1
|
Ma L, Yang H, Xiao X, Chen Q, Lv W, Xu T, Jin Y, Wang W, Xiao Y. Co-exposure to sodium hypochlorite and cadmium induced locomotor behavior disorder by influencing neurotransmitter secretion and cardiac function in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123070. [PMID: 38056588 DOI: 10.1016/j.envpol.2023.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Sodium hypochlorite (NaClO) and cadmium (Cd) are widely co-occurring in natural aquatic environment; however, no study has been conducted on effects of their combined exposure on aquatic organisms. To assess effects of exposure to NaClO and Cd in zebrafish larvae, we designed six treatment groups, as follows: control group, NaClO group (300 μg/L), 1/100 Cd group (48 μg/L), 1/30 Cd group (160 μg/L), NaClO+1/100 Cd group, and NaClO+1/30 Cd group analyzed behavior, neurological function and cardiac function. Results revealed that exposure to 1/30 Cd and NaClO+1/30 Cd caused abnormal embryonic development in larvae by altering body morphology and physiological indicators. Combined exposure to NaClO and 1/30 Cd affected the free-swimming activity and behavior of larvae in response to light-dark transition stimuli. Moreover, exposure to 1/30 Cd or NaClO+1/30 Cd resulted in a significant increase in tyrosine hydroxylase and acetylcholinesterase activities, as well as significant changes of various neurotransmitters. Lastly, exposure to 1/30 Cd or NaClO+1/30 Cd influenced the transcription of cardiac myosin-related genes and disturbed the myocardial contractile function. Altogether, our results suggested that combined exposure to NaClO and Cd induced oxidative damage in larvae, resulting in detrimental effects on nervous system and cardiac function, thus altering their swimming behavior.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R, Maheshwari S, Shariq M, Parveen S, Shamim A. Emerging Nanotechnology for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:687-696. [PMID: 37138478 DOI: 10.2174/1871527322666230501232815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 05/05/2023]
Abstract
Nanotechnology is a great choice for medical research, and the green synthesis approach is a novel and better way to synthesize nanoparticles. Biological sources are cost-effective, environmentally friendly, and allow large-scale production of nanoparticles. Naturally obtained 3 β-hydroxy-urs- 12-en-28-oic acids reported for neuroprotective and dendritic structure are reported as solubility enhancers. Plants are free from toxic substances and act as natural capping agents. In this review, the pharmacological properties of ursolic acid (UA) and the structural properties of the dendritic structure are discussed. UA acid appears to have negligible toxicity and immunogenicity, as well as favorable biodistribution, according to the current study, and the dendritic structure improves drug solubility, prevents drug degradation, increases circulation time, and potentially targets by using different pathways with different routes of administration. Nanotechnology is a field in which materials are synthesized at the nanoscale. Nanotechnology could be the next frontier of humankind's technological advancement. Richard Feynman first used the term 'Nanotechnology' in his lecture, "There is Plenty of Room at the Bottom", on 29th December, 1959, and since then, interest has increased in the research on nanoparticles. Nanotechnology is capable of helping humanity by solving major challenges, particularly in neurological disorders like Alzheimer's disease (AD), the most prevalent type, which may account for 60-70% of cases. Other significant forms of dementia include vascular dementia, dementia with Lewy bodies (abnormal protein aggregates that form inside nerve cells), and a number of illnesses that exacerbate frontotemporal dementia. Dementia is an acquired loss of cognition in several cognitive domains that are severe enough to interfere with social or professional functioning. However, dementia frequently co-occurs with other neuropathologies, typically AD with cerebrovascular dysfunction. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some neurons. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders cause cognitive impairment and dementia, and as average life expectancy rises globally, their effects become more noticeable.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Rufaida Wasim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh-209217, India
| | - Mohammad Shariq
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Saba Parveen
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, UP-226026, India
| |
Collapse
|
3
|
Alcolea JA, Donat-Vargas C, Chatziioannou AC, Keski-Rahkonen P, Robinot N, Molina AJ, Amiano P, Gómez-Acebo I, Castaño-Vinyals G, Maitre L, Chadeau-Hyam M, Dagnino S, Cheng SL, Scalbert A, Vineis P, Kogevinas M, Villanueva CM. Metabolomic Signatures of Exposure to Nitrate and Trihalomethanes in Drinking Water and Colorectal Cancer Risk in a Spanish Multicentric Study (MCC-Spain). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19316-19329. [PMID: 37962559 PMCID: PMC11457144 DOI: 10.1021/acs.est.3c05814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
We investigated the metabolomic profile associated with exposure to trihalomethanes (THMs) and nitrate in drinking water and with colorectal cancer risk in 296 cases and 295 controls from the Multi Case-Control Spain project. Untargeted metabolomic analysis was conducted in blood samples using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. A variety of univariate and multivariate association analyses were conducted after data quality control, normalization, and imputation. Linear regression and partial least-squares analyses were conducted for chloroform, brominated THMs, total THMs, and nitrate among controls and for case-control status, together with a N-integration model discriminating colorectal cancer cases from controls through interrogation of correlations between the exposure variables and the metabolomic features. Results revealed a total of 568 metabolomic features associated with at least one water contaminant or colorectal cancer. Annotated metabolites and pathway analysis suggest a number of pathways as potentially involved in the link between exposure to these water contaminants and colorectal cancer, including nicotinamide, cytochrome P-450, and tyrosine metabolism. These findings provide insights into the underlying biological mechanisms and potential biomarkers associated with water contaminant exposure and colorectal cancer risk. Further research in this area is needed to better understand the causal relationship and the public health implications.
Collapse
Affiliation(s)
- Jose A. Alcolea
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
| | - Carolina Donat-Vargas
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
- Unit
of Cardiovascular and Nutritional Epidemiology, Institute of Environmental
Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Pekka Keski-Rahkonen
- International
Agency for Research on Cancer, 25 avenue Tony Garnier, CS 90627 69366, Lyon, France
| | - Nivonirina Robinot
- International
Agency for Research on Cancer, 25 avenue Tony Garnier, CS 90627 69366, Lyon, France
| | - Antonio José Molina
- Research
Group in Gene - Environment and Health Interactions (GIIGAS)/Institute
of Biomedicine (IBIOMED), Universidad de
León, Campus Universitario
de Vegazana, León 24071, Spain
- Faculty
of Health Sciences, Department of Biomedical Sciences, Area of Preventive
Medicine and Public Health, Universidad
de León, Campus Universitario
de Vegazana, León 24071, Spain
| | - Pilar Amiano
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Ministry
of Health of the Basque Government, Sub Directorate for Public Health
and Addictions of Gipuzkoa; BioGipuzkoa
(BioDonostia) Health Research Institute, San Sebastián 20013, Spain
| | - Inés Gómez-Acebo
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universidad
de Cantabria-IDIVAL, Avenida Cardenal Herrera Oria S/N, Santander 39011, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
- IMIM (Hospital del Mar Medical Research Institute), c/Doctor Aiguader 88, Barcelona 08003, Spain
| | - Lea Maitre
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
| | - Marc Chadeau-Hyam
- MRC
Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, United
Kingdom
| | - Sonia Dagnino
- MRC
Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, United
Kingdom
- Transporters
in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine,
Direction de la Recherche Fondamentale (DRF), Institut des Sciences
du Vivant Frédéric Joliot, Commissariat à l’Energie
Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur (UCA), 28 Avenue de Valombrose, Nice 06107, France
| | - Sibo Lucas Cheng
- MRC
Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, United
Kingdom
| | - Augustin Scalbert
- International
Agency for Research on Cancer, 25 avenue Tony Garnier, CS 90627 69366, Lyon, France
| | - Paolo Vineis
- MRC
Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, United
Kingdom
| | - Manolis Kogevinas
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
- IMIM (Hospital del Mar Medical Research Institute), c/Doctor Aiguader 88, Barcelona 08003, Spain
| | - Cristina M. Villanueva
- ISGlobal, c/Dr. Aiguader 88, Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Avenida Monforte de Lemos, 3-5,
Pabellón 11, Planta 0, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), c/Doctor
Aiguader 88, Barcelona 08003, Spain
- IMIM (Hospital del Mar Medical Research Institute), c/Doctor Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
4
|
Magara G, Varello K, Pastorino P, Francese DR, Arsieni P, Pezzolato M, Masoero L, Messana E, Caldaroni B, Abete MC, Pederiva S, Squadrone S, Elia AC, Prearo M, Bozzetta E. Multi-Level System to Assess Toxicity in Water Distribution Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148469. [PMID: 35886313 PMCID: PMC9316929 DOI: 10.3390/ijerph19148469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
The toxicity of water samples from water distribution plants needs to be investigated further. Indeed, studies on the pro-oxidant effects driven by tap water are very limited. In this study, the water quality, pro-oxidant effects, and potential health risks driven by exposure to groundwater samples from two water plants (sites A and B) located in Northwestern Italy were investigated in a multi-level system. Physicochemical parameters and the absence of pathogens, cyanotoxins, and endocrine active substances indicated a good water quality for both sites. The 25 metals analyzed were found under the limit of quantification or compliant with the maximum limits set by national legislation. Water samples were concentrated by the solid-phase extraction system in order to assess the aquatic toxicity on Epithelioma papulosum cyprini (EPC) cell line. Levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase were evaluated through the Integrated Biomarkers Response (IBRv2) index. EPC cell line was found a sensible model for assessing the antioxidant responses driven by both water concentrates. A similar antioxidant response was shown by plots and IBRv2 suggesting a muted risk for the two sampling sites.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
- Correspondence: ; Tel.: +39-0112-686-251
| | | | - Paola Arsieni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Loretta Masoero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Erika Messana
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| |
Collapse
|
5
|
Transcriptome Analysis Provides Insights into Hepatic Responses to Trichloroisocyanuric Acid Exposure in Goldfish ( Carassius auratus). Animals (Basel) 2021; 11:ani11102775. [PMID: 34679797 PMCID: PMC8532840 DOI: 10.3390/ani11102775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Trichloroisocyanuric acid (TCCA) has been widely used in public health and aquaculture for the prevention and treatment of diseases. As a strong oxidative disinfectant, TCCA may cause adverse influences on aquatic organisms and further poses a threat to the aquatic ecosystems. Nonetheless, the toxicological influences of TCCA on aquatic animals are still scarce and the mechanisms of the toxicity at the molecular levels in goldfish (Carassius auratus) have not been illustrated. The current study investigated the influences of sublethal concentration of TCCA on transcriptomic responses, the molecular indices of oxidative stress, and histopathological alterations in the hepatic and gill tissues of goldfish. The results indicated that TCCA exposure induced the disturbance of energy metabolism and the detoxification process. Furthermore, TCCA exposure also induced oxidative stress in the liver and caused pathological damage in gills. These findings could be useful to help understand the toxicological influences of TCCA on goldfish. Abstract In this study, goldfish (Carassius auratus) were exposed to 0 (control group) and 0.81 mg/L TCCA for four consecutive days. The liver transcriptome, the molecular indices of oxidative stress, and gills histopathology were investigated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that energy metabolism-related pathways such as glycolysis/gluconeogenesis were significantly enriched, suggesting their perturbation in the liver of goldfish. Additionally, TCCA exposure also caused pathological damage in gills, which compromised physiological function and decreased oxygen intake capacity of gills, thus leading to the enhancement of anaerobic metabolism. This finding was confirmed by the significant upregulation of lactate dehydrogenase in the liver of goldfish. Moreover, many phase I and phase II metabolic enzymes might be activated to alleviate TCCA-induced toxicity in goldfish, and glutathione S-transferases (GSTs) and cytochrome P450s (CYPs) play a crucial role in the metabolism of TCCA in the liver of goldfish. Furthermore, the antioxidant enzyme analysis showed that TCCA exposure induced oxidative damage in the liver and partially impaired the antioxidant defense system of goldfish, evidenced by decreased superoxide dismutase (SOD) and catalase (CAT), and increased malondialdehyde (MDA) level. In summary, this study will improve our understanding of the molecular mechanisms of the TCCA-induced toxicity in goldfish.
Collapse
|
6
|
SanJuan-Reyes N, Gómez-Oliván LM, Pérez-Pastén Borja R, Luja-Mondragón M, Orozco-Hernández JM, Heredia-García G, Islas-Flores H, Galar-Martínez M, Escobar-Huérfano F. Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. ENVIRONMENTAL RESEARCH 2020; 182:108992. [PMID: 31830696 DOI: 10.1016/j.envres.2019.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Marlenne Luja-Mondragón
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - José Manuel Orozco-Hernández
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Gerardo Heredia-García
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Francisco Escobar-Huérfano
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
7
|
Labrada-Martagón V, Teneriá FAM, Zenteno-Savín T. Standardized Micronucleus Assay for Peripheral Blood from Sea Turtles. CHELONIAN CONSERVATION AND BIOLOGY 2019. [DOI: 10.2744/ccb-1373.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vanessa Labrada-Martagón
- Laboratorio Ecología de la Salud, Facultad de Ciencias, UASLP, Av. Chapultepec #1570, Col. Privadas del Pedregal, CP 78295, San Luis Potosí, San Luis Potosí, México [; ORCID: https://orcid.org/0000-0001-8853-5541]
| | - Fernando Alberto Muñoz Teneriá
- Laboratorio de Inmunología, Facultad de Agronomía y Veterinaria, UASLP, Carretera Matehuala-SLP Km 14.5, Soledad de Graciano Sánchez, San Luis Potosí, México [; ORCID: https://orcid.org/0000-0002-2338-3804]
| | - Tania Zenteno-Savín
- Laboratorio de Estrés Oxidativo, Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional #195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Méxic
| |
Collapse
|
8
|
Pedro A, Martínez D, Pontigo J, Vargas-Lagos C, Hawes C, Wadsworth S, Morera F, Vargas-Chacoff L, Yáñez A. Transcriptional activation of genes involved in oxidative stress in Salmo salar challenged with Piscirickettsia salmonis. Comp Biochem Physiol B Biochem Mol Biol 2019; 229:18-25. [DOI: 10.1016/j.cbpb.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 01/18/2023]
|
9
|
de Castro Medeiros L, de Alencar FLS, Navoni JA, de Araujo ALC, do Amaral VS. Toxicological aspects of trihalomethanes: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5316-5332. [PMID: 30607849 DOI: 10.1007/s11356-018-3949-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Chlorine is considered the most used chemical agent for water disinfection worldwide. However, water chlorination can lead to by-product generation which can be toxic to humans. The present study aimed to perform a systematic review on the toxicity of trihalomethanes (THMs) through bioindicators of cytotoxicity, genotoxicity, and mutagenicity. The results showed that studies on the effects of THMs on DNA are a current research concern for evaluating the toxicity of the pure compounds and real samples involving several types including water for recreational use, reused water, and drinking water. THMs deleterious effects have been assessed using several biosystems, where the Ames test along with experimental animal models were the most cited. A wide range of THM concentrations have been tested. Nevertheless, DNA damage was demonstrated, highlighting the potential human health risk. Among the studied THMs, chloroform presented a different action mechanism when compared with brominated THMs, with the former being cytotoxic while brominated THMs (bromodichloromethane, bromoform, and dibromochloromethane) were cytotoxic, genotoxic, and mutagenic. The described evidence in this research highlights the relevance of this topic as a human health issue. Nevertheless, research aimed to represent THMs current exposure conditions in a more accurate way would be needed to understand the real impact on human health.
Collapse
Affiliation(s)
- Luciana de Castro Medeiros
- Development and Environment, Bioscience Center, Federal University of Rio Grande do Norte (UFRN), University Campus, Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Feliphe Lacerda Souza de Alencar
- Development and Environment, Bioscience Center, Federal University of Rio Grande do Norte (UFRN), University Campus, Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Julio Alejandro Navoni
- Development and Environment, Bioscience Center, Federal University of Rio Grande do Norte (UFRN), University Campus, Lagoa Nova, Natal, RN, 59072-970, Brazil
- Department of Natural Resources, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal, RN, Brazil
| | - André Luis Calado de Araujo
- Department of Natural Resources, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal, RN, Brazil
| | - Viviane Souza do Amaral
- Development and Environment, Bioscience Center, Federal University of Rio Grande do Norte (UFRN), University Campus, Lagoa Nova, Natal, RN, 59072-970, Brazil.
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), University Campus, Lagoa Nova, Natal, RN, 59072-970, Brazil.
| |
Collapse
|
10
|
Docea AO, Vassilopoulou L, Fragou D, Arsene AL, Fenga C, Kovatsi L, Petrakis D, Rakitskii VN, Nosyrev AE, Izotov BN, Golokhvast KS, Zakharenko AM, Vakis A, Tsitsimpikou C, Drakoulis N. CYP polymorphisms and pathological conditions related to chronic exposure to organochlorine pesticides. Toxicol Rep 2017; 4:335-341. [PMID: 28959657 PMCID: PMC5615117 DOI: 10.1016/j.toxrep.2017.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023] Open
Abstract
Organochlorine compounds (OCs) are persistent organic pollutants acting as endocrine disruptors. Exposure to OCs is a risk factor for several severe pathologies. Specific CYP polymorphisms could affect the clinical impact of OCs exposure.
The association between genetic variations in the cytochrome P450 (CYP) family genes and pathological conditions related to long-term exposure to organochlorine compounds (OCs) deserves further elucidation. OCs are persistent organic pollutants with bioaccumulative and lipophilic characteristics. They can act as endocrine disruptors and perturb cellular mechanisms. Prolonged exposure to OCs has been associated with different pathological manifestations. CYP genes are responsible for transcribing enzymes essential in xenobiotic metabolism. Therefore, polymorphisms in these genetic sequences a. alter the metabolic pathways, b. induce false cellular responses, and c. may provoke pathological conditions. The main aim of this review is to define the interaction between parameters a, b and c at a mechanistic/molecular level, with references in clinical cases.
Collapse
Key Words
- ARNT, AhR nuclear translocator
- AhR, aryl hydrocarbon receptor
- CYP450, cytochrome P450
- Cytochrome P450
- DDE, dichlorodiphenyldichloroethylene
- DDT, dichlorodiphenyltrichloroethane
- Environmental pollutants
- GST, glutathione-S-transferase
- Genetic polymorphisms
- HCB, hexachlorobenzene
- HCH, hexachlorocyclohexane
- HPTE, hydroxychlor
- MXC, methoxychlor
- OBP, organochlorine by-product
- OC, organochlorine compound
- Organochlorine compounds
- PAA, phenoxyacetic acid
- PCB, polychlorinated biphenyl
- PCDD, polychlorinated dibenzodioxins
- PCDF, polychlorinated dibenzofurans
- POP, persistent organic pollutant
- Pathogenesis
- ROS, reactive oxygen species
- SNP, single nucleotide polymorphism
- TCDD, tetrachlorodibenzodioxin
- VCM, vinyl chloride monomer
Collapse
Affiliation(s)
- Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, 2 Petru Rares, 200349, Craiova, Romania
| | - Loukia Vassilopoulou
- Department of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Andreea Letitia Arsene
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | | | - Valerii N Rakitskii
- Federal Scientific Center of Hygiene, F.F. Erisman, Moscow, Russian Federation
| | - Alexander E Nosyrev
- Central Chemical Laboratory of Toxicology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Boris N Izotov
- Central Chemical Laboratory of Toxicology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Alexander M Zakharenko
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Antonis Vakis
- Department of Neurosurgery, University of Crete, Medical School, Heraklion University Hospital, Voutes, 71 021 Heraklion, Crete, Greece
| | - Christina Tsitsimpikou
- Department of Dangerous Substances, Mixtures and Articles, Directorate of Energy, Industrial and Chemical Products, General Chemical State Laboratory of Greece, Athens, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
11
|
Cirillo S, Canistro D, Vivarelli F, Paolini M. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18777-18788. [PMID: 27316649 DOI: 10.1007/s11356-016-7091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Drinking water (DW) disinfection represents a milestone of the past century, thanks to its efficacy in the reduction of risks of epidemic forms by water micro-organisms. Nevertheless, such process generates disinfection by-products (DBPs), some of which are genotoxic both in animals and in humans and carcinogenic in animals. At present, chlorination is one of the most employed strategies but the toxicological effects of several classes of DBPs are unknown. In this investigation, a multidisciplinary approach foreseeing the chemical analysis of chlorinated DW samples and the study of its effects on mixed function oxidases (MFOs) belonging to the superfamily of cytochrome P450-linked monooxygenases of Cyprinus carpio hepatopancreas, was employed. The experimental samples derived from aquifers of two Italian towns (plant 1, river water and plant 2, spring water) were obtained immediately after the disinfection (A) and along the network (R1). Animals treated with plant 1 DW-processed fractions showed a general CYP-associated MFO induction. By contrast, in plant 2, a complex modulation pattern was achieved, with a general up-regulation for the point A and a marked MFO inactivation in the R1 group, particularly for the testosterone metabolism. Together, the toxicity and co-carcinogenicity (i.e. unremitting over-generation of free radicals and increased bioactivation capability) of DW linked to the recorded metabolic manipulation, suggests that a prolonged exposure to chlorine-derived disinfectants may produce adverse health effects.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| |
Collapse
|
12
|
Cunha V, Santos MM, Moradas-Ferreira P, Ferreira M. Simvastatin effects on detoxification mechanisms in Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10615-10629. [PMID: 27040680 DOI: 10.1007/s11356-016-6547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The transcription and protein activity of defence mechanisms such as ABC transporters, phase I and II of cellular detoxification and antioxidant enzymes can be altered in the presence of emerging contaminants such as pharmaceuticals impacting the overall detoxification mechanism. The present work aimed to characterise the effects of simvastatin on the detoxification mechanisms of embryonic stages of Danio rerio. In a first approach, constitutive transcription of key genes involved in detoxification was determined. Embryos were collected at different developmental stages, and transcription patterns of genes coding for ABC transporters, phase I and II and oxidative stress were analysed. With exception of abcc2, all genes seem to be from maternal transfer (0-2 hpf). Embryos were then exposed to different concentrations of simvastatin (5 and 50 μg/L), verapamil and MK571 (10 μM; ABC protein inhibitors) and a combination of simvastatin and ABC inhibitors. mRNA expression levels of abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat was evaluated. Accumulation assays to measure ABC proteins activity and activity of EROD, GST, CAT and Cu/ZnSOD, were also undertaken. Simvastatin acted as a weak inhibitor of ABC proteins and increased EROD and GST activity, whereas Cu/ZnSOD and CAT activity were decreased. Simvastatin up-regulated abcb4 and cyp3a65 transcription (both concentrations), as well as abcc1 and abcc2 at 50 μg/L, and down-regulated gst, sod, cat at 5 μg/L. In conclusion, our data revealed the interaction of simvastatin with detoxification mechanisms highlighting the importance of monitoring the presence of this emerging contaminant in aquatic environments.
Collapse
Affiliation(s)
- V Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - M M Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - P Moradas-Ferreira
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- I3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC, Institute for Molecular and Cell Biology, Porto, Portugal
| | - M Ferreira
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
- School of Marine Studies, Faculty of Science, Technology and Environment, The University of South Pacific, Laucala Bay Road, Suva, Fiji Islands
| |
Collapse
|
13
|
Sapone A, Canistro D, Vivarelli F, Paolini M. Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. CHEMOSPHERE 2016; 144:548-554. [PMID: 26397472 DOI: 10.1016/j.chemosphere.2015.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/21/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Sanitation is of crucial importance for the microbiological safety of drinking water. However, chlorination of water rich in organic material produces disinfection by-products (DBPs), many of which have been reported to be mutagenic and/or carcinogenic compounds such as haloacetic acids and trihalomethanes. Epidemiological studies have suggested a link between drinking water consumption and cancer. We previously observed that Cyprinus carpio fish exposed to DBPs, may be subject to epigenetic effects such as those referable to the up-regulation of cytochrome P450 (CYP) superfamily (ex. co-mutagenesis/co-carcinogenesis and oxidative stress) that has been associated to non-genotoxic carcinogenesis. Our goal was to study the xenobiotic metabolism in mollusks exposed in situ to surface water of Lake Trasimene (Central Italy) treated with several disinfectants such as the traditional chlorine dioxide (ClO2), sodium hypochlorite (NaClO) or the relatively new one peracetic acid (PAA). The freshwater bivalves (Dreissena polymorpha) being selected as biomarker, have the unique ability to accumulate pollutants. Freshwater bivalves were maintained in surface water containing each disinfectant individually (1-2 mg/L). Following an exposure period up to 20 days during the fall period, microsomes were collected from the mussels, then tested for various monooxygenases. Strong CYP inductions were observed. These data indicate that drinking water disinfection generates harmful DBP mixtures capable of determining a marked perturbation of CYP-supported reactions. This phenomenon, being associated to an increased pro-carcinogen bioactivation and persistent oxidative stress, could provide an explanation for the observational studies connecting the regular consumption of drinking water to increased risk of various cancers in humans.
Collapse
Affiliation(s)
- Andrea Sapone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| |
Collapse
|
14
|
SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Islas-Flores H, González-González ED, Cardoso-Vera JD, Jiménez-Vargas JM. NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:1-10. [PMID: 26026403 DOI: 10.1016/j.scitotenv.2015.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The pharmaceutical industry generates wastewater discharges of varying characteristics and contaminant concentrations depending on the nature of the production process. The main chemicals present in these effluents are solvents, detergents, disinfectants - such as sodium hypochlorite (NaClO) - and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the geno- and cytotoxicity induced in the common carp Cyprinus carpio by the effluent emanating from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. Carp were exposed to the lowest observed adverse effect level (LOAEL, 0.1173%) for 12, 24, 48, 72 and 96 h, and biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. A significant increase with respect to the control group (p<0.05) occurred with all biomarkers from 24h on. Significant positive correlations were found between NSAID concentrations and biomarkers of geno- and cytotoxicity, as well as among geno- and cytotoxicity biomarkers. In conclusion, exposure to this industrial effluent induces geno- and cytotoxicity in blood of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Edgar David González-González
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Juan Manuel Jiménez-Vargas
- Unidad de Farmacología Clínica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Ángel de la Independencia s/n. Col. Metopolitana 2ª Sección, 57740 Nezahualcóyotl, Estado de México, Mexico
| |
Collapse
|
15
|
Uraga-Tovar DI, Domínguez-López ML, Madera-Sandoval RL, Nájera-Martínez M, García-Latorre E, Vega-López A. Generation of oxyradicals (O2. and H2O2), mitochondrial activity and induction of apoptosis of PBMC of Cyprinus carpio carpio treated in vivo with halomethanes and with recombinant HSP60 kDa and with LPS of Klebsiella pneumoniae. Immunopharmacol Immunotoxicol 2014; 36:329-40. [PMID: 25093392 DOI: 10.3109/08923973.2014.947034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Halomethanes (HM) can be immunotoxic in mammals; however, in the fish immune system HM effects are unknown. In the current study, we evaluated the mitochondrial activity (MA) by MTT, induction of apoptosis by SubG0 technique and quantified serum ROS concentration (O2. and H2O2) and ROS production in PBMC of Cyprinus carpio carpio treated i.p. with CH2Cl2, CHCl3 and BrCHCl2 (0.004-40.0 mg/kg) for 96 h. Positive controls were recombinant heat shock protein of 60 kDa (rHSP60 kDa) of Klebsiella pneumoniae and its LPS. In addition, for in vitro PBMC cultures, two culture media and two sources of sera were tested. Both positive controls increased the MA more than 4-fold as well as the production of O2. (26-fold) and H2O2 (5-fold) compared to their controls. HM induced different effects on MA, ROS production and an induction of apoptosis, depending on the chlorination patterns and the dose; however, a systemic damage prevails. To fish treated with CH2Cl2, the apoptosis was related with serum ROS concentration and with MA. In contrast, in fish dosed with CHCl3 relationships were not found, deducing a systemic damage. However, in fish treated with BrCHCl2, serum O2. concentration and in vitro ROS generation performed by PBMC were involved in the induction of apoptosis of these cells but not with MA suggesting also immunotoxic effects. The current study demonstrated that HMs are immunomodulators increasing an acute inflammatory response and that rHSP60kDA of K. pneumoniae and its LPS are appropriate antigens to assess the immune response of C. c. carpio.
Collapse
Affiliation(s)
- D Italibi Uraga-Tovar
- Laboratorio de Toxicología Ambiental, Departamento de Ingeniería en Sistemas Ambientales and
| | | | | | | | | | | |
Collapse
|
16
|
Olivares-Rubio HF, Martínez-Torres ML, Domínguez-López ML, García-Latorre E, Vega-López A. Pro-oxidant and antioxidant responses in the liver and kidney of wild Goodea gracilis and their relation with halomethanes bioactivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1603-1617. [PMID: 23737147 DOI: 10.1007/s10695-013-9812-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
In mammals, it has been shown that halomethanes (HM) are bioactivated by enzymes such as CYP 2E1 and the theta isoform of GST to produce reactive metabolites. However, in fish, little information is available, although HM can form autochthonously in aquatic environments. This study assessed the effect of HM in dusky splitfin (Goodea gracilis) from three lakes of the Valley of Mexico by analysing specific HM biomarkers as well as a broad range of biomarkers. The concentration of HM was a function of its half-life (higher in deep waters), while its precursors and solar radiation are secondary factors that determine its concentration. The kidney showed higher basal metabolism than the liver, probably because of its function as a haematopoietic and filtration organ. Using integrated biological response version 2 (IBRv2), it was found that the hepatic and renal O₂· content is a pro-oxidant force capable of inducing oxidative stress (ROOH, TBARS and RC=O). Early damage was found to be dependent on low concentrations of HM in Major Lake, whereas late damage was observed in fish exposed to higher concentrations of HM in Zumpango Lake and Ancient Lake. The activities of enzymes involved in antioxidant defence seemed to be inefficient. The quantitative assessment of biomarkers (ANOVA) and the estimate of parameter A obtained from IBRv2 provided different information. However, the data support the greater predictive power of IBRv2, but it requires a series of interrelated biomarkers to infer these possibilities. G. gracilis presents marked patterns of adaptation, which are dependant on the HM concentrations in environmental mixtures, although the response is complex and many toxicants could induce similar responses.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México D.F., Mexico
| | | | | | | | | |
Collapse
|
17
|
Pro-oxidant and antioxidant response elicited by CH2Cl2, CHCl3 and BrCHCl2 in Goodea gracilis using non-invasive methods. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:515-27. [DOI: 10.1016/j.cbpa.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022]
|
18
|
Hassoun EA, Cearfoss J, Musser B, Krispinsky S, Al-Hassan N, Liu MC. The induction of phagocytic activation by mixtures of the water chlorination by-products, dichloroacetate- and trichloroacetate, in mice after subchronic exposure. J Biochem Mol Toxicol 2013; 27:237-42. [PMID: 23436740 DOI: 10.1002/jbt.21476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 11/05/2022]
Abstract
In this study, groups of B6C3F1 male mice were treated with dichloroacetate (DCA), trichloroacetate (TCA), and mixtures of the compounds (Mix I, II, and III) daily by gavage, for 13 weeks. The tested doses were 7.5, 15, and 30 mg DCA/kg/day and 12.5, 25, and 50 mg TCA/kg/day. The DCA: TCA ratios in Mix I, II, and III were 7.5:12.5, 15:25, and 30:50 mg/kg/day, respectively. Peritoneal lavage cells were collected at the end of the treatment period and assayed for the biomarkers of phagocytic activation, including superoxide anion and tumor necrosis factor-alpha production, and myeloperoxidase activity. The mixtures produced nonlinear effects on the biomarkers of phagocytic activation, with Mix I and II effects were found to be additive, but Mix III effects were found to be less than additive.
Collapse
Affiliation(s)
- Ezdihar A Hassoun
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614-2598, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Wagner L, Zlabek V, Trattner S, Zamaratskaia G. In vitro inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and p-nitrophenol hydroxylase (PNPH) activities by sesamin in hepatic microsomes from two fish species. Mol Biol Rep 2012; 40:457-62. [DOI: 10.1007/s11033-012-2080-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
|
20
|
Xie XL, Wei M, Kakehashi A, Yamano S, Okabe K, Tajiri M, Wanibuchi H. Dammar resin, a non-mutagen, inducts oxidative stress and metabolic enzymes in the liver of gpt delta transgenic mouse which is different from a mutagen, 2-amino-3-methylimidazo[4,5-f]quinoline. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 748:29-35. [DOI: 10.1016/j.mrgentox.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|
21
|
Ton SS, Chang SH, Hsu LY, Wang MH, Wang KS. Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 168:54-61. [PMID: 22591789 DOI: 10.1016/j.envpol.2012.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Three common disinfectants were selected in this study to investigate their toxicity to Daphnia magna. The methods used in this study included the traditional acute toxicity test, new embryo toxicity test, and teratogenic test. The study concluded that the acute toxicity of the three disinfectants to young daphnids and embryos were hypochlorite > formaldehyde > m-cresol. The effects on growth mostly occurred in the late stages of organogenesis. Of the organs, the Malpighian tube was the most sensitive to disinfectants during embryonic organogenesis. After exposure of the disinfectants to sunlight for 4 h, acute toxicity and teratogenic effects of hypochlorite on young daphnids decreased by 30% and 71%, respectively, while those of formaldehyde decreased by 35% and 49%, respectively. In addition, comparing toxic endpoints of the three disinfectants with and without sunlight exposure, the embryo tests were equally sensitive to the three-week reproduction test in this study.
Collapse
Affiliation(s)
- Shan-Shin Ton
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan, ROC
| | | | | | | | | |
Collapse
|
22
|
Sharma A, Mishra M, Shukla AK, Kumar R, Abdin MZ, Chowdhuri DK. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:275-287. [PMID: 22579458 DOI: 10.1016/j.jhazmat.2012.04.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/31/2023]
Abstract
The effect of endosulfan (0.02-2.0μgmL(-1)) to Drosophila melanogaster (Oregon R(+)) at the cellular and organismal levels was examined. Third instar larvae of D. melanogaster and the strains transgenic for hsp70, hsp83 and hsp26 were exposed to endosulfan through food for 12-48h to examine the heat shock proteins (hsps), reactive oxygen species (ROS) generation, anti-oxidant stress markers and xenobiotic metabolism enzymes. We observed a concentration- and time-dependent significant induction of only small hsps (hsp23>hsp22) in the exposed organism in concurrence with a significant induction of ROS generation, oxidative stress and xenobiotic metabolism markers. Sub-organismal response was to be propagated towards organismal response, i.e., delay in the emergence of flies and decreased locomotor behaviour. Organisms with diminished locomotion also exhibited significantly lowered acetylcholinesterase activity. A significant positive correlation observed among ROS generation and different cellular endpoints (small hsps, oxidative stress markers, cytochrome P450 activities) in the exposed organism indicate a modulatory role of ROS in endosulfan-mediated cellular toxicity. The study thus suggests that the adverse effects of endosulfan in exposed Drosophila are manifested both at cellular and organismal levels and recommends Drosophila as an alternative animal model for screening the risk caused by environmental chemicals.
Collapse
Affiliation(s)
- Anurag Sharma
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
23
|
Vega-López A, Carrillo-Morales CI, Olivares-Rubio HF, Lilia Domínguez-López M, García-Latorre EA. Evidence of bioactivation of halomethanes and its relation to oxidative stress response in Chirostoma riojai, an endangered fish from a polluted lake in Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:479-493. [PMID: 21877223 DOI: 10.1007/s00244-011-9708-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Halomethanes (HMs) are produced autochthonously in water bodies through the action of ultraviolet light in the presence of HM precursors, such as dissolved organic carbon and halogens. In mammals, toxic effects induced by HMs are diverse and include oxidative stress, which is also induced by divalent and polyvalent metals; however, in fish little information is available on HM metabolism and its possible consequences at the population level. In the present study, high CYP 2E1 and GST theta-like activities were found in viscera of the Toluca silverside Chirostoma riojai from Lake Zumpango (LZ; central Mexico). Formaldehyde, one of the HM metabolites, was correlated with CYP 2E1 activity and also induced lipid peroxidation in viscera. Hepatic CYP 2E1 activity was correlated with GST theta-like activity, suggesting the coupling of both pathways of HM bioactivation and its consequent oxidative damage. Sediment metals, among others, were also responsible for oxidative stress, particularly iron, lead, arsenic and manganese. However, under normal environmental conditions, the antioxidant enzymes of this species sustain catalysis adapted to oxidative stress. Findings suggest that this fish species apparently has mechanisms of adaptation and recovery that enable it to confront toxic agents of natural origin, such as metals and other substances formed through natural processes, e.g., HMs. This has allowed C. riojai to colonize LZ despite the high sensitivity of this species to xenobiotics of anthropogenic origin.
Collapse
Affiliation(s)
- Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, 07738 Mexico, DF, Mexico.
| | | | | | | | | |
Collapse
|
24
|
Canistro D, Melega S, Ranieri D, Sapone A, Gustavino B, Monfrinotti M, Rizzoni M, Paolini M. Modulation of cytochrome P450 and induction of DNA damage in Cyprinus carpio exposed in situ to surface water treated with chlorine or alternative disinfectants in different seasons. Mutat Res 2012; 729:81-89. [PMID: 22001235 DOI: 10.1016/j.mrfmmm.2011.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Epidemiological studies have shown an association between consumption of disinfected drinking water and adverse health outcomes. The chemicals used to disinfect water react with occurring organic matter and anthropogenic contaminants in the source water, resulting in the formation of disinfection by-products (DBPs). The observations that some DBPs are carcinogenic in animal models have raised public concern over the possible adverse health effects for humans. Here, the modulation of liver cytochrome P450-linked monooxygenases (MFO) and the genotoxic effects in erythrocytes of Cyprinus carpio fish exposed in situ to surface drinking water in the presence of disinfectants, such as sodium hypochlorite (NaClO), chlorine dioxide (ClO(2)) and peracetic acid (PAA), were investigated in winter and summer. A complex induction/suppression pattern of CYP-associated MFOs in winter was observed for all disinfectants. For example, a 3.4- to 15-fold increase was recorded of the CYP2B1/2-linked dealkylation of penthoxyresorufin with NaClO (10 days) and PAA (20 days). In contrast, ClO(2) generated the most notable inactivation, the CYP2E1-supported hydroxylation of p-nitrophenol being decreased up to 71% after 10 days' treatment. In summer, the degree of modulation was modest, with the exception of CYP3A1/2 and CYP1A1 supported MFOs (62% loss after 20 days PAA). The micronucleus (MN) induction in fish circulating erythrocytes was also analysed as an endpoint of genotoxic potential in the same fish population. Significant increases of MN induction were detected at the latest sampling time on fish exposed to surface water treated with chlorinate-disinfectants, both in winter (NaClO) and summer (NaClO and ClO(2)), while no effect was observed in fish exposed to PAA-treated water. These results show that water disinfection may be responsible for harmful outcomes in terms of MFO perturbation and DNA damage; if extrapolated to humans, they ultimately offer a possible rationale for the increased urinary cancer risk recorded in regular drinking water consumers.
Collapse
Affiliation(s)
- Donatella Canistro
- Dipartimento di Farmacologia, Alma-Mater Studiorum-Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tasaki M, Umemura T, Suzuki Y, Hibi D, Inoue T, Okamura T, Ishii Y, Maruyama S, Nohmi T, Nishikawa A. Oxidative DNA damage and reporter gene mutation in the livers of gpt delta rats given non-genotoxic hepatocarcinogens with cytochrome P450-inducible potency. Cancer Sci 2010; 101:2525-30. [PMID: 20735435 PMCID: PMC11159437 DOI: 10.1111/j.1349-7006.2010.01705.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have proposed that reactive oxygen species resulting from induction of cytochrome P450 (CYP) isozymes might be involved in the modes of action of hepatocarcinogens with CYP-inducible potency. In the present study, we investigated 8-hydroxydeoxyguanosine (8-OHdG) levels, in vivo mutagenicity and glutathione S-transferase placental form (GST-P)-positive foci in the livers of gpt delta rats treated with piperonyl butoxide (PBO) or phenobarbital (PhB) for 4 and 13 weeks. Significant elevations in Cyp 1A1 and Cyp 1A2 mRNA levels after PBO treatment, and in Cyp 2B1 mRNA levels after PBO or PhB treatment, appeared together with remarkable hepatomegaly through the experimental period. Time-dependent and statistically significant increases in 8-OHdG levels were observed in the PBO treatment group along with significant increases in proliferating cell nuclear antigen (PCNA)-positive hepatocytes at 4 weeks, while no increase in 8-OHdG levels was found in PhB-treated rats. No changes in mutant frequencies of gpt and red/gam (Spi(-)) genes in liver DNA from PBO- or PhB-treated rats were observed at 4 or 13 weeks. A 13-week exposure to either PBO or PhB did not affect the number and area of GST-P-positive hepatocytes. CYP 1A1 and 1A2 induction may be responsible for elevated levels of 8-OHdG in PBO-treated rats. However, neither GC:TA transversions nor deletion mutations, typically regarded as 8-OHdG-related mutations, were observed in any of the treated rats. We conclude that reactive oxygen species, possibly produced through CYP catalytic pathways, likely induced genomic DNA damage but did not give rise to permanent gene mutation.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
López-Galindo C, Vargas-Chacoff L, Nebot E, Casanueva JF, Rubio D, Solé M, Mancera JM. Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as antifouling. CHEMOSPHERE 2010; 78:885-893. [PMID: 20022624 DOI: 10.1016/j.chemosphere.2009.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/09/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
The time-course stress responses (0, 1, 2, and 7 d) was assessed in plasmatic, branchial and renal parameters of juveniles Solea senegalensis exposed to different concentrations of the antifouling sodium hypochlorite (0.1, 0.2, and 0.5mgL(-1)). These stress responses were only assessed for the total length of exposure (7d) at the lowest NaClO concentration due to the high toxicity of this chemical. In addition, the xenobiotic metabolism responses were evaluated by means of enzymatic activities of ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and carboxylesterase (CbE) in liver; as well as GST, GPX, CAT and acetylcholinesterase (AChE) in gill. Oxidative stress damage due to sodium hypochlorite exposure was measured by lipid peroxidation levels in liver and gill. Concentrations of 0.2 and 0.5mgL(-1) produced lethal effects after 1d and 2h of exposure, respectively. After 1d of exposure to sublethal concentration of sodium hypochlorite (0.1mgL(-1)) osmoregulatory (osmolality and chloride) and stress (cortisol, glucose and lactate) plasmatic parameters were enhanced to respect at control fish. However after 3 or 7d these parameters returned to control values. No effects were observed on plasma protein and triglyceride levels or on gill and kidney Na(+)/K(+)-ATPase activities. Diverse gill pathologies such as hypertrophy, lamellar fusion and an increase in goblet cell number and size were observed after 7d of exposure. Most biochemical parameters related to xenobiotic metabolism and oxidative stress were also significantly affected which suggests that seawater affected by sodium hypochlorite discharges from power plants, is able to alter the fish xenobiotic metabolism and generate oxidative stress.
Collapse
Affiliation(s)
- Cristina López-Galindo
- Departamento de Tecnologías del Medio Ambiente, Universidad de Cádiz, Puerto Real, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Klobucar GIV, Stambuk A, Pavlica M, Sertić Perić M, Kutuzović Hackenberger B, Hylland K. Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:77-84. [PMID: 19626438 DOI: 10.1007/s10646-009-0390-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
The present study deals with genotoxicity assessment of freshwaters using caged carp (Cyprinus carpio). Carps were transplanted from a fish-farm to three differently polluted sites in eastern Croatia. Two polluted sites were situated in the river Drava, downstream from the cities of Belisće and Osijek, while the reference site was in the Nature Park Kopacki rit, a preserved wetland area with limited anthropogenic influence. Exposure lasted for 3 weeks and was repeated for 3 years (2002-2004). DNA damage was assessed in erythrocytes of the exposed animals by the Comet assay and micronucleus test (MNT). In order to evaluate possible differences in stress responses to polluted water in situ and in aquaria a laboratory exposure was performed with water from the studied location in the second year of the study. Carp from the sites with high anthropogenic influence (Belisće and Osijek) had higher average DNA damage as expressed in both the MNT and Comet assay. Of the two, the Comet assay appeared to be more sensitive following both caging and aquaria exposures. The results from this study suggest that 3 weeks caging exposure of C. carpio may be a useful strategy to monitor for genotoxic agents in freshwater ecosystems.
Collapse
Affiliation(s)
- Göran I V Klobucar
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
28
|
Woo S, Yum S, Kim DW, Park HS. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:427-32. [PMID: 18983944 DOI: 10.1016/j.cbpc.2008.10.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 11/18/2022]
Abstract
The differential expression of a set of genes encoding antioxidant enzymes and stress-responsive proteins was investigated by real-time quantitative PCR in intestine, liver, and muscle tissues extracted from Oryzias javanicus after exposure to the organophosphorus pesticide, Iprobenfos (IBP). After IBP exposure, transcriptional changes in all the tested genes were prominent in the liver and moderate in the intestine, but unpredictable in the muscle. In the liver, CAT transcription increased after exposure to IBP at all concentrations (P<0.05). CYP1A mRNA was induced in the intestine and liver at the two higher concentrations. G6PD transcription was induced in the liver at the three higher IBP concentrations, but was suppressed in muscle at the same concentrations. GPx expression in the liver increased at three higher concentrations of IBP. In the intestine and liver, GR expression was induced at two higher and three higher concentrations, respectively. However, no significant changes were observed in the muscle. GST and SOD transcription was induced in the liver at all IBP concentrations. IBP exposure induced UB expression in the intestine and liver in a concentration-dependent manner. The transcriptional changes in these genes in the liver could be good biomarkers for stress levels in O.javanicus, and be used as critical biomarkers for environmental quality assessment.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Department, Korea Ocean Research and Development Institute, Geoje 656-830, Republic of Korea
| | | | | | | |
Collapse
|
29
|
Elia AC, Fanetti A, Dörr AJM, Taticchi MI. Effects of concentrated drinking water injection on glutathione and glutathione-dependent enzymes in liver of Cyprinus carpio L. CHEMOSPHERE 2008; 72:791-796. [PMID: 18457861 DOI: 10.1016/j.chemosphere.2008.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 02/13/2008] [Accepted: 03/11/2008] [Indexed: 05/26/2023]
Abstract
Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy.
| | | | | | | |
Collapse
|