1
|
Dezső K, Paku S, Juhász M, Kóbori L, Nagy P. Evolutionary View of Liver Pathology. Evol Appl 2024; 17:e70059. [PMID: 39717436 PMCID: PMC11664044 DOI: 10.1111/eva.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Evolutionary medicine emerged in the late twentieth century, integrating principles of natural selection and adaptation with the health sciences. Today, with a rapidly widening gap between the biology of Homo sapiens and its environment, maladaptation or maladaptive disorders can be detected in almost all diseases, including liver dysfunction. However, in hepatology, as in most medical specialties, evolutionary considerations are neglected because the majority of the medical community is not familiar with evolutionary principles. The aim of this brief review is to highlight an evolutionary approach that may facilitate understanding various liver diseases.
Collapse
Affiliation(s)
- Katalin Dezső
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Mária‐Manuela Juhász
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - László Kóbori
- Department of Surgery, Transplantation and GastroenterologySemmelweis UniversityBudapestHungary
| | - Péter Nagy
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Cherubini A, Della Torre S, Pelusi S, Valenti L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol Med 2024; 30:1126-1136. [PMID: 38890029 DOI: 10.1016/j.molmed.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Bolatimi OE, Hua Y, Ekuban FA, Gripshover TC, Ekuban A, Luulay B, Watson WH, Hardesty JE, Wahlang B. Low dose exposure to dioxins alters hepatic energy metabolism and steatotic liver disease development in a sex-specific manner. ENVIRONMENT INTERNATIONAL 2024; 194:109152. [PMID: 39577358 PMCID: PMC11700233 DOI: 10.1016/j.envint.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
"Dioxins" are persistent organic pollutants (POPs) that are continuously present in the environment at appreciable levels and have been associated with increased risk of steatotic liver disease (SLD). However, current understanding of the role of sex and effects of mixtures of dioxins in SLD development is limited. Additionally, there exists debates on the levels of dioxins required to be considered dangerous as emphasis has shifted from high level exposure events to the steady state of lower-level exposures. We therefore investigated sex-dependent effects of low-level exposures to a mixture of dioxins: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and Polychlorinated biphenyl 126 (PCB126), in the context of SLD and associated metabolic dysfunction. Male and female C57BL/6J mice were fed a low-fat diet and weekly administered either vehicle control or TCDD (10 ng/kg), PeCDF (80 ng/kg) and PCB 126 (140 ng/kg) over a two-week period. Female mice generally demonstrated higher hepatic fat content compared to males. However, exposure to dioxins further elevated hepatic cholesterol levels in females, and this was accompanied by increased lipogenic gene expression (Acaca, Fasn) in the liver. In contrast, exposed males but not females displayed higher white adipose tissue weights. Furthermore, TCDD + PeCDF + PCB126 activated the AHR (hepatic Cyp1a1, Cyp1a2 induction); with Cyp1a1 induction observed only in exposed females. Notably, gene expression of hepatic albumin (Alb) was also reduced only in exposed females. Overall, exposure to the low dose dioxin mixture compromised hepatic homeostasis via metabolic perturbations, and hepatic dysregulation was more accelerated in female livers.
Collapse
Affiliation(s)
- Oluwanifemi E Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Hua
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Frederick A Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tyler C Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Abigail Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Bana Luulay
- College of Arts and Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Lake JE, Hyatt AN, Feng H, Miao H, Somasunderam A, Utay NS, Corey KE. Transgender Women with HIV Demonstrate Unique Non-Alcoholic Fatty Liver Disease Profiles. Transgend Health 2024; 9:413-420. [PMID: 39449788 PMCID: PMC11496901 DOI: 10.1089/trgh.2022.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) prevalence and severity may be higher in people with human immunodeficiency virus (HIV) than the general population, and vary with sex and age. We explored NAFLD characteristics by gender. Methods Adult transgender women (TW), cisgender women (CW), and cisgender men (CM) with HIV on antiretroviral therapy and without other known causes of liver disease underwent screening for NAFLD (2017-2020). Circulating factors associated with NAFLD were measured. Hepatic steatosis and fibrosis were assessed using transient elastography by controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Analysis of variance/Wilcoxon testing compared normally/non-normally distributed variables, respectively. Logistic regression evaluated factors associated with CAP and LSM. Results Participants (n=194) had median age 48 years and body mass index 28.3 kg/m2; 42% were CM, 37% TW, and 21% CW; 95% were non-white; and 16% had diabetes, 40% dyslipidemia, and 49% hypertension. NAFLD prevalence was 59% using CAP ≥248 dB/m (≥S1 steatosis), 48% using CAP ≥260 dB/m (≥S2 steatosis), and 32% using CAP ≥285 dB/m (≥S3 steatosis). Compared to CM and CW, TW had the highest median CAP scores, were more likely to have ≥S2 steatosis, and had the highest insulin resistance, interleukin-6, and fetuin-A values. TW off versus on gender-affirming hormone therapy (GAHT) had slightly higher median CAP scores. Conclusion TW on GAHT had less hepatic steatosis than TW not on GAHT, although overall NAFLD severity was greater than expected for TW compared to CM and CW. The effects of estrogen supplementation and androgen deprivation on liver health in TW require further study.
Collapse
Affiliation(s)
- Jordan E. Lake
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Ana N. Hyatt
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Han Feng
- UTHealth School of Public Health, Houston, Texas, USA
| | - Hongyu Miao
- UTHealth School of Public Health, Houston, Texas, USA
| | - Anoma Somasunderam
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Netanya S. Utay
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Kathleen E. Corey
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Meda C, Benedusi V, Cherubini A, Valenti L, Maggi A, Della Torre S. Hepatic estrogen receptor alpha drives masculinization in post-menopausal women with metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:101143. [PMID: 39308985 PMCID: PMC11414671 DOI: 10.1016/j.jhepr.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The loss of ovarian functions defining menopause leads to profound metabolic changes and heightens the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Although estrogens primarily act on the female liver through estrogen receptor alpha (ERα), the specific contribution of impaired ERα signaling in triggering MASLD after menopause remains unclear. Methods To address this gap in knowledge, we compared the liver transcriptomes of sham-operated (SHAM) and ovariectomized (OVX) control and liver ERα knockout (LERKO) female mice by performing RNA-Seq analysis. Results OVX led to 1426 differentially expressed genes (DEGs) in the liver of control mice compared to 245 DEGs in LERKO mice. Gene ontology analysis revealed a distinct ovariectomy-induced modulation of the liver transcriptome in LERKO compared with controls, indicating that hepatic ERα is functional and necessary for the complete reprogramming of liver metabolism in response to estrogen depletion. Additionally, we observed an ovariectomy-dependent induction of male-biased genes, especially in the liver of control females, pointing to hepatic ERα involvement in the masculinization of the liver after estrogen loss. To investigate the translational relevance of such findings, we assessed liver samples from a cohort of 60 severely obese individuals (51 women; 9 men). Notably, a shift of the liver transcriptome toward a male-like profile was also observed only in obese women with MASLD (n = 43), especially in women ≥51 years old (15/15), suggesting that masculinization of the female liver contributes to MASLD development in obese women. Conclusions These results highlight the role of hepatic ERα in driving masculinization of the liver transcriptome following menopause, pointing to this receptor as a potential pharmacological target for preventing MASLD in post-menopausal women. Impact and implications Despite the increased risk of developing MASLD after menopause, the specific contribution of impaired hepatic estrogen signaling in driving MASLD in females has not been a major research focus, and, thus, has limited the development of tailored strategies that address the specific mechanisms underlying MASLD in post-menopausal women. This study reveals the functional role of hepatic ERα in mediating liver metabolic changes in response to estrogens loss, leading to a shift in the liver transcriptome towards a male-like profile. In women with obesity, this shift is associated with the development of MASLD. These findings underscore the potential of targeting hepatic ERα as a promising approach for developing effective, sex-specific treatments to preserve liver health and prevent or limit the development and progression of MASLD in post-menopausal women.
Collapse
Affiliation(s)
- Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Benedusi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Cherubini
- Precision Medicine–Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine–Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int 2024. [PMID: 39262132 DOI: 10.1111/liv.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, previously termed NAFLD, nonalcoholic fatty liver disease) is a complex multifactorial disease showing generally higher prevalence and severity in men than in women. With respect to women, men are also more prone to develop metabolic dysfunction-associated steatohepatitis, fibrosis and liver-related complications. Several genetic, hormonal, environmental and lifestyle factors may contribute to sex differences in MASLD development, progression and outcomes. However, after menopause, the sex-specific prevalence of MASLD shows an opposite trend between men and women, pointing to the relevance of oestrogen signalling in the sexual dimorphism of MASLD. The patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene, that encodes a triacylglycerol lipase that plays a crucial role in lipid metabolism, has emerged as a key player in the pathogenesis of MASLD, with the I148M variant being strongly associated with increased liver fat content and disease severity. Recent advances indicate that carrying the PNPLA3 I148M variant can be a risk factor for MASLD especially for women. To elucidate the molecular mechanisms underlying the sex-specific role of PNPLA3 I148M in the development of MASLD, several in vitro, ex vivo and in vivo models have been developed.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine-Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Wang Q, Gao S, Chen B, Zhao J, Li W, Wu L. Evaluating the Effects of Perinatal Exposures to BPSIP on Hepatic Cholesterol Metabolism in Female and Male Offspring ICR Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97011. [PMID: 39298647 DOI: 10.1289/ehp14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND A broad suite of bisphenol S (BPS) derivatives as alternatives for BPS have been identified in various human biological samples, including 4-hydroxyphenyl 4-isopropoxyphenylsulfone (BPSIP) detected in human umbilical cord plasma and breast milk. However, very little is known about the health outcomes of prenatal BPS derivative exposure to offspring. OBJECTIVES Our study aimed to investigate the response of hepatic cholesterol metabolism by sex in offspring of dams exposed to BPSIP. METHODS Pregnant ICR mice were exposed to 5 μ g / kg body weight (BW)/day of BPSIP, BPS, or E2 through drinking water from gestational day one until the pups were weaned. The concentration of BPSIP, BPS, or E2 in the plasma and liver of pups was determined by liquid chromatography-tandem mass spectrometry. Metabolic phenotypes were recorded, and histopathology was examined for liver impairment. Transcriptome analysis was employed to characterize the distribution and expression patterns of differentially expressed genes across sexes. The metabolic regulation was validated by quantitative real-time PCR, immunohistochemistry, and immunoblotting. The role of estrogen receptors (ERs) in mediating sex-dependent effects was investigated using animal models and liver organoids. RESULTS Pups of dams exposed to BPSIP showed a higher serum cholesterol level, and liver cholesterol levels were higher in females and lower in males than in the controls. BPSIP concentration in the male liver was 1.22 ± 0.25 ng / g and 0.69 ± 0.27 ng / g in the female liver. Histopathology analysis showed steatosis and lipid deposition in both male and female offspring. Transcriptome and gene expression analyses identified sex-specific differences in cholesterol biosynthesis, absorption, disposal, and efflux between pups of dams exposed to BPSIP and those in controls. In vivo, chromatin immunoprecipitation analysis revealed that the binding of ER α protein to key genes such as Hmgcr, Pcsk9, and Abcg5 was attenuated in BPSIP-exposed females compared to controls, while it was enhanced in males. In vitro, the liver organoid experiments demonstrated that restoration of differential expression induced by BPSIP in key genes, such as Hmgcr, Ldlr, and Cyp7a1, to levels comparable to the controls was only achieved when treated with a combination of ER α agonist and ER β agonist. DISCUSSION Findings from this study suggest that perinatal exposure to BPSIP disrupted cholesterol metabolism in a sex-specific manner in a mouse model, in which ER α played a crucial role both in vivo and in vitro. Therefore, it is crucial to systematically evaluate BPS derivatives to protect maternal health during pregnancy and prevent the transmission of metabolic disorders across generations. https://doi.org/10.1289/EHP14643.
Collapse
Affiliation(s)
- Qi Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Shulin Gao
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Baoqiang Chen
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Jiadi Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| | - Wenyong Li
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| |
Collapse
|
8
|
Akl MG, Li L, Widenmaier SB. Protective Effects of Hepatocyte Stress Defenders, Nrf1 and Nrf2, against MASLD Progression. Int J Mol Sci 2024; 25:8046. [PMID: 39125617 PMCID: PMC11312428 DOI: 10.3390/ijms25158046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.
Collapse
Affiliation(s)
| | | | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.A.)
| |
Collapse
|
9
|
Booijink R, Ramachandran P, Bansal R. Implications of innate immune sexual dimorphism for MASLD pathogenesis and treatment. Trends Pharmacol Sci 2024; 45:614-627. [PMID: 38853100 DOI: 10.1016/j.tips.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Growing evidence suggests that metabolic dysfunction-associated steatotic liver disease (MASLD) is significantly higher in men versus women. Increased prevalence is observed in postmenopausal women, suggesting that age and sex (hormones) influence MASLD development and progression. Molecular data further reveal that sex regulates the innate immune responses with an essential role in MASLD progression. To date, there has been limited focus on the role of innate immune sexual dimorphism in MASLD, and differences between men and women are not considered in the current drug discovery landscape. In this review, we summarize the sex disparities and innate immune sexual dimorphism in MASLD pathogenesis. We further highlight the importance of harnessing sexual dimorphism in identifying therapeutic targets, developing pharmacological therapies, and designing (pre-) clinical studies for the personalized treatment for MASLD.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, UK
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
10
|
Sommerauer C, Gallardo-Dodd CJ, Savva C, Hases L, Birgersson M, Indukuri R, Shen JX, Carravilla P, Geng K, Nørskov Søndergaard J, Ferrer-Aumatell C, Mercier G, Sezgin E, Korach-André M, Petersson C, Hagström H, Lauschke VM, Archer A, Williams C, Kutter C. Estrogen receptor activation remodels TEAD1 gene expression to alleviate hepatic steatosis. Mol Syst Biol 2024; 20:374-402. [PMID: 38459198 PMCID: PMC10987545 DOI: 10.1038/s44320-024-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.
Collapse
Affiliation(s)
- Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Christina Savva
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Rajitha Indukuri
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Pablo Carravilla
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Clàudia Ferrer-Aumatell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Grégoire Mercier
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Erdinc Sezgin
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Marion Korach-André
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Hannes Hagström
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
11
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
12
|
Nairz J, Messner A, Kiechl SJ, Winder B, Hochmayr C, Egger AE, Griesmacher A, Geiger R, Griesmaier E, Pechlaner R, Knoflach M, Kiechl-Kohlendorfer U. Determinants of non-alcoholic fatty liver disease in young people: Maternal, neonatal, and adolescent factors. PLoS One 2024; 19:e0298800. [PMID: 38386674 PMCID: PMC10883560 DOI: 10.1371/journal.pone.0298800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
AIM To assess the impact of maternal, neonatal, and adolescent factors on the development of non-alcoholic fatty liver disease (NAFLD) in a cohort of 14- to 19-year-old adolescents. METHODS This study is part of the Early Vascular Ageing in the YOUth study, a single-center cross-sectional study conducted in western Austria. Maternal and neonatal factors were extracted from the mother-child booklet, adolescent factors were evaluated by a face-to-face interview, physical examination, and fasting blood analyses. Liver fat content was assessed by controlled attenuation parameter (CAP) using signals acquired by FibroScan® (Echosense, Paris, France). The association of maternal, neonatal, and adolescent factors with CAP values was analyzed using linear regression models. RESULTS In total, 595 adolescents (27.2% male) aged 17.0 ± 1.3 years were included. 4.9% (n = 29) showed manifest NAFLD with CAP values above the 90th percentile. Male sex (p < 0.001), adolescent triglyceride levels (p = 0.021), Homeostatic Model Assessment for Insulin Resistance index and BMI z-score (p < 0.001, each) showed a significant association with liver fat content in the multivariable analysis. Maternal pre-pregnancy BMI was associated with CAP values after adjustment for sex, age, and birth weight for gestational age (p < 0.001), but this association was predominantly mediated by adolescent BMI (indirect effect b = 1.18, 95% CI [0.69, 1.77]). CONCLUSION Components of the metabolic syndrome were the most important predictors of adolescent liver fat content. Therefore, prevention of NAFLD should focus on lifestyle modification in childhood and adolescence.
Collapse
Affiliation(s)
- Johannes Nairz
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alex Messner
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Sophia J. Kiechl
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Hochzirl Hospital, Zirl, Tyrol, Austria
| | - Bernhard Winder
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Vascular Surgery, Feldkirch Hospital, Feldkirch, Vorarlberg, Austria
| | - Christoph Hochmayr
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alexander E. Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Andrea Griesmacher
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Michael Knoflach
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | | | | |
Collapse
|
13
|
Cherubini A, Casirati E, Pelusi S, Valenti L. Estrogen-ER-α axis induces PNPLA3 p.I148M protein variant to promote steatotic liver disease susceptibility in women. Clin Transl Med 2024; 14:e1524. [PMID: 38224202 PMCID: PMC10788875 DOI: 10.1002/ctm2.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Elia Casirati
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| | - Serena Pelusi
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luca Valenti
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| |
Collapse
|
14
|
Tian Y, Hong X, Xie Y, Guo Z, Yu Q. 17β-Estradiol (E 2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2023; 12:2100. [PMID: 38136219 PMCID: PMC10740447 DOI: 10.3390/antiox12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Premature menopause is associated with an increased prevalence of nonalcoholic fatty liver disease (NAFLD). Menopausal hormone therapy (MHT) has been widely used in clinical practice and has the potential to protect mitochondrial function and alleviate NAFLD. After bilateral oophorectomy (OVX), female rats without 17β-estradiol (E2) intervention developed NAFLD, whereas E2 supplementation was effective in preventing NAFLD in female rats. The altered pathways and cellular events from both comparison pairs, namely, the OVX vs. sham group and the OVX vs. E2 group, were assessed using transcriptomic analysis. KEGG pathways enriched by both transcriptomic and metabolomic analyses strongly suggest that oxidative phosphorylation is a vital pathway that changes during the development of NAFLD and remains unchanged when E2 is applied. Liver tissue from the OVX-induced NAFLD group exhibited increased lipid peroxidation, impaired mitochondria, and downregulated ERα/SIRT1/PGC-1α expression. An in vitro study indicated that the protective effect of E2 treatment on hepatic steatosis could be abolished when ERα or SIRT1 was selectively inhibited. This damage was accompanied by reduced mitochondrial complex activity and increased lipid peroxidation. The current research indicates that E2 upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent OVX-induced NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (Y.T.); (X.H.); (Y.X.); (Z.G.)
| |
Collapse
|
15
|
Fotakis C, Kalafati IP, Amanatidou AI, Andreou V, Matzapetakis M, Kafyra M, Varlamis I, Zervou M, Dedoussis GV. Serum metabolomic profiling unveils distinct sex-related metabolic patterns in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1230457. [PMID: 37854184 PMCID: PMC10579908 DOI: 10.3389/fendo.2023.1230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Obesity poses an increased risk for the onset of Nonalcoholic fatty liver disease (NAFLD). The influence of other factors, such as sex in the incidence and severity of this liver disease has not yet been fully elucidated. Thus, we aimed to identify the NAFLD serum metabolic signatures associated with sex in normal, overweight and obese patients and to associate the metabolite fluctuations across the increasing liver steatosis stages. Methods and results Using nuclear magnetic resonance (NMR) serum samples of 210 NAFLD cases and control individuals diagnosed with liver U/S, our untargeted metabolomics enquiry provided a sex distinct metabolic bouquet. Increased levels of alanine, histidine and tyrosine are associated with severity of NAFLD in both men and women. Moreover, higher serum concentrations of valine, aspartic acid and mannose were positively associated with the progression of NAFLD among the male subjects, while a negative association was observed with the levels of creatine, phosphorylcholine and acetic acid. On the other hand, glucose was positively associated with the progression of NAFLD among the female subjects, while levels of threonine were negatively related. Fluctuations in ketone bodies acetoacetate and acetone were also observed among the female subjects probing a significant reduction in the circulatory levels of the former in NAFLD cases. A complex glycine response to hepatic steatosis of the female subjects deserves further investigation. Conclusion Results of this study aspire to address the paucity of data on sex differences regarding NAFLD pathogenesis. Targeted circulatory metabolome measurements could be used as diagnostic markers for the distinct stages of NAFLD in each sex and eventually aid in the development of novel sex-related therapeutic options.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Ioanna-Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Manolis Matzapetakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Iraklis Varlamis
- Department of Informatics and Telematics, Harokopio University of Athens, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
16
|
Cherubini A, Ostadreza M, Jamialahmadi O, Pelusi S, Rrapaj E, Casirati E, Passignani G, Norouziesfahani M, Sinopoli E, Baselli G, Meda C, Dongiovanni P, Dondossola D, Youngson N, Tourna A, Chokshi S, Bugianesi E, Della Torre S, Prati D, Romeo S, Valenti L. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat Med 2023; 29:2643-2655. [PMID: 37749332 PMCID: PMC10579099 DOI: 10.1038/s41591-023-02553-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P < 10-10; advanced fibrosis/hepatocellular carcinoma, P = 0.034) and in the general population (P < 10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P = 0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mahnoosh Ostadreza
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
| | - Serena Pelusi
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eniada Rrapaj
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giulia Passignani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marjan Norouziesfahani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Sinopoli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido Baselli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Dondossola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- General and Liver Transplant Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, Milan, Italy
| | - Neil Youngson
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aikaterini Tourna
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Prati
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska Hospital, Gothenburg, Sweden
- Department of Medical and Surgical Science, Magna Græcia University, Catanzaro, Italy
| | - Luca Valenti
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
17
|
Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women - Current knowledge and emerging concepts. JHEP Rep 2023; 5:100835. [PMID: 37771547 PMCID: PMC10522907 DOI: 10.1016/j.jhepr.2023.100835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 09/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently the leading indication for liver transplantation in women without hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this review, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development and progression in women. Furthermore, we highlight areas of focus for clinical practice and for future research.
Collapse
Affiliation(s)
- Pei Chia Eng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S. Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
18
|
Luo J, Watson WH, Gripshover TC, Qaissi Z, Wahlang B. Sex-specific effects of acute chlordane exposure in the context of steatotic liver disease, energy metabolism and endocrine disruption. Food Chem Toxicol 2023; 180:114024. [PMID: 37666290 PMCID: PMC10617492 DOI: 10.1016/j.fct.2023.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/13/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Chlordane is an organochlorine pesticide (OCP) that is environmentally persistent. Although exposures to OCPs including chlordane have been associated with elevated liver enzymes, current knowledge on OCPs' contribution to toxicant-associated steatotic liver disease (TASLD) and underlying sex-specific metabolic/endocrine disruption are still widely limited. Therefore, the objective of this study was to investigate the sex-dependent effects of chlordane in the context of TASLD. Age-matched male and female C57BL/6 mice were exposed to chlordane (20 mg/kg, one-time oral gavage) for two weeks. Female mice generally exhibited lower bodyfat content but more steatosis and hepatic lipid levels, consistent with increased hepatic mRNA levels of genes involved in lipid synthesis and uptake. Surprisingly, chlordane-exposed females demonstrated lower hepatic cholesterol levels. With regards to metabolic disruption, chlordane exposure decreased expression of genes involved in glycogen and glucose metabolism (Pklr, Gck), while chlordane-exposed females also exhibited decreased gene expression of HNF4A, an important regulator of liver identity and function. In terms of endocrine endpoints, chlordane augmented plasma testosterone levels in males. Furthermore, chlordane activated hepatic xenobiotic receptors, including the constitutive androstane receptor, in a sex-dependent manner. Overall, chlordane exposure led to altered hepatic energy metabolism, and potential chlordane-sex interactions regulated metabolic/endocrine disruption and receptor activation outcomes.
Collapse
Affiliation(s)
- Jianzhu Luo
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Walter H Watson
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA
| | - Tyler C Gripshover
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Zayna Qaissi
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA; Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Correia CM, Præstholm SM, Havelund JF, Pedersen FB, Siersbæk MS, Ebbesen MF, Gerhart-Hines Z, Heeren J, Brewer J, Larsen S, Blagoev B, Færgeman NJ, Grøntved L. Acute Deletion of the Glucocorticoid Receptor in Hepatocytes Disrupts Postprandial Lipid Metabolism in Male Mice. Endocrinology 2023; 164:bqad128. [PMID: 37610219 DOI: 10.1210/endocr/bqad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, β-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Collapse
Affiliation(s)
- Catarina Mendes Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Stine Marie Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Morten Frendø Ebbesen
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Brewer
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
20
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
21
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
22
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
24
|
Fuller KNZ, Allen J, Kumari R, Akakpo JY, Ruebel M, Shankar K, Thyfault JP. Pre- and Post-Sexual Maturity Liver-specific ERα Knockout Does Not Impact Hepatic Mitochondrial Function. J Endocr Soc 2023; 7:bvad053. [PMID: 37197409 PMCID: PMC10184454 DOI: 10.1210/jendso/bvad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Compared with males, premenopausal women and female rodents are protected against hepatic steatosis and present with higher functioning mitochondria (greater hepatic mitochondrial respiration and reduced H2O2 emission). Despite evidence that estrogen action mediates female protection against steatosis, mechanisms remain unknown. Here we validated a mouse model with inducible reduction of liver estrogen receptor alpha (ERα) (LERKO) via adeno-associated virus (AAV) Cre. We phenotyped the liver health and mitochondrial function of LERKO mice (n = 10-12 per group) on a short-term high-fat diet (HFD), and then tested whether timing of LERKO induction at 2 timepoints (sexually immature: 4 weeks old [n = 11 per group] vs sexually mature: 8-10 weeks old [n = 8 per group]) would impact HFD-induced outcomes. We opted for an inducible LERKO model due to known estrogen-mediated developmental programming, and we reported both receptor and tissue specificity with our model. Control mice were ERαfl/fl receiving AAV with green fluorescent protein (GFP) only. Results show that there were no differences in body weight/composition or hepatic steatosis in LERKO mice with either short-term (4-week) or chronic (8-week) high-fat feeding. Similarly, LERKO genotype nor timing of LERKO induction (pre vs post sexual maturity) did not alter hepatic mitochondrial O2 and H2O2 flux, coupling, or OXPHOS protein. Transcriptomic analysis showed that hepatic gene expression in LERKO was significantly influenced by developmental stage. Together, these studies suggest that hepatic ERα is not required in female protection against HFD-induced hepatic steatosis nor does it mediate sexual dimorphism in liver mitochondria function.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Roshan Kumari
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Jephte Y Akakpo
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meghan Ruebel
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Kartik Shankar
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO 64108, USA
| |
Collapse
|
25
|
Jing Y, Hu T, Yuan J, Liu Z, Tao M, Ou M, Cheng X, Cheng W, Yi Y, Xiong Q. Resveratrol protects against postmenopausal atherosclerosis progression through reducing PCSK9 expression via the regulation of the ERα-mediated signaling pathway. Biochem Pharmacol 2023; 211:115541. [PMID: 37030661 DOI: 10.1016/j.bcp.2023.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Elevated circulating proprotein convertase subtilisin/kexin 9 (PCSK9) levels are an important contributor to postmenopausal atherosclerosis (AS). We have previously reported that resveratrol (RSV), as a phytoestrogen, reduces hepatocyte steatosis and PCSK9 expression in L02 cells. This study aimed to investigate how RSV reduces PCSK9 expression to inhibit postmenopausal AS progression. Here, we found that treatment of Ovx/ApoE -/- mice with RSV significantly reduced dyslipidemia, plasma PCSK9 concentration and aortic plaque area. In addition, RSV significantly inhibited liver fat accumulation and improved the hepatocyte ultrastructure. Further studies showed that RSV upregulated estrogen receptor α (ERα) expression, while reduced the liver X receptor α (LXRα) expression and sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity. In vitro, RSV inhibited insulin-induced elevated intracellular/extracellular PCSK9 levels, enhanced receptor-mediated uptake of low-density lipoproteins in HepG2 cells. Furthermore, RSV attenuated the activity of the SRE-dependent PCSK9 promoter. However, these effects can be partially reversed by the antiestrogen ICI 182,780. Attenuation of these changes with ERα inhibition suggest that RSV may prevent the progression of postmenopausal AS by reducing PCSK9 expression in hepatocytes through ERα-mediated signaling.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Tianhui Hu
- Traditional Chinese Medicine Department, Huai'an Maternal and Child Health-Care Center, Huai'an 2230003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhikun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingtao Tao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingyu Ou
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xinru Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wei Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuanyuan Yi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
26
|
Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond) 2023; 137:415-434. [PMID: 36942499 PMCID: PMC10031253 DOI: 10.1042/cs20210519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α. Estrogen signaling fine-tunes protein turnover and mitochondrial metabolism through its receptors (ERα, ERβ, and GPER). Insulin and estrogen signaling converge on Sirt1, mTOR, and PI3K in the joint regulation of autophagy and mitochondrial metabolism. Dysregulated insulin and estrogen signaling lead to metabolic diseases. This article reviews the up-to-date evidence that depicts the pathways of insulin signaling and estrogen-ER signaling in the regulation of metabolism. In addition, we discuss the cross-talk between estrogen signaling and insulin signaling via Sirt1, mTOR, and PI3K, as well as new therapeutic options such as agonists of GLP1 receptor, GIP receptor, and β3-AR. Mapping the molecular pathways of insulin signaling, estrogen signaling, and their interplays advances our understanding of metabolism and discovery of new therapeutic options for metabolic disorders.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
27
|
Della Torre S. Diet and Fertility Status: Relevance in Health and Disease. Nutrients 2023; 15:nu15071669. [PMID: 37049511 PMCID: PMC10097215 DOI: 10.3390/nu15071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
The prevalence of obesity and other metabolic disorders is increasing worldwide [...].
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
28
|
Li X, Zhang JD, Xiao H, He S, He TT, Ren XM, Yan BH, Luo L, Yin YL, Cao LY. Triclocarban and triclosan exacerbate high-fat diet-induced hepatic lipid accumulation at environmental related levels: The potential roles of estrogen-related receptors pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160079. [PMID: 36372182 DOI: 10.1016/j.scitotenv.2022.160079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) have become ubiquitous pollutants detected in human body with concentrations up to hundreds of nanomolar levels. Previous studies about the hepatic lipid accumulation induced by TCS and TCC were focused on pollutant itself, which showed weak or no effects. High-fat diet (HFD), as a known environmental factor contributing to lipid metabolism-related disorders, its synergistic action with environmental pollutants deserves concern. The present study aimed to demonstrate the combined effects and potential molecular mechanisms of TCS and TCC with HFD at cellular and animal levels. The in vitro studies showed that TCC and TCS alone had negligible impact on lipid accumulation in HepG2 cells but induced lipid deposition at nanomolar levels when co-exposure with fatty acid. TCC exhibited much higher induction effects than TCS, which was related to their differential regulatory roles in adipogenic-related genes expression. The in vivo studies showed that TCC had little influence on hepatic lipid accumulation in mice fed with normal diet (ND) but could exacerbate the lipid accumulation in mice fed with HFD. Meanwhile, TCC-induced dyslipidemia in mice fed with HFD was more significant than that fed with ND. Therefore, we speculated that TCC might increase the risk of nonalcoholic fatty liver disease (NAFLD) and atherosclerosis in HFD humans. Molecular mechanism studies showed that TCC and TCS could bind to and activate estrogen-related receptor α (ERRα) and ERRγ as well as regulate their expression. TCC had higher activity on ERRα and ERRγ than TCS, which explained partly the differential regulatory roles of two receptors in the lipid accumulation induced by TCC and TCS. This work revealed synergistic effects and molecular mechanisms of TCC and TCS with excessive fatty acid on the hepatic lipid metabolism, which provided a novel insight into the toxic mechanism of pollutants from the perspective of dietary habits.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Min Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bing-Hua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
29
|
Maggi AC. Is there a role for natural selection in sex differences? PRINCIPLES OF GENDER-SPECIFIC MEDICINE 2023:1-5. [DOI: 10.1016/b978-0-323-88534-8.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Cheng W, Zhou Y, Xie Y, Li Y, Zhou R, Wang H, Feng Y, Wang Y. Combined effect of polystyrene microplastics and bisphenol A on the human embryonic stem cells-derived liver organoids: The hepatotoxicity and lipid accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158585. [PMID: 36089014 DOI: 10.1016/j.scitotenv.2022.158585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Human are exposed to microplastics (MP) via inhalation or ingestion daily and inevitably. The liver is an important target organ of MP. Bisphenol A (BPA) is one of commonly used plasticizers. It is added in plastics, but also generally detected in the biological samples of human beings. However, the combined toxic effect of MP and BPA on human liver is unclear. In this study, a novel 3D in vitro model, the liver organoid (LO) derived from human-pluripotent stem cells, has been utilized to explore the 1 μm polystyrene (PS)-induced hepatotoxicity with BPA individually and jointly. Conclusively, all the changes in the cytotoxicity, cellular and molecular makers regarding the energy supplement, hepatic injury, oxidative stress, inflammatory response, disruption in the lipid accumulation, as well as epigenetics regulation induced by BPA or PS on the LOs individually were comparable to previous study. The BPA levels in the culture medium were declined by the added PS. The combined adverse effect of PS and BPA on the LOs was identified to be synergistic upon deteriorated hepatotoxicity and interfered the gene panels related to multiple processes of lipid metabolism, together with the proteins of HNF4A, CD36, ACC1, CPT1A, CYP2E1, ERα and ERβ. Specifically, PS didn't change the ERα or ERβ individually, but when the LOs were co-exposed to PS and BPA, the ERα further elevated significantly and synergistically. Our findings highlight the metabolic-related health risk due to co-exposure to MP and BPA, even at low-doses equivalent to human internal exposure level. Based on these findings, the potential adverse outcome pathway related to PS and BPA singly and jointly were proposed, predicting two possible outcomes to be hepatic steatosis. Moreover, the ERα and HNF4A were proposed to be potential candidate markers to investigate the "vector-like effect" of PS in the present of BPA.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yichun Xie
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhou
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Kamiya A, Ida K. Liver Injury and Cell Survival in Non-Alcoholic Steatohepatitis Regulated by Sex-Based Difference through B Cell Lymphoma 6. Cells 2022; 11:cells11233751. [PMID: 36497010 PMCID: PMC9737870 DOI: 10.3390/cells11233751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is a crucial organ for maintaining homeostasis in living organisms and is the center of various metabolic functions. Therefore, abnormal metabolic activity, as in metabolic syndrome, leads to pathological conditions, such as abnormal accumulation of lipids in the liver. Inflammation and cell death are induced by several stresses in the fatty liver, namely steatohepatitis. In recent years, an increase in non-alcoholic steatohepatitis (NASH), which is not dependent on excessive alcohol intake, has become an issue as a major cause of liver cirrhosis and liver cancer. There are several recent findings on functional sex-based differences, NASH, and cell stress and death in the liver. In particular, NASH-induced liver injury and tumorigeneses were suppressed by B cell lymphoma 6, the transcriptional factor regulating sex-based liver functional gene expression. In this review, we discuss cell response to stress and lipotoxicity in NASH and its regulatory mechanisms.
Collapse
Affiliation(s)
- Akihide Kamiya
- Correspondence: ; Tel.: +81-463-93-1121 (ext. 2783); Fax: +81-463-95-3522
| | | |
Collapse
|
32
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:ijms231810654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
- Correspondence:
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
33
|
Tff3 Deficiency Protects against Hepatic Fat Accumulation after Prolonged High-Fat Diet. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081288. [PMID: 36013467 PMCID: PMC9409972 DOI: 10.3390/life12081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal surfaces and is involved in proper mucosal function and recovery via various mechanisms, including immune response. However, Tff3 is also found in the bloodstream and in various other tissues, including the liver. Its complete attenuation was observed as the most prominent event in the early phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored the animals’ general metabolic parameters, liver morphology, ultrastructure and molecular genes in relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice and a less prominent reduction in female mice. This was associated with downregulated peroxisome proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression, although protein level difference did not reach statistical significance due to higher individual variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the liver; further research is needed to elucidate its precise role in metabolism-related events.
Collapse
|
34
|
ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet. Nutrients 2022; 14:nu14163262. [PMID: 36014766 PMCID: PMC9416503 DOI: 10.3390/nu14163262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a public health issue, due to its prevalence and association with other cardiometabolic diseases. Growing evidence suggests that NAFLD alters the production of hepatokines, which, in turn, influence several metabolic processes. Despite accumulating evidence on the major role of estrogen signaling in the sexually dimorphic nature of NAFLD, dependency of hepatokine expression on sex and estrogens has been poorly investigated. Through in vitro and in vivo analysis, we determined the extent to which hepatokines, known to be altered in NAFLD, can be regulated, in a sex-specific fashion, under different hormonal and nutritional conditions. Our study identified four hepatokines that better recapitulate sex and estrogen dependency. Among them, adropin resulted as one that displays a sex-specific and estrogen receptor alpha (ERα)-dependent regulation in the liver of mice under an excess of dietary lipids (high-fat diet, HFD). Under HFD conditions, the hepatic induction of adropin negatively correlates with the expression of lipogenic genes and with fatty liver in female mice, an effect that depends upon hepatic ERα. Our findings support the idea that ERα-mediated induction of adropin might represent a potential approach to limit or prevent NAFLD.
Collapse
|
35
|
Li M, Lu Q, Zhu Y, Fan X, Zhao W, Zhang L, Jiang Z, Yu Q. Fatostatin inhibits SREBP2-mediated cholesterol uptake via LDLR against selective estrogen receptor α modulator-induced hepatic lipid accumulation. Chem Biol Interact 2022; 365:110091. [DOI: 10.1016/j.cbi.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
36
|
Han YH, Choi H, Kim HJ, Lee MO. Chemotactic cytokines secreted from Kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci 2022; 306:120846. [PMID: 35914587 DOI: 10.1016/j.lfs.2022.120846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
AIMS The global prevalence of non-alcoholic fatty liver disease (NAFLD) has rapidly increased over the last decade due to an elevated occurrence of metabolic syndromes. Importantly, the prevalence and severity of NAFLD is higher in men than in women. Therefore, in the present study we endeavored to identify the mechanistic disparity between male and female mice. MAIN METHODS Global gene transcriptomics analysis was done with the high-fat diet (HFD)-induced NAFLD model of male, female, and ovariectomized (OVX) female mice. The expression of CCL2, CXCL2, and CXCL10 in mRNA level and serum protein level was done by qPCR and ELISA each. Immunohistochemistry staining was used to observe hepatic immune cell infiltration. To analyzing portion of immune cells, flow cytometry was done with isolated liver cells from HFD-fed male and female mice. Primary mouse liver cells were isolated from male and female mice for in vitro studies. KEY FINDINGS We identified sex differences in inflammatory chemokines, CCL2, CXCL2, and CXCL10, with the expression of these chemokines enhanced in male and OVX, but not in female, mice after HFD feeding. Resident Kupffer cells (KCs) were identified as the major source of production of CCL2, CXCL2, and CXCL10 in the mouse NAFLD model. Notably, KCs obtained from male mice expressed higher levels of chemokines than those from female mice, indicating that KCs may mediate the sex discrepancy in NAFLD progression. SIGNIFICANCE Our findings offer new insights into the pathology of sex-specific differences in NAFLD, involving chemokines and KCs.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea.
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Bio-MAX institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
38
|
Cho IY, Chang Y, Kang JH, Kim Y, Sung E, Shin H, Wild SH, Byrne CD, Ryu S. Long or Irregular Menstrual Cycles and Risk of Prevalent and Incident Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2022; 107:e2309-e2317. [PMID: 35238939 DOI: 10.1210/clinem/dgac068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
Abstract
CONTEXT The association of menstrual cycle length and irregularity with the risk of non-alcoholic fatty liver disease (NAFLD) is unknown. OBJECTIVE We examined this association in large cross-sectional and cohort studies. METHODS The cross-sectional study included 72 092 women younger than 40 years who underwent routine health examinations; the longitudinal analysis included the subset of 51 118 women without NAFLD at baseline. Long or irregular cycles were defined as menstrual cycles of 40 days or longer or too irregular to estimate. Abdominal ultrasonography was performed to identify NAFLD. Multivariable Cox proportional hazard regression analyses were performed to estimate hazard ratios (HRs) and 95% CIs for incident NAFLD according to menstrual cycle regularity and length, with 26- to 30-day cycles as the reference. RESULTS At baseline, 27.7% had long or irregular menstrual cycles and 7.1% had prevalent NAFLD. Long or irregular menstrual cycles were positively associated with prevalent NAFLD. During a median follow-up of 4.4 years, incident NAFLD occurred in 8.9% of women. After adjustment for age, body mass index, insulin resistance, and other confounders, the multivariable-adjusted HR for NAFLD comparing long or irregular menstrual cycles to the reference group was 1.22 (95% CI, 1.14-1.31); this association strengthened in the time-dependent analysis with an HR of 1.49 (95% CI, 1.38-1.60). CONCLUSION Long or irregular menstrual cycles were associated with increased risk of both prevalent and incident NAFLD in young, premenopausal women. Women with long or irregular menstrual cycles may benefit from lifestyle modification advice to reduce the risk of NAFLD and associated cardiometabolic diseases.
Collapse
Affiliation(s)
- In Young Cho
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Jae-Heon Kang
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
| | - Yejin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
| | - Eunju Sung
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
| | - Hocheol Shin
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton SO14,UK
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO14,UK
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| |
Collapse
|
39
|
Chen XY, Wang C, Huang YZ, Zhang LL. Nonalcoholic fatty liver disease shows significant sex dimorphism. World J Clin Cases 2022; 10:1457-1472. [PMID: 35211584 PMCID: PMC8855265 DOI: 10.12998/wjcc.v10.i5.1457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which has been renamed metabolic dysfunction-associated fatty liver disease, is a growing global medical problem. The incidence of NAFLD and its associated end-stage liver disease is increasing each year, and many research advancements have been achieved to date. This review focuses on the current knowledge of the sex differences in NAFLD and does not elaborate on areas without differences. Studies have revealed significant sex differences in the prevalence, influencing factors, pathophysiology, complications and therapies of NAFLD. Men have a higher incidence than women. Compared with women, men exhibit increased visceral fat deposition, are more susceptible to leptin resistance, lack estrogen receptors, and tend to synthesize fatty acids into fat storage. Male patients will experience more severe hepatic fibrosis and a higher incidence of liver cancer. However, once NAFLD occurs, women show a faster progression of liver fibrosis, higher levels of liver cell damage and inflammation and are less likely to undergo liver transplantation than men. In general, men have more risk factors and more severe pathophysiological reactions than women, whereas the development of NAFLD is faster in women, and the treatments for women are more limited than those for men. Thus, whether sex differences should be considered in the individualized prevention and treatment of NAFLD in the future is worth considering.
Collapse
Affiliation(s)
- Xing-Yu Chen
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Cong Wang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Yi-Zhou Huang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Li-Li Zhang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| |
Collapse
|
40
|
Maggi A. Sex and Liver Disease: The Necessity of an Overarching Theory to Explain the Effect of Sex on Nonreproductive Functions. Endocrinology 2022; 163:6425114. [PMID: 34758075 PMCID: PMC8826248 DOI: 10.1210/endocr/bqab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/19/2022]
Abstract
The number of studies illuminating major sex differences in liver metabolic activities is growing, but we still lack a theory to explain the origin of the functional differences we are identifying. In the animal kingdom, energy metabolism is tightly associated with reproduction; conceivably, the major evolutionary step that occurred about 200 million years ago with placentation determined a significant change in female physiology, as females had to create new energy strategies to allow the growth of the embryo in the womb and the lactation of the newborn. In vertebrates the liver is the metabolic organ most tuned to gonadal functions because the liver synthesizes and transports of all the components necessary for the maturation of the egg upon estrogenic stimulation. Thus, in mammals, evolution must have worked on the already strict gonad-liver relationship fostering these novel reproductive needs. As a consequence, the functions of mammalian liver in females diverged from that in males to acquire the flexibility necessary to tailor metabolism according to reproductive status and to ensure the parsimonious exploitation and storage of energy for the continuation of gestation in case of food scarcity. Indeed, several studies show that male and female livers adopt very different strategies when confronted with nutritional stress of varied origins. Considering the role of liver and energy metabolism in most pathologies, a better focus on liver functions in the 2 sexes might be of considerable help in personalizing medicine and pharmacology for male and female needs.
Collapse
Affiliation(s)
- Adriana Maggi
- Correspondence: Adriana Maggi, PhD, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20219 Milan, Italy.
| |
Collapse
|
41
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
42
|
Della Torre S, Benedusi V, Pepe G, Meda C, Rizzi N, Uhlenhaut NH, Maggi A. Dietary essential amino acids restore liver metabolism in ovariectomized mice via hepatic estrogen receptor α. Nat Commun 2021; 12:6883. [PMID: 34824281 PMCID: PMC8617046 DOI: 10.1038/s41467-021-27272-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
In female mammals, the cessation of ovarian functions is associated with significant metabolic alterations, weight gain, and increased susceptibility to a number of pathologies associated with ageing. The molecular mechanisms triggering these systemic events are unknown because most tissues are responsive to lowered circulating sex steroids. As it has been demonstrated that isoform alpha of the estrogen receptor (ERα) may be activated by both estrogens and amino acids, we test the metabolic effects of a diet enriched in specific amino acids in ovariectomized (OVX) mice. This diet is able to block the OVX-induced weight gain and fat deposition in the liver. The use of liver-specific ERα KO mice demonstrates that the hepatic ERα, through the control of liver lipid metabolism, has a key role in the systemic response to OVX. The study suggests that the liver ERα might be a valuable target for dietary treatments for the post-menopause.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy.
| | - Valeria Benedusi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nicoletta Rizzi
- Research Services Management Office, University of Milan, Milan, Italy
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Institute for Diabetes and Cancer (IDC), Helmholz Zentrum Munich, Helmholtz Diabetes Center (HMGU), Munich, Germany
- Metabolic Programming, TUM School of Life Sciences Weihenstephan, Munich, Freising, Germany
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy.
| |
Collapse
|
43
|
The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6889533. [PMID: 34745420 PMCID: PMC8566046 DOI: 10.1155/2021/6889533] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.
Collapse
|
44
|
Lefebvre P, Staels B. Hepatic sexual dimorphism - implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 2021; 17:662-670. [PMID: 34417588 DOI: 10.1038/s41574-021-00538-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Bart Staels
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
45
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
46
|
Sauvé MF, Feldman F, Koudoufio M, Ould-Chikh NEH, Ahmarani L, Sane A, N’Timbane T, El-Jalbout R, Patey N, Spahis S, Stintzi A, Delvin E, Levy E. Glycomacropeptide for Management of Insulin Resistance and Liver Metabolic Perturbations. Biomedicines 2021; 9:1140. [PMID: 34572325 PMCID: PMC8469639 DOI: 10.3390/biomedicines9091140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIMS The increasing prevalence and absence of effective global treatment for metabolic syndrome (MetS) are alarming given the potential progression to severe non-communicable disorders such as type 2 diabetes and nonalcoholic fatty liver disease. The purpose of this study was to investigate the regulatory role of glycomacropeptide (GMP), a powerful milk peptide, in insulin resistance and liver dysmetabolism, two central MetS conditions. MATERIALS AND METHODS C57BL/6 male mice were fed a chow (Ctrl), high-fat, high-sucrose (HFHS) diet or HFHS diet along with GMP (200 mg/kg/day) administered by gavage for 12 weeks. RESULTS GMP lowered plasma insulin levels (in response to oral glucose tolerance test) and HOMA-IR index, indicating a more elevated systemic insulin sensitivity. GMP was also able to decrease oxidative stress and inflammation in the circulation as reflected by the decline of malondialdehyde, F2 isoprostanes and lipopolysaccharide. In the liver, GMP raised the protein expression of the endogenous anti-oxidative enzyme GPx involving the NRF2 signaling pathway. Moreover, the administration of GMP reduced the gene expression of hepatic pro-inflammatory COX-2, TNF-α and IL-6 via inactivation of the TLR4/NF-κB signaling pathway. Finally, GMP improved hepatic insulin sensitization given the modulation of AKT, p38 MAPK and SAPK/JNK activities, thereby restoring liver homeostasis as revealed by enhanced fatty acid β-oxidation, reduced lipogenesis and gluconeogenesis. CONCLUSIONS Our study provides evidence that GMP represents a promising dietary nutraceutical in view of its beneficial regulation of systemic insulin resistance and hepatic insulin signaling pathway, likely via its powerful antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mathilde Foisy Sauvé
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Francis Feldman
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Mireille Koudoufio
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nour-El-Houda Ould-Chikh
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
| | - Lena Ahmarani
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Alain Sane
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
| | - Thierry N’Timbane
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
| | - Ramy El-Jalbout
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Radiology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Nathalie Patey
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Pathology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Schohraya Spahis
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Edgard Delvin
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Emile Levy
- Research Center, CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (M.F.S.); (F.F.); (M.K.); (N.-E.-H.O.-C.); (L.A.); (A.S.); (T.N.); (R.E.-J.); (N.P.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
Nuclear CoRepressors, NCOR1 and SMRT, are required for maintaining systemic metabolic homeostasis. Mol Metab 2021; 53:101315. [PMID: 34390859 PMCID: PMC8429965 DOI: 10.1016/j.molmet.2021.101315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone (SMRT, also known as NCOR2) play critical and specific roles in nuclear receptor action. NCOR1, both in vitro and in vivo specifically regulates thyroid hormone (TH) action in the context of individual organs such as the liver, and systemically in the context of the hypothalamic-pituitary-thyroid (HPT) axis. In contrast, selective deletion of SMRT in the liver or globally has shown that it plays very little role in TH signaling. However, both NCOR1 and SMRT have some overlapping roles in hepatic metabolism and lipogenesis. Here, we determine the roles of NCOR1 and SMRT in global physiologic function and find if SMRT could play a compensatory role in the regulation of TH action, globally. Methods We used a postnatal deletion strategy to disrupt both NCOR1 and SMRT together in all tissues at 8–9 weeks of age in male and female mice. This was performed using a tamoxifen-inducible Cre recombinase (UBC-Cre-ERT2) to KO (knockout) NCOR1, SMRT, or NCOR1 and SMRT together. We used the same strategy to KO HDAC3 in male and female mice of the same age. Metabolic parameters, gene expression, and thyroid function tests were analyzed. Results Surprisingly, adult mice that acquired NCOR1 and SMRT deletion rapidly became hypoglycemic and hypothermic and perished within ten days of deletion of both corepressors. Postnatal deletion of either NCOR1 or SMRT had no impact on mortality. NCOR1/SMRT KO mice rapidly developed hepatosteatosis and mild elevations in liver function tests. Additionally, alterations in lipogenesis, beta oxidation, along with hepatic triglyceride and glycogen levels suggested defects in hepatic metabolism. The intestinal function was intact in the NCOR1/SMRT knockout (KO) mice. The KO of HDAC3 resulted in a distinct phenotype from the NCOR1/SMRT KO mice, whereas none of the HDAC3 KO mice succumbed after tamoxifen injection. Conclusions The KO of NCOR1 and SMRT rapidly leads to significant metabolic abnormalities that do not survive – including hypoglycemia, hypothermia, and weight loss. Hepatosteatosis rapidly developed along with alterations in hepatic metabolism suggesting a contribution to the dramatic phenotype from liver injury. Glucose production and absorption were intact in NCOR1/SMRT KO mice, demonstrating a multifactorial process leading to their demise. HDAC3 KO mice have a distinct phenotype from the NCOR1/SMRT KO mice—which implies that NCOR1/SMRT together regulate a critical pathway that is required for survival in adulthood and is separate from HDAC3. The knockout of corepressors NCoR1 and SMRT is rapidly lethal. Metabolic abnormalities observed include hypoglycemia and hypothermia. Hepatic glucose production and intestinal absorption is intact despite hypoglycemia. The lethal action of NCoR1/SMRT deletion is independent of HDAC3.
Collapse
|
48
|
Di Vincenzo A, Russo L, Doroldi CG, Vettor R, Rossato M. Sex hormones abnormalities in non-alcoholic fatty liver disease: pathophysiological and clinical implications. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Obesity and metabolic syndrome are conditions at high risk for the development of complications such as type 2 diabetes mellitus, atherosclerotic cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). The growing prevalence of NAFLD has recently raised attention in the clinical practice, due to the worsening prognosis observed in the affected patients. Sex hormones abnormalities, commonly found in subjects suffering from obesity and metabolic syndrome, have been recently hypothesized to be directly involved in the physiopathology of obesity-related comorbidites; however, their role in the pathogenesis of NAFLD remains unclear. In this review of the available literature, a summary of the knowledge about the role of sex steroids abnormalities in the risk of developing NAFLD was performed, mentioning the possible clinical implications for therapy.
Collapse
Affiliation(s)
- Angelo Di Vincenzo
- Internal Medicine Unit, Camposampiero Hospital, 35012 Camposampiero, Italy
| | - Lucia Russo
- Department of Medicine, University-Hospital of Padova, 35121 Padova, Italy
| | | | - Roberto Vettor
- Department of Medicine, University-Hospital of Padova, 35121 Padova, Italy
| | - Marco Rossato
- Department of Medicine, University-Hospital of Padova, 35121 Padova, Italy
| |
Collapse
|
49
|
Dean AE, Reichardt F, Anakk S. Sex differences feed into nuclear receptor signaling along the digestive tract. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166211. [PMID: 34273530 DOI: 10.1016/j.bbadis.2021.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine. We investigated the literature pertaining to ER, AR, FXR, and PPAR regulation and highlight the sex differences in nutrient metabolism along the digestive system. We chose these nuclear receptors based on their metabolic functions, and hormonal actions. Intriguingly, we noted an overlap in target genes of ER and FXR that modulate mucosal integrity and GLP-1 secretion, whereas overlap in target genes of PPARα with ER and AR modulate lipid metabolism. Sex differences were seen not only in the basal expression of nuclear receptors, but also in activation as their endogenous ligand concentrations fluctuate depending on nutrient availability. Finally, in this review, we speculate that interactions between the nuclear receptors may influence overall metabolic decisions in the gastrointestinal tract in a sex-specific manner.
Collapse
Affiliation(s)
- Angela E Dean
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - François Reichardt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Sayeepriyadarshini Anakk
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
50
|
Karras SN, Koufakis T, Dimakopoulos G, Adamidou L, Karalazou P, Thisiadou K, Bais A, Tzotzas T, Manthou E, Makedou K, Kotsa K. Vitamin D equilibrium affects sex-specific changes in lipid concentrations during Christian Orthodox fasting. J Steroid Biochem Mol Biol 2021; 211:105903. [PMID: 33933575 DOI: 10.1016/j.jsbmb.2021.105903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
We aimed to evaluate sex differences in changes of lipid profiles in a cohort of metabolically healthy adults following Orthodox fasting (OF), as well as to assess a potential role of vitamin D status in mediating these variations. 45 individuals (24 premenopausal females, 53.3 %) with mean age 48.3 ± 9.1 years and mean Body Mass Index 28.7 ± 5.8 kg/m2 were prospectively followed for 12 weeks. Anthropometry, dietary and biochemical data regarding serum lipids, and vitamin D status were collected at baseline, 7 weeks after the implementation of OF, and 5 weeks after fasters returned to their standard dietary habits (12 weeks from baseline). According to 25-hydroxy-vitamin D [25(OH)D] measurements, participants were divided into two groups: those with concentrations above and below the median of values. Females with 25(OH)D concentrations below the median manifested a non-significant reduction by approximately 15 % in total and low-density lipoprotein cholesterol during the fasting period, followed by a significant increase 5 weeks after OF cessation (170.7 vs. 197.5 and 99.6 vs. 121.0 mg/dl respectively, p < 0.001). In contrast, males with 25(OH)D levels below the median demonstrated an inverse, non-significant trend of increase in lipid concentrations during the whole study period. Our findings suggest strikingly different inter-gender lipid responses to a dietary model of low-fat, mediated by vitamin D status. Further studies are necessary to reveal the underlying mechanisms and assess the importance of these differences with respect to cardiovascular health and the benefit of vitamin D supplementation strategies.
Collapse
Affiliation(s)
- Spyridon N Karras
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgios Dimakopoulos
- Medical Statistics, Epirus Science and Technology Park Campus of the University of Ioannina, Ioannina, Greece
| | - Lilian Adamidou
- Department of Dietetics and Nutrition, AHEPA University Hospital, Thessaloniki, Greece
| | - Paraskevi Karalazou
- Laboratory of Biochemistry, AHEPA General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Thisiadou
- Laboratory of Biochemistry, AHEPA General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alkiviadis Bais
- Aristotle University of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | | | - Eleni Manthou
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biochemistry, AHEPA General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|