1
|
Hoeg-Jensen T, Kruse T, Brand CL, Sturis J, Fledelius C, Nielsen PK, Nishimura E, Madsen AR, Lykke L, Halskov KS, Koščová S, Kotek V, Davis AP, Tromans RA, Tomsett M, Peñuelas-Haro G, Leonard DJ, Orchard MG, Chapman A, Invernizzi G, Johansson E, Granata D, Hansen BF, Pedersen TA, Kildegaard J, Pedersen KM, Refsgaard HHF, Alifrangis L, Fels JJ, Neutzsky-Wulff AV, Sauerberg P, Slaaby R. Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature 2024; 634:944-951. [PMID: 39415004 PMCID: PMC11499270 DOI: 10.1038/s41586-024-08042-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.
Collapse
Affiliation(s)
| | - Thomas Kruse
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Jeppe Sturis
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | - Peter K Nielsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Alice R Madsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Lennart Lykke
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Kim S Halskov
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | | | | | | | | | | | - Eva Johansson
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Daniele Granata
- Digital Science and Innovation, Novo Nordisk, Bagsværd, Denmark
| | - Bo F Hansen
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | - Johannes J Fels
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Per Sauerberg
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark.
| |
Collapse
|
2
|
Cefalu WT, Arreaza-Rubín G. Engineering an Insulin Complex to Treat Diabetes. N Engl J Med 2024; 390:2214-2216. [PMID: 38899701 DOI: 10.1056/nejmcibr2400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- William T Cefalu
- From the Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- From the Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Xu R, Jap E, Gubbins B, Hagemeyer CE, Karas JA. Semisynthesis of A6-A11 lactam insulin. J Pept Sci 2024; 30:e3542. [PMID: 37697741 PMCID: PMC10909544 DOI: 10.1002/psc.3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.
Collapse
Affiliation(s)
- Rong Xu
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Edwina Jap
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Ben Gubbins
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| | | | - John A. Karas
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| |
Collapse
|
4
|
Куркин ДВ, Бакулин ДА, Робертус АИ, Колосов ЮА, Крысанов ИС, Морковин ЕИ, Стрыгин АВ, Горбунова ЮВ, Макаренко ИЕ, Драй РВ, Макарова ЕВ, Павлова ЕВ, Кудрин РА, Иванова ОВ. [Evolution of insulin therapy: past, present, future]. PROBLEMY ENDOKRINOLOGII 2024; 69:86-101. [PMID: 38311998 PMCID: PMC10848184 DOI: 10.14341/probl13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 02/06/2024]
Abstract
2021 marks the 100th anniversary of the discovery of insulin, an event that forever changed the lives of people with diabetes mellitus. At present patients around the world experience the miracle of insulin therapy every day. A disease that used to kill children and teenagers in 2 years in 1920 has become a disease that can be controlled with a possibility to lead a long productive life. Over the past century, the great discovery of Banting, Best and Collip has forever changed the world and saved millions of lives. This review is devoted to the history of the development of insulin and its further improvement: from the moment of discovery to the present days. Various generations of insulin are considered: from animals to modern ultrashort and basal analogues. The article ends with a brief review of current trends in the development of new delivery methods and the development of new insulin molecules. Over the past century, insulin therapy has come a long way, which has significantly improved the quality of life of our patients. But research is actively continuing, including in the field of alternative methods of insulin delivery, which are more convenient for the patient, as well as in the development of «smart» molecules that will have a glucose-dependent effect.
Collapse
Affiliation(s)
- Д. В. Куркин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Д. А. Бакулин
- Волгоградский государственный медицинский университет
| | - А. И. Робертус
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Ю.А
| | - Ю. А. Колосов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - И. С. Крысанов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Е. И. Морковин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - А. В. Стрыгин
- Волгоградский государственный медицинский университет
| | - Ю. В. Горбунова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | | | | | - Е. В. Макарова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Университет Сантьяго де Компостела
| | - Е. В. Павлова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Р. А. Кудрин
- Волгоградский государственный медицинский университет
| | - О. В. Иванова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| |
Collapse
|
5
|
Zhang Y, Hung-Chieh Chou D. From Natural Insulin to Designed Analogs: A Chemical Biology Exploration. Chembiochem 2023; 24:e202300470. [PMID: 37800626 DOI: 10.1002/cbic.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
6
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Yang JF, Yang S, Gong X, Bakh NA, Zhang G, Wang AB, Cherrington AD, Weiss MA, Strano MS. In Silico Investigation of the Clinical Translatability of Competitive Clearance Glucose-Responsive Insulins. ACS Pharmacol Transl Sci 2023; 6:1382-1395. [PMID: 37854621 PMCID: PMC10580396 DOI: 10.1021/acsptsci.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/20/2023]
Abstract
The glucose-responsive insulin (GRI) MK-2640 from Merck was a pioneer in its class to enter the clinical stage, having demonstrated promising responsiveness in in vitro and preclinical studies via a novel competitive clearance mechanism (CCM). The smaller pharmacokinetic response in humans motivates the development of new predictive, computational tools that can improve the design of therapeutics such as GRIs. Herein, we develop and use a new computational model, IM3PACT, based on the intersection of human and animal model glucoregulatory systems, to investigate the clinical translatability of CCM GRIs based on existing preclinical and clinical data of MK-2640 and regular human insulin (RHI). Simulated multi-glycemic clamps not only validated the earlier hypothesis of insufficient glucose-responsive clearance capacity in humans but also uncovered an equally important mismatch between the in vivo competitiveness profile and the physiological glycemic range, which was not observed in animals. Removing the inter-species gap increases the glucose-dependent GRI clearance from 13.0% to beyond 20% for humans and up to 33.3% when both factors were corrected. The intrinsic clearance rate, potency, and distribution volume did not apparently compromise the translation. The analysis also confirms a responsive pharmacokinetics local to the liver. By scanning a large design space for CCM GRIs, we found that the mannose receptor physiology in humans remains limiting even for the most optimally designed candidate. Overall, we show that this computational approach is able to extract quantitative and mechanistic information of value from a posteriori analysis of preclinical and clinical data to assist future therapeutic discovery and development.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Sungyun Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Naveed A. Bakh
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ge Zhang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Allison B. Wang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Alan D. Cherrington
- Molecular
Physiology and Biophysics, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael A. Weiss
- Department
of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michael S. Strano
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Zhang J, Zheng Y, Lee J, Hoover A, King SA, Chen L, Zhao J, Lin Q, Yu C, Zhu L, Wu X. Continuous Glucose Monitoring Enabled by Fluorescent Nanodiamond Boronic Hydrogel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203943. [PMID: 36646501 PMCID: PMC9982560 DOI: 10.1002/advs.202203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Continuous monitoring of glucose allows diabetic patients to better maintain blood glucose level by altering insulin dosage or diet according to prevailing glucose values and thus to prevent potential hyperglycemia and hypoglycemia. However, current continuous glucose monitoring (CGM) relies mostly on enzyme electrodes or micro-dialysis probes, which suffer from insufficient stability, susceptibility to corrosion of electrodes, weak or inconsistent correlation, and inevitable interference. A fluorescence-based glucose sensor in the skin will likely be more stable, have improved sensitivity, and can resolve the issues of electrochemical interference from the tissue. This study develops a fluorescent nanodiamond boronic hydrogel system in porous microneedles for CGM. Fluorescent nanodiamond is one of the most photostable fluorophores with superior biocompatibility. When surface functionalized, the fluorescent nanodiamond can integrate with boronic polymer and form a hydrogel, which can produce fluorescent signals in response to environmental glucose concentration. In this proof-of-concept study, the strategy for building a miniatured device with fluorescent nanodiamond hydrogel is developed. The device demonstrates remarkable long-term photo and signal stability in vivo with both small and large animal models. This study presents a new strategy of fluorescence based CGM toward treatment and control of diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Yongjun Zheng
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Burns Center of Changhai HospitalShanghaiChina
| | - Jimmy Lee
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Alex Hoover
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Sarah Ann King
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Lifeng Chen
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Jing Zhao
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Qiuning Lin
- School of Biomedical Engineering Shanghai Jiao Tong University800 Dong Chuan RoadShanghai200240China
| | - Cunjiang Yu
- Departments of Engineering Science and Mechanics, Biomedical Engineering, Materials Science and EngineeringMaterials Research InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Linyong Zhu
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Xiaoyang Wu
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| |
Collapse
|
9
|
Rogol AD, Laffel LM, Bode B, Sperling MA. Celebration of a century of insulin therapy in children with type 1 diabetes. Arch Dis Child 2023; 108:3-10. [PMID: 35725290 PMCID: PMC9763182 DOI: 10.1136/archdischild-2022-323975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
Insulin is the key anabolic hormone of metabolism, with clear effects on glycaemia. Near-complete insulin deficiency occurs in type 1 diabetes (T1D), the predominant form affecting children, and uniformly fatal until the discovery of insulin. By the early 20th century, it was known that T1D was caused by the lack of a factor from pancreatic islets, but isolation of this substance proved elusive. In 1921, an unusual team in Toronto comprising a surgeon, a medical student, a physiologist and a biochemist successfully isolated a glucose-lowering pancreatic endocrine secretion. They treated an emaciated 14-year-old boy in 1922, restoring his health and allowing him to live for another 13 years. Thus began an era of remarkable progress and partnership between academia and the pharmaceutical industry to produce drugs that benefit sick people. The Toronto team received the 1923 Nobel Prize, and more Nobel Prizes for work with insulin followed: for elucidation of its amino acid sequence and crystalline structure, and for its role in the development of radioimmunoassays to measure circulating hormone concentrations. Human insulin was the first hormone synthesised by recombinant methods, permitting modifications to enable improved absorption rates and alterations in duration of action. Coupled with delivery via insulin pens, programmable pumps and continuous glucose monitors, metabolic control and quality of life vastly improved and T1D in children was converted from uniformly fatal to a manageable chronic condition. We describe this remarkable ongoing story as insulin remains a paradigm for human ingenuity to heal nature's maladies.
Collapse
Affiliation(s)
- Alan D Rogol
- Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Lori M Laffel
- Pediatric, Adolescent and Young Adult Section, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia, USA
| | - Mark A Sperling
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Pei X, Wang H, Xu P, Liang K, Yuan L. The core autophagy protein ATG5 controls the polarity of the Golgi apparatus and insulin secretion of pancreatic beta cells. Biochem Biophys Res Commun 2022; 629:26-33. [PMID: 36095911 DOI: 10.1016/j.bbrc.2022.08.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic beta cells are insulin-producing cells that are structurally and functionally polarized in the islets of Langerhans. The organization and position of the Golgi complex play a key role in maintaining a polarized cell state, but the factors and molecular mechanisms determining the Golgi polarization of pancreatic beta cells are still unknown. In the current study, using pancreatic beta cell-specific Atg5 knockout mice, we found that Atg5, an essential gene for autophagy, plays a pivotal role in regulating Golgi integrity and polarization by affecting the expression of genes involved in vesicle transport. Deletion of Atg5 led to endoplasmic reticulum (ER) stress and impaired the distribution of proinsulin and insulin secretion of pancreatic beta cells, which further exacerbates diabetes. These results contribute to a comprehensive understanding of autophagy-mediated Golgi polarization and its regulation of the function of pancreatic beta cells.
Collapse
Affiliation(s)
- Xintong Pei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiyu Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical University, Beijing, China.
| | - Lin Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Namazi H, Pooresmaeil M, Oskooie MN. New glyco-copolymers containing α-D-glucofuranose and α-D-mannofuranose groups synthesized by free-radical polymerization of sugar-based monomers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03731-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Wu M, Carballo-Jane E, Zhou H, Zafian P, Dai G, Liu M, Lao J, Kelly T, Shao D, Gorski J, Pissarnitski D, Kekec A, Chen Y, Previs SF, Scapin G, Gomez-Llorente Y, Hollingsworth SA, Yan L, Feng D, Huo P, Walford G, Erion MD, Kelley DE, Lin S, Mu J. Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat Commun 2022; 13:942. [PMID: 35177603 PMCID: PMC8854621 DOI: 10.1038/s41467-022-28561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Alloxan/administration & dosage
- Alloxan/toxicity
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- CHO Cells
- Cricetulus
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- HEK293 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/pharmacology
- Insulin/therapeutic use
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Rats
- Receptor, Insulin/agonists
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Margaret Wu
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | - Ge Dai
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Mindy Liu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Julie Lao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Terri Kelly
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Dan Shao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | | | | | - Ahmet Kekec
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Ying Chen
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Pei Huo
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - James Mu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Conlon JM, O'Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review. Peptides 2022; 147:170706. [PMID: 34861327 DOI: 10.1016/j.peptides.2021.170706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022]
Abstract
The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal β-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with β-cell proliferation, protection of β-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in β-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in β-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Finbarr P M O'Harte
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
15
|
Abstract
At the time of its first clinical application 100 years ago, insulin was presented as the cure for people with diabetes mellitus. That transpired to be an overstatement, yet insulin has proven to be the lifesaver for people with type 1 diabetes mellitus and an essential therapy for many with type 2 diabetes mellitus or other forms of diabetes mellitus. Since its discovery, insulin (a molecule of only 51 amino acids) has been the subject of pharmaceutical research and development that has paved the way for other protein-based therapies. From purified animal-extracted insulin and human insulin produced by genetically modified organisms to a spectrum of insulin analogues, pharmaceutical laboratories have strived to tailor the preparations to the needs of patients. Nonetheless, overall glycaemic control often remains poor as exogenous insulin is still not able to mimic the physiological insulin profile. Circumventing subcutaneous administration and the design of analogues with profiles that mimic that of physiological insulin are ongoing areas of research. Novel concepts, such as once-weekly insulins or glucose-dependent and oral insulins, are on the horizon but their real-world effectiveness still needs to be proven. Until a true cure for type 1 diabetes mellitus is found and the therapeutic arsenal for other forms of diabetes mellitus is expanded, insulin will remain central in the treatment of many people living with diabetes mellitus.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| | - Pieter-Jan Martens
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abstract
Insulin therapy has a long history at the cutting edge of technological development through purification, extended-action, molecular chemistry, and devices, and in support technologies including self-measurement and patient education. But unmet needs remain large. Today's therapy cannot deliver minute-to-minute control of glucose levels, and cannot imitate the reflex/incretin driven physiological insulin delivery at mealtimes. Further it depends on a raft of devices for administration several times a day, devices liked for their functionality, but disliked as an intrusive reminder of the condition, several times a day. Approaches to overcoming these barriers include closed-loop systems and further modification of insulin formulations, but are limited by fundamental underlying difficulties. While clinical studies of oral insulin are in progress, the barriers to success look daunting. Development of small-molecule approaches (insulin-mimetic tablets) appears to have stalled, while concepts for glucose-responsive insulin as yet fail to deliver the necessary insulin-to-glucose gradient. Gene therapy, feasible in animals in preliminary studies, is not capable of providing feedback control. Transplantation of cultured islets and islet B-cells from stem cells thus looks to the be the best long-term prospect for insulin delivery in terms of overcoming the above barriers, but is a true biotechnological tour-de-force which will take time to mature.
Collapse
Affiliation(s)
- Philip Home
- Translational and Clinical Research Institute, Newcastle University, UK.
| |
Collapse
|
17
|
Conlon JM, Flatt PR, Bailey CJ. Recent advances in peptide-based therapy for Type 2 diabetes and obesity. Peptides 2021; 145:170652. [PMID: 34555424 DOI: 10.1016/j.peptides.2021.170652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | | |
Collapse
|
18
|
Industry News update covering July 2021. Ther Deliv 2021; 12:757-774. [PMID: 34632811 DOI: 10.4155/tde-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Home PD, Mehta R. Insulin therapy development beyond 100 years. Lancet Diabetes Endocrinol 2021; 9:695-707. [PMID: 34480874 DOI: 10.1016/s2213-8587(21)00182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The first insulin preparation capable of consistently lowering blood glucose was developed in 1921. But 100 years later, blood glucose control with insulin in people with diabetes is nearly universally suboptimal, with essentially the same molecule still delivered by the same inappropriate subcutaneous injection route. Bypassing this route with oral administration appears to have become technologically feasible, accelerating over the past 50 years, either with packaged insulin peptides or by chemical insulin mimetics. Some of the problems of prospective unregulated absorption of insulin into the circulation from subcutaneous depots might be overcome with glucose-responsive insulins. Approaches to these problems could be modification of the peptide by adducts, or the use of nanoparticles or insulin patches, which deliver insulin according to glucose concentration. Some attention has been paid to targeting insulin preferentially to different organs, either by molecular engineering of insulin, or with adducts. But all these approaches still have problems in even beginning to match the responsiveness of physiological insulin delivery to metabolic requirements, both prandially and basally. As would be expected, for all these technically complex approaches, many examples of abandoned development can be found. Meanwhile, it is becoming possible to change the duration of action of subcutaneous injected insulin analogues to act even more rapidly for meals, and towards weekly insulin for basal administration. The state of the art of all these approaches, and the barriers to success, are reviewed here.
Collapse
Affiliation(s)
- Philip D Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Roopa Mehta
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
20
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
21
|
Pedersen-Bjergaard U, Fabricius TW, Thorsteinsson B. Synthetic long-acting insulin analogs for the management of type 1 diabetes: an update. Expert Opin Pharmacother 2021; 22:2251-2259. [PMID: 34467826 DOI: 10.1080/14656566.2021.1970136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Type 1 diabetes is characterized by insulin deficiency and requires near-physiological insulin replacement. In most patients, this is accomplished by basal bolus therapy consisting of a long-acting basal insulin administered once or twice daily and short-acting insulin with main meals. Several long-acting insulin analogs have been developed to optimize basal insulin therapy. AREAS COVERED This paper reviews the design of - and data from - randomized controlled trials (RCTs) to assess glucose lowering efficacy and safety of long-acting insulin analogs for the treatment of type 1 diabetes. EXPERT OPINION Due to the non-inferiority treat-to-target design of insulin, RCTs treatment differences primarily appear as differences in hypoglycemia risk. Data suggest that the first generation long-acting insulin analogs insulin glargine U100 and insulin detemir have a similar glucose lowering efficacy compared to NPH insulin but a lower risk of hypoglycemia, particularly during nighttime. The newer analogs insulin glargine U300 and insulin degludec provide non-inferior efficacy, although insulin glargine U300 is less potent unit-to-unit. Insulin degludec reduces hypoglycemia risk compared to insulin glargine U100. Future studies should explore the potential for further improvement of treatment results in type 1 diabetes by a structured approach to personalization of basal insulin therapy.
Collapse
Affiliation(s)
- Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital Hillerød, Hillerød, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital Hillerød, Hillerød, Denmark
| | - Birger Thorsteinsson
- Department of Endocrinology and Nephrology, Nordsjællands Hospital Hillerød, Hillerød, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Lee SH, Yoon KH. A Century of Progress in Diabetes Care with Insulin: A History of Innovations and Foundation for the Future. Diabetes Metab J 2021; 45:629-640. [PMID: 34610718 PMCID: PMC8497924 DOI: 10.4093/dmj.2021.0163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
The year 2021 marks the 100th anniversary of the discovery of insulin, which has greatly changed the lives of people with diabetes and become a cornerstone of advances in medical science. A rapid bench-to-bedside application of the lifesaving pancreatic extract and its immediate commercialization was the result of a promising idea, positive drive, perseverance, and collaboration of Banting and colleagues. As one of the very few proteins isolated in a pure form at that time, insulin also played a key role in the development of important methodologies and in the beginning of various fields of modern science. Since its discovery, insulin has evolved continuously to optimize the care of people with diabetes. Since the 1980s, recombinant DNA technology has been employed to engineer insulin analogs by modifying their amino acid sequence, which has resulted in the production of insulins with various profiles that are currently used. However, unmet needs in insulin treatment still exist, and several forms of future insulins are under development. In this review, we discuss the past, present, and future of insulin, including a history of ceaseless innovations and collective intelligence. We believe that this story will be a solid foundation and an unerring guide for the future.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Corresponding author: Kun-Ho Yoon, https://orcid.org/0000-0002-9109-2208, Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul 06591, Korea E-mail:
| |
Collapse
|
23
|
Kurtzhals P, Nishimura E, Haahr H, Høeg-Jensen T, Johansson E, Madsen P, Sturis J, Kjeldsen T. Commemorating insulin's centennial: engineering insulin pharmacology towards physiology. Trends Pharmacol Sci 2021; 42:620-639. [PMID: 34148677 DOI: 10.1016/j.tips.2021.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.
Collapse
Affiliation(s)
- Peter Kurtzhals
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark.
| | - Erica Nishimura
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Hanne Haahr
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Høeg-Jensen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Eva Johansson
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Peter Madsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Jeppe Sturis
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Kjeldsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| |
Collapse
|
24
|
Di Bartolo P, Eckel RH. Living with Insulin: The story of insulin from people with diabetes. Diabetes Res Clin Pract 2021; 176:108857. [PMID: 33965450 DOI: 10.1016/j.diabres.2021.108857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
The history of insulin is rightly considered one of the most beautiful stories in medicine which goes even further than the extraordinary result of tens of millions of lives saved. Without a doubt, it constitutes a major achievement for medical science which, especially in the last 50 years, has led to an impressive acceleration in the succession of new treatment opportunities. We are going to describe the history of insulin therapy, the history we lived from two different angles as people living with type 1 diabetes, and obviously also as diabetologists, but as diabetologists with diabetes. Without a doubt, insulin and his story constitutes a major achievement for medical science which has led to an impressive acceleration in the succession of new treatment opportunities. Care opportunities that have not only allowed fundamental improvements in outcomes, but have also and above all impacted the quality of life of people with diabetes. Summarizing one hundred years of insulin is no simple endeavor. In our view, it would be easier, and probably more befitting, to focus on the last 50 years, namely the period we have lived closely and personally together with insulin. More to the point, these last 50 years have witnessed a dramatic acceleration of research and innovation. In our opinion, it is precisely the innovations in insulin therapy introduced from the last decades that fully justify the description of events in this incredible period as "the miracle of insulin". We'll describe how the most important innovations introduced in the last decades had impact on what we have nowadays, as patients and diabetologits: today, we can finally adapt insulin therapy to the patient's life or lifestyle, reversing what was the perception of patients until 20 years, when insulin was considered, by the most, as an obstacle, which seemed insurmountable to some, to a free and unconstrained life.
Collapse
Affiliation(s)
- Paolo Di Bartolo
- Diabetes Clinic of Ravenna, Ravenna Dept of Internal Medicine, Romagna Local Health Authority, Italy.
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, United States
| |
Collapse
|
25
|
Abstract
Although insulin therapy was already introduced one-hundred years ago, insulin formulations are still being refined to reduce the risk of hypoglycaemia and of other insulin side effects such as weight gain. This review summarises the available clinical data for some ongoing developments of new insulins and evaluates their potential for future insulin therapy. Once-weekly insulins will most likely be the next addition to the insulin armamentarium. First clinical studies indicate low peak-to-trough fluctuations with these insulins indicating the potential to achieve better glycaemic control or reduce hypoglycaemic events versus available basal insulins. Proof-of-concept has also been established for hepato-preferential and oral insulins; however, adverse effects and low bioavailability still need to be overcome. It will take much longer, before glucose-responsive "smart" insulins will be available. A first clinical study and numerous pre-clinical data show the potential, but also the challenges of designing an insulin that quickly reacts to blood glucose changes and prevents hypoglycaemia and pronounced hyperglycaemia. Nevertheless, it is reassuring that the search for better insulins has never stopped since its first use one-hundred years ago and is still ongoing. New developments have a high potential of further improving the safety and efficacy of insulin therapy in the future.
Collapse
|
26
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|