1
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
2
|
He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6. THE PLANT CELL 2024; 37:koae276. [PMID: 39383255 DOI: 10.1093/plcell/koae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Plant height is an important agronomic characteristic of rice (Oryza sativa L.). Map-based cloning analyses of a natural semi-dwarf rice mutant with inwardly curled leaves found in the field revealed that the defects were due to a mutation of a SHAQKYF-class MYB family transcription factor, OsKANADI1 (OsKAN1). OsKAN1 directly bound to the OsYABBY5 (OsYAB5) promoter to repress its expression and interacted with OsYAB5 to form a functional OsKAN1-OsYAB5 complex. GIBERELLIN 2-OXIDASE6 (OsGA2ox6), encoding an enzyme in the gibberellin (GA) catabolic pathway, was activated by OsYAB5. Furthermore, the OsKAN1-OsYAB5 complex suppressed the inhibitory effect of OsKAN1 toward OsYAB5 and inhibited OsYAB5-induced OsGA2ox6 expression. The proOsKAN1:OsYAB5 transgenic plants were taller than wild-type plants, whereas oskan1 proOsKAN1:OsYAB5 plants exhibited a severe dwarf phenotype due to the absence of the OsKAN1-OsYAB5 complex. The OsKAN1-OsYAB5 complex modulated OsGA2ox6 expression, thereby regulating the levels of bioactive gibberellins and, consequently, plant height. This study elucidated the mechanism underlying the effect of the OsKAN1-OsYAB5-OsGA2ox6 regulatory pathway on plant height at different positions in rice stems and provided insights on stem development and candidate genes for the aerial architecture improvement of crop plants.
Collapse
Affiliation(s)
- Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Wu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Caiyun Yin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yiqing Tan
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Lv
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiqiang Liao
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
3
|
Cheng J, Jia Y, Hill C, He T, Wang K, Guo G, Shabala S, Zhou M, Han Y, Li C. Diversity of Gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement. J Adv Res 2024; 66:105-118. [PMID: 38199453 PMCID: PMC11674783 DOI: 10.1016/j.jare.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Gibberellin (GA) is a vital phytohormone in regulating plant growth and development. During the "Green Revolution", modification of GA-related genes created semi-dwarfing phenotype in cereal crops but adversely affected grain weight. Gibberellin 2-oxidases (GA2oxs) in barley act as key catabolic enzymes in deactivating GA, but their functions are still less known. OBJECTIVES This study investigates the physiological function of two HvGA2ox genes in barley and identifies novel semi-dwarf alleles with minimum impacts on other agronomic traits. METHODS Virus-induced gene silencing and CRISPR/Cas9 technology were used to manipulate gene expression of HvGA2ox9 and HvGA2ox8a in barley and RNA-seq was conducted to compare the transcriptome between wild type and mutants. Also, field trials in multiple environments were performed to detect the functional haplotypes. RESULTS There were ten GA2oxs that distinctly expressed in shoot, tiller, inflorescence, grain, embryo and root. Knockdown of HvGA2ox9 did not affect plant height, while ga2ox8a mutants generated by CRISPR/Cas9 increased plant height and significantly altered seed width and weight due to the increased bioactive GA4 level. RNA-seq analysis revealed that genes involved in starch and sucrose metabolism were significantly decreased in the inflorescence of ga2ox8a mutants. Furthermore, haplotype analysis revealed one naturally occurring HvGA2ox8a haplotype was associated with decreased plant height, early flowering and wider and heavier seed. CONCLUSION Our results demonstrate the potential of manipulating GA2ox genes to fine tune GA signalling and biofunctions in desired plant tissues and open a promising avenue for minimising the trade-off effects of Green Revolution semi-dwarfing genes on grain size and weight. The knowledge will promote the development of next generation barley cultivars with better adaptation to a changing climate.
Collapse
Affiliation(s)
- Jingye Cheng
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia; Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Camilla Hill
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Tianhua He
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
4
|
Deng S, Jiang S, Liu B, Zhong T, Liu Q, Liu J, Liu Y, Yin C, Sun C, Xu M. ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease. Nat Commun 2024; 15:7576. [PMID: 39217146 PMCID: PMC11365956 DOI: 10.1038/s41467-024-51726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Maize rough dwarf disease (MRDD) threatens maize production globally. The P7-1 effector of the rice black-streaked dwarf virus (RBSDV) targets maize Rab GDP dissociation inhibitor alpha (ZmGDIα) to cause MRDD. However, P7-1 has difficulty recruiting a ZmGDIα variant with an alternative helitron-derived exon 10 (ZmGDIα-hel), resulting in recessive resistance. Here, we demonstrate that P7-1 can recruit another maize protein, gibberellin 2-oxidase 13 (ZmGA2ox7.3), which also exhibits tighter binding affinity for ZmGDIα than ZmGDIα-hel. The oligomerization of ZmGA2ox7.3 is vital for its function in converting bioactive gibberellins into inactive forms. Moreover, the enzymatic activity of ZmGA2ox7.3 oligomers increases when forming hetero-oligomers with P7-1/ZmGDIα, but decreases when ZmGDIα-hel replaces ZmGDIα. Viral infection significantly promotes ZmGA2ox7.3 expression and oligomerization in ZmGDIα-containing susceptible maize, resulting in reduced bioactive GA1/GA4 levels. This causes an auxin/cytokinin imbalance and ultimately manifests as MRDD syndrome. Conversely, in resistant maize, ZmGDIα-hel counters these virus-induced changes, thereby mitigating MRDD severity.
Collapse
Affiliation(s)
- Suining Deng
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Siqi Jiang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, PR China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Qingcai Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jianju Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yuanliang Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Can Yin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Chen Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
5
|
Liu W, Cui J, Ran C, Zhang Y, Liang J, Shao X, Zhang Q, Geng Y, Guo L. Paclobutrazol Enhanced Stem Lodging Resistance of Direct-Seeded Rice by Affecting Basal Internode Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2289. [PMID: 39204725 PMCID: PMC11359414 DOI: 10.3390/plants13162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this study were to explore the mechanism of stem mechanical strength in direct-seeded rice (DSR) as affected by paclobutrazol, especially its related endogenous hormone and cell wall component changes in culm tissue and response to the application of paclobutrazol. Field experiments were conducted in Changchun County, Jilin Province, China, by using two japonica rice varieties, Jiyujing and Jijing305, with soaking seeds in paclobutrazol at concentrations of (0 mg L-1, S0; 50 mg L-1; S1; 100 mg L-1; S2; 150 mg L-1, S3; 200 mg L-1, S4) in 2021 and 2022. The results suggest that the application of paclobutrazol increased the grain yield and reduced the lodging rate of DSR. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments rapidly shortened the length of the basal internode by decreasing the endogenous indole acetic acid (IAA) and gibberellin A3 (GA3) contents in culm tissue. The larger breaking strength (M) was attributed to a higher section modulus (SM) and bending stress (BS). The higher mechanical tissue thickness in culm tissue under paclobutrazol treatments, which was raised by higher endogenous zeatin and zeatin riboside (Z+ZR) content in culm tissue, increased the culm diameter, culm wall thickness, and section modulus (SM) of the internode. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments increased the cellulose content, lignin content, activities of lignin-related enzymes, and expression of key genes in lignin biosynthesis, as well as resulted in a higher bending stress (BS) to enhance the culm breaking strength (M).
Collapse
Affiliation(s)
- Weiyang Liu
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jiehao Cui
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Cheng Ran
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Yuchen Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jianuo Liang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Xiwen Shao
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Yanqiu Geng
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Liying Guo
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Lyu J, Wang D, Sun N, Yang F, Li X, Mu J, Zhou R, Zheng G, Yang X, Zhang C, Han C, Xia G, Li G, Fan M, Xiao J, Bai M. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1989-2006. [PMID: 38412139 PMCID: PMC11182588 DOI: 10.1111/pbi.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.
Collapse
Affiliation(s)
- Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Na Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Fan Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Xuepeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Junyi Mu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Runxiang Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Guolan Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Xin Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Chenxuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Guang‐Min Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Genying Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Centre of Excellence for Plant and Microbial Science (CEPAMS)JIC‐CASBeijingChina
| | - Ming‐Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
7
|
Mei E, He M, Xu M, Tang J, Liu J, Liu Y, Hong Z, Li X, Wang Z, Guan Q, Tian X, Bu Q. OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:771-786. [PMID: 38470298 DOI: 10.1111/jipb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
Collapse
Affiliation(s)
- Enyang Mei
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hong
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenyu Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
8
|
Wang H, Zhang D, Chen M, Meng X, Bai S, Xin P, Yan J, Chu J, Li J, Yu H. Genome editing of 3' UTR-embedded inhibitory region enables generation of gene knock-up alleles in plants. PLANT COMMUNICATIONS 2024; 5:100745. [PMID: 37946411 PMCID: PMC10943523 DOI: 10.1016/j.xplc.2023.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Hongwen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiwei Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya 572024, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Wang H, Chen M, Zhang D, Meng X, Yan J, Chu J, Li J, Yu H. Shaping rice Green Revolution traits by engineering ATG immediate upstream 5'-UTR sequences of OsSBI and OsHTD1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:532-534. [PMID: 37996983 PMCID: PMC10893934 DOI: 10.1111/pbi.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Hongwen Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jijun Yan
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Yazhouwan National LaboratorySanyaChina
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Chen S, Fan X, Song M, Yao S, Liu T, Ding W, Liu L, Zhang M, Zhan W, Yan L, Sun G, Li H, Wang L, Zhang K, Jia X, Yang Q, Yang J. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize. PLANT PHYSIOLOGY 2024; 194:902-917. [PMID: 37934825 DOI: 10.1093/plphys/kiad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/16/2023] [Indexed: 11/09/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.
Collapse
Affiliation(s)
- Shizhan Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaocong Fan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaitao Yao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Wusi Ding
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Menglan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghua Sun
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongdan Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Kang Zhang
- Department of Precision Plant Gene Delivery, Genovo Biotechnology Co. Ltd, Tianjin 301700, China
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Roy J, Soler-Garzón A, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Integrating de novo QTL-seq and linkage mapping to identify quantitative trait loci conditioning physiological resistance and avoidance to white mold disease in dry bean. THE PLANT GENOME 2023; 16:e20380. [PMID: 37602515 DOI: 10.1002/tpg2.20380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
White mold (WM), caused by the ubiquitous fungus Sclerotinia sclerotiorum, is a devastating disease that limits production and quality of dry bean globally. In the present study, classic linkage mapping combined with QTL-seq were employed in two recombinant inbred line (RIL) populations, "Montrose"/I9365-25 (M25) and "Raven"/I9365-31 (R31), with the initial goal of fine-mapping QTL WM5.4 and WM7.5 that condition WM resistance. The RILs were phenotyped for WM reactions under greenhouse (straw test) and field environments. The general region of WM5.4 and WM7.5 were reconfirmed with both mapping strategies within each population. Combining the results from both mapping strategies, WM5.4 was delimited to a 22.60-36.25 Mb interval in the heterochromatic regions on Pv05, while WM7.5 was narrowed to a 0.83 Mb (3.99-4.82 Mb) region on the Pv07 chromosome. Furthermore, additional QTL WM2.2a (3.81-7.24 Mb), WM2.2b (11.18-17.37 Mb, heterochromatic region), and WM2.2c (23.33-25.94 Mb) were mapped to a narrowed genomic interval on Pv02 and WM4.2 in a 0.89 Mb physical interval at the distal end of Pv04 chromosome. Gene models encoding gibberellin 2-oxidase proteins regulating plant architecture are likely candidate genes associated with WM2.2a resistance. Nine gene models encoding a disease resistance protein (quinone reductase family protein and ATWRKY69) found within the WM5.4 QTL interval are putative candidate genes. Clusters of 13 and 5 copies of gene models encoding cysteine-rich receptor-like kinase and receptor-like protein kinase-related family proteins, respectively, are potential candidate genes associated with WM7.5 resistance and most likely trigger physiological resistance to WM. Acquired knowledge of the narrowed major QTL intervals, flanking markers, and candidate genes provides promising opportunities to develop functional molecular markers to implement marker-assisted selection for WM resistant dry bean cultivars.
Collapse
Affiliation(s)
- Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA, USA
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
12
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
13
|
Sun J, Huang S, Lu Q, Li S, Zhao S, Zheng X, Zhou Q, Zhang W, Li J, Wang L, Zhang K, Zheng W, Feng X, Liu B, Kong F, Xiang F. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun 2023; 14:6262. [PMID: 37805547 PMCID: PMC10560287 DOI: 10.1038/s41467-023-41824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.
Collapse
Affiliation(s)
- Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shizhen Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qian Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lili Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenyu Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130000, China.
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Shi J, Zhang F, Wang Y, Zhang S, Wang F, Ma Y. The cytochrome P450 gene, MdCYP716B1, is involved in regulating plant growth and anthracnose resistance in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111832. [PMID: 37586420 DOI: 10.1016/j.plantsci.2023.111832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Apple is one of the main cultivated fruit trees worldwide. Both biotic and abiotic stresses, especially fungal diseases, have serious effects on the growth and fruit quality of apples. Cytochrome P450, the largest protein family in plants, is critical for plant growth and stress responses. However, the function of apple P450 remains poorly understood. In our previous study, 'Hanfu' autotetraploid showed dwarfism and fungal resistance phenotypes compared to 'Hanfu' diploid. Digital gene expression sequencing analysis revealed that the transcript level of MdCYP716B1 was significantly downregulated in the autotetraploid apple cultivar 'Hanfu'. In this study, we identified and cloned the MdCYP716B1 gene from 'Hanfu' apples. The MdCYP716B1 protein fused to a green fluorescent protein was localized in the cytoplasm. We constructed the plant overexpression vector and RNAi vector of MdCYP716B1, and the apple 'GL-3' was transformed by Agrobacterium-mediated transformation to obtain transgenic plants. Overexpressing and RNAi silencing transgenic plants exhibited an increase and decrease in plant height to 'GL-3', respectively. RNAi silencing transgenic plants displayed increased resistance to Colletotrichum gloeosporioides, whereas overexpression transgenic plants were more sensitive to C. gloeosporioides. According to transcriptome analysis, the transcript levels of gibberellin biosynthesis genes were upregulated in MdCYP716B1-overexpression plants. In contrast with 'GL-3', GA3 accumulation was rose in MdCYP716B1-OE lines and impaired in MdCYP716B1-RNAi lines. Collectively, our data indicate that MdCYP716B1 regulates plant growth and resistance to fungal stress.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yangshu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
15
|
Shen Y, Adnan M, Ma F, Kong L, Wang M, Jiang F, Hu Q, Yao W, Zhou Y, Zhang M, Huang J. A high-throughput phenotyping method for sugarcane rind penetrometer resistance and breaking force characterization by near-infrared spectroscopy. PLANT METHODS 2023; 19:101. [PMID: 37770966 PMCID: PMC10540387 DOI: 10.1186/s13007-023-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.
Collapse
Affiliation(s)
- Yinjuan Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi China-ASEAN Youth Industrial Park (Chongzuo Agricultural Hi-Tech Industry Demo Zone), Chongzuo, 532200, Guangxi, China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fumin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Liyuan Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Maoyao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fuhong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qian Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yongfang Zhou
- Nanning Sugar Industry Co., LTD, Nanning, 530028, Guangxi, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jiangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
16
|
Peng S, Liu Y, Xu Y, Zhao J, Gao P, Liu Q, Yan S, Xiao Y, Zuo SM, Kang H. Genome-Wide Association Study Identifies a Plant-Height-Associated Gene OsPG3 in a Population of Commercial Rice Varieties. Int J Mol Sci 2023; 24:11454. [PMID: 37511211 PMCID: PMC10380248 DOI: 10.3390/ijms241411454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Plant height is one of the most crucial components of plant structure. However, due to its complexity, the genetic architecture of rice plant height has not been fully elucidated. In this study, we performed a genome-wide association study (GWAS) to determine rice plant height using 178 commercial rice varieties and identified 37 loci associated with rice plant height (LAPH). Among these loci, in LAPH2, we identified a polygalacturonase gene, OsPG3, which was genetically and functionally associated with rice plant height. The rice plant exhibits a super dwarf phenotype when the knockout of the OsPG3 gene occurs via CRISPR-Cas9 gene-editing technology. RNA-Seq analysis indicated that OsPG3 modulates the expression of genes involved in phytohormone metabolism and cell-wall-biosynthesis pathways. Our findings suggest that OsPG3 plays a vital role in controlling rice plant height by regulating cell wall biosynthesis. Given that rice architecture is one of the most critical phenotypes in rice breeding, OsPG3 has potential in rice's molecular design breeding toward an ideal plant height.
Collapse
Affiliation(s)
- Shasha Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchen Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Peng Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shi-Min Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Li X, Dong J, Zhu W, Zhao J, Zhou L. Progress in the study of functional genes related to direct seeding of rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:46. [PMID: 37309311 PMCID: PMC10248684 DOI: 10.1007/s11032-023-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Rice is a major food crop in the world. Owing to the shortage of rural labor and the development of agricultural mechanization, direct seeding has become the main method of rice cultivation. At present, the main problems faced by direct seeding of rice are low whole seedling rate, serious weeds, and easy lodging of rice in the middle and late stages of growth. Along with the rapid development of functional genomics, the functions of a large number of genes have been confirmed, including seed vigor, low-temperature tolerance germination, low oxygen tolerance growth, early seedling vigor, early root vigor, resistance to lodging, and other functional genes related to the direct seeding of rice. A review of the related functional genes has not yet been reported. In this study, the genes related to direct seeding of rice are summarized to comprehensively understand the genetic basis and mechanism of action in direct seeding of rice and to lay the foundation for further basic theoretical research and breeding application research in direct seeding of rice.
Collapse
Affiliation(s)
- Xuezhong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Wen Zhu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
| |
Collapse
|
18
|
Liu Y, Shen K, Yin C, Xu X, Yu X, Ye B, Sun Z, Dong J, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Wang Z, Wu H, Liu D, Zhang L, Shen L, Hao Y, Lu F, Guo Z. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biol 2023; 24:114. [PMID: 37173729 PMCID: PMC10176713 DOI: 10.1186/s13059-023-02932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
19
|
Ouellette L, Anh Tuan P, Toora PK, Yamaguchi S, Ayele BT. Heterologous functional analysis and expression patterns of gibberellin 2-oxidase genes of barley (Hordeum vulgare L.). Gene 2023; 861:147255. [PMID: 36746354 DOI: 10.1016/j.gene.2023.147255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The level of bioactive gibberellins (GAs) in plants is regulated partly by their inactivation, mainly by the action of GA 2-oxidases (GA2oxs). This study identified three new GA2ox genes in barley: HvGA2ox1, HvGA2ox3 and HvGA2ox6. Analysis of their nucleotide and putative amino acid sequences revealed that they share high sequence identity with other plant GA2oxs and their corresponding proteins. Phylogenetic analysis revealed the HvGA2ox1, HvGA2ox3 and HvGA2ox6 belong to GA2ox structural classes II, I, and III, respectively. Feeding the HvGA2ox1 and HvGA2ox3 recombinant proteins with the C19-GAs, GA1 and GA20, resulted in the production of GA8 and GA29, respectively, with no product detected when they were fed with the C20-GA, GA12. Whereas the HvGA2ox6 recombinant protein was able to convert GA12 to GA110, and no product was detected when it was fed with GA1 or GA20. HvGA2ox1 and HvGA2ox3 were highly expressed in internodes and the endosperm of maturing seeds while HvGA2ox6 was predominantly expressed in the embryos. Salinity stress upregulated the expression of all three genes in seedling tissues. Our results indicate that HvGA2ox1, HvGA2ox3 and HvGA2ox6 encode functional GA2oxs that can regulate GA levels, and therefore growth and development of a barley plant, and its interaction with environment.
Collapse
Affiliation(s)
- Luc Ouellette
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
20
|
Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, Li Q, Guo L, Yu S, Qian Q, Zhang G. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:819-838. [PMID: 36597711 PMCID: PMC10037157 DOI: 10.1111/pbi.13999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang ProvinceResearch Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhouChina
| | - Li Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Mengyu Zhou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jinqiang Nian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiong Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiangsu Cen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiting Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhihai Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
21
|
Hong J, Su S, Wang L, Bai S, Xu J, Li Z, Betts N, Liang W, Wang W, Shi J, Zhang D. Combined genome-wide association study and epistasis analysis reveal multifaceted genetic architectures of plant height in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1295-1311. [PMID: 36734269 DOI: 10.1111/pce.14557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Plant height (PH) in rice (Oryza sativa) is an important trait for its adaptation and agricultural performance. Discovery of the semi-dwarf1 (SD1) mutation initiated the Green Revolution, boosting rice yield and fitness, but the underlying genetic regulation of PH in rice remains largely unknown. Here, we performed genome-wide association study (GWAS) and identified 12 non-repetitive QTL/genes regulating PH variation in 619 Asian cultivated rice accessions. One of these was an SD1 structural variant, not normally detected in standard GWAS analyses. Given the strong effect of SD1 on PH, we also divided 619 accessions into subgroups harbouring distinct SD1 haplotypes, and found a further 85 QTL/genes for PH, revealing genetic heterogeneity that may be missed by analysing a broad, diverse population. Moreover, we uncovered two epistatic interaction networks of PH-associated QTL/genes in the japonica (Geng)-dominant SD1NIP subgroup. In one of them, the hub QTL/gene qphSN1.4/GAMYB interacted with qphSN3.1/OsINO80, qphSN3.4/HD16/EL1, qphSN6.2/LOC_Os06g11130, and qphSN10.2/MADS56. Sequence variations in GAMYB and MADS56 were associated with their expression levels and PH variations, and MADS56 was shown to physically interact with MADS57 to coregulate expression of gibberellin (GA) metabolic genes OsGA2ox3 and Elongated Uppermost Internode1 (EUI1). Our study uncovered the multifaceted genetic architectures of rice PH, and provided novel and abundant genetic resources for breeding semi-dwarf rice and new candidates for further mechanistic studies on regulation of PH in rice.
Collapse
Affiliation(s)
- Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
22
|
Wang C, Feng X, Yuan Q, Lin K, Zhang X, Yan L, Nan J, Zhang W, Wang R, Wang L, Xue Q, Yang X, Liu Z, Lin S. Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:419-432. [PMID: 36382925 PMCID: PMC9884016 DOI: 10.1111/pbi.13963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%-26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Xiaomin Feng
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
| | - Qingbo Yuan
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Kangxue Lin
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Xiaohui Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Li Yan
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Jianzong Nan
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Wenqi Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Rongsheng Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Lihong Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Qian Xue
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Xiaowen Yang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhixia Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
| | - Shaoyang Lin
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Yang X, Lai Y, Wang L, Zhao M, Wang J, Li M, Chi L, Lv G, Liu Y, Cui Z, Li R, Wu L, Sun B, Zhang X, Jiang S. Isolation of a Novel QTL, qSCM4, Associated with Strong Culm Affects Lodging Resistance and Panicle Branch Number in Rice. Int J Mol Sci 2023; 24:ijms24010812. [PMID: 36614255 PMCID: PMC9821088 DOI: 10.3390/ijms24010812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rice breeders are now developing new varieties with semi-high or even high plant height to further increase the grain yield, and the problem of lodging has re-appeared. We identified a major quantitative trait locus (QTL), qSCM4, for resistance to lodging by using an F2 segregant population and a recombinant self-incompatible line population from the cross between Shennong265 (SN265) and Lijiangxintuanheigu (LTH) after multiple years and multiple environments. Then, the residual heterozygous derived segregant population which consisted of 1781 individual plants, and the BC3F2 segregant population which consisted of 3216 individual plants, were used to shorten the physical interval of qSCM4 to 58.5 kb including 11 genes. DNA sequencing revealed the most likely candidate gene for qSCM4 was Os04g0615000, which encoded a functional protein with structural domains of serine and cysteine. There were 13 DNA sequence changes in LTH compared to SN265 in this gene, including a fragment deletion, two base changes in the 3' UTR region, six base changes in the exons, and four base changes in the introns. A near-isogenic line carrying qSCM4 showed that it improved the lodging resistance through increasing stem thickness by 25.3% and increasing stem folding resistance by 20.3%. Furthermore, it was also discovered that qSCM4 enhanced the primary branch per panicle by 16.7%, secondary branch by per panicle 9.9%, and grain number per panicle by 14.7%. All the above results will give us a valuable genetic resource for concurrently boosting culm strength and lodging resistance, and they will also provide a basis for further research on the lodging resistance mechanism of rice.
Collapse
Affiliation(s)
- Xianli Yang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Yongcai Lai
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Lizhi Wang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Jiayu Wang
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Mingxian Li
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Liyong Chi
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Guoyi Lv
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Youhong Liu
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Rui Li
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Liren Wu
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Bing Sun
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Xijuan Zhang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Correspondence: (X.Z.); (S.J.)
| | - Shukun Jiang
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Qiqihar Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
- Correspondence: (X.Z.); (S.J.)
| |
Collapse
|
24
|
Cheng X, Huang Y, Tan Y, Tan L, Yin J, Zou G. Potentially Useful Dwarfing or Semi-dwarfing Genes in Rice Breeding in Addition to the sd1 Gene. RICE (NEW YORK, N.Y.) 2022; 15:66. [PMID: 36542176 PMCID: PMC9772376 DOI: 10.1186/s12284-022-00615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The "Green revolution" gene sd1 has been used widely in the breeding of modern rice varieties for over half a century. The application of this gene has increased rice yields and thereby supported a significant proportion of the global population. The use of a single gene, however, has raised concerns in the scientific community regarding its durability, especially given the bottleneck in genetic background and the need for large input of fertilizer. New dwarfing or semi-dwarfing genes are needed to alleviate our dependence on the sole "Green revolution" gene. In the past few years, several new dwarfing and semi-dwarfing genes as well as their mutants have been reported. Here, we provide an extensive review of the recent discoveries concerning newly identified genes that are potentially useful in rice breeding, including methods employed to create and effectively screen new rice mutants, the phenotypic characteristics of the new dwarfing and semi-dwarfing mutants, potential values of the new dwarfing and semi-dwarfing genes in rice breeding, and potential molecular mechanisms associated with the newly identified genes.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Yongping Huang
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Jianhua Yin
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China.
| |
Collapse
|
25
|
Dong Z, Tang M, Cui X, Zhao C, Tong C, Liu Y, Xiang Y, Li Z, Huang J, Cheng X, Liu S. Integrating GWAS, linkage mapping and gene expression analyses reveal the genetic control of first branch height in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:1080999. [PMID: 36589070 PMCID: PMC9798901 DOI: 10.3389/fpls.2022.1080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Rapeseed (Brassica napus L.) is a crucial oil crop cultivated worldwide. First branch height, an essential component of rapeseed plant architecture, has an important effect on yield and mechanized harvesting; however, the underlying genetic mechanism remains unclear. In this study, based on the 60K single nucleotide polymorphism array and a recombinant inbred lines population derived from M083 and 888-5, a total of 19 QTLs were detected in five environments, distributed on linkage groups A02, A09, A10, C06, and C07, which explained phenotypic variation ranging from 4.87 to 29.87%. Furthermore, 26 significant SNPs were discovered on Chr.A02 by genome-wide association study in a diversity panel of 324 re-sequencing accessions. The major QTL of the first branch height trait was co-located on Chr.A02 by integrating linkage mapping and association mapping. Eleven candidate genes were screened via allelic variation analysis, inter-subgenomic synteny analysis, and differential expression of genes in parental shoot apical meristem tissues. Among these genes, BnaA02g13010D, which encodes a TCP transcription factor, was confirmed as the target gene according to gene function annotation, haplotype analysis, and full-length gene sequencing, which revealed that TATA insertion/deletion in the promoter region was closely linked to significantly phenotypic differences BnaA02.TCP1 M083 overexpression resulted in decreased branch height and increased branch number in Arabidopsis. These results provide a genetic basis for first branch height and the ideal architecture of B. napus.
Collapse
Affiliation(s)
- Zhixue Dong
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Minqiang Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Haikou, China
| | - Xiaobo Cui
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yueying Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the People's Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
26
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Zheng Y, Zhang S, Luo Y, Li F, Tan J, Wang B, Zhao Z, Lin H, Zhang T, Liu J, Liu X, Guo J, Xie X, Chen L, Liu YG, Chu Z. Rice OsUBR7 modulates plant height by regulating histone H2B monoubiquitination and cell proliferation. PLANT COMMUNICATIONS 2022; 3:100412. [PMID: 35836378 PMCID: PMC9700165 DOI: 10.1016/j.xplc.2022.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Plant height is an important agronomic trait for lodging resistance and yield. Here, we report a new plant-height-related gene, OsUBR7 in rice (Oryza sativa L.); knockout of OsUBR7 caused fewer cells in internodes, resulting in a semi-dwarf phenotype. OsUBR7 encodes a putative E3 ligase containing a plant homeodomain finger and a ubiquitin protein ligase E3 component N-recognin 7 (UBR7) domain. OsUBR7 interacts with histones and monoubiquitinates H2B (H2Bub1) at lysine148 in coordination with the E2 conjugase OsUBC18. OsUBR7 mediates H2Bub1 at a number of chromatin loci for the normal expression of target genes, including cell-cycle-related and pleiotropic genes, consistent with the observation that cell-cycle progression was suppressed in the osubr7 mutant owing to reductions in H2Bub1 and expression levels at these loci. The genetic divergence of OsUBR7 alleles among japonica and indica cultivars affects their transcriptional activity, and these alleles may have undergone selection during rice domestication. Overall, our results reveal a novel mechanism that mediates H2Bub1 in plants, and UBR7 orthologs could be utilized as an untapped epigenetic resource for crop improvement.
Collapse
Affiliation(s)
- Yangyi Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sensen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huifang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tingting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xupeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Wu L, Zheng Y, Jiao F, Wang M, Zhang J, Zhang Z, Huang Y, Jia X, Zhu L, Zhao Y, Guo J, Chen J. Identification of quantitative trait loci for related traits of stalk lodging resistance using genome-wide association studies in maize (Zea mays L.). BMC Genom Data 2022; 23:76. [PMID: 36319954 PMCID: PMC9623923 DOI: 10.1186/s12863-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Stalk lodging is one of the main factors affecting maize (Zea mays L.) yield and limiting mechanized harvesting. Developing maize varieties with high stalk lodging resistance requires exploring the genetic basis of lodging resistance-associated agronomic traits. Stalk strength is an important indicator to evaluate maize lodging and can be evaluated by measuring stalk rind penetrometer resistance (RPR) and stalk buckling strength (SBS). Along with morphological traits of the stalk for the third internodes length (TIL), fourth internode length (FIL), third internode diameter (TID), and the fourth internode diameter (FID) traits are associated with stalk lodging resistance. RESULTS In this study, a natural population containing 248 diverse maize inbred lines genotyped with 83,057 single nucleotide polymorphism (SNP) markers was used for genome-wide association study (GWAS) for six stalk lodging resistance-related traits. The heritability of all traits ranged from 0.59 to 0.72 in the association mapping panel. A total of 85 significant SNPs were identified for the association mapping panel using best linear unbiased prediction (BLUP) values of all traits. Additionally, five candidate genes were associated with stalk strength traits, which were either directly or indirectly associated with cell wall components. CONCLUSIONS These findings contribute to our understanding of the genetic basis of maize stalk lodging and provide valuable theoretical guidance for lodging resistance in maize breeding in the future.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yunxiao Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Fuchao Jiao
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Ming Wang
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Jing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Zhongqin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yaqun Huang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Xiaoyan Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Liying Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yongfeng Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jinjie Guo
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China ,grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| |
Collapse
|
29
|
Ma Z, Jin YM, Wu T, Hu L, Zhang Y, Jiang W, Du X. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1007811. [PMID: 36388558 PMCID: PMC9650310 DOI: 10.3389/fpls.2022.1007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
The AP2/ERF family is a large group of plant-specific transcription factors that play an important role in many biological processes, such as growth, development, and abiotic stress responses. OsDREB2B, a dehydration responsive factor (DRE/CRT) in the DREB subgroup of the AP2/ERF family, is associated with abiotic stress responses, such as cold, drought, salt, and heat stress, in Arabidopsis or rice. However, its role in regulating plant growth and development in rice is unclear. In this study, we reported a new function of OsDREB2B, which negatively regulates plant height in rice. Compared with wild type (WT), OsDREB2B-overexpressing (OE) rice exhibited dwarf phenotypes, such as reduction in plant height, internode length, and seed length, as well as grain yield, while the knockout mutants developed by CRISPR/Cas9 technology exhibited similar phenotypes. Spatial expression analysis revealed that OsDREB2B was highly expressed in the leaf sheaths. Under exogenous GA3 application, OsDREB2B expression was induced, and the length of the second leaf sheath of the OsDREB2B-OE lines recovered to that of the WT. OsDREB2B localized to the nucleus of the rice protoplast acted as a transcription activator and upregulated OsAP2-39 by directly binding to its promoter. OsDREB2B-OE lines reduced endogenous bioactive GA levels by downregulating seven GA biosynthesis genes and upregulating eight GA deactivation genes but not GA signaling genes. The yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that OsDREB2B interacted with OsWRKY21. In summary, our study suggests that OsDREB2B plays a negative role in rice growth and development by regulating GA metabolic gene expression, which is mediated by OsAP2-39 and OsWRKY21, thereby reducing GA content and rice plant height.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yong-Mei Jin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tao Wu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Ying Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
30
|
Wang S, Wang Y. Harnessing hormone gibberellin knowledge for plant height regulation. PLANT CELL REPORTS 2022; 41:1945-1953. [PMID: 35857075 DOI: 10.1007/s00299-022-02904-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Harnessing hormone GA knowledge is a potential means to develop plant height ideotypes. Plant height holds significance for natural beauty and agricultural revolution. The increased grain productivity during the Green Revolution of the 1960s is partly attributed to the reshaping of plant stature, which is conferred by changes in phytohormone gibberellin (GA) metabolism or signaling. GA fine-tunes multiple aspects of biological events and plays a pivotal role in plant height determinant. Harnessing hormone GA knowledge is a potential means to develop ideal plant height to meet the future demand. Here, we present an overview of characterized GA pathway genes for plant height regulation. Novel alleles of Green Revolution genes sd1 and Rht are specially delineated. Through interactome analysis, we uncover GA20ox and GA3ox family members as central hub modulators of GA pathway. Empowered by GA knowledge, we suggest ways towards design breeding of plant height ideotypes through harnessing the alterations of GA cascade. We highlight the utility of genome editing to generate weak alleles to circumvent side effects of GA pathway perturbation.
Collapse
Affiliation(s)
- Shanshan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
31
|
Sabir IA, Manzoor MA, Shah IH, Abbas F, Liu X, Fiaz S, Shah AN, Jiu S, Wang J, Abdullah M, Zhang C. Evolutionary and Integrative Analysis of Gibberellin-Dioxygenase Gene Family and Their Expression Profile in Three Rosaceae Genomes ( F. vesca, P. mume, and P. avium) Under Phytohormone Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:942969. [PMID: 35874024 PMCID: PMC9302438 DOI: 10.3389/fpls.2022.942969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The gibberellin-dioxygenase (GAox) gene family plays a crucial role in regulating plant growth and development. GAoxs, which are encoded by many gene subfamilies, are extremely critical in regulating bioactive GA levels by catalyzing the subsequent stages in the biosynthesis process. Moreover, GAoxs are important enzymes in the GA synthesis pathway, and the GAox gene family has not yet been identified in Rosaceae species (Prunus avium L., F. vesca, and P. mume), especially in response to gibberellin and PCa (prohexadione calcium; reduce biologically active GAs). In the current investigation, 399 GAox members were identified in sweet cherry, Japanese apricot, and strawberry. Moreover, they were further classified into six (A-F) subgroups based on phylogeny. According to motif analysis and gene structure, the majority of the PavGAox genes have a remarkably well-maintained exon-intron and motif arrangement within the same subgroup, which may lead to functional divergence. In the systematic investigation, PavGAox genes have several duplication events, but segmental duplication occurs frequently. A calculative analysis of orthologous gene pairs in Prunus avium L., F. vesca, and P. mume revealed that GAox genes are subjected to purifying selection during the evolutionary process, resulting in functional divergence. The analysis of cis-regulatory elements in the upstream region of the 140 PavGAox members suggests a possible relationship between genes and specific functions of hormone response-related elements. Moreover, the PavGAox genes display a variety of tissue expression patterns in diverse tissues, with most of the PavGAox genes displaying tissue-specific expression patterns. Furthermore, most of the PavGAox genes express significant expression in buds under phytohormonal stresses. Phytohormones stress analysis demonstrated that some of PavGAox genes are responsible for maintaining the GA level in plant-like Pav co4017001.1 g010.1.br, Pav sc0000024.1 g340.1.br, and Pav sc0000024.1 g270.1.mk. The subcellular localization of PavGAox protein utilizing a tobacco transient transformation system into the tobacco epidermal cells predicted that GFP signals were mostly found in the cytoplasm. These findings will contribute to a better understanding of the GAox gene family's interaction with prohexadione calcium and GA, as well as provide a strong framework for future functional characterization of GAox genes in sweet cherry.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xunju Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Paciorek T, Chiapelli BJ, Wang JY, Paciorek M, Yang H, Sant A, Val DL, Boddu J, Liu K, Gu C, Brzostowski LF, Wang H, Allen EM, Dietrich CR, Gillespie KM, Edwards J, Goldshmidt A, Neelam A, Slewinski TL. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1140-1153. [PMID: 35244326 PMCID: PMC9129074 DOI: 10.1111/pbi.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kang Liu
- Bayer Crop ScienceChesterfieldMOUSA
| | - Chiyu Gu
- Bayer Crop ScienceChesterfieldMOUSA
| | | | | | | | | | | | | | - Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMOUSA
- Present address:
Department of Field Crops ScienceInstitute of Plant ScienceAgricultural Research OrganizationThe Volcani CenterP.O. Box 15159Rishon Lezion7528809Israel
| | | | | |
Collapse
|
33
|
Detection of QTLs for Plant Height Architecture Traits in Rice (Oryza sativa L.) by Association Mapping and the RSTEP-LRT Method. PLANTS 2022; 11:plants11070999. [PMID: 35406978 PMCID: PMC9002822 DOI: 10.3390/plants11070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Plant height (PH) and its component traits are critical determinants of lodging resistance and strongly influence yield in rice. The genetic architecture of PH and its component traits were mined in two mapping populations. In the natural population composed of 504 accessions, a total of forty simple sequence repeat (SSR) markers associated with PH and its component traits were detected across two environments via association mapping. Allele RM305-210 bp on chromosome 5 for PH had the largest phenotypic effect value (PEV) (−51.42 cm) with a reducing effect. Allele RM3533-220 bp on chromosome 9 for panicle length and allele RM264-120 bp on chromosome 8 for the length of upper first elongated internode (1IN) showed the highest positive PEV. Among the elongated internodes with negative effects being desirable, the allele RM348-130 bp showed the largest PEV (−7.48 cm) for the length of upper second elongated internode. In the chromosome segment substitution line population consisting of 53 lines, a total of nine QTLs were detected across two environments, with the phenotypic variance explained (PVE) ranging 10.07–28.42%. Among the detected QTLs, q1IN-7 explained the largest PVE (28.42%) for the 1IN, with an additive of 5.31 cm. The favorable allele RM257-125 bp on chromosome 9 for the 1IN increasing was detected in both populations. The favorable alleles provided here could be used to shape PH architecture against lodging.
Collapse
|
34
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
35
|
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b
, an ancient variation of
TaGA2ox‐A9
, reduces plant height without yield penalty in wheat. NEW PHYTOLOGIST 2022; 233:738-750. [PMID: 0 DOI: 10.1111/nph.17808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 05/22/2023]
Affiliation(s)
- Xiuling Tian
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Xianchun Xia
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Dengan Xu
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Li Xie
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Jie Song
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Faji Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Desen Wang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yong Zhang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yuanfeng Hao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Genying Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Zhonghu He
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
- International Maize and Wheat Improvement Center (CIMMYT) China Office c/o CAAS 12 Zhongguancun South Street Beijing 100081 China
| | - Shuanghe Cao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| |
Collapse
|
36
|
Tu B, Tao Z, Wang S, Zhou L, Zheng L, Zhang C, Li X, Zhang X, Yin J, Zhu X, Yuan H, Li T, Chen W, Qin P, Ma B, Wang Y, Li S. Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:23-38. [PMID: 34783157 DOI: 10.1111/jipb.13185] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Significant achievements have been made in breeding programs for the heavy-panicle-type (HPT) rice (Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance, allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1 (PND1), and identified the causal gene as GRAIN NUMBER 1A/CYTOKININ OXIDASE 2 (Gn1A/OsCKX2). The null gn1a allele from rice line R498 (gn1aR498 ) improved lodging resistance through increasing the culm diameter and promoting crown root development. Loss-of-function of Gn1a/OsCKX2 led to cytokinin accumulation in the crown root tip and accelerated the development of adventitious roots. Gene pyramiding between the null gn1aR498 allele with two gain-of-function alleles, STRONG CULM 2 (SCM2) and SCM3, further improved lodging resistance. Moreover, Gn1a/OsCKX2 had minimal influence on overall rice quality. Our research thus highlights the distinct genetic components of lodging resistance of HPT varieties and provides a strategy for tailor-made crop improvement of both yield and lodging resistance in rice.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang Tao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiguang Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lei Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agriculture and Horticulture, Chengdu Agricultural College, Chengdu, 611130, China
| | - Chun Zhang
- Agriculture and Rural Affairs Bureau of Cuiping District, Yibin Sichuan, 644000, China
| | - Xinzi Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
37
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
38
|
Ding W, Wang Y, Qi C, Luo Y, Wang C, Xu W, Qu S. Fine mapping identified the gibberellin 2-oxidase gene CpDw leading to a dwarf phenotype in squash (Cucurbita pepo L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110857. [PMID: 33775356 DOI: 10.1016/j.plantsci.2021.110857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Dwarfism is an important agronomic trait in pumpkin that can increase yield. In this study, the dwarf Cucurbita pepo L. line X10 exhibited significantly longitudinally shorter cell length in the stem than did the normal-vine line JIN234. The dwarf stature of X10 was recovered with exogenous gibberellin (GA3) application, suggesting that X10 might be sensitive to GA biosynthesis. Genetic analysis revealed that this dwarf trait is controlled by a single completely dominant locus: CpDw (Cucurbita pepo L. Dwarf). Using 1,300 F2 individuals derived from a cross between X10 and JIN234, we mapped the CpDw locus to a region of approximately 24.6 kb on chromosome 10 that contain 5 annotated genes. The high expression level of Cp4.1LG10g05910.1 and high GA2ox enzyme activity in X10 revealed that the GA 2-oxidase gene Cp4.1LG10g05910.1 is a candidate gene for CpDw. Alignment of the Cp4.1LG10g05910.1 gene revealed two nonsynonymous single nucleotide polymorphism (SNP) mutations in the two exons, as well as several SNPs and InDels in the important functional elements of promoter between parental lines. Further allelic diversity analysis of the Cucurbita spp. germplasm resources indicated that Cp4.1LG10g05910.1 may be involved in vine growth during the early developmental stage in C. pepo but not in C. maxima or C. moschata. This study provides an important theoretical basis for the genetic regulation of vine length and crop breeding in pumpkin.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. MOLECULAR PLANT 2021; 14:298-314. [PMID: 33249237 DOI: 10.1016/j.molp.2020.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/20/2020] [Accepted: 11/17/2020] [Indexed: 05/25/2023]
Abstract
Soybean is an important legume crop that displays the classic shade avoidance syndrome (SAS), including exaggerated stem elongation, which leads to lodging and yield reduction under density farming conditions. Here, we compared the effects of two shade signals, low red light to far-red light ratio (R:FR) and low blue light (LBL), on soybean status and revealed that LBL predominantly induces excessive stem elongation. We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes (GmCRYs) in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS. Light-activated GmCRY1s increase the abundance of the bZIP transcription factors STF1 and STF2, which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation. Notably, GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions. Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean. It also provides a promising option for breeding lodging-resistant, high-yield soybean cultivars in the future.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qican Cheng
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chao Qin
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xinying Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ronghuan Ji
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ruolan Mu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, P.R. China
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, P.R. China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P.R China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, P.R China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
40
|
Li R, Sun S, Wang H, Wang K, Yu H, Zhou Z, Xin P, Chu J, Zhao T, Wang H, Li J, Cui X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat Commun 2020; 11:5844. [PMID: 33203832 PMCID: PMC7673020 DOI: 10.1038/s41467-020-19705-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fruit firmness is a target trait in tomato breeding because it facilitates transportation and storage. However, it is also a complex trait and uncovering the molecular genetic mechanisms controlling fruit firmness has proven challenging. Here, we report the map-based cloning and functional characterization of qFIRM SKIN 1 (qFIS1), a major quantitative trait locus that partially determines the difference in compression resistance between cultivated and wild tomato accessions. FIS1 encodes a GA2-oxidase, and its mutation leads to increased bioactive gibberellin content, enhanced cutin and wax biosynthesis, and increased fruit firmness and shelf life. Importantly, FIS1 has no unfavorable effect on fruit weight or taste, making it an ideal target for breeders. Our study demonstrates that FIS1 mediates gibberellin catabolism and regulates fruit firmness, and it offers a potential strategy for tomato breeders to produce firmer fruit.
Collapse
Affiliation(s)
- Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongmin Zhao
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
42
|
Chang Y, Bai Y, Wei Y, Shi H. CAMTA3 negatively regulates disease resistance through modulating immune response and extensive transcriptional reprogramming in cassava. TREE PHYSIOLOGY 2020; 40:1520-1533. [PMID: 32705122 DOI: 10.1093/treephys/tpaa093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
As one of the important crops in the world, cassava production is seriously threatened by Xanthomonas axonopodis pv. manihotis (Xam) all year round. Calmodulin-binding transcription activators (CAMTAs) play key roles in biotic stress and abiotic stress in plants, however, their roles in cassava remain elusive. In this study, six MeCAMTAs were identified, and MeCAMTA3 with the highest induction upon Xam infection was confirmed as a transcription factor that binds to the vCGCGb motif. MeCAMTA3 negatively regulates plant disease resistance against Xam. On the one hand, MeCAMTA3 negatively regulated endogenous salicylic acid and reactive oxygen species accumulation, pathogenesis-related genes MePRs' transcripts and callose deposition during cassava-Xam interaction but not under control conditions. On the other hand, RNA sequencing showed extensive transcriptional reprogramming by MeCAMTA3, especially 18 genes with a vCGCGb motif in the promoter region in hormone signaling, antioxidant signaling and other disease resistance signaling. Notably, chromatin immunoprecipitation-polymerase chain reaction showed that eight of these genes might be directly regulated by MeCAMTA3 through transcriptional repression. In summary, MeCAMTA3 negatively regulates plant disease resistance against cassava bacterial blight through modulation of multiple immune responses during cassava-Xam interaction and extensive transcriptional reprogramming.
Collapse
Affiliation(s)
- Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| |
Collapse
|
43
|
Bhuvaneswari S, Gopala Krishnan S, Ellur RK, Vinod KK, Bollinedi H, Bhowmick PK, Bansal VP, Nagarajan M, Singh AK. Discovery of a Novel Induced Polymorphism in SD1 Gene Governing Semi-Dwarfism in Rice and Development of a Functional Marker for Marker-Assisted Selection. PLANTS 2020; 9:plants9091198. [PMID: 32937792 PMCID: PMC7570060 DOI: 10.3390/plants9091198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
The semi-dwarfing allele, sd1-d, has been widely utilized in developing high-yielding rice cultivars across the world. Originally identified from the rice cultivar Dee-Geo-Woo-Gen (DGWG), sd1-d, derived from a spontaneous mutation, has a 383-bp deletion in the SD1 gene. To date, as many as seven alleles of the SD1 gene have been identified and used in rice improvement, either with a functional single-nucleotide polymorphism (SNP), with insertion–deletions (InDels), or both. Here, we report discovery of a novel SNP in the SD1 gene from the rice genotype, Pusa 1652. Genetic analysis revealed that the inheritance of the semi-dwarfism in Pusa 1652 is monogenic and recessive, but it did not carry the sd1-d allele. However, response to exogenous gibberellic acid (GA3) application and the subsequent bulked segregant and linkage analyses confirmed that the SD1 gene is involved in the plant height reduction in Pusa 1652. Sequencing of the SD1 gene from Pusa 1652 revealed a novel transition in exon 3 (T/A) causing a nonsense mutation at the 300th codon. The stop codon leads to premature termination, resulting in a truncated protein of OsGA20ox2 obstructing the GA3 biosynthesis pathway. This novel recessive allele, named sd1-bm, is derived from Bindli Mutant 34 (BM34), a γ-ray induced mutant of a short-grain aromatic landrace, Bindli. BM34 is the parent of an aromatic semi-dwarf cultivar, Pusa 1176, from which Pusa 1652 is derived. The semi-dwarfing allele, sd1-bm, was further validated by developing a derived cleaved amplified polymorphic sequence (dCAPS) marker, AKS-sd1. This allele provides an alternative to the most widely used sd1-d in rice improvement programs and the functional dCAPS marker will facilitate marker-assisted introgression of the semi-dwarf trait into tall genotypes.
Collapse
Affiliation(s)
- Shivashankar Bhuvaneswari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
- Division of Plant Breeding, ICAR RC NEH Region, Manipur Centre, Imphal 795004, Manipur, India
| | - Subbaiyan Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Prolay Kumar Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Vijay Prakash Bansal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
| | - Mariappan Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR- Indian Agricultural Research Institute, Aduthurai 612101, Tamil Nadu, India;
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India; (S.B.); (S.G.K.); (R.K.E.); (K.K.V.); (H.B.); (P.K.B.); (V.P.B.)
- Correspondence: ; Tel.: +91-11-2584-3375
| |
Collapse
|
44
|
Sun Y, Zhang H, Fan M, He Y, Guo P. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep 2020; 10:14915. [PMID: 32913219 PMCID: PMC7483442 DOI: 10.1038/s41598-020-71861-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Dwarf architecture is an important trait associated with plant yield, lodging resistance and labor cost. Here, we aimed to identify a gene causing dwarfism in watermelon. The ‘w106’ (dwarf) and ‘Charleston Gray’ (vine) were used as parents to construct F1 and F2 progeny. Dwarf architecture of ‘w106’ was mainly caused by longitudinal cell length reduction and was controlled by a single recessive gene. Whole-genome sequencing of two parents and two bulk DNAs of F2 population localized this gene to a 2.63-Mb region on chromosome 9; this was further narrowed to a 541-kb region. Within this region, Cla015407, encoding a gibberellin 3β-hydroxylase (GA3ox), was the candidate gene. Cla015407 had a SNP mutation (G → A) in the splice acceptor site of the intron, leading to altered splicing event and generating two splicing isoforms in dwarf plants. One splicing isoform retained the intron sequences, while the other had a 13-bp deletion in the second exon of GA3ox transcript, both resulting in truncated proteins and loss of the functional Fe2OG dioxygenase domain in dwarf plants. RNA-Seq analysis indicated that expression of Cla015407 and other GA biosynthetic and metabolic genes were mostly up-regulated in the shoots of dwarf plants compared with vine plants in F2 population. Measurement of endogenous GA levels indicated that bioactive GA4 was significantly decreased in the shoots of dwarf plants. Moreover, the dwarf phenotype can be rescued by exogenous applications of GA3 or GA4+7, with the latter having a more distinct effect than the former. Subcellular localization analyses of GA3ox proteins from two parents revealed their subcellular targeting in nucleus and cytosol. Here, a GA3ox gene controlling dwarf architecture was identified, and loss function of GA3ox leads to GA4 reduction and dwarfism phenotype in watermelon.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiqing Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingan Guo
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
45
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
46
|
Ma Z, Wu T, Huang K, Jin YM, Li Z, Chen M, Yun S, Zhang H, Yang X, Chen H, Bai H, Du L, Ju S, Guo L, Bian M, Hu L, Du X, Jiang W. A Novel AP2/ERF Transcription Factor, OsRPH1, Negatively Regulates Plant Height in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:709. [PMID: 32528516 PMCID: PMC7266880 DOI: 10.3389/fpls.2020.00709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 05/24/2023]
Abstract
The APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, OsRPH1, was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family. OsRPH1 protein was found to be localized in the nucleus and possessed transcriptional activity. Overexpression of OsRPH1 resulted in a decrease in plant height and length of internode and leaf sheath as well as other abnormal characters in rice. The length of the second leaf sheath of OsRPH1-overexpressing (OE) plants recovered to that of Kitaake (non-transgenic recipient) in response to exogenous gibberellin A3 (GA3) application. The expression of GA biosynthesis genes (OsGA20ox1-OsGA20ox4, OsGA3ox1, and OsGA3ox2) was significantly downregulated, whereas that of GA inactivation genes (OsGA2ox7, OsGA2ox9, and OsGA2ox10) was significantly upregulated in OsRPH1-OE plants. Endogenous bioactive GA contents significantly decreased in OsRPH1-OE plants. OsRPH1 interacted with a blue light receptor, OsCRY1b, in a blue light-dependent manner. Taken together, our results demonstrate that OsRPH1 negatively regulates plant height and bioactive GA content by controlling the expression of GA metabolism genes in rice. OsRPH1 is involved in blue light inhibition of leaf sheath elongation by interacting with OsCRY1b.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yong-Mei Jin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mojun Chen
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Sokyong Yun
- Kye Ung Sang College of Agriculture of Kim II Sung University, Pyongyang, North Korea
| | - Hongjia Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xue Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Haoyuan Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huijiao Bai
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shanshan Ju
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Liping Guo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
47
|
Gebremeskel H, Dou J, Li B, Zhao S, Muhammad U, Lu X, He N, Liu W. Molecular Mapping and Candidate Gene Analysis for GA 3 Responsive Short Internode in Watermelon ( Citrullus lanatus). Int J Mol Sci 2019; 21:E290. [PMID: 31906246 PMCID: PMC6982186 DOI: 10.3390/ijms21010290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Plants with shorter internodes are suitable for high-density planting, lodging resistance and the preservation of land resources by improving yield per unit area. In this study, we identified a locus controlling the short internode trait in watermelon using Zhengzhouzigua (long internode) and Duan125 (short internode) as mapping parents. Genetic analysis indicated that F1 plants were consistent with long internode plants, which indicates that the long internode was dominant over the short internode. The observed F2 and BC1 individuals fitted the expected phenotypic segregation ratios of 3:1 and 1:1, respectively. The locus was mapped on chromosome 9 using a bulked segregant analysis approach. The region was narrowed down to 8.525 kb having only one putative gene, Cla015407, flanking by CAPS90 and CAPS91 markers, which encodes gibberellin 3β-hydroxylase (GA 3β-hydroxylase). The sequence alignment of the candidate gene between both parents revealed a 13 bp deletion in the short internode parent, which resulted in a truncated protein. Before GA3 application, significantly lower GA3 content and shorter cell length were obtained in the short internode plants. However, the highest GA3 content and significant increase in cell length were observed in the short internode plants after exogenous GA3 application. In the short internode plants, the expression level of the Cla015407 was threefold lower than the long internode plants in the stem tissue. In general, our results suggested that Cla015407 might be the candidate gene responsible for the short internode phenotype in watermelon and the phenotype is responsive to exogenous GA3 application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.G.); (J.D.); (B.L.); (S.Z.); (U.M.); (X.L.); (N.H.)
| |
Collapse
|
48
|
Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu W, Khan RM, Abbas A, Riaz A, Anis GB, Si H, Jiang H, Ma C. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci 2019; 20:E4211. [PMID: 31466256 PMCID: PMC6747267 DOI: 10.3390/ijms20174211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
Collapse
Affiliation(s)
- Liaqat Shah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Yahya
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Peshawar 57000, Pakistan
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Waheed Riaz
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shamsur Rehman
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weixun Wu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Riaz Muhammad Khan
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Adil Abbas
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Aamir Riaz
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Galal Bakr Anis
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh 33717, Egypt
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
49
|
Li C, Zheng L, Wang X, Hu Z, Zheng Y, Chen Q, Hao X, Xiao X, Wang X, Wang G, Zhang Y. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:1-13. [PMID: 31203874 DOI: 10.1016/j.plantsci.2019.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/07/2019] [Accepted: 04/27/2019] [Indexed: 05/09/2023]
Abstract
Bioactive gibberellins (GAs) play multiple roles in plant development and stress responses. GA2-oxidases (GA2oxs) are a class of 2-oxoglutarate-dependent dioxygenases that regulate the deactivation of bioactive GAs. In this study, we investigated the phylogeny and domain structures of the seven GA2ox genes present in the Arabidopsis thaliana genome. Comprehensive expression analysis using translational reporter lines showed that the seven GA2ox genes are differentially expressed during Arabidopsis growth and development: GA2ox1 is specifically expressed in the hypocotyl and lateral root primordium; GA2ox2 is highly expressed in aboveground tissues; GA2ox3 is expressed in the chalazal endosperm of the early embryo sac and inflorescences; GA2ox4 is expressed in the shoot apical meristem and during lateral root initiation; GA2ox6 is expressed in the maturation zone, but not in the meristem or elongating zone of the root; GA2ox7 is constitutively expressed during almost all developmental stages; and GA2ox8 is exclusively expressed in stomatal cells. Overexpression of each of these GA2ox genes inhibited high temperature-induced hypocotyl elongation in both wild-type and elongated hypocotyl 5 plants, which have an elongated hypocotyl phenotype, suggesting that these genes negatively regulate hypocotyl elongation by reducing bioactive GA levels. This study provides a valuable resource for further elucidating the roles of GA2ox genes during different stages of development.
Collapse
Affiliation(s)
- Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuening Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Shiyan, 442008, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
50
|
Identification and Characterization of EI ( Elongated Internode) Gene in Tomato ( Solanum lycopersicum). Int J Mol Sci 2019; 20:ijms20092204. [PMID: 31060285 PMCID: PMC6540210 DOI: 10.3390/ijms20092204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
Internode length is an important agronomic trait affecting plant architecture and crop yield. However, few genes for internode elongation have been identified in tomato. In this study, we characterized an elongated internode inbred line P502, which is a natural mutant of the tomato cultivar 05T606. The mutant P502 exhibits longer internode and higher bioactive GA concentration compared with wild-type 05T606. Genetic analysis suggested that the elongated internode trait is controlled by quantitative trait loci (QTL). Then, we identified a major QTL on chromosome 2 based on molecular markers and bulked segregant analysis (BSA). The locus was designated as EI (Elongated Internode), which explained 73.6% genetic variance. The EI was further mapped to a 75.8-kb region containing 10 genes in the reference Heinz 1706 genome. One single nucleotide polymorphism (SNP) in the coding region of solyc02g080120.1 was identified, which encodes gibberellin 2-beta-dioxygenase 7 (SlGA2ox7). SlGA2ox7, orthologous to AtGA2ox7 and AtGA2ox8, is involved in the regulation of GA degradation. Overexpression of the wild EI gene in mutant P502 caused a dwarf phenotype with a shortened internode. The difference of EI expression levels was not significant in the P502 and wild-type, but the expression levels of GA biosynthetic genes including CPS, KO, KAO, GA20ox1, GA20ox2, GA20ox4, GA3ox1, GA2ox1, GA2ox2, GA2ox4, and GA2ox5, were upregulated in mutant P502. Our results may provide a better understanding of the genetics underlying the internode elongation and valuable information to improve plant architecture of the tomato.
Collapse
|