sex in linear regression analyses. RESULTS Sixty children (32 girls, 53%) were included, mean age 6.5 years (SD 1.09). Twenty-four children (40%) were born to mothers in the intervention group. Children of mothers from the intervention group had a lower end-diastolic interventricular septum thickness (-0.88 Z-score, 95%CI -1.18 to -0.58), a lower left ventricle mass index (-8.56 g/m2, 95%CI -13.09 to -4.03), and higher peak systolic and early diastolic annular velocity of the left ventricle (1.43 cm/s 95%CI 0.65 to 2.20 and 2.39 cm/s 95%CI 0.68 to 4.11, respectively) compared to children of mothers from the control group. CONCLUSIONS Children of women with obesity, who underwent a preconception lifestyle intervention, had improved cardiac structure and function; a thinner interventricular septum, lower left ventricle mass, and improved systolic and diastolic tissue Doppler velocities. Despite its high attrition rates, our study provides the first experimental human evidence suggesting that preconception lifestyle interventions may present a method of reducing CVD risk in the next generation. CLINICAL TRIAL REGISTRATION LIFEstyle study: Netherlands Trial Register: NTR1530 ( https://www.trialregister.nl/trial/1461 ). This follow-up study was approved by the medical ethics committee of the University Medical Centre Groningen (METC code: 2008/284).
Collapse
|
22
|
Muglia L, Tong S, Ozanne S, Benhalima K. Maternal factors during pregnancy influencing maternal, fetal and childhood outcomes: Meet the Guest Editors. BMC Med 2022; 20:114. [PMID: 35264147 PMCID: PMC8908555 DOI: 10.1186/s12916-022-02294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Louis Muglia
- Burroughs Wellcome Fund, Research Triangle Park, NC, USA.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Stephen Tong
- Department of Obstetrics and Gynaecology, University of Melbourne and Mercy Perinatal, Mercy Hospital for Women, Melbourne, Australia
| | - Susan Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Katrien Benhalima
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
23
|
Mennitti LV, Carpenter AAM, Loche E, Pantaleão LC, Fernandez-Twinn DS, Schoonejans JM, Blackmore HL, Ashmore TJ, Pisani LP, Tadross JA, Hargreaves I, Ozanne SE. Effects of maternal diet-induced obesity on metabolic disorders and age-associated miRNA expression in the liver of male mouse offspring. Int J Obes (Lond) 2022; 46:269-278. [PMID: 34663892 PMCID: PMC8794789 DOI: 10.1038/s41366-021-00985-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.
Collapse
Affiliation(s)
- Laís Vales Mennitti
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Asha A M Carpenter
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Josca M Schoonejans
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Luciana Pellegrini Pisani
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - John A Tadross
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Iain Hargreaves
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 5UA, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom.
| |
Collapse
|
24
|
Freitas-Dias R, Lima TI, Costa-Junior JM, Gonçalves LM, Araujo HN, Paula FMM, Santos GJ, Branco RCS, Ou K, Kaestner KH, Silveira LR, Oliveira CAM, Boschero AC, Zoppi CC, Carneiro EM. Offspring from trained male mice inherit improved muscle mitochondrial function through PPAR co-repressor modulation. Life Sci 2021; 291:120239. [PMID: 34942163 DOI: 10.1016/j.lfs.2021.120239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise. MAIN METHODS Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females. KEY FINDINGS Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1α expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1α target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring. SIGNIFICANCE Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1α co-repressor.
Collapse
Affiliation(s)
- Ricardo Freitas-Dias
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Physical Therapy, Laboratory of Exercise Physiology, University of Pernambuco, Petrolina, PE, Brazil
| | - Tanes I Lima
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jose Maria Costa-Junior
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana M Gonçalves
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Hygor N Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Flavia M M Paula
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo J Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
| | - Renato Chaves Souto Branco
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Kristy Ou
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Camila A M Oliveira
- Department of Biosciences, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Claudio C Zoppi
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
25
|
Wu G, Zhang X, Gao F. The epigenetic landscape of exercise in cardiac health and disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:648-659. [PMID: 33333247 PMCID: PMC8724625 DOI: 10.1016/j.jshs.2020.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
With the rising incidence of cardiovascular diseases, the concomitant mortality and morbidity impose huge burdens on quality of life and societal costs. It is generally accepted that physical inactivity is one of the major risk factors for cardiac disease and that exercise benefits the heart in both physiological and pathologic conditions. However, the molecular mechanisms governing the cardioprotective effects exerted by exercise remain incompletely understood. Most recently, an increasing number of studies indicate the involvement of epigenetic modifications in the promotion of cardiac health and prevention of cardiac disease. Exercise and other lifestyle factors extensively induce epigenetic modifications, including DNA/RNA methylation, histone post-translational modifications, and non-coding RNAs in multiple tissues, which may contribute to their positive effects in human health and diseases. In addition, several studies have shown that maternal or paternal exercise prevents age-associated or high-fat diet-induced metabolic dysfunction in the offspring, reinforcing the importance of epigenetics in mediating the beneficial effects of exercise. It has been shown that exercise can directly modify cardiac epigenetics to promote cardiac health and protect the heart against various pathological processes, or it can modify epigenetics in other tissues, which reduces the risk of cardiac disease and affords cardioprotection through exerkines. An in-depth understanding of the epigenetic landscape of cardioprotective response to exercise will provide new therapeutic targets for cardiac diseases. This review, therefore, aimed to acquaint the cardiac community with the rapidly advancing and evolving field of exercise and epigenetics.
Collapse
Affiliation(s)
- Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Abstract
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development, and Neuroscience; The Barcroft Centre; Cambridge Cardiovascular British Heart Foundation Centre for Research Excellence; and Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, UK
| |
Collapse
|
28
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
29
|
Shrestha A, Prowak M, Berlandi-Short VM, Garay J, Ramalingam L. Maternal Obesity: A Focus on Maternal Interventions to Improve Health of Offspring. Front Cardiovasc Med 2021; 8:696812. [PMID: 34368253 PMCID: PMC8333710 DOI: 10.3389/fcvm.2021.696812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity has many implications for offspring health that persist throughout their lifespan that include obesity and cardiovascular complications. Several different factors contribute to obesity and they encompass interplay between genetics and environment. In the prenatal period, untreated obesity establishes a foundation for a myriad of symptoms and negative delivery experiences, including gestational hypertensive disorders, gestational diabetes, macrosomia, and labor complications. However, data across human and animal studies show promise that nutritional interventions and physical activity may rescue much of the adverse effects of obesity on offspring metabolic health. Further, these maternal interventions improve the health of the offspring by reducing weight gain, cardiovascular disorders, and improving glucose tolerance. Mechanisms from animal studies have also been proposed to elucidate the signaling pathways that regulate inflammation, lipid metabolism, and oxidative capacity of the tissue, ultimately providing potential specific courses of treatment. This review aims to pinpoint the risks of maternal obesity and provide plausible intervention strategies. We delve into recent research involving both animal and human studies with maternal interventions. With the increasing concerning of obesity rates witnessed in the United States, it is imperative to acknowledge the long-term effects posed on future generations and specifically modify maternal nutrition and care to mitigate these adverse outcomes.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | - Madison Prowak
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | | | - Jessica Garay
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
30
|
Spiroski AM, Niu Y, Nicholas LM, Austin-Williams S, Camm EJ, Sutherland MR, Ashmore TJ, Skeffington KL, Logan A, Ozanne SE, Murphy MP, Giussani DA. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J 2021; 35:e21446. [PMID: 33788974 PMCID: PMC7612077 DOI: 10.1096/fj.202002705r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Mitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O2 ) pregnancy ± MitoQ (500 μM day-1 ) in the maternal drinking water. At 4 months of age, one cohort of male offspring was chronically instrumented with vascular catheters and flow probes to test in vivo cardiovascular function. In a second cohort, the heart was isolated and mounted onto a Langendorff preparation. To establish mechanisms linking gestational hypoxia with cardiovascular dysfunction and protection by MitoQ, we quantified the expression of antioxidant system, β-adrenergic signaling, and calcium handling genes in the fetus and adult, in frozen tissues from a third cohort. Maternal MitoQ in hypoxic pregnancy protected offspring against increased α1 -adrenergic reactivity of the cardiovascular system, enhanced reactive hyperemia in peripheral vascular beds, and sympathetic dominance, hypercontractility and diastolic dysfunction in the heart. Inhibition of Nfe2l2-mediated oxidative stress in the fetal heart and preservation of calcium regulatory responses in the hearts of fetal and adult offspring link molecular mechanisms to the protective actions of MitoQ treatment of hypoxic pregnancy. Therefore, these data show the efficacy of MitoQ in buffering mitochondrial stress through NADPH-induced oxidative damage and the prevention of programmed cardiovascular disease in adult offspring of hypoxic pregnancy.
Collapse
Affiliation(s)
- Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Lisa M Nicholas
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Shani Austin-Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Megan R Sutherland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
31
|
Cerón NA, Gutiérrez OO, Cerón OM, Ortiz RA. Complicaciones cardiovasculares en relación con la programación fetal. REPERTORIO DE MEDICINA Y CIRUGÍA 2021. [DOI: 10.31260/repertmedcir.01217273.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introducción: la programación fetal ofrece nuevas perspectivas sobre el origen de las enfermedades cardiovasculares, relacionando su aparición con factores perinatales. Objetivo: exponer evidencia que vincule las alteraciones gestacionales con las enfermedades cardiovasculares en la vida adulta del feto. Metodología: búsqueda en las bases de datos EBSCO, COCHRANE, MEDLINE, PROQUEST y SciELO de los artículos de revisión e investigaciones originales en inglés publicados en los últimos diez años. Se utilizaron términos MeSH para búsqueda controlada y se evaluaron los estudios con STROBE y PRISMA según correspondía. Resultados: los hallazgos sugieren que nacer con menos de 2600 k guarda relación con diabetes mellitus (OR de 1.607 IC 95% 1.324-1.951), hipertensión arterial (OR de 1.15 IC 95% 1.043-1.288) y menor función endotelial (1.94+0.37 vs 2.68+0.41, p: 0.0001) en la adultez. La prematuridad se asocia con mayores presiones arteriales sistólicas (4.2 mmHg IC 95%; 2.8 - 5.7 p 0.001) y diastólicas (2.6 mmHg IC 95%; 1.2-4.0; p 0.001). Las alteraciones nutricionales maternas y la diabetes gestacional aumentan el riesgo de síndrome metabólico (OR 1.2 IC 95% 0.9-1.7) y sobrepeso en la edad escolar (OR 1.81 IC 95% 1.18 - 2.86). Conclusión: los resultados adversos en la gestación están relacionados con el desarrollo de enfermedades cardiovasculares en la vida adulta del feto expuesto.
Collapse
|
32
|
Dearden L, Bouret SG, Ozanne SE. Nutritional and developmental programming effects of insulin. J Neuroendocrinol 2021; 33:e12933. [PMID: 33438814 DOI: 10.1111/jne.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM.
Collapse
Affiliation(s)
- Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, Lille, France
- University of Lille, Lille, France
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| |
Collapse
|
33
|
Zhang J, Cao L, Tan Y, Zheng Y, Gui Y. N-acetylcysteine protects neonatal mice from ventricular hypertrophy induced by maternal obesity in a sex-specific manner. Biomed Pharmacother 2021; 133:110989. [PMID: 33378994 DOI: 10.1016/j.biopha.2020.110989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Maternal obesity induces adverse cardiac programming in offspring, and effective interventions are needed to prevent cardiovascular ill-health. Herein we hypothesized that exposure to maternal obesogenic diet-induced obesity in mice results in left ventricular remodelling and hypertrophy in early childhood, and that maternal N-acetylcysteine (NAC) treatment alleviates these effects in a sex-dependent manner. METHODS AND RESULTS The maternal obesity was induced in mice by the consumption of a Western diet accompanied by a 20 % sucrose solution. To determine the effect of NAC on the cardiac outcomes induced by maternal obesity, obese dams were continuously exposed to the obesogenic diet, with or without the oral NAC treatment during pregnancy. Left ventricular remodelling and hypertrophy occurred as early as 7 days after birth in the male offspring of obese dams (O-OB) compared with controls (O-CO). An over-expression of key genes and markers related to cardiac fibrosis accompanied by more disorganized myofibrils was observed in the hearts of neonatal male O-OB mice. When we next evaluated the level of oxidative stress in the hearts of neonatal mice, the activity of enzymatic antioxidants declined and expression of NOX enzyme complex was up-regulated in O-OB offspring hearts, but was normal in the offspring of NAC treated mice (O-OB/NAC). Maternal obesity also activated cardiac Akt and mammalian target of rapamycin (mTOR) signalling in offspring, and NAC treatment restored offspring cardiac Akt-mTOR signalling to normal irrespective of sex. NAC treatment did not prevent cardiomyocyte hypertrophy but did alleviate increased heart weight, interventricular septal thickness, and collagen content in male O-OB/NAC pups. CONCLUSIONS Collectively, our results indicated that NAC blunted cardiac fibrosis and related ventricular hypertrophy of male neonatal offspring in the setting of maternal obesity, potentially acting by reducing oxidative stress. The present study provides a basis for investigating the role of NAC in nutrition-related cardiac programming.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animal Nutritional Physiological Phenomena
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Disease Models, Animal
- Female
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Maternal Nutritional Physiological Phenomena
- Mice, Inbred C57BL
- Obesity, Maternal/complications
- Obesity, Maternal/physiopathology
- Oxidative Stress/drug effects
- Pregnancy
- Prenatal Exposure Delayed Effects
- Sex Factors
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Jialing Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China; MOH Key Laboratory of Neonatal Diseases at Children's Hospital, Fudan University, Shanghai, China
| | - Li Cao
- Ultrasound Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yuanzheng Zheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China; MOH Key Laboratory of Neonatal Diseases at Children's Hospital, Fudan University, Shanghai, China
| | - Yonghao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China; MOH Key Laboratory of Neonatal Diseases at Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Mol Metab 2020; 43:101116. [PMID: 33212270 PMCID: PMC7720025 DOI: 10.1016/j.molmet.2020.101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Heart disease risk can be programmed by intrauterine exposure to obesity. Dysregulating key transcription factors in cardiac progenitors can cause subsequent adult-onset heart disease. In this study, we investigated the transcriptional pathways that are altered in the embryonic heart and linked to heart disease risk in offspring exposed to obesity during pregnancy. Methods Female mice were fed an obesogenic diet and mated with males fed a control diet. Heart function and genome-wide gene expression were analyzed in adult offspring born to obese and lean mice at baseline and in response to stress. Cross-referencing with genes dysregulated genome-wide in cardiac progenitors from embryos of obese mice and human fetal hearts revealed the transcriptional events associated with adult-onset heart disease susceptibility. Results We found that adult mice born to obese mothers develop mild heart dysfunction consistent with early stages of disease. Accordingly, hearts of these mice dysregulated genes controlling extracellular matrix remodeling, metabolism, and TGF-β signaling, known to control heart disease progression. These pathways were already dysregulated in cardiac progenitors in embryos of obese mice. Moreover, in response to cardiovascular stress, the heart of adults born to obese dams developed exacerbated myocardial remodeling and excessively activated regulators of cell-extracellular matrix interactions but failed to activate metabolic regulators. Expression of developmentally regulated genes was altered in cardiac progenitors of embryos of obese mice and human hearts of fetuses of obese donors. Accordingly, the levels of Nkx2-5, a key regulator of heart development, inversely correlated with maternal body weight in mice. Furthermore, Nkx2-5 target genes were dysregulated in cardiac progenitors and persistently in adult hearts born to obese mice and human hearts from pregnancies affected by obesity. Conclusions Obesity during pregnancy alters Nkx2-5-controlled transcription in differentiating cardiac progenitors and persistently in the adult heart, making the adult heart vulnerable to dysregulated stress responses. Maternal obesity programs progressive heart dysfunction in adult offspring. Offspring of obese dams are prone to dysregulated stress responses in the heart. Nkx2-5-controlled transcription is dysregulated in hearts exposed to obesity in utero. Obesity during pregnancy broadly affects gene expression in the embryonic heart.
Collapse
|
35
|
Boonpattrawong NP, Golbidi S, Tai DC, Aleliunas RE, Bernatchez P, Miller JW, Laher I, Devlin AM. Exercise during pregnancy mitigates the adverse effects of maternal obesity on adult male offspring vascular function and alters one-carbon metabolism. Physiol Rep 2020; 8:e14582. [PMID: 32975908 PMCID: PMC7518297 DOI: 10.14814/phy2.14582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Maternal obesity during pregnancy can adversely affect adult offspring vascular endothelial function. This study examined whether maternal exercise during pregnancy and lactation mitigates the adverse effects of maternal obesity on offspring vascular endothelial function. Female (C57BL/6N) mice were fed from weaning a control diet (10% kcal fat) or western diet (45% kcal fat) to induce excess adiposity (maternal obesity). After 13 weeks, the female mice were bred and maintained on the diets, with and without access to a running wheel (exercise), throughout breeding, pregnancy, and lactation. Offspring were weaned onto the control or western diet and fed for 13 weeks; male offspring were studied. Maternal exercise prevented the adverse effects of maternal obesity on offspring vascular endothelial function. However, this was dependent on offspring diet and the positive effect of maternal exercise was only observed in offspring fed the western diet. This was accompanied by alterations in aorta and liver one-carbon metabolism, suggesting a role for these pathways in the improved endothelial function observed in the offspring. Obesity and exercise had no effect on endothelial function in the dams but did affect aorta and liver one-carbon metabolism, suggesting the phenotype observed in the offspring may be due to obesity and exercise-induced changes in one-carbon metabolism in the dams. Our findings demonstrate that maternal exercise prevented vascular dysfunction in male offspring from obese dams and is associated with alterations in one-carbon metabolism.
Collapse
Affiliation(s)
- Nicha P. Boonpattrawong
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Saeid Golbidi
- Department of Family PracticeThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Daven C. Tai
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Rika E. Aleliunas
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Joshua W. Miller
- Department of Nutritional SciencesRutgers UniversityThe State University of New JerseyNew BrunswickNJUSA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Angela M. Devlin
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| |
Collapse
|
36
|
Kusuyama J, Alves-Wagner AB, Makarewicz NS, Goodyear LJ. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab 2020; 2:858-872. [PMID: 32929233 PMCID: PMC7643050 DOI: 10.1038/s42255-020-00274-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Maternal and paternal obesity and type 2 diabetes are recognized risk factors for the development of metabolic dysfunction in offspring, even when the offspring follow a healthful lifestyle. Multiple studies have demonstrated that regular physical activity in mothers and fathers has striking beneficial effects on offspring health, including preventing the development of metabolic disease in rodent offspring as they age. Here, we review the benefits of maternal and paternal exercise in combating the development of metabolic dysfunction in adult offspring, focusing on offspring glucose homeostasis and adaptations to metabolic tissues. We discuss recent findings regarding the roles of the placenta and sperm in mediating the effects of parental exercise on offspring metabolic health, as well as the mechanisms hypothesized to underlie these beneficial changes. Given the worldwide epidemics of obesity and type 2 diabetes, if these findings translate to humans, regular exercise during the reproductive years might limit the vicious cycles in which increased metabolic risk propagates across generations.
Collapse
Affiliation(s)
- Joji Kusuyama
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ana Barbara Alves-Wagner
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Mohammadkhani R, Khaledi N, Rajabi H, Salehi I, Komaki A. Influence of the maternal high-intensity-interval-training on the cardiac Sirt6 and lipid profile of the adult male offspring in rats. PLoS One 2020; 15:e0237148. [PMID: 32745152 PMCID: PMC7398538 DOI: 10.1371/journal.pone.0237148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The susceptibility to cardiovascular disease in offspring could be reduced prior to birth through maternal intervention, before and during pregnancy. We evaluated whether the initiation periods of maternal exercise in preconception and pregnancy periods induce beneficial effects in the adult male offspring. Thirty-two female rats were divided into control and exercise groups. The exercise groups involve exercise before pregnancy or the preconception periods, exercise during pregnancy, and exercise before and during pregnancy. The mothers in the exercise groups were run on the treadmill in different periods. Then the birth weight and weekly weight gain of male offspring were measured, and the blood and left ventricle tissue of samples were collected for analysis of the Sirtuin 6 (Sirt6) and insulin growth factor-2 (IGF-2) gene expression, serum levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol (Cho), and triglycerides (TG). There was no significant difference in the birth weight of offspring groups (P = 0.246) while maternal HIIT only during pregnancy leads to reduce weekly weight gain of offspring. Our data showed that Sirt6 and IGF-2 gene expression was increased (P = 0.017) and decreased (P = 0.047) by maternal exercise prior to and during pregnancy, respectively. Also, the serum level of LDL (p = 0.002) and Cho (P = 0.007) were significantly decreased and maternal exercise leads to improves the running speed of the adult male offspring (p = 0.0176). This study suggests that maternal HIIT prior to and during pregnancy have positive intergenerational consequence in the health and physical readiness of offspring.
Collapse
Affiliation(s)
- Reihaneh Mohammadkhani
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Neda Khaledi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
38
|
Harris JE, Pinckard KM, Wright KR, Baer LA, Arts PJ, Abay E, Shettigar VK, Lehnig AC, Robertson B, Madaris K, Canova TJ, Sims C, Goodyear LJ, Andres A, Ziolo MT, Bode L, Stanford KI. Exercise-induced 3'-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat Metab 2020; 2:678-687. [PMID: 32694823 PMCID: PMC7438265 DOI: 10.1038/s42255-020-0223-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Poor maternal environments, such as under- or overnutrition, can increase the risk for the development of obesity, type 2 diabetes and cardiovascular disease in offspring1-9. Recent studies in animal models have shown that maternal exercise before and during pregnancy abolishes the age-related development of impaired glucose metabolism10-15, decreased cardiovascular function16 and increased adiposity11,15; however, the underlying mechanisms for maternal exercise to improve offspring's health have not been identified. In the present study, we identify an exercise-induced increase in the oligosaccharide 3'-sialyllactose (3'-SL) in milk in humans and mice, and show that the beneficial effects of maternal exercise on mouse offspring's metabolic health and cardiac function are mediated by 3'-SL. In global 3'-SL knockout mice (3'-SL-/-), maternal exercise training failed to improve offspring metabolic health or cardiac function in mice. There was no beneficial effect of maternal exercise on wild-type offspring who consumed milk from exercise-trained 3'-SL-/- dams, whereas supplementing 3'-SL during lactation to wild-type mice improved metabolic health and cardiac function in offspring during adulthood. Importantly, supplementation of 3'-SL negated the detrimental effects of a high-fat diet on body composition and metabolism. The present study reveals a critical role for the oligosaccharide 3'-SL in milk to mediate the effects of maternal exercise on offspring's health. 3'-SL supplementation is a potential therapeutic approach to combat the development of obesity, type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Johan E Harris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter J Arts
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Adam C Lehnig
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bianca Robertson
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kendra Madaris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tyler J Canova
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Clark Sims
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
39
|
Helle E, Priest JR. Maternal Obesity and Diabetes Mellitus as Risk Factors for Congenital Heart Disease in the Offspring. J Am Heart Assoc 2020; 9:e011541. [PMID: 32308111 PMCID: PMC7428516 DOI: 10.1161/jaha.119.011541] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Congenital heart disease (CHD) is the most common anatomical malformation occurring live‐born infants and an increasing cause of morbidity and mortality across the lifespan and throughout the world. Population‐based observations have long described associations between maternal cardiometabolic disorders and the risk of CHD in the offspring. Here we review the epidemiological evidence and clinical observations relating maternal obesity and diabetes mellitus to the risk of CHD offspring with particular attention to mechanistic models of maternal‐fetal risk transmission and first trimester disturbances of fetal cardiac development. A deeper understanding of maternal risk factors holds the potential to improve both prenatal detection of CHD by identifying at‐risk pregnancies, along with primary prevention of disease by improving preconception and prenatal treatment of at‐risk mothers.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland.,Pediatric Cardiology Children's Hospital, and Pediatric Research Center Helsinki University Hospital University of Helsinki Helsinki Finland
| | - James R Priest
- Department of Pediatrics (Cardiology) Stanford University School of Medicine Stanford CA.,Chan-Zuckerberg Biohub San Francisco CA
| |
Collapse
|
40
|
Previous adaptation triggers distinct molecular pathways and modulates early and long-term neuroprotective effects of pregnancy swimming preventing neonatal hypoxia-ischemia damage in rats. Brain Res 2020; 1733:146722. [DOI: 10.1016/j.brainres.2020.146722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
|
41
|
Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in metabolic disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
43
|
Manti M, Fornes R, Pironti G, McCann Haworth S, Zhengbing Z, Benrick A, Carlström M, Andersson D, Stener-Victorin E. Maternal androgen excess induces cardiac hypertrophy and left ventricular dysfunction in female mice offspring. Cardiovasc Res 2019; 116:619-632. [DOI: 10.1093/cvr/cvz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Aims
Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is suggested to increase the risk for cardiovascular disease. How PCOS may lead to adverse cardiac outcomes is unclear and here we hypothesized that prenatal exposure to dihydrotestosterone (DHT) and/or maternal obesity in mice induce adverse metabolic and cardiac programming in female offspring that resemble the reproductive features of the syndrome.
Methods and results
The maternal obese PCOS phenotype was induced in mice by chronic high-fat–high-sucrose consumption together with prenatal DHT exposure. The prenatally androgenized (PNA) female offspring displayed cardiac hypertrophy during adulthood, an outcome that was not accompanied by aberrant metabolic profile. The expression of key genes involved in cardiac hypertrophy was up-regulated in the PNA offspring, with limited or no impact of maternal obesity. Furthermore, the activity of NADPH oxidase, a major source of reactive oxygen species in the cardiovascular system, was down-regulated in the PNA offspring heart. We next explored for early transcriptional changes in the heart of newly born PNA offspring, which could account for the long-lasting changes observed in adulthood. Neonatal PNA hearts displayed an up-regulation of transcription factors involved in cardiac hypertrophic remodelling and of the calcium-handling gene, Slc8a2. Finally, to determine the specific role of androgens in cardiovascular function, female mice were continuously exposed to DHT from pre-puberty to adulthood, with or without the antiandrogen flutamide. Continuous exposure to DHT led to adverse left ventricular remodelling, and increased vasocontractile responses, while treatment with flutamide partly alleviated these effects.
Conclusion
Taken together, our results indicate that intrauterine androgen exposure programmes long-lasting heart remodelling in female mouse offspring that is linked to left ventricular hypertrophy and highlight the potential risk of developing cardiac dysfunction in daughters of mothers with PCOS.
Collapse
Affiliation(s)
- Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Romina Fornes
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Gianluigi Pironti
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Zhuge Zhengbing
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health and Education, University of Skövde, Skövde, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| | - Daniel Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
- Heart and Vascular Theme, Heart Failure and Congenital Heart Disease Section, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Stener-Victorin
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, QB5, 17165 Stockholm, Sweden
| |
Collapse
|
44
|
Musial B, Fernandez‐Twinn DS, Duque‐Guimaraes D, Carr SK, Fowden AL, Ozanne SE, Sferruzzi‐Perri AN. Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiol Rep 2019; 7:e14202. [PMID: 31466137 PMCID: PMC6715452 DOI: 10.14814/phy2.14202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/02/2023] Open
Abstract
Obesity during gestation adversely affects maternal and infant health both during pregnancy and for long afterwards. However, recent work suggests that a period of maternal exercise during pregnancy can improve metabolic health of the obese mother and her offspring. This study aimed to identify the physiological and molecular impact of exercise on the obese mother during pregnancy that may lead to improved metabolic outcomes. To achieve this, a 20-min treadmill exercise intervention was performed 5 days a week in diet-induced obese female mice from 1 week before and up to day 17 of pregnancy. Biometric, biochemical and molecular analyses of maternal tissues and/or plasma were performed on day 19 of pregnancy. We found exercise prevented some of the adverse changes in insulin signaling and lipid metabolic pathways seen in the liver, skeletal muscle and white adipose tissue of sedentary-obese pregnant dams (p110β, p110α, AKT, SREBP). Exercise also induced changes in the insulin and lipid signaling pathways in obese dams that were different from those observed in control and sedentary-obese dams. The changes induced by obesity and exercise were tissue-specific and related to alterations in tissue lipid, protein and glycogen content and plasma insulin, leptin and triglyceride concentrations. We conclude that the beneficial effects of exercise on metabolic outcomes in obese mothers may be related to specific molecular signatures in metabolically active maternal tissues during pregnancy. These findings highlight potential metabolic targets for therapeutic intervention and the importance of lifestyle in reducing the burden of the current obesity epidemic on healthcare systems.
Collapse
Affiliation(s)
- Barbara Musial
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Denise S. Fernandez‐Twinn
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniella Duque‐Guimaraes
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Sarah K. Carr
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Abigail L. Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Susan E. Ozanne
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Amanda N. Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
45
|
Embryonic programming of heart disease in response to obesity during pregnancy. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165402. [PMID: 30759362 DOI: 10.1016/j.bbadis.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Obesity during pregnancy programs adult-onset heart disease in the offspring. Clinical studies indicate that exposure to an adverse environment in utero during early, as compared to late, gestation leads to a higher prevalence of adult-onset heart disease. This suggests that the early developing heart is particularly sensitive to an adverse environment. Accordingly, growing evidence from clinical studies and animal models demonstrates that obesity during pregnancy alters the function of the fetal heart, programming a higher risk of cardiovascular disease later in life. Moreover, gene expression patterns and signaling pathways that promote initiation and progression of cardiovascular disease are altered in the hearts in offspring born to obese mothers. However, the mechanisms mediating the long-term effects of an adverse environment in utero on the developing heart leading to adult-onset disease are not clear. Here, we review clinical and experimental evidence documenting the effects of maternal obesity during pregnancy on the fetal and post-natal heart and emphasize on the potential mechanisms of disease programming.
Collapse
|