1
|
Hou L, Niu Z, Zheng Z, Zhang J, Luo C, Wang X, Yang Y, Li Y, Chen Q. The Isodon serra genome sheds light on tanshinone biosynthesis and reveals the recursive karyotype evolutionary histories within Lamiales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17170. [PMID: 39614831 DOI: 10.1111/tpj.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Lamiales is one of the largest orders of angiosperms with a complex evolutionary history and plays a significant role in human life. However, the polyploidization and chromosome evolution histories within this group remain in mystery. Among Lamiales, Isodon serra (Maxim.) Kudô shines for its abundance of diterpenes, notably tanshinones, long used in East Asia to combat toxicity and inflammation. Yet, the genes driving its biosynthesis and the factors governing its regulation linger in obscurity. Here, we present the telomere-to-telomere genome assembly of I. serra and, through gene-to-metabolite network analyses, pinpoint the pivotal tanshinone biosynthesis genes and their co-expressed transcription factors. Particularly, through luciferase (LUC) assays, we speculate that IsMYB-13 and IsbHLH-8 may upregulate IsCYP76AH101, which is the key step in the biosynthesis of the tanshinone precursor. Among Lamiales, Oleaceae, Gesneriaceae and Plantaginaceae successively sister to a clade of seven Lamiales families, all sharing a recent whole-genome duplication (designated as α event). By reconstructing the ancestral Lamiales karyotypes (ALK) and post-α event (ALKα), we trace chromosomal evolution trajectories across Lamiales species. Notably, one chromosomal fusion is detected from ALK to ALKα, and three shared chromosomal fusion events are detected sequentially from ALKα to I. serra, which fully supports the phylogeny constructed using single-copy genes. This comprehensive study illuminates the genome evolution and chromosomal dynamics of Lamiales, further enhancing our understanding of the biosynthetic mechanisms underlying the medicinal properties of I. serra.
Collapse
Affiliation(s)
- Liqiang Hou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Changhong Luo
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Liu S, Xu H, Wang G, Jin B, Cao F, Wang L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. PLANT, CELL & ENVIRONMENT 2025; 48:244-259. [PMID: 39254418 DOI: 10.1111/pce.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.
Collapse
Affiliation(s)
- Sian Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhang S, Gan P, Xie H, Li C, Tang T, Hu Q, Zhu Z, Zhang Z, Zhang J, Zhu Y, Hu Q, Hu J, Guan H, Zhao S, Wu J. Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae601. [PMID: 39509327 DOI: 10.1093/plphys/kiae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of "Candidatus Phytoplasma oryzae" strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homolog of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Gan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Xie
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuan Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxin Tang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qun Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Xue C, Zhang L, Li H, Liu Z, Zhang Y, Liu M, Zhao J. The effector PHYL1 JWB from Candidatus Phytoplasma ziziphi induces abnormal floral development by destabilising flower development proteins. PLANT, CELL & ENVIRONMENT 2024; 47:4963-4976. [PMID: 39119795 DOI: 10.1111/pce.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Phytoplasmas can induce complex and substantial phenotypic changes in their hosts in ways that favour their colonisation, but the mechanisms underlying these changes remain largely unknown. Jujube witches' broom (JWB) disease is a typical phytoplasma disease causing great economic loss in Chinese jujube (Ziziphus jujuba Mill.). Here, we reported an effector, PHYL1JWB from Candidatus Phytoplasma ziziphi, which implicated in inducing abnormal floral organogenesis. Utilising a combination of in vivo and in vitro methods, we investigated the influence of PHYL1JWB on the proteins associated with floral development. Our findings reveal that PHYL1JWB facilitates the proteasome-mediated degradation of essential flower morphogenetic regulators, including AP1, SEP1, SEP2, SEP3, SEP4, CAL, and AGL6, through a distinctive pathway that is dependent on the activity of the 26S proteasome, thus obviating the requirement for lysine ubiquitination of the substrates. Further, the Y2H analysis showed that the leucine at position 75th in second α helix of PHYL1JWB is fundamental for the interactions of PHYL1JWB with AP1 and SEP1-4 in jujube and Arabidopsis. Our research carry profound implications for elucidating the contribution of PHYL1JWB to the aberrant floral development in diseased jujube, and help to establish a robust theoretical underpinning for the prophylaxis and therapy of JWB disease.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Shanxi Sericulture Science Research Institute, Shanxi Agricultural University, Yuncheng, Shanxi, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
5
|
Song CS, Xu QC, Wan CP, Kong DZ, Lin CL, Yu SS. Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China. BIOLOGY 2024; 13:886. [PMID: 39596841 PMCID: PMC11592322 DOI: 10.3390/biology13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches' broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas.
Collapse
Affiliation(s)
- Chuan-Sheng Song
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - Qi-Cong Xu
- International Nature Farming Research Center, Nagano 390-1401, Japan;
| | - Cui-Ping Wan
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - De-Zhi Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Cai-Li Lin
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
6
|
Smit SJ, Whitehead C, James SR, Jeffares DC, Godden G, Peng D, Sun H, Lichman BR. Pseudomolecule-scale genome assemblies of Drepanocaryum sewerzowii and Marmoritis complanata. G3 (BETHESDA, MD.) 2024; 14:jkae172. [PMID: 39047060 DOI: 10.1093/g3journal/jkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavors and fragrances or for their medicinal properties. Here, we present genome assemblies for two species in Nepetiodeae: Drepanocaruym sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20 + reads with contigs anchored to nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assembly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome-derived gene models, complementing existing transcriptome and marker-based phylogenies.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sally R James
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Deli Peng
- School of Life Science, Yunnan Normal University, Kunming 650092, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
7
|
Fan Y, Zhu P, Zhao H, Yang H, Wang W, Fan G. Novel Insight into the Prevention and Therapeutic Treatment of Paulownia Witches' Broom: A Study on the Effect of Salicylic Acid on Disease Control and the Changes in the Paulownia Transcriptome and Proteome. Int J Mol Sci 2024; 25:10553. [PMID: 39408878 PMCID: PMC11476412 DOI: 10.3390/ijms251910553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Paulownia species not only have significant economic benefits but also show great potential in ecological conservation. However, they are highly susceptible to phytoplasma infections, causing Paulownia witches' broom (PaWB), which severely restricts the development of the Paulownia industry. Salicylic acid (SA) plays a crucial role in plant disease resistance. However, there have been no reports on the effect of SA on PaWB. Due to the properties of SA, it may have potential in controlling PaWB. Based on the above speculation, the prevention and therapeutic effect of SA on PaWB and its effect on the PaWB-infected Paulownia transcriptome and proteome were studied in this work. The results indicated that 0.1 mmol/L was the optimal SA concentration for inhibiting the germination of Paulownia axillary buds. In terms of resistance physiological indicators, SA treatment significantly affected both Paulownia tomentosa infected (PTI) seedlings and Paulownia fortunei infected (PFI) seedlings, where the activities of peroxidase (POD) and superoxide dismutase (SOD) were enhanced. Malondialdehyde (MDA), O2-, and H2O2, however, were significantly reduced. Specifically, after SA treatment, SOD activity increased by 28% in PFI and 25% in PTI, and POD activity significantly increased by 61% in PFI and 58% in PTI. Moreover, the MDA content decreased by 30% in PFI and 23% in PTI, the H2O2 content decreased by 26% in PFI and 19% in PTI, and the O2- content decreased by 21% in PFI and 19% in PTI. Transcriptomic analysis showed that there were significant upregulations of MYB, NAC, and bHLH and other transcription factors after SA treatment. Moreover, genes involved in PaWB-related defense responses such as RAX2 also showed significant differences. Furthermore, proteomic analysis indicated that after SA treatment, proteins involved in signal transduction, protein synthesis modification, and disease defense were differentially expressed. This work provides a research foundation for the prevention and treatment of PaWB and offers references for exploring anti-PaWB methods.
Collapse
Affiliation(s)
- Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Peipei Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Haibo Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenhu Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.F.); (P.Z.); (H.Z.); (H.Y.); (W.W.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Zhao Z, Wang F, Deng M, Fan G. Identification and Analysis of PPO Gene Family Members in Paulownia fortunei. PLANTS (BASEL, SWITZERLAND) 2024; 13:2033. [PMID: 39124152 PMCID: PMC11313911 DOI: 10.3390/plants13152033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Polyphenol oxidase (PPO) is a common metalloproteinase in plants with important roles in plant responses to abiotic and biotic stresses. There is evidence that PPOs contribute to stress responses in Paulownia fortunei. In this study, PPO gene family members in P. fortunei were comprehensively identified and characterized using bioinformatics methods as well as analyses of phylogenetic relationships, gene and protein structure, codon usage bias, and gene expression in response to stress. The genome contained 10 PPO gene family members encoding 406-593 amino acids, with a G/C bias. Most were localized in chloroplasts. The motif structure was conserved among family members, and α-helices and random coils were the dominant elements in the secondary structure. The promoters contained many cis-acting elements, such as auxin, gibberellin, salicylic acid, abscisic acid, and photoresponsive elements. The formation of genes in this family was linked to evolutionary events, such as fragment replication. Real-time quantitative PCR results showed that PfPPO7, PfPPO10, PfPPO1, PfPPO2, PfPPO3, PfPPO4, PfPPO5, and PfPPO8 may be key genes in drought stress resistance. PfPPO1, PfPPO3, PfPPO4, and PfPPO10 were resistant stress-sensitive genes. These results provide a reliable basis for fully understanding the potential functions of these genes and the selection of resistance breeding.
Collapse
Affiliation(s)
- Zhenli Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Fei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Ma F, Zheng Y, Zhang N, Deng M, Zhao M, Fu G, Zhou J, Guo C, Li Y, Huang J, Sun Q, Sun J. The 'Candidatus Phytoplasma ziziphi' effectors SJP1/2 negatively control leaf size by stabilizing the transcription factor ZjTCP2 in jujube. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3054-3069. [PMID: 38320293 DOI: 10.1093/jxb/erae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.
Collapse
Affiliation(s)
- Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Meiqi Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Gongyu Fu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, People's Republic of China
| | - Chenglong Guo
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yamei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Jinqiu Huang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
10
|
Toth R, Ilic AM, Huettel B, Duduk B, Kube M. Divergence within the Taxon ' Candidatus Phytoplasma asteris' Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms 2024; 12:1016. [PMID: 38792845 PMCID: PMC11123874 DOI: 10.3390/microorganisms12051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon 'Candidatus Phytoplasma asteris' were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of 'Ca. P. asteris' and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome.
Collapse
Affiliation(s)
- Rafael Toth
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | - Anna-Marie Ilic
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | | | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, 11080 Belgrade, Serbia;
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| |
Collapse
|
11
|
Qin GL, Fu CM, Tang F, Yin J, Guan DL, Shi CY. Population genomics analysis reveals footprints of selective breeding in a rapid-growth variety of Paulownia fortunei with apical dominance. Genomics 2024; 116:110849. [PMID: 38679345 DOI: 10.1016/j.ygeno.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Paulownia fortunei is an ecologically and economically valuable tree cultivated for its rapid growth and high-quality timber. To enhance Paulownia germplasm, we have developed the elite variety QingT with patented advantages in growth rate and apical dominance. To illuminate the genetic basis of QingT's superior traits, here we harness comparative population genomics to analyze genomic variation patterns between QingT and common Paulownia. We performed whole-genome re-sequencing of 30 QingT and 30 common samples, detecting 15.6 million SNPs and 2.6 million indels. Phylogeny and population structure analyses robustly partitioned common and QingT into distinct groups which indicate robust genome stabilization. QingT exhibited reduced heterozygosity and linkage disequilibrium decay compared to common Paulownia, reflecting high recombination, indicating hybridizing effects with common white-flowered string is the source of its patented advantages. Genome selection scans uncovered 25 regions of 169 genes with elevated nucleotide diversity, indicating selection sweeps among groups. Functional analysis of sweep genes revealed upregulation of ribosomal, biosynthesis, and growth pathways in QingT, implicating enhanced protein production and developmental processes in its rapid growth phenotype. This study's insights comprehensively chart genomic variation during Paulownia breeding, localizing candidate loci governing agronomic traits, and underpinnings of future molecular breeding efforts to boost productivity.
Collapse
Affiliation(s)
- Guo-Le Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Chuan-Ming Fu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Fan Tang
- Qingtong Advanced Technology Integration Innovation Promotion Center, Qinzhou 535000, China
| | - Jian Yin
- Qingtong Advanced Technology Integration Innovation Promotion Center, Qinzhou 535000, China
| | - De-Long Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| | - Chen-Yu Shi
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| |
Collapse
|
12
|
Zhang Y, Qiao Z, Li J, Bertaccini A. Paulownia Witches' Broom Disease: A Comprehensive Review. Microorganisms 2024; 12:885. [PMID: 38792713 PMCID: PMC11123829 DOI: 10.3390/microorganisms12050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens associated with diseases in a wide range of host plants, resulting in significant economic and ecological losses. Perennial deciduous trees in the genus Paulownia are widely planted for wood harvesting and ornamental purposes. Paulownia witches' broom (PaWB) disease, associated with a 16SrI-D subgroup phytoplasma, is a destructive disease of paulownia in East Asia. The PaWB phytoplasmas are mainly transmitted by insect vectors in the Pentatomidae (stink bugs), Miridae (mirid bugs) and Cicadellidae (leafhoppers) families. Diseased trees show typical symptoms, such as branch and shoot proliferation, which together are referred to as witches' broom. The phytoplasma presence affects the physiological and anatomical structures of paulownia. Gene expression in paulownia responding to phytoplasma presence have been studied at the transcriptional, post-transcriptional, translational and post-translational levels by high throughput sequencing techniques. A PaWB pathogenic mechanism frame diagram on molecular level is summarized. Studies on the interactions among the phytoplasma, the insect vectors and the plant host, including the mechanisms underlying how paulownia effectors modify processes of gene expression, will lead to a deeper understanding of the pathogenic mechanisms and to the development of efficient control measures.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Henan Provincial Institute of Scientific and Technical Information, Zhengzhou 450003, China
| | - Zesen Qiao
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Assunta Bertaccini
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
13
|
Li Y, Cao Y, Fan Y, Fan G. Comprehensive Analysis of the GRAS Gene Family in Paulownia fortunei and the Response of DELLA Proteins to Paulownia Witches' Broom. Int J Mol Sci 2024; 25:2425. [PMID: 38397102 PMCID: PMC10888722 DOI: 10.3390/ijms25042425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.
Collapse
Affiliation(s)
- Yixiao Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
14
|
Zhou J, Zou X, Deng Z, Duan L. Analysing a Group of Homologous BAHD Enzymes Provides Insights into the Evolutionary Transition of Rosmarinic Acid Synthases from Hydroxycinnamoyl-CoA:Shikimate/Quinate Hydroxycinnamoyl Transferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:512. [PMID: 38498481 PMCID: PMC10892161 DOI: 10.3390/plants13040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The interplay of various enzymes and compounds gives rise to the intricate secondary metabolic networks observed today. However, the current understanding of their formation and expansion remains limited. BAHD acyltransferases play important roles in the biosynthesis of numerous significant secondary metabolites. In plants, they are widely distributed and exhibit a diverse range of activities. Among them, rosmarinic acid synthase (RAS) and hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) have gained significant recognition and have been extensively investigated as prominent members of the BAHD acyltransferase family. Here, we conducted a comprehensive study on a unique group of RAS homologous enzymes in Mentha longifolia that display both catalytic activities and molecular features similar to HCT and Lamiaceae RAS. Subsequent phylogenetic and comparative genome analyses revealed their derivation from expansion events within the HCT gene family, indicating their potential as collateral branches along the evolutionary trajectory, leading to Lamiaceae RAS while still retaining certain ancestral vestiges. This discovery provides more detailed insights into the evolution from HCT to RAS. Our collective findings indicate that gene duplication is the driving force behind the observed evolutionary pattern in plant-specialized enzymes, which probably originated from ancestral enzyme promiscuity and were subsequently shaped by principles of biological adaptation.
Collapse
Affiliation(s)
| | | | | | - Lian Duan
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, China; (J.Z.); (X.Z.); (Z.D.)
| |
Collapse
|
15
|
Fan J, Deng M, Li B, Fan G. Genome-Wide Identification of the Paulownia fortunei Aux/IAA Gene Family and Its Response to Witches' Broom Caused by Phytoplasma. Int J Mol Sci 2024; 25:2260. [PMID: 38396939 PMCID: PMC10889751 DOI: 10.3390/ijms25042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.
Collapse
Affiliation(s)
- Jiaming Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
16
|
Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, Zhao L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. MOLECULAR PLANT PATHOLOGY 2024; 25:e13437. [PMID: 38393681 PMCID: PMC10887288 DOI: 10.1111/mpp.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.
Collapse
Affiliation(s)
- Ruotong Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bixin Bai
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Danyang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
17
|
Chen P, Zhang Y, Li Y, Yang Q, Li Q, Chen L, Chen Y, Ye X, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J. Jujube Witches' Broom Phytoplasma Effector Zaofeng3, a Homologous Effector of SAP54, Induces Abnormal Floral Organ Development and Shoot Proliferation. PHYTOPATHOLOGY 2024; 114:200-210. [PMID: 37435950 DOI: 10.1094/phyto-10-21-0448-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Plant-pathogenic phytoplasmas secrete specific virulence proteins into a host plant to modulate plant function for their own benefit. Identification of phytoplasmal effectors is a key step toward clarifying the pathogenic mechanisms of phytoplasma. In this study, Zaofeng3, also known as secreted jujube witches' broom phytoplasma protein 3 (SJP3), was a homologous effector of SAP54 and induced a variety of abnormal phenotypes, such as phyllody, malformed floral organs, witches' broom, and dwarfism in Arabidopsis thaliana. Zaofeng3 can also induce small leaves, dwarfism, and witches' broom in Ziziphus jujuba. Further experiments showed that the three complete α-helix domains predicted in Zaofeng3 were essential for induction of disease symptoms in jujube. Yeast two-hybrid library screening showed that Zaofeng3 mainly interacts with proteins involved in flower morphogenesis and shoot proliferation. Bimolecular fluorescence complementation assays confirmed that Zaofeng3 interacted with these proteins in the whole cell. Overexpression of zaofeng3 in jujube shoot significantly altered the expression patterns of ZjMADS19, ZjMADS47, ZjMADS48, ZjMADS77, and ZjTCP7, suggesting that overexpressing zaofeng3 might induce floral organ malformation and witches' broom by altering the expression of the transcriptional factors involved in jujube morphogenesis.
Collapse
Affiliation(s)
- Peng Chen
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yu Zhang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qiqi Yang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Qicheng Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Lichuan Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Yun Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
| |
Collapse
|
18
|
Zhu P, Fan Y, Xu P, Fan G. Bioinformatic Analysis of the BTB Gene Family in Paulownia fortunei and Functional Characterization in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:4144. [PMID: 38140471 PMCID: PMC10747981 DOI: 10.3390/plants12244144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
To learn about the gene structure, phylogenetic evolution, and function under biotic and abiotic stresses of BTB (Bric-a-Brac/Tramtrack/Broad Complex) genes in Paulownia fortunei, a whole-genome sequence evaluation was carried out, and a total of 62 PfBTB genes were identified. The phylogenetic analysis showed that PfBTB proteins are divided into eight groups, and these proteins are highly conserved. PfBTB genes were unevenly distributed on 17 chromosomes. The colinearity analysis found that fragment replication and tandem replication are the main modes of gene amplification in the PfBTB family. The analysis of cis-acting elements suggests that PfBTB genes may be involved in a variety of biological processes. The transcriptomic analysis results showed that PfBTB3/12/14/16/19/36/44 responded to Paulownia witches' broom (PaWB), while PfBTB1/4/17/43 responded to drought stress, and the RT-qPCR results further support the reliability of transcriptome data. In addition, the association analysis between miRNA and transcriptome revealed a 91-pair targeting relationship between miRNAs and PfBTBs. In conclusion, the BTB genes in Paulownia are systematically identified in this research. This work provides useful knowledge to more fully appreciate the potential functions of these genes and their possible roles in the occurrence of PaWB and in response to stress.
Collapse
Affiliation(s)
- Peipei Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Pingluo Xu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
19
|
Ranjbar M, Khakdan F, Ghorbani A, Zargar M, Chen M. The variations in gene expression of GAPDH in Ocimum basilicum cultivars under drought-induced stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119187-119203. [PMID: 37919503 DOI: 10.1007/s11356-023-30549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (H2O2) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Microbial Biotechnology Department, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
Park HS, Jo IH, Raveendar S, Kim NH, Gil J, Shim D, Kim C, Yu JK, So YS, Chung JW. A chromosome-level genome assembly of Korean mint (Agastache rugosa). Sci Data 2023; 10:792. [PMID: 37949898 PMCID: PMC10638305 DOI: 10.1038/s41597-023-02714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Agastache rugosa, also known as Korean mint, is a perennial plant from the Lamiaceae family that is traditionally used for various ailments and contains antioxidant and antibacterial phenolic compounds. Molecular breeding of A. rugosa can enhance secondary metabolite production and improve agricultural traits, but progress in this field has been delayed due to the lack of chromosome-scale genome information. Herein, we constructed a chromosome-level reference genome using Nanopore sequencing and Hi-C technology, resulting in a final genome assembly with a scaffold N50 of 52.15 Mbp and a total size of 410.67 Mbp. Nine pseudochromosomes accounted for 89.1% of the predicted genome. The BUSCO analysis indicated a high level of completeness in the assembly. Repeat annotation revealed 561,061 repeat elements, accounting for 61.65% of the genome, with Copia and Gypsy long terminal repeats being the most abundant. A total of 26,430 protein-coding genes were predicted, with an average length of 1,184 bp. The availability of this chromosome-scale genome will advance our understanding of A. rugosa's genetic makeup and its potential applications in various industries.
Collapse
Affiliation(s)
- Hyun-Seung Park
- Department of Integrative Biological Sciences and Industry, Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Korea
| | - Ick Hyun Jo
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, South Korea
| | - Sebastin Raveendar
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | | | - Jinsu Gil
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Changsoo Kim
- Department of Crop Sciences, Chungnam National University, Daejeon, South Korea
| | - Ju-Kyung Yu
- Department of Crop Science, Chungbuk National University, Cheongju, South Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, South Korea.
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea.
| |
Collapse
|
21
|
Feng Y, Yang C, Zhang J, Qiao J, Wang B, Zhao Y. Construction of a High-Density Paulownia Genetic Map and QTL Mapping of Important Phenotypic Traits Based on Genome Assembly and Whole-Genome Resequencing. Int J Mol Sci 2023; 24:15647. [PMID: 37958630 PMCID: PMC10647314 DOI: 10.3390/ijms242115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Quantitative trait locus (QTL) mapping based on a genetic map is a very effective method of marker-assisted selection in breeding, and whole-genome resequencing is one of the useful methods to obtain high-density genetic maps. In this study, the hybrid assembly of Illumina, PacBio, and chromatin interaction mapping data was used to construct high-quality chromosomal genome sequences of Paulownia fortunei, with a size of 476.82 Mb, a heterozygosity of 0.52%, and a contig and scaffold N50s of 7.81 Mb and 21.81 Mb, respectively. Twenty scaffolds with a total length of 437.72 Mb were assembled into 20 pseudochromosomes. Repeat sequences with a total length of 243.96 Mb accounted for 51.16% of the entire genome. In all, 26,903 protein-coding gene loci were identified, and 26,008 (96.67%) genes had conserved functional motifs. Further comparative genomics analysis preliminarily showed that the split of P. fortunei with Tectona grandis likely occurred 38.8 (33.3-45.1) million years ago. Whole-genome resequencing was used to construct a merged genetic map of 20 linkage groups, with 2993 bin markers (3,312,780 SNPs), a total length of 1675.14 cm, and an average marker interval of 0.56 cm. In total, 73 QTLs for important phenotypic traits were identified (19 major QTLs with phenotypic variation explained ≥ 10%), including 10 for the diameter at breast height, 7 for the main trunk height, and 56 for branch-related traits. These results not only enrich P. fortunei genomic data but also form a solid foundation for fine QTL mapping and key marker/gene mining of Paulownia, which is of great significance for the directed genetic improvement of these species.
Collapse
Affiliation(s)
- Yanzhi Feng
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chaowei Yang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Jiajia Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Jie Qiao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Baoping Wang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yang Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
22
|
Ma F, Zhang S, Yao Y, Chen M, Zhang N, Deng M, Chen W, Ma C, Zhang X, Guo C, Huang X, Zhang Z, Li Y, Li T, Zhou J, Sun Q, Sun J. Jujube witches' broom phytoplasmas inhibit ZjBRC1-mediated abscisic acid metabolism to induce shoot proliferation. HORTICULTURE RESEARCH 2023; 10:uhad148. [PMID: 37691966 PMCID: PMC10483173 DOI: 10.1093/hr/uhad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023]
Abstract
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Wei Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chi Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xinyue Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chenglong Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiang Huang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhenyuan Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Tingyi Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Junyong Zhou
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
23
|
Li L, Guo N, Cao Y, Zhai X, Fan G. Genome-Wide Characterization of Calmodulin and Calmodulin-like Protein Gene Families in Paulownia fortunei and Identification of Their Potential Involvement in Paulownia Witches' Broom. Genes (Basel) 2023; 14:1540. [PMID: 37628592 PMCID: PMC10454933 DOI: 10.3390/genes14081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
As significant Ca2+ sensors, calmodulin (CaM) and calmodulin-like proteins (CML), have been associated with a variety of environmental conditions in plants. However, whether CaMs/CMLs are related to the stress of phytoplasma infection has not been reported in Paulownia fortunei. In the current study, 5 PfCaMs and 58 PfCMLs were detected through a genome-wide investigation. The number of EF-hand motifs in all PfCaMs/CMLs varied. Bioinformatics analyses, including protein characteristics, conserved domain, gene structure, cis-elements, evolutionary relationship, collinearity, chromosomal location, post-translation modification site, subcellular localization and expression pattern analyses, represented the conservation and divergence of PfCaMs/CMLs. Furthermore, some PfCaMs/CMLs might be involved in plants' reaction to phytoplasma infection and exogenous calcium therapy, indicating these genes may play a role in abiotic as well as biotic stress responses. In addition, subcellular localization analysis showed that PfCML10 was located in the cell membrane and nucleus. In summary, these findings establish a stronger platform for their subsequent functional investigation in trees and further characterize their roles in Paulownia witches' broom (PaWB) occurrence.
Collapse
Affiliation(s)
- Lijiao Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Na Guo
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
24
|
Yang H, Wang Z, Zhai X, Zhao Z, Cao X, Deng M, Cao Y, Li B, Huang S, Fan G. The stability of transcription factor PfSPL1 participates in the response to phytoplasma stress in Paulownia fortunei. Int J Biol Macromol 2023; 242:124770. [PMID: 37164135 DOI: 10.1016/j.ijbiomac.2023.124770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The current understanding of the pathogenesis of phytoplasma is still very limited and challenging. Here, ceRNA regulatory network and degradome sequencing identified a PfmiR156f-PfSPL regulatory module in Paulownia fortunei infected by phytoplasma, and RLM-5'RACE and dual luciferase analyses verified the relationship. The PfmiR156 cleavage site was located at 1104 nt and 1177 nt of PfSPL1 and PfSPL10, respectively. MG132 and epoxomicin, two 26S proteasome inhibitors, significantly increased the accumulation of PfSPL1. PfSPL1 was also the attack target of phytoplasma effectors (Pawb 3/9/16/37/51) after the phytoplasma invaded Paulownia. Moreover, molecular docking implied that the effectors may interact with the conserved SBP domain of the target protein PfSPL1. Basically, these results indicated that the stability of PfSPL1 was regulated by PfmiR156 cleavage activity and/or the 26S proteasome pathway at the post-translation level. The PfSPL1, which is a transcription factor, was also the one of the targets of multiple effectors attacking Paulownia. This study provides a good scope to understand the paulownia phytoplasma infecting mechanism.
Collapse
Affiliation(s)
- Haibo Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Zhe Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Xiaoqiao Zhai
- Henan Province Academy of forestry, Zhengzhou 450008, PR China
| | - Zhenli Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Xibing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Bingbing Li
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Shunmou Huang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
25
|
Morote L, Rubio-Moraga Á, López-Jiménez AJ, Argandoña J, Niza E, Ahrazem O, Gómez-Gómez L. A carotenoid cleavage dioxygenase 4 from Paulownia tomentosa determines visual and aroma signals in flowers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111609. [PMID: 36737005 DOI: 10.1016/j.plantsci.2023.111609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Paulownia tomentosa is an economically important fast-growing tree, and its flowers and fruits are a rich source of biologically active secondary metabolites. In addition, the flowers of P. tomentosa are distinguished by a strong aroma and are also excellent nectariferous plants. The flowers are pale lilac and characterized by the presence of yellow nectar guides, whose color changes during the development of the flower, representing reliable signals to pollinators while enhancing reproductive success. The chemical analyses of the nectar guides revealed the presence of carotenoids as the pigments responsible for the observed coloration, with β-carotene levels determining the color changes observed after anthesis, with a reduction at anthesis and further increase and accumulation in post anthesis. To understand how β-carotene accumulation was controlled in the nectar guides, the expression of genes related to carotenoid biosynthesis and metabolism was analyzed. Carotenogenic gene expression was not associated with the observed changes in β-carotene during flower development. However, the expression of a gene encoding a carotenoid cleavage dioxygenase, CCD4-4, was co-related with the levels of β-carotene in the nectar guides. In addition, CCD4-4 cleavage β-carotene at C9-C10 and C9'-C10' positions, resulting in the generation of β-ionone, which was detected in flowers at anthesis. The obtained results indicated a developmental stage specific regulation of apocarotenoid formation through β-carotene cleavage, resulting in color changes and volatile production as key traits for plant-pollinator interactions. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Alberto José López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Javier Argandoña
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
26
|
Genome-Wide Identification and Expression of the Paulownia fortunei MADS-Box Gene Family in Response to Phytoplasma Infection. Genes (Basel) 2023; 14:genes14030696. [PMID: 36980968 PMCID: PMC10048600 DOI: 10.3390/genes14030696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Paulownia witches’ broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. Although a few MADS-box transcription factors have been reported to be involved in the formation of PaWB, there has been little investigation into all of the MADS-box gene family in Paulownia. The objective of this study is to identify the MADS-box gene family in Paulownia fortunei on a genome-wide scale and explore their response to PaWB infection. Bioinformatics software were used for identification, characterization, subcellular localization, phylogenetic analysis, the prediction of conserved motifs, gene structures, cis-elements, and protein-protein interaction network construction. The tissue expression profiling of PfMADS-box genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Transcriptome data and the protein interaction network prediction were combined to screen the genes associated with PaWB formation. We identified 89 MADS-box genes in the P. fortunei genome and categorized them into 14 subfamilies. The comprehensive analysis showed that segment duplication events had significant effects on the evolution of the PfMADS-box gene family; the motif distribution of proteins in the same subfamily are similar; development-related, phytohormone-responsive, and stress-related cis-elements were enriched in the promoter regions. The tissue expression pattern of PfMADS-box genes suggested that they underwent subfunctional differentiation. Three genes, PfMADS3, PfMADS57, and PfMADS87, might be related to the occurrence of PaWB. These results will provide a valuable resource to explore the potential functions of PfMADS-box genes and lay a solid foundation for understanding the roles of PfMADS-box genes in paulownia–phytoplasma interactions.
Collapse
|
27
|
Bai B, Zhang G, Pei B, Song Q, Hao X, Zhao L, Wu Y. The function of the phytoplasma effector SWP12 depends on the properties of two key amino acids. J Biol Chem 2023; 299:103052. [PMID: 36813236 PMCID: PMC10040895 DOI: 10.1016/j.jbc.2023.103052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.
Collapse
Affiliation(s)
- Bixin Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoding Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyan Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingting Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xing'an Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
28
|
Impact of Salinity on the Energy Transfer between Pigment-Protein Complexes in Photosynthetic Apparatus, Functions of the Oxygen-Evolving Complex and Photochemical Activities of Photosystem II and Photosystem I in Two Paulownia Lines. Int J Mol Sci 2023; 24:ijms24043108. [PMID: 36834517 PMCID: PMC9967322 DOI: 10.3390/ijms24043108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The present study shows the effect of salinity on the functions of thylakoid membranes from two hybrid lines of Paulownia: Paulownia tomentosa x fortunei and Paulownia elongate x elongata, grown in a Hoagland solution with two NaCl concentrations (100 and 150 mM) and different exposure times (10 and 25 days). We observed inhibition of the photochemical activities of photosystem I (DCPIH2 → MV) and photosystem II (H2O → BQ) only after the short treatment (10 days) with the higher NaCl concentration. Data also revealed alterations in the energy transfer between pigment-protein complexes (fluorescence emission ratios F735/F685 and F695/F685), the kinetic parameters of the oxygen-evolving reactions (initial S0-S1 state distribution, misses (α), double hits (β) and blocked centers (SB)). Moreover, the experimental results showed that after prolonged treatment with NaCl Paulownia tomentosa x fortunei adapted to the higher concentration of NaCl (150 mM), while this concentration is lethal for Paulownia elongata x elongata. This study demonstrated the relationship between the salt-induced inhibition of the photochemistry of both photosystems and the salt-induced changes in the energy transfer between the pigment-protein complexes and the alterations in the Mn cluster of the oxygen-evolving complex under salt stress.
Collapse
|
29
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
30
|
Yang H, Zhai X, Zhao Z, Fan G. Comprehensive analyses of the SPL transcription factor family in Paulownia fortunei and their responses to biotic and abiotic stresses. Int J Biol Macromol 2023; 226:1261-1272. [PMID: 36442550 DOI: 10.1016/j.ijbiomac.2022.11.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
To study the molecular characteristics, phylogenetic evolution, and gene functions of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Paulownia fortunei, a whole genome sequence analysis was carried out, and a total of 23 PfSPL genes were identified. Tandem duplication and fragment replication were the main patterns of gene expansion in the PfSPL family. Phylogenetic analysis showed that the 23 identified PfSPLs formed seven subgroups, and the structures of the proteins in the same subgroup were similar. Functional analysis indicated that PfSPL11 may regulate flowering, PfSPL5 was involved in gibberellin signaling, PfSPL1/4/23 regulated branching, and PfSPL9/16/18 were related to pathogen resistance. Yeast one hybrid technology confirmed that PfSPL4 and PfSP23 can bind to the promoter of PfTCPa. The transcriptome analysis indicated that PfSPL10 was sensitive to both drought and salt stress. Ten PfSPLs that responded to phytoplasma infection were identified. Molecular docking showed that PfSPL10 and PfSPL 4/5/9/10/11/13 formed active pockets in the conserved SBP domain that could bind methyl methane sulfonate (MMS) and rifampicin (Rif) through stable hydrogen bonds, respectively. This study provides a basis for further studies on the functions of the PfSPL transcription factor family, and for genetic improvement and breeding of trees resistant to PaWB disease.
Collapse
Affiliation(s)
- Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Xiaoqiao Zhai
- Henan Province Academy of forestry, Zhengzhou 450008, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
31
|
Zhao X, Li B, Zhai X, Liu H, Deng M, Fan G. Genome-Wide Analysis of Specific PfR2R3-MYB Genes Related to Paulownia Witches' Broom. Genes (Basel) 2022; 14:genes14010007. [PMID: 36672749 PMCID: PMC9858720 DOI: 10.3390/genes14010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Paulownia witches' broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. R2R3-MYB transcription factors (TF) have been reported to be involved in the plant's response to infections caused by these pathogens, but a comprehensive study of the R2R3-MYB genes in Paulownia has not been reported. In this study, we identified 138 R2R3-MYB genes distributed on 20 chromosomes of Paulownia fortunei. These genes were classified into 27 subfamilies based on their gene structures and phylogenetic relationships, which indicated that they have various evolutionary relationships and have undergone rich segmental replication events. We determined the expression patterns of the 138 R2R3-MYB genes of P. fortunei by analyzing the RNA sequencing data and found that PfR2R3-MYB15 was significantly up-regulated in P. fortunei in response to phytoplasma infections. PfR2R3-MYB15 was cloned and overexpressed in Populus trichocarpa. The results show that its overexpression induced branching symptoms. Subsequently, the subcellular localization results showed that PfR2R3-MYB15 was located in the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation experiments showed that PfR2R3-MYB15 interacted with PfTAB2. The analysis of the PfR2R3-MYB15 gene showed that it not only played an important role in plant branching, but also might participate in the biosynthesis of photosystem elements. Our results will provide a foundation for future studies of the R2R3-MYB TF family in Paulownia and other plants.
Collapse
Affiliation(s)
- Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqiao Zhai
- Forestry Academy of Henan, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| |
Collapse
|
32
|
He X, Wang Y, Lian J, Zheng J, Zhou J, Li J, Jiao Z, Niu Y, Wang W, Zhang J, Wang B, Zhuge Q. The whole-genome assembly of an endangered Salicaceae species: Chosenia arbutifolia (Pall.) A. Skv. Gigascience 2022; 11:giac109. [PMID: 36374197 PMCID: PMC9661892 DOI: 10.1093/gigascience/giac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND As a fast-growing tree species, Chosenia arbutifolia has a unique but controversial taxonomic status in the family Salicaceae. Despite its importance as an industrial material, in ecological protection, and in landscaping, C. arbutifolia is seriously endangered in Northeast China because of artificial destruction and its low reproductive capability. RESULTS To clarify its phylogenetic relationships with other Salicaceae species, we assembled a high-quality chromosome-level genome of C. arbutifolia using PacBio High-Fidelity reads and Hi-C sequencing data, with a total size of 338.93 Mb and contig N50 of 1.68 Mb. Repetitive sequences, which accounted for 42.34% of the assembly length, were identified. In total, 33,229 protein-coding genes and 11,474 small noncoding RNAs were predicted. Phylogenetic analysis suggested that C. arbutifolia and poplars diverged approximately 15.3 million years ago, and a large interchromosomal recombination between C. arbutifolia and other Salicaceae species was discovered. CONCLUSIONS Our study provides insights into the genome architecture and systematic evolution of C. arbutifolia, as well as comprehensive information for germplasm protection and future functional genomic studies.
Collapse
Affiliation(s)
- Xudong He
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yu Wang
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jinmin Lian
- Biozeron Shenzhen, Inc., Shenzhen 518000, China
| | - Jiwei Zheng
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Jie Zhou
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Jiang Li
- Biozeron Shenzhen, Inc., Shenzhen 518000, China
| | - Zhongyi Jiao
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | | | - Weiwei Wang
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Jun Zhang
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Baosong Wang
- Willow Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangsu Academy of Forestry, Nanjing 211153, China
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Qiang Zhuge
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
34
|
Abstract
This review aimed to determine the current state of research on the growth conditions and use pertaining to paulownia wood, mainly in European countries where paulownia has been introduced only relatively recently. Several studies carried out on Paulownia hybrids have shown significant differences in the growth dynamics of individual clones in their response to local environmental and climatic conditions. For example, dry biomass production yields in the second year of cultivation range from 1.5 t ha−1 to as much as 14 t ha−1. This diversity has manifested itself not only in growth characteristics but also in the properties of the wood and the possibilities for its use. Despite having clear similarities to the genus Paulownia, the cultivation of species and hybrids under different conditions has produced varying results. The best growing conditions for this wood (that make economic sense) are in the Middle East and Southern Europe. These regions have accumulated the most experience because of the earlier establishment of the crop. Today, paulownia cultivation is dominated by hybrids with selected traits that are propagated mainly in vitro. The most commonly planted hybrids include the clones in vitro 112, Cotevisa 2 and Shan Tong. The growth results and production capacity in central European countries are lower compared to Southern Europe. Experiments on paulownia cultivation are still relatively young, mainly consisting of replicating the cultivation of hybrids developed in Asia or Southern Europe. However, agronomic procedures are being developed and reactions to local climatic conditions are being studied. It is likely that, in the next few years, the profitability of growing paulownia in these regions will become apparent.
Collapse
|
35
|
Chai G, Lu M, Yang X, Demura T, Li W, Li Q. Editorial: Wood Development and Physiology in a Changing Climate. FRONTIERS IN PLANT SCIENCE 2022; 13:906736. [PMID: 35528942 PMCID: PMC9069742 DOI: 10.3389/fpls.2022.906736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
36
|
ZHANG Y, LU X, JIA L, JIN H, CHENG Y. Metabolome and transcriptome sequencing analysis reveals anthocyanins in the red flowers of black locust (Robinia pseudoacacia L.). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Xi LU
- Luoyang Normal University, China
| | | | | | | |
Collapse
|