1
|
Kobayashi A, Hiroyama Y, Mamiya T, Oikawa M, Konishi T. The COX-2/PGE2 Response Pathway Upregulates Radioresistance in A549 Human Lung Cancer Cells through Radiation-Induced Bystander Signaling. BIOLOGY 2023; 12:1368. [PMID: 37997966 PMCID: PMC10669009 DOI: 10.3390/biology12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
This study aimed to determine the mechanism underlying the modulation of radiosensitivity in cancer cells by the radiation-induced bystander effect (RIBE). We hypothesized that the RIBE mediates cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in elevating radioresistance in unirradiated cells. In this study, we used the SPICE-QST microbeam irradiation system to target 0.07-0.7% cells by 3.4-MeV proton microbeam in the cell culture sample, such that most cells in the dish became bystander cells. Twenty-four hours after irradiation, we observed COX-2 protein upregulation in microbeam-irradiated cells compared to that of controls. Additionally, 0.29% of the microbeam-irradiated cells exhibited increased cell survival and a reduced micronucleus rate against X-ray irradiation compared to that of non-microbeam irradiated cells. The radioresistance response was diminished in both cell groups with the hemichannel inhibitor and in COX-2-knockout cells under cell-to-cell contact and sparsely distributed conditions. The results indicate that the RIBE upregulates the cell radioresistance through COX-2/PGE2 intercellular responses, thereby contributing to issues, such as the risk of cancer recurrence.
Collapse
Affiliation(s)
- Alisa Kobayashi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Taisei Mamiya
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masakazu Oikawa
- Electrostatic Accelerator Operation Section, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
2
|
He X, Cai L, Tang H, Chen W, Hu W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim Biophys Acta Gen Subj 2023; 1867:130386. [PMID: 37230420 DOI: 10.1016/j.bbagen.2023.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ionizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications. SCOPE OF REVIEW We summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection. MAJOR CONCLUSIONS Epigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified. GENERAL SIGNIFICANCE A better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weibo Chen
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
4
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
5
|
Yu KN. Radiation-Induced Rescue Effect: Insights from Microbeam Experiments. BIOLOGY 2022; 11:1548. [PMID: 36358251 PMCID: PMC9687443 DOI: 10.3390/biology11111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The present paper reviews a non-targeted effect in radiobiology known as the Radiation-Induced Rescue Effect (RIRE) and insights gained from previous microbeam experiments on RIRE. RIRE describes the mitigation of radiobiological effects in targeted irradiated cells after they receive feedback signals from co-cultured non-irradiated bystander cells, or from the medium previously conditioning those co-cultured non-irradiated bystander cells. RIRE has established or has the potential of establishing relationships with other non-traditional new developments in the fields of radiobiology, including Radiation-Induced Bystander Effect (RIBE), Radiation-Induced Field Size Effect (RIFSE) and ultra-high dose rate (FLASH) effect, which are explained. The paper first introduces RIRE, summarizes previous findings, and surveys the mechanisms proposed for observations. Unique opportunities offered by microbeam irradiations for RIRE research and some previous microbeam studies on RIRE are then described. Some thoughts on future priorities and directions of research on RIRE exploiting unique features of microbeam radiations are presented in the last section.
Collapse
Affiliation(s)
- Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Yu K. Role of radiation-induced rescue effect in radiation field size effect. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Pelevina II, Akleev AV, Kogarko IN, Petushkova VV, Kogarko BS, Pryakhin EA, Neifakh EA, Ktitorova OV, Andreev SS. Radiation-Chemical Effect of Ionizing Radiation on the Organism and Genotoxic Disorders of the Blood System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Aranza-Martínez A, Sánchez-Pérez J, Brito-Elias L, López-Camarillo C, Cantú de León D, Pérez-Plasencia C, López-Urrutia E. Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer. Front Oncol 2021; 11:752270. [PMID: 34804940 PMCID: PMC8599982 DOI: 10.3389/fonc.2021.752270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The resistance that Triple-Negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, develops against radiotherapy is a complex phenomenon involving several regulators of cell metabolism and gene expression; understanding it is the only way to overcome it. We focused this review on the contribution of the two leading classes of regulatory non-coding RNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), against ionizing radiation-based therapies. We found that these regulatory RNAs are mainly associated with DNA damage response, cell death, and cell cycle regulation, although they regulate other processes like cell signaling and metabolism. Several regulatory RNAs regulate multiple pathways simultaneously, such as miR-139-5p, the miR-15 family, and the lncRNA HOTAIR. On the other hand, proteins such as CHK1 and WEE1 are targeted by several regulatory RNAs simultaneously. Interestingly, the study of miRNA/lncRNA/mRNA regulation axes increases, opening new avenues for understanding radioresistance. Many of the miRNAs and lncRNAs that we reviewed here can be used as molecular markers or targeted by upcoming therapeutic options, undoubtedly contributing to a better prognosis for TNBC patients.
Collapse
Affiliation(s)
- Alberto Aranza-Martínez
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Julio Sánchez-Pérez
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Luis Brito-Elias
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - David Cantú de León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico.,Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
9
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
10
|
Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future.
Collapse
|
11
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
12
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
13
|
Ojima M, Ito A, Usami N, Ohara M, Suzuki K, Kai M. Field size effects on DNA damage and proliferation in normal human cell populations irradiated with X-ray microbeams. Sci Rep 2021; 11:7001. [PMID: 33772061 PMCID: PMC7997867 DOI: 10.1038/s41598-021-86416-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Abstract
To clarify the health risks of internal radiation exposure, it is important to investigate the radiological effects of local exposure at cell levels from radioactive materials taken up by organs. Focusing on the response of cell populations post-irradiation, X-ray microbeams are very effective at reproducing the effects of local exposure within an internal exposure in vitro. The present study aims to clarify the effects of local exposure by investigating the response of normal human cell (MRC-5) populations irradiated with X-ray microbeams of different beam sizes to DNA damage. The populations of MRC-5 were locally irradiated with X-ray microbeams of 1 Gy at 0.02-1.89 mm2 field sizes, and analyzed whether the number of 53BP1 foci as DSB (DNA double strand break) per cell changed with the field size. We found that even at the same dose, the number of DSB per cell increased depending on the X-irradiated field size on the cell population. This result indicated that DNA damage repair of X-irradiated cells might be enhanced in small size fields surrounded by non-irradiated cells. This study suggests that X-irradiated cells received some signal (a rescue signal) from surrounding non-irradiated cells may be involved in the response of cell populations post-irradiation.
Collapse
Affiliation(s)
- Mitsuaki Ojima
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan.
| | - Atsushi Ito
- School of Engineering, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Noriko Usami
- Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki, 305-0801, Japan
| | - Maki Ohara
- Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki, 305-0801, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| |
Collapse
|
14
|
Pakniyat F, Nedaie HA, Mozdarani H, Mahmoudzadeh A, Salimi M, Griffin RJ, Gholami S. Enhanced response of radioresistant carcinoma cell line to heterogeneous dose distribution of grid; the role of high-dose bystander effect. Int J Radiat Biol 2020; 96:1585-1596. [PMID: 33074047 DOI: 10.1080/09553002.2020.1834163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The classical dogma that restricted the radiation effect to the directly irradiated cells has been challenged by the bystander effect. This off-target phenomenon which was manifested in adjacent cells via signaling of fully exposed cells might be involved in high-dose Grid therapy as well. Here, an in-vitro study was performed to examine the possible extent of carcinoma cells response to the inhomogeneous dose distribution of Grid irradiation in the context of the bystander effect. MATERIALS AND METHODS Bystander effect was investigated in human carcinoma cell lines of HeLa and HN5 adjacent to those received high-dose Grid irradiation using 'medium transfer' and 'cell-to-cell contact' strategies. Based on the Grid peak-to-valley dose profile, medium transfer was exerted from 10 Gy uniformly exposed donors to 1.5 Gy uniformly irradiated recipients. Cell-contact bystander was evaluated after nonuniform dose distribution of 10 Gy Grid irradiation using cloning cylinders. GammaH2AX foci, micronucleus and clonogenic assays besides gene expression analysis were performed. RESULTS Various parameters (ɑ/β, D37, D50) extracted from survival curve which fitted to the Linear Quadratic model, verified more radioresistance of HN5. Survival fraction at 2 Gy (SF2) indicated as 0.42 ± 0.06 in HeLa and 0.5 ± 0.03 in HN5. The level of survival decrease, DNA damages and micronucleus of cells located in the Grid shielded areas (1.5 Gy cell-to-cell contact bystander cells) were significantly more than the values obtained from cells which were irradiated by merely uniform dose of 1.5 Gy. The gH2AX foci and micronuclei frequencies were enhanced in cell-contact bystander approximately more than 1.8 times. Relative expression of DNA damage repair pathway genes (Xrcc6 and H2afx) in bystander cells increased significantly. The most cell survival reduction (11.6 times) was revealed in the Grid bystander cells of radioresistant cell line (HN5). No statistically significant difference between 10 Gy uniform beam and Grid non-uniform beam was observed. CONCLUSIONS Various endpoints confirmed an augmented response of cells in the valley dose region of the Grid block significantly (compared with the cells irradiated by identical dose of uniform beam), suggesting the role of high-dose bystander effect which was more pronounced in resistant carcinoma cell lines. These findings could provide a partial explanation for the Grid beneficial response seen in a number of pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Pakniyat
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Ali Nedaie
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Radiation Oncology Research Center, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aziz Mahmoudzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical genetics, Medical Biotechnology Institute, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ghasemi Z, Tahmasebi-Birgani MJ, Ghafari Novin A, Motlagh PE, Teimoori A, Ghadiri A, Pourghadamyari H, Sarli A, Khanbabaei H. Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells. Life Sci 2020; 257:118087. [PMID: 32702442 DOI: 10.1016/j.lfs.2020.118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
AIMS Recent studies suggest that direct exposure of cells to fractionated radiotherapy might induce radioresistance. However, the effects of fractionated radiotherapy on the non-irradiated bystander cells remain unclear. We hypothesized that fractionated radiotherapy could enhance radioresistance and proliferation of bystander cells. MAIN METHODS Human tumor cell lines, including A549 and HT29 were irradiated (2 Gy per day). The irradiated cells (either A549 or HT29) were co-cultured with non-irradiated cells of the same line using transwell co-culture system. Tumor cell proliferation, radioresistance and apoptosis were measured using MTT assay, clonogenic survival assay and Annexin-V in bystander cells, respectively. In addition, activation of Chk1 (Ser 317), Chk2 (Thr 68) and Akt (Ser473) were measured via western blot. KEY FINDINGS Irradiated HT29 cells induced conventional bystander effects detected as modulation of clonogenic survival parameters (decreased area under curve, D10 and ED50 and increased α) and proliferation in recipient neighbors. While, irradiated A549 cells significantly enhanced the radioresistance and proliferation of bystander cells. These changes were accompanied with enhanced activation of Chk1, Chk2 and Akt in non-irradiated bystander A549 cells. Moreover, both bystander effects (damaging and protective) were mediated through secreted factors. SIGNIFICANCE These findings suggest that fractionated radiotherapy could promote proliferation and radioresistance of bystander cells probably through survival and proliferation pathways.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Molecular Genetics, Faculty of Modern Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Arefeh Ghafari Novin
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Esmaili Motlagh
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolazim Sarli
- Department of Medical Genetics, Medical Science School, Tarbiat Modares University, Tehran, Iran
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
17
|
Pathikonda S, Cheng SH, Yu KN. Role of PARP1 regulation in radiation-induced rescue effect. JOURNAL OF RADIATION RESEARCH 2020; 61:352-367. [PMID: 32329510 PMCID: PMC7299272 DOI: 10.1093/jrr/rraa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 05/04/2023]
Abstract
Radiation-induced rescue effect (RIRE) in cells refers to the phenomenon where irradiated cells (IRCs) receive help from feedback signals produced by partnered bystander unirradiated cells (UIRCs) or from the conditioned medium (CM) that has previously conditioned the UIRCs. In the present work, we explored the role of poly (ADP-ribose) polymerase 1 (PARP1) regulation in RIRE and the positive feedback loop between PARP1 and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-κB) in RIRE using various cell lines, including HeLa, MCF7, CNE-2 and HCT116 cells. We first found that when the IRCs (irradiated with 2 Gy X-ray) were treated with CM, the relative mRNA expression levels of both tumor suppressor p53-binding protein 1 (53BP1) and PARP1, the co-localization factor between 53BP1 and γH2AX as well as the fluorescent intensity of PARP1 were reduced. We also found that IRCs treated with the PARP1 inhibitor, Olaparib (AZD2281) had a higher 53BP1 expression. These results illustrated that PARP1 was involved in RIRE transcriptionally and translationally. We further revealed that treatment of IRCs with CM together with Olaparib led to significantly lower mRNA expression levels and fluorescent intensities of NF-κB, while treatment of IRCs with CM together the NF-κB inhibitor BAY-11-7082 led to significantly lower mRNA expression levels as well as fluorescent intensities of PARP1. These results illustrated that PARP1 and NF-κB were involved in the positive feedback loop transcriptionally and translationally. Thus, the results supported the occurrence of a PARP1-NF-κB positive feedback loop in RIRE. The present work provided insights into potential exploitation of inhibition of PARP1 and/or the PARP1-NF-κB positive feedback loop in designing adjuncts to cancer radiotherapeutics.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- Corresponding author. Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong. Tel: (852)-344-27812; Fax: (852)-344-20538;
| |
Collapse
|
18
|
Kwan WS, Nikezic D, Roy VAL, Yu KN. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2898. [PMID: 32331399 PMCID: PMC7215282 DOI: 10.3390/ijerph17082898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
The present paper reviews available background information for studying multiple stressor effects of radon (222Rn) and phthalates in children and provides insights on future directions. In realistic situations, living organisms are collectively subjected to many environmental stressors, with the resultant effects being referred to as multiple stressor effects. Radon is a naturally occurring radioactive gas that can lead to lung cancers. On the other hand, phthalates are semi-volatile organic compounds widely applied as plasticizers to provide flexibility to plastic in consumer products. Links of phthalates to various health effects have been reported, including allergy and asthma. In the present review, the focus on indoor contaminants was due to their higher concentrations and to the higher indoor occupancy factor, while the focus on the pediatric population was due to their inherent sensitivity and their spending more time close to the floor. Two main future directions in studying multiple stressor effects of radon and phthalates in children were proposed. The first one was on computational modeling and micro-dosimetric studies, and the second one was on biological studies. In particular, dose-response relationship and effect-specific models for combined exposures to radon and phthalates would be necessary. The ideas and methodology behind such proposed research work are also applicable to studies on multiple stressor effects of collective exposures to other significant airborne contaminants, and to population groups other than children.
Collapse
Affiliation(s)
- W. S. Kwan
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| | - D. Nikezic
- Department of Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, RS-36300 Novi Pazar, Serbia;
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | | | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Kurinnyi DA, Rushkovsky SR, Demchenko OM, Sholoiko VV, Pilinska MA. Evaluation of the Interaction between Malignant and Normal Human Peripheral Blood Lymphocytes Under Cocultivation and Separate Cultivation. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Demirkıran G, Kalaycı Demir G, Güzeliş C. Coupling of cell fate selection model enhances DNA damage response and may underlie BE phenomenon. IET Syst Biol 2020; 14:96-106. [PMID: 32196468 PMCID: PMC8687165 DOI: 10.1049/iet-syb.2019.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 11/20/2022] Open
Abstract
Double-strand break-induced (DSB) cells send signal that induces DSBs in neighbour cells, resulting in the interaction among cells sharing the same medium. Since p53 network gives oscillatory response to DSBs, such interaction among cells could be modelled as an excitatory coupling of p53 network oscillators. This study proposes a plausible coupling model of three-mode two-dimensional oscillators, which models the p53-mediated cell fate selection in globally coupled DSB-induced cells. The coupled model consists of ATM and Wip1 proteins as variables. The coupling mechanism is realised through ATM variable via a mean-field modelling the bystander signal in the intercellular medium. Investigation of the model reveals that the coupling generates more sensitive DNA damage response by affecting cell fate selection. Additionally, the authors search for the cause-effect relationship between coupled p53 network oscillators and bystander effect (BE) endpoints. For this, they search for the possible values of uncertain parameters that may replicate BE experiments' results. At certain parametric regions, there is a correlation between the outcomes of cell fate and endpoints of BE, suggesting that the intercellular coupling of p53 network may manifest itself as the form of observed BEs.
Collapse
Affiliation(s)
- Gökhan Demirkıran
- Electrical and Electronics Engineering, Yaşar University, Selçuk Yaşar Kampüsü, İzmir, Turkey.
| | - Güleser Kalaycı Demir
- Electrical and Electronics Engineering, Dokuz Eylül University, Tınaztepe, İzmir, Turkey
| | - Cüneyt Güzeliş
- Electrical and Electronics Engineering, Yaşar University, Selçuk Yaşar Kampüsü, İzmir, Turkey
| |
Collapse
|
21
|
Heeran AB, Berrigan HP, O'Sullivan J. The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiat Res 2019; 192:668-679. [PMID: 31618121 DOI: 10.1667/rr15489.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation therapy is one of the pillars of cancer treatment, with approximately one half of all cancer patients receiving it as part of their standard of care. Emerging evidence indicates that the biological effects of radiation are not limited to targeted cells. The radiation-induced bystander effect (RIBE) refers to the plethora of biological phenomena occurring in nonirradiated cells as a result of signal transmission from an irradiated cell. Experimental evidence has linked RIBE to numerous hallmarks of cancer including resisting cell death, tumor immune evasion, genomic instability, deregulated cellular energetics, tumor-promoting inflammation and sustained proliferative signaling as well as enhanced radioresistance, thus highlighting the potential role of RIBE events in patient treatment response. The mechanisms underlying RIBE events in vivo are poorly understood. However, elucidating the molecular mechanisms involved in their manifestation may reveal novel therapeutic targets to improve radiation response in cancer patients.
Collapse
Affiliation(s)
- Aisling B Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Helen P Berrigan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
22
|
Matsuya Y, Satou Y, Hamada N, Date H, Ishikawa M, Sato T. DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle. Sci Rep 2019; 9:10365. [PMID: 31316118 PMCID: PMC6637188 DOI: 10.1038/s41598-019-46874-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022] Open
Abstract
Insoluble radioactive microparticles emitted by the incident at the Fukushima nuclear power plant have drawn keen interests from the viewpoint of radiation protection. Cs-bearing particles have been assumed to adhere in the long term to trachea after aspirated into respiratory system, leading to heterogeneous dose distribution within healthy tissue around the particles. However, the biological effects posed by an insoluble radioactive particle remain unclear. Here, we show cumulative DNA damage in normal human lung cells proximal and distal to the particle (β-ray and γ-ray-dominant areas, respectively) under localized chronic exposure in comparison with uniform exposure. We put a Cs-bearing particle into a microcapillary tip and placed it onto a glass-base dish containing fibroblast or epithelial cells cultured in vitro. A Monte Carlo simulation with PHITS code provides the radial distribution of absorbed dose-rate around the particle, and subsequently we observed a significant change in nuclear γ-H2AX foci after 24 h or 48 h exposure to the particle. The nuclear foci in the cells distal to the particle increased even under low-dose-rate exposure compared with uniform exposure to 137Cs γ-rays, which was suppressed by a treatment with a scavenger of reactive oxygen species. In contrast, such focus formation was less manifested in the exposed cells proximal to the particle compared with uniform exposure. These data suggest that the localized exposure to a Cs-bearing particle leads to not only disadvantage to distal cells but also advantage to proximal cells. This study is the first to provide quantitative evaluation for the spatial distribution of DNA double strand breaks after the heterogeneous chronic exposure to a Cs-bearing particle in comparison with uniform Cs exposure.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), 790-1 Otsuka, Motooka, Tomioka, Fukushima, 979-1151, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| |
Collapse
|
23
|
Matsuya Y, McMahon SJ, Ghita M, Yoshii Y, Sato T, Date H, Prise KM. Intensity Modulated Radiation Fields Induce Protective Effects and Reduce Importance of Dose-Rate Effects. Sci Rep 2019; 9:9483. [PMID: 31263149 PMCID: PMC6603191 DOI: 10.1038/s41598-019-45960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
In advanced radiotherapy, intensity modulated radiation fields and complex dose-delivery are utilized to prescribe higher doses to tumours. Here, we investigated the impact of modulated radiation fields on radio-sensitivity and cell recovery during dose delivery. We generated experimental survival data after single-dose, split-dose and fractionated irradiation in normal human skin fibroblast cells (AGO1522) and human prostate cancer cells (DU145). The dose was delivered to either 50% of the area of a T25 flask containing the cells (half-field) or 100% of the flask (uniform-field). We also modelled the impact of dose-rate effects and intercellular signalling on cell-killing. Applying the model to the survival data, it is found that (i) in-field cell survival under half-field exposure is higher than uniform-field exposure for the same delivered dose; (ii) the importance of sub-lethal damage repair (SLDR) in AGO1522 cells is reduced under half-field exposure; (iii) the yield of initial DNA lesions measured with half-field exposure is smaller than that with uniform-field exposure. These results suggest that increased cell survival under half-field exposure is predominantly attributed not to rescue effects (increased SLDR) but protective effects (reduced induction of initial DNA lesions). In support of these protective effects, the reduced DNA damage leads to modulation of cell-cycle dynamics, i.e., less G1 arrest 6 h after irradiation. These findings provide a new understanding of the impact of dose-rate effects and protective effects measured after modulated field irradiation.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, 319-1195, Ibaraki, Japan. .,Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan.
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, BT7 9AE, Belfast, UK
| | - Mihaela Ghita
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, BT7 9AE, Belfast, UK
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1 Nishi-17, Chuo-ku, Sapporo, 060-8556, Hokkaido, Japan
| | - Tatsuhiko Sato
- Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, 319-1195, Ibaraki, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, BT7 9AE, Belfast, UK
| |
Collapse
|
24
|
Yu KN. Radiation-induced rescue effect. JOURNAL OF RADIATION RESEARCH 2019; 60:163-170. [PMID: 30624744 PMCID: PMC6430251 DOI: 10.1093/jrr/rry109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 05/10/2023]
Abstract
Radiation-induced rescue effect (RIRE) refers to the phenomenon in which detrimental effects in targeted irradiated cells are reduced upon receiving feedback signals from partnered non-irradiated bystander cells, or from the medium previously conditioning these partnered non-irradiated bystander cells. For convenience, in the current review we define two types of RIRE: (i) Type 1 RIRE (reduced detrimental effects in targeted cells upon receiving feedback signals from bystander cells) and (ii) Type 2 RIRE (exacerbated detrimental effects in targeted cells upon receiving feedback signals from bystander cells). The two types of RIRE, as well as the associated mechanisms and chemical messengers, have been separately reviewed. The recent report on the potential effects of RIRE on the traditional colony-formation assays has also been reviewed. Finally, future priorities and directions for research into RIRE are discussed.
Collapse
Affiliation(s)
- Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- Corresponding author. Tel: +852-344-27812; Fax: +852-344-20538;
| |
Collapse
|
25
|
Mukherjee S, Chakraborty A. Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol 2019; 95:243-263. [PMID: 30496010 DOI: 10.1080/09553002.2019.1547440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sharmi Mukherjee
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Shahmohammadi Beni M, Krstic D, Nikezic D, Yu KN. Monte Carlo studies on photon interactions in radiobiological experiments. PLoS One 2018; 13:e0193575. [PMID: 29561871 PMCID: PMC5862409 DOI: 10.1371/journal.pone.0193575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an "exposed" cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the "exposed" cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in interaction cross-sections. (5) The areas under the angular distribution curves of photons exiting the medium layer and subsequently undergoing interactions within the cell layer became smaller for larger incident photon energies. (6) The number of cells suffering at least one electron hit increased with the administered dose. For larger incident photon energies, the numbers of cells suffering at least one electron hit became smaller, which was attributed to the reduction in the photon interaction cross-section. These results highlighted the importance of the administered dose in radiobiological experiments. In particular, the threshold administered doses at which all cells in the exposed cell array suffered at least one electron hit might provide hints on explaining the intriguing observation that radiation-induced cancers can be statistically detected only above the threshold value of ~100 mSv, and thus on reconciling controversies over the linear no-threshold model.
Collapse
Affiliation(s)
| | - D. Krstic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - D. Nikezic
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- * E-mail:
| |
Collapse
|
27
|
Kong EY, Cheng SH, Yu KN. Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? JOURNAL OF RADIATION RESEARCH 2018; 59:129-140. [PMID: 29385614 PMCID: PMC5951087 DOI: 10.1093/jrr/rrx101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 05/06/2023]
Abstract
We hypothesized that radiation-induced rescue effect (RIRE) shared similar mechanisms with 'metabolic cooperation', in which nutrient-deprived cancer cells prompted normal cells to provide nutrients. Our data demonstrated that X-ray irradiation induced autophagy in HeLa cells, which could last at least 18 h, and proved that the irradiated cells (IRCs) resorted to breaking down their own intracellular components to supply the molecules required for cell-repair enhancement (e.g. to activate the NF-κB pathway) in the absence of support from bystander unirradiated cells (UICs). Furthermore, autophagy accumulation in IRCs was significantly reduced when they were partnered with UICs, and more so with UICs with pre-induced autophagy before partnering (through starvation using Earle's Balanced Salt Solution), which showed that the autophagy induced in UICs supported the IRCs. Our results also showed that interleukin 6 (IL-6) was secreted by bystander UICs, particularly the UICs with pre-induced autophagy, when they were cultured in the medium having previously conditioned irradiated HeLa cells. It was established that autophagy could activate the signal transducer and activator of transcription 3 (STAT3) that was required for the IL-6 production in the autophagy process. Taken together, the metabolic cooperation of RIRE was likely initiated by the bystander factors released from IRCs, which induced autophagy and activated STAT3 to produce IL-6 in bystander UICs, and was finally manifested in the activation of the NF-κB pathway in IRCs by the IL-6 secreted by the UICs.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- Corresponding author: Tel: +852-344-27812; Fax: +852-344-20538;
| |
Collapse
|
28
|
Adrian G, Ceberg C, Carneiro A, Ekblad L. Rescue Effect Inherited in Colony Formation Assays Affects Radiation Response. Radiat Res 2017; 189:44-52. [PMID: 29136392 DOI: 10.1667/rr14842.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that nonirradiated cells can exhibit radiation damage (bystander effect), and recent findings have shown that nonirradiated cells may help protect irradiated cells (rescue effect). These findings call into question the traditional view of radiation response: cells cannot be envisioned as isolated units. Here, we investigated traditional colony formation assays to determine if they also comprise cellular communication affecting the radiation response, using colony formation assays with varying numbers of cells, modulated beam irradiation and media transfer. Our findings showed that surviving fraction gradually increased with increasing number of irradiated cells. Specifically, for DU-145 human prostate cancer cells, surviving fraction increased 1.9-to-4.1-fold after 5-12 Gy irradiation; and for MM576 human melanoma cells, surviving fraction increased 1.9-fold after 5 Gy irradiation. Furthermore, increased surviving fraction was evident after modulated beam irradiation, where irradiated cells could communicate with nonirradiated cells. Media from dense cell culture also increased surviving fraction. The results suggest that traditional colony formation assays comprise unavoidable cellular communication affecting radiation outcome and the shape of the survival curve. We also propose that the increased in-field surviving fraction after modulated beam irradiation is due to the same effect.
Collapse
Affiliation(s)
| | - Crister Ceberg
- b Medical Radiation Physics, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | | | | |
Collapse
|
29
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
30
|
Diegeler S, Hellweg CE. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities. Front Immunol 2017. [PMID: 28638385 PMCID: PMC5461334 DOI: 10.3389/fimmu.2017.00664] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Collapse
Affiliation(s)
- Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| |
Collapse
|
31
|
Nikezic D, Yu KN. Alpha-particle fluence in radiobiological experiments. JOURNAL OF RADIATION RESEARCH 2017; 58:195-200. [PMID: 27811200 PMCID: PMC5439373 DOI: 10.1093/jrr/rrw106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Two methods were proposed for determining alpha-particle fluence for radiobiological experiments. The first involved calculating the probabilities of hitting the target for alpha particles emitted from a source through Monte Carlo simulations, which when multiplied by the activity of the source gave the fluence at the target. The second relied on the number of chemically etched alpha-particle tracks developed on a solid-state nuclear track detector (SSNTD) that was irradiated by an alpha-particle source. The etching efficiencies (defined as percentages of latent tracks created by alpha particles from the source that could develop to become visible tracks upon chemical etching) were computed through Monte Carlo simulations, which when multiplied by the experimentally counted number of visible tracks would also give the fluence at the target. We studied alpha particles with an energy of 5.486 MeV emitted from an 241Am source, and considered the alpha-particle tracks developed on polyallyldiglycol carbonate film, which is a common SSNTD. Our results showed that the etching efficiencies were equal to one for source-film distances of from 0.6 to 3.5 cm for a circular film of radius of 1 cm, and for source-film distances of from 1 to 3 cm for circular film of radius of 2 cm. For circular film with a radius of 3 cm, the etching efficiencies never reached 1. On the other hand, the hit probability decreased monotonically with increase in the source-target distance, and fell to zero when the source-target distance was larger than the particle range in air.
Collapse
Affiliation(s)
- Dragoslav Nikezic
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
32
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Fu J, Wang J, Wang X, Wang P, Xu J, Zhou C, Bai Y, Shao C. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells. Mutat Res 2016; 789:1-8. [PMID: 27155559 DOI: 10.1016/j.mrfmmm.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
Abstract
Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral bystander responses that the release of TNF-α and IL-8 regulated by MAPK and NF-κB pathways synergistically increased cellular injury after α-particle irradiation.
Collapse
Affiliation(s)
- Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Juan Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Ping Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jinping Xu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Cuiping Zhou
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Widel M. Radiation Induced Bystander Effect: From <i>in Vitro</i> Studies to Clinical Application. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijmpcero.2016.51001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Fu J, Yuan D, Xiao L, Tu W, Dong C, Liu W, Shao C. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways. Mutat Res 2015; 783:1-8. [PMID: 26613333 DOI: 10.1016/j.mrfmmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.
Collapse
Affiliation(s)
- Jiamei Fu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Linlin Xiao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
36
|
Lam RKK, Fung YK, Han W, Li L, Chiu SK, Cheng SH, Yu KN. Modulation of NF-κB in rescued irradiated cells. RADIATION PROTECTION DOSIMETRY 2015; 167:37-43. [PMID: 25911412 DOI: 10.1093/rpd/ncv217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies by different groups on the rescue effect, where unirradiated bystander cells mitigated the damages in the irradiated cells, since its discovery by the authors' group in 2011 were first reviewed. The properties of the rescue effect were then examined using a novel experimental set-up to physically separate the rescue signals from the bystander signals. The authors' results showed that the rescue effect was mediated through activation of the nuclear factor-κB (NF-κB) response pathway in the irradiated cells, and that the NF-κB activation inhibitor BAY-11-7082 did not affect the activation of this response pathway in the irradiated cells induced by direct irradiation.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Y K Fung
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - W Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - L Li
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - S K Chiu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - S H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| |
Collapse
|
37
|
Lam RKK, Han W, Yu KN. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells. Mutat Res 2015; 782:23-33. [PMID: 26524645 DOI: 10.1016/j.mrfmmm.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/29/2022]
Abstract
We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
38
|
Liu Y, Kobayashi A, Fu Q, Yang G, Konishi T, Uchihori Y, Hei TK, Wang Y. Rescue of Targeted Nonstem-Like Cells from Bystander Stem-Like Cells in Human Fibrosarcoma HT1080. Radiat Res 2015; 184:334-40. [PMID: 26295845 DOI: 10.1667/rr14050.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer stem-like cells (CSCs) have been suggested to be the principal cause of tumor radioresistance, dormancy and recurrence after radiotherapy. However, little is known about CSC behavior in response to clinical radiotherapy, particularly with regard to CSC communication with bulk cancer cells. In this study, CSCs and nonstem-like cancer cells (NSCCs) were co-cultured, and defined cell types were chosen and irradiated, respectively, with proton microbeam. The bidirectional rescue effect in the combinations of the two cell types was then investigated. The results showed that out of all four combinations, only the targeted, proton irradiated NSCCs were protected by bystander CSCs and showed less accumulation of 53BP1, which is a widely used indicator for DNA double-strand breaks. In addition, supplementation with c-PTIO, a specific nitric oxide scavenger, can show a similar effect on targeted NSCCs. These results, showed that the rescue effect of CSCs on targeted NSCCs involves nitric oxide in the process, suggesting that the cellular communication between CSCs and NSCCs may be important in determining the survival of tumor cells after radiation therapy. To our knowledge, this is the first report demonstrating a rescue effect of CSCs to irradiated NSCCs that may help us better understand CSC behavior in response to cancer radiotherapy.
Collapse
Affiliation(s)
- Yu Liu
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.,b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Qibin Fu
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Gen Yang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.,b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Yukio Uchihori
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,c Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan and
| | - Tom K Hei
- b Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555, Japan.,d Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Yugang Wang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
39
|
Jaiswal H, Lindqvist A. Bystander communication and cell cycle decisions after DNA damage. Front Genet 2015; 6:63. [PMID: 25774166 PMCID: PMC4343024 DOI: 10.3389/fgene.2015.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/08/2015] [Indexed: 01/07/2023] Open
Abstract
The DNA damage response (DDR) has two main goals, to repair the damaged DNA and to communicate the presence of damaged DNA. This communication allows the adaptation of cellular behavior to minimize the risk associated with DNA damage. In particular, cell cycle progression must be adapted after a DNA-damaging insult, and cells either pause or terminally exit the cell cycle during a DDR. As cells can accumulate mutations after a DDR due to error-prone DNA repair, terminal cell cycle exit may prevent malignant transformation. The tumor suppressor p53 plays a key role in promoting terminal cell cycle exit. Interestingly, p53 has been implicated in communication of a stress response to surrounding cells, known as the bystander response. Recently, surrounding cells have also been shown to affect the damaged cell, suggesting the presence of intercellular feedback loops. How such feedback may affect terminal cell cycle exit remains unclear, but its presence calls for caution in evaluating cellular outcome without controlling the cellular surrounding. In addition, such feedback may contribute to how the cellular environment affects malignant transformation after DNA damage.
Collapse
Affiliation(s)
- Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
40
|
Kong EY, Choi VWY, Cheng SH, Yu KN. Some properties of the signals involved in unirradiated zebrafish embryos rescuing α-particle irradiated zebrafish embryos. Int J Radiat Biol 2015; 90:1133-42. [PMID: 24913297 DOI: 10.3109/09553002.2014.932031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The in vivo radiation-induced bystander effect (RIBE) and radiation-induced rescue effect (RIRE) induced between embryos of the zebrafish (Danio rerio) by alpha-particle irradiation were studied through the number of apoptotic signals revealed at 24 h post fertilization (hpf) through vital dye acridine orange staining. MATERIALS AND METHODS RIBE and RIRE were verified through the significant increase and decrease in apoptotic signals in the partnered bystander and irradiated embryos, respectively. RESULTS The medium transfer experiment where irradiated zebrafish embryos were rescued through immersion in the medium previously conditioned by a larger number of irradiated zebrafish embryos showed (a) the involvement of a released stress signal in the induction of RIRE, and (b) RIBE and RIRE signals had the same function. With the help of 500 μM of the specific nitric oxide (NO) scavenger cPTIO (2-(4carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), NO was confirmed as an essential signaling molecule for inducing both the RIBE and RIRE. On the other hand, the treatment with 20 μM of the carbon monoxide (CO) releasing chemical CORM-3 (tricarbonylchloro(glycinato)ruthenium (II)) suppressed the manifestations of RIBE but did not suppress RIRE. CONCLUSIONS In conclusion, unirradiated zebrafish embryos need NO but not NO-induced damages to rescue α-particle irradiated zebrafish embryos.
Collapse
Affiliation(s)
- E Y Kong
- Department of Physics and Materials Science, City University of Hong Kong
| | | | | | | |
Collapse
|
41
|
Lam RKK, Fung YK, Han W, Yu KN. Rescue effects: irradiated cells helped by unirradiated bystander cells. Int J Mol Sci 2015; 16:2591-609. [PMID: 25625514 PMCID: PMC4346853 DOI: 10.3390/ijms16022591] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022] Open
Abstract
The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - Y K Fung
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - W Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
42
|
Seth I, Schwartz JL, Stewart RD, Emery R, Joiner MC, Tucker JD. Neutron exposures in human cells: bystander effect and relative biological effectiveness. PLoS One 2014; 9:e98947. [PMID: 24896095 PMCID: PMC4045982 DOI: 10.1371/journal.pone.0098947] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.
Collapse
Affiliation(s)
- Isheeta Seth
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Jeffrey L. Schwartz
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert D. Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert Emery
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - James D. Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
44
|
Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutat Res 2014; 763-764:39-44. [PMID: 24680692 DOI: 10.1016/j.mrfmmm.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.
Collapse
Affiliation(s)
- Sejal Desai
- Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Alisa Kobayashi
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masakazu Oikawa
- Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Badri N Pandey
- Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
45
|
He M, Dong C, Xie Y, Li J, Yuan D, Bai Y, Shao C. Reciprocal bystander effect between α-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway. Mutat Res 2014; 763-764:1-9. [PMID: 24657252 DOI: 10.1016/j.mrfmmm.2014.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/21/2014] [Accepted: 03/07/2014] [Indexed: 02/04/2023]
Abstract
Irradiated cells can induce biological effects on vicinal non-irradiated bystander cells, meanwhile the bystander cells may rescue the irradiated cells through a feedback signal stress. To elucidate the nature of this reciprocal effect, we examined the interaction between α-irradiated human macrophage cells U937 and its bystander HL-7702 hepatocyte cells using a cell co-culture system. Results showed that after 6h of cell co-culture, mitochondria depolarization corresponding to apoptosis was significantly induced in the HL-7702 cells, but the formation of micronuclei in the irradiated U937 cells was markedly decreased compared to that without cell co-culture treatment. This reciprocal effect was not observed when the cell membrane signaling pathway was blocked by filipin that inhibited cAMP transmission from bystander cells to irradiated cells. After treatment of cells with exogenous cAMP, forskolin (an activator of cAMP) or KH-7 (an inhibitor of cAMP), respectively, it was confirmed that cAMP communication from bystander cells to targeted cells could mitigate radiation damage in U739 cells, and this cAMP insufficiency in the bystander cells contributed to the enhancement of bystander apoptosis. Moreover, the bystander apoptosis in HL-7702 cells was aggravated by cAMP inhibition but it could not be evoked when p53 of HL-7702 cells was knocked down no matter of forskolin and KH-7 treatment. In conclusion, this study disclosed that cAMP could be released from bystander HL-7702 cells and compensated to α-irradiated U937 cells through a membrane signaling pathway and this cAMP communication played a profound role in regulating the reciprocal bystander effects.
Collapse
Affiliation(s)
- Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jitao Li
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
46
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
47
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
48
|
Autsavapromporn N, Suzuki M, Funayama T, Usami N, Plante I, Yokota Y, Mutou Y, Ikeda H, Kobayashi K, Kobayashi Y, Uchihori Y, Hei TK, Azzam EI, Murakami T. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality. Radiat Res 2013; 180:367-75. [PMID: 23987132 PMCID: PMC4058832 DOI: 10.1667/rr3111.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036-0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/μm), 18.3 MeV/u carbon ion (LET ~103 keV/μm), 13 MeV/u neon ion (LET ~380 keV/μm) or 11.5 MeV/u argon ion (LET ~1,260 keV/μm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Masao Suzuki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Noriko Usami
- Photon Factory, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Ianik Plante
- University Space Research Association, NASA Johnson Space Center, Houston, Texas 77058
| | - Yuichiro Yokota
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Yasuko Mutou
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Hiroko Ikeda
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Katsumi Kobayashi
- Photon Factory, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Yukio Uchihori
- Research, Development and Support Center, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Tom K. Hei
- Center of Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Edouard I. Azzam
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, New Jersey 07103
| | - Takeshi Murakami
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| |
Collapse
|
49
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
50
|
Choi VWY, Konishi T, Oikawa M, Cheng SH, Yu KN. The threshold number of protons to induce an adaptive response in zebrafish embryos. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:91-100. [PMID: 23295938 DOI: 10.1088/0952-4746/33/1/91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, microbeam protons were used to provide the priming dose to induce an in vivo radioadaptive response (RAR) in the embryos of zebrafish, Danio rerio, against subsequent challenging doses provided by x-ray photons. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed. The embryos were dechorionated at 4 h post fertilisation (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, one irradiation point was chosen, to which 5, 10, 20, 30, 40, 50, 100, 200, 300 and 500 protons each with an energy of 3.4 MeV were delivered. The embryos were returned to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of x-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labelling (TUNEL) assay. The results revealed that at least 200 protons (with average radiation doses of about 300 and 650 mGy absorbed by an irradiated epithelial and deep cell, respectively) would be required to induce RAR in the zebrafish embryos in vivo. Our previous investigation showed that 5 protons delivered at 10 points on an embryo would already be sufficient to induce RAR in the zebrafish embryos. The difference was explained in terms of the radiation-induced bystander effect as well as the rescue effect.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | | | | | | |
Collapse
|