1
|
Araujo-Lima CF, de Cassia Castro Carvalho R, Rosario SL, Leite DI, Aguiar ACC, de Souza Santos LV, de Araujo JS, Salomão K, Kaiser CR, Krettli AU, Bastos MM, Aiub CAF, de Nazaré Correia Soeiro M, Boechat N, Felzenszwalb I. Antiplasmodial, Trypanocidal, and Genotoxicity In Vitro Assessment of New Hybrid α,α-Difluorophenylacetamide-statin Derivatives. Pharmaceuticals (Basel) 2023; 16:782. [PMID: 37375730 DOI: 10.3390/ph16060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Statins present a plethora of pleiotropic effects including anti-inflammatory and antimicrobial responses. A,α-difluorophenylacetamides, analogs of diclofenac, are potent pre-clinical anti-inflammatory non-steroidal drugs. Molecular hybridization based on the combination of pharmacophoric moieties has emerged as a strategy for the development of new candidates aiming to obtain multitarget ligands. METHODS Considering the anti-inflammatory activity of phenylacetamides and the potential microbicidal action of statins against obligate intracellular parasites, the objective of this work was to synthesize eight new hybrid compounds of α,α-difluorophenylacetamides with the moiety of statins and assess their phenotypic activity against in vitro models of Plasmodium falciparum and Trypanosoma cruzi infection besides exploring their genotoxicity safety profile. RESULTS None of the sodium salt compounds presented antiparasitic activity and two acetated compounds displayed mild anti-P. falciparum effect. Against T. cruzi, the acetate halogenated hybrids showed moderate effect against both parasite forms relevant for human infection. Despite the considerable trypanosomicidal activity, the brominated compound revealed a genotoxic profile impairing future in vivo testing. CONCLUSIONS However, the chlorinated derivative was the most promising compound with chemical and biological profitable characteristics, without presenting genotoxicity in vitro, being eligible for further in vivo experiments.
Collapse
Affiliation(s)
- Carlos Fernando Araujo-Lima
- Laboratório de Biologia Celular, LBC Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Instituto Biomédico-UNIRIO, Rio de Janeiro 20211-030, RJ, Brazil
| | - Rita de Cassia Castro Carvalho
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Química, PGQu, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, RJ, Brazil
| | - Sandra Loureiro Rosario
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Debora Inacio Leite
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, ICB-UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Anna Caroline Campos Aguiar
- Laboratório de Malária, Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil
| | - Lizandra Vitoria de Souza Santos
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
| | | | - Kelly Salomão
- Laboratório de Biologia Celular, LBC Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| | - Carlos Roland Kaiser
- Programa de Pós-Graduação em Química, PGQu, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, RJ, Brazil
| | - Antoniana Ursine Krettli
- Laboratório de Malária, Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil
| | - Monica Macedo Bastos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Claudia Alessandra Fortes Aiub
- Programa de Pós-Graduação em Biologia Molecular e Celular, Instituto Biomédico-UNIRIO, Rio de Janeiro 20211-030, RJ, Brazil
| | | | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
| |
Collapse
|
2
|
Sanders J, Thienpont A, Anthonissen R, Vanhaecke T, Mertens B. Impact of experimental design factors on the potency of genotoxicants in in vitro tests. Mutagenesis 2022; 37:248-258. [PMID: 36448879 DOI: 10.1093/mutage/geac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that differences in experimental design factors may alter the potency of genotoxic compounds in in vitro genotoxicity tests. Most of these studies used traditional statistical methods based on the lowest observed genotoxic effect levels, whereas more appropriate methods, such as the benchmark dose (BMD) approach, are now available to compare genotoxic potencies under different test conditions. We therefore investigated the influence of two parameters, i.e. cell type and exposure duration, on the potencies of two known genotoxicants [aflatoxin B1 and ethyl methanesulfonate (EMS)] in the in vitro micronucleus (MN) assay and comet assay (CA). Both compounds were tested in the two assays using two cell types (i.e. CHO-K1 and TK6 cells). To evaluate the effect of exposure duration, the genotoxicity of EMS was assessed after 3 and 24 h of exposure. Results were analyzed using the BMD covariate approach, also referred to as BMD potency ranking, and the outcome was compared with that of more traditional statistical methods based on lowest observed genotoxic effect levels. When comparing the in vitro MN results obtained in both cell lines with the BMD covariate approach, a difference in potency was detected only when EMS exposures were conducted for 24 h, with TK6 cells being more sensitive. No difference was observed in the potency of both EMS and aflatoxin B1 in the in vitro CA using both cell lines. In contrast, EMS was more potent after 24 h exposure compared with a 3 h exposure under all tested conditions, i.e. in the in vitro MN assay and CA in both cell lines. Importantly, for several of the investigated factors, the BMD covariate method could not be used to confirm the differences in potencies detected with the traditional statistical methods, thus highlighting the need to evaluate the impact of experimental design factors with adequate approaches.
Collapse
Affiliation(s)
- Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouck Thienpont
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roel Anthonissen
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
4
|
Wang H, Chen H, Huang L, Han S, Wang L, Li S, Liu M, Zhang M, Fu Y, Tian Y, Liu T, Shi Z, Hou H, Hu Q. Novel Solvent-Free Extraction Method for Analyzing Tobacco Heating Product Aerosols: An Analytical and In Vitro Toxicological Five-Way Product Comparison. Chem Res Toxicol 2021; 34:2460-2470. [PMID: 34747590 DOI: 10.1021/acs.chemrestox.1c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Harmful and potentially harmful constituents (HPHCs) in tobacco smoke are thought to be responsible for the increased health risks. Tobacco heating products (THPs) heat tobacco instead of burning it to achieve significantly fewer toxicants than conventional cigarettes. To assess the toxicity of THP aerosols, it is often desirable to extract the main constituents using a solvent method. In this study, we developed a high-speed centrifugal method for extracting the total particulate matter (TPM) from THPs to quantitatively compare the toxicity of different THPs and conventional cigarettes. Its TPM extraction efficiency exceeded 85%, and the primary aerosol components and typical HPHCs were comparable to those of the solvent method. The TPMs extracted from five THPs were subjected to 14 in vitro toxicology assessments, and the results were compared with those of a 3R4F reference cigarette. Physical separation can improve biases from solvent selectivity and potential interactions between solvent and aerosol constituents. By eliminating solvent influence, the extraction method could achieve high-dose exposures, enabling the toxicity comparison of different THPs. The relative toxicity of the THPs differed under different dosage units, including the TPM concentration, nicotine equivalent, and puff number.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Long Huang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Lulu Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Shigang Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Min Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Manying Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Tong Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Joint Laboratory of Heated Tobacco Product Safety Evaluation, Zhengzhou 450001, China
| |
Collapse
|
5
|
Nicolette J, Luijten M, Sasaki JC, Custer L, Embry M, Froetschl R, Johnson G, Ouedraogo G, Settivari R, Thybaud V, Dearfield KL. Utility of a next-generation framework for assessment of genomic damage: A case study using the pharmaceutical drug candidate etoposide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:512-525. [PMID: 34775645 PMCID: PMC9299499 DOI: 10.1002/em.22467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.
Collapse
Affiliation(s)
| | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | - Laura Custer
- Bristol‐Myers Squibb Company, Drug Safety EvaluationNew BrunswickNew JerseyUSA
| | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDistrict of ColumbiaUSA
| | | | - George Johnson
- Swansea University Medical SchoolSwansea UniversitySwanseaUK
| | | | | | | | | |
Collapse
|
6
|
Pinter E, Friedl C, Irnesberger A, Czerny T, Piwonka T, Peñarroya A, Tacker M, Riegel E. HepGentox: a novel promising HepG2 reportergene-assay for the detection of genotoxic substances in complex mixtures. PeerJ 2021; 9:e11883. [PMID: 34395098 PMCID: PMC8323594 DOI: 10.7717/peerj.11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In risk assessment, genotoxicity is a key factor to determine the safety for the consumer. Most in vitro genotoxicity assays were developed for the assessment of pure substances. However, in recent years more attention has been given to complex mixtures, where usually low amounts of a substance are present. For high-throughput screening, a toxicologically sensitive assay should be used, covering a broad range of genotoxic substances and detecting them at low concentrations. HepG2 cells have been recommended as one of the prime candidates for genotoxicity testing, as they are p53 competent, less prone towards cytotoxic effects and tend to have some metabolic activity. METHODS A HepG2 liver cell line was characterized for its suitability for genotoxicity assessment. For this, a luciferase based reporter gene assay revolving around the p53 pathway was validated for the analysis of pure substances and of complex mixtures. Further, the cell's capability to detect genotoxins correctly with and without an exogenous metabolizing system, namely rat liver S9, was assessed. RESULTS The assay proved to have a high toxicological sensitivity (87.5%) and specificity (94%). Further, the endogenous metabolizing system of the HepG2 cells was able to detect some genotoxins, which are known to depend on an enzymatic system. When complex mixtures were added this did not lead to any adverse effects concerning the assays performance and cytotoxicity was not an issue. DISCUSSION The HepGentox proved to have a high toxicological sensitivity and specificity for the tested substances, with similar or even lower lowest effective concentration (LEC) values, compared to other regulatory mammalian assays. This combines some important aspects in one test system, while also being less time and material consuming and covering several genotoxicity endpoints. As the assay performs well with and without an exogenous metabolizing system, no animal liver fractions have to be used, which application is discussed controversially and is considered to be expensive and laborious in sample testing. Because of this, the HepGentox is suitable for a cost-efficient first screening approach to obtain important information with human cells for further approaches, with a relatively fast and easy method. Therefore, the HepGentox is a promising assay to detect genotoxic substances correctly in complex mixtures even at low concentrations, with the potential for a high throughput application. In a nutshell, as part of an in vitro bioassay test battery, this assay could provide valuable information for complex mixtures.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Christina Friedl
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alexandra Irnesberger
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Thomas Czerny
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Tina Piwonka
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alfonso Peñarroya
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Manfred Tacker
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Elisabeth Riegel
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| |
Collapse
|
7
|
Mišík M, Nersesyan A, Kment M, Ernst B, Setayesh T, Ferk F, Holzmann K, Krupitza G, Knasmueller S. Micronucleus assays with the human derived liver cell line (Huh6): A promising approach to reduce the use of laboratory animals in genetic toxicology. Food Chem Toxicol 2021; 154:112355. [PMID: 34147571 DOI: 10.1016/j.fct.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/22/2023]
Abstract
The inadequate representation of enzymes which catalyze the activation/detoxification of xenobiotics in cells that are currently used in genotoxicity testing of chemicals leads to a high number of false positive results and the number of follow up studies with rodents could be reduced by use of more reliable in vitro models. We found earlier that several xenobiotic drug metabolizing enzymes are represented in the human derived liver cell line Huh6 and developed a protocol for micronucleus (MN) experiments which is in agreement with the current OECD guideline. This protocol was used to test 23 genotoxic and non-genotoxic reference chemicals; based on these results and of earlier findings (with 9 chemicals) we calculated the predictive value of the assay for the detection of genotoxic carcinogens. We found a sensitivity of 80% and a specificity of 94% for a total number of 32 chemicals; comparisons with results obtained with other in vitro assays show that the validity of MN tests with Huh6 is higher as that of other experimental models. These results are promising and indicate that the use of Huh6 cells in genetic toxicology may contribute to the reduction of the use of laboratory rodents; further experimental work to confirm this assumption is warranted.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Benjamin Ernst
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | | |
Collapse
|
8
|
Budin C, Besselink H, van Vugt-Lussenburg BMA, Man HY, van der Burg B, Brouwer A. Induction of AhR transactivation by PBDD/Fs and PCDD/Fs using a novel human-relevant, high-throughput DR human CALUX reporter gene assay. CHEMOSPHERE 2021; 263:128086. [PMID: 33297084 DOI: 10.1016/j.chemosphere.2020.128086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated dioxins and dibenzofurans (PCDD/Fs) are highly toxic contaminants that are strictly regulated and monitored in the environment and food to reduce human exposure. Recently, the increasing occurrence of polybrominated dioxins and dibenzofurans (PBDD/Fs) in the environment is raising concerns about the impact on human health by the combined exposure to chlorinated and brominated analogues of dioxins. Toxicological properties of PBDD/Fs relative to PCDD/Fs have not been firmly established, and brominated dioxins are not included in routine monitoring programs. In this study, we set out to determine human-relevant congener-specific potency values for a range of brominated and chlorinated dioxin congeners, based on their aryl hydrocarbon receptor (AhR)-mediated mode of toxic action. Transactivation of the AhR was measured using dioxin-responsive (DR) CALUX reporter gene assays. Because of known species-differences in dioxin-mediated toxicity, we developed and used a HepG2 human liver cell-based DR human CALUX assay that is a variant of the rodent-based DR CALUX. The assay was found to be highly inducible and stable, with low variations between independent measurements. Using both DR CALUX assays in an automated high-throughput mode we found that overall PBDD/Fs were as potent as PCDD/Fs in inducing AhR transactivation, but congener-specific differences were observed. We also observed species-specific differences in sensitivity and potency when comparing DR human REP values to those obtained in the rat-based DR CALUX. Finally, we observed significant differences between WHO-TEF values and DR human REP values, suggesting that actual WHO-TEF values may underestimate the hazards associated with exposure of humans to dioxins.
Collapse
Affiliation(s)
- Clémence Budin
- VU Amsterdam, Faculty of Sciences, Department of Animal Ecology, De Boelelaan, 1080HV, Amsterdam, the Netherlands; BioDetection Systems B.V., Science Park 406, 1098XH, Amsterdam, the Netherlands.
| | - Harrie Besselink
- BioDetection Systems B.V., Science Park 406, 1098XH, Amsterdam, the Netherlands
| | | | - Hai-Yen Man
- BioDetection Systems B.V., Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Bart van der Burg
- BioDetection Systems B.V., Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Abraham Brouwer
- VU Amsterdam, Faculty of Sciences, Department of Animal Ecology, De Boelelaan, 1080HV, Amsterdam, the Netherlands; BioDetection Systems B.V., Science Park 406, 1098XH, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Mišík M, Ferk F, Schaar H, Yamada M, Jaeger W, Knasmueller S, Kreuzinger N. Genotoxic activities of wastewater after ozonation and activated carbon filtration: Different effects in liver-derived cells and bacterial indicators. WATER RESEARCH 2020; 186:116328. [PMID: 32866931 DOI: 10.1016/j.watres.2020.116328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Aim of this study was to investigate the impact of advanced wastewater treatment techniques (combining ozonation with activated carbon filtration) on acute and genotoxic activities of tertiary treated wastewater. Concentrated samples were tested in Salmonella/microsome assays. Furthermore, induction of DNA damage was measured in liver-derived cells (human hepatoma and primary rat hepatocytes) in single cell gel electrophoresis experiments, which are based on the measurement of DNA migration in an electric field. These cell types possess phase I and phase II enzymes, which catalyze the activation/detoxification of mutagens. Acute toxicity was determined with the trypan blue exclusion technique. We found no evidence for mutagenic effects of non-ozonated samples in several bacterial tester strains (TA98, TA100, YG7108, YG7104, YG7112 and YG7113) but clear induction of His+ mutants after O3 treatment in two strains with defective genes encoding for DNA repair, which are highly sensitive towards alkylating agents (YG7108 and YG7104). These effects were reduced after activated carbon filtration. Furthermore, we detected a slight increase of mutagenic activity in strain YG1024 with increased acetyltransferase activity, which is sensitive towards aromatic amines and nitro compounds in untreated water, which was not reduced by O3 treatment. A completely different pattern of mutagenic activity was seen in liver-derived cells; non ozonated samples caused in both cell types pronounced DNA damage, which was reduced (by ca. 25%) after ozonation. Activated carbon treatment did not cause a substantial further reduction of DNA damage. Additional experiments with liver homogenate indicate that the compounds which cause the effects in the human cells are promutagens which require enzymatic activation. None of the waters caused acute toxicity in the liver-derived cells and in the bacterial indicators. Assuming that hepatic mammalian cells reflect the genotoxic properties of the waters in vertebrates (including humans) more adequately as genetically modified bacterial indicators, we conclude that ozonation has beneficial effects in regard to the reduction of genotoxic properties of treated wastewaters.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Heidemarie Schaar
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, Austria
| | | | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria.
| | - Norbert Kreuzinger
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, Austria
| |
Collapse
|
10
|
Li J, Zhang H, Han Y, Chao H, Ma M, Yang M. Cytotoxicity and genotoxicity assays of halobenzoquinones disinfection byproducts using different human cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:526-533. [PMID: 32227502 DOI: 10.1002/em.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Recently, halobenzoquinones (HBQs) disinfection byproducts, including 2,6-dichloro-1, 4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1, 4-benzoquinone (DCMBQ), 2,3,6-trichloro-1, 4-benzoquinone (TCBQ), and 2,6-dibromobenzoquinone (DBBQ), have been of increasing concern due to their reported ability to induce oxidative damage, and thus genotoxicity. However, data on the risk of genotoxicity due to chromosomal damage by HBQs are still scarce. Here, the cytotoxicity and genotoxicity of the four HBQs were assessed using human cell lines (bladder cancer 5637 cells, colon carcinoma Caco-2 cells, and gastric MGC-803 cells). The four HBQs exhibited significant concentration-response relationships in all the three cell lines. Cytotoxicity of DCBQ, DCMBQ, TCBQ, and DBBQ, represented by the 50% concentration of inhibition (IC50 ) values, were 80.8-99.5, 41.0-57.6, 122.1-146.6, and 86.9-93.8 μM, respectively. The lowest effective concentrations for cellular micronuclei induction in the cell lines by DCBQ, DCMBQ, TCBQ, and DBBQ were 50-75, 20-41.5, 87.4-100, and 50 μM, respectively. 5637 and Caco-2 cells were more sensitive to the cytotoxic and genotoxic effects of HBQs than MGC-803 cells. These results show that HBQs can induce chromosomal damage; DCMBQ induced the highest cytotoxicity and genotoxicity in all the cell lines, and TCBQ caused the least toxicity.
Collapse
Affiliation(s)
- Jiabao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huang Chao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Pinter E, Rainer B, Czerny T, Riegel E, Schilter B, Marin-Kuan M, Tacker M. Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods 2020; 9:foods9020237. [PMID: 32098342 PMCID: PMC7074469 DOI: 10.3390/foods9020237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Background: Non-targeted screening of food contact materials (FCM) for non-intentionally added substances (NIAS) reveals a great number of unknown and unidentified substances present at low concentrations. In the absence of toxicological data, the application of the threshold of toxicological concern (TTC) or of EU Regulation 10/2011 requires methods able to fulfill safety threshold criteria. In this review, mammalian in vitro genotoxicity assays are analyzed for their ability to detect DNA-damaging substances at limits of biological detection (LOBD) corresponding to the appropriate safety thresholds. Results: The ability of the assays to detect genotoxic effects varies greatly between substance classes. Especially for direct-acting mutagens, the assays lacked the ability to detect most DNA reactive substances below the threshold of 10 ppb, making them unsuitable to pick up potential genotoxicants present in FCM migrates. However, suitability for the detection of chromosomal damage or investigation of other modes of action makes them a complementary tool as part of a standard test battery aimed at giving additional information to ensure safety. Conclusion: improvements are necessary to comply with regulatory thresholds to consider mammalian genotoxicity in vitro assays to assess FCM safety.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-606-6877-3584
| | - Bernhard Rainer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Benoît Schilter
- Nestlé Research Center, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Manfred Tacker
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| |
Collapse
|
12
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
13
|
Tsafantakis N, Katsanou ES, Kyriakopoulou K, Psarou EC, Raptaki I, Skaltsounis AL, Audebert M, Machera KA, Fokialakis N. Comparative UHPLC-HRMS Profiling, Toxicological Assessment, and Protection Against H 2O 2-Induced Genotoxicity of Different Parts of Opuntia ficus indica. J Med Food 2019; 22:1280-1293. [PMID: 31584314 DOI: 10.1089/jmf.2019.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Opuntia ficus indica has been an important dietary source and a traditionally used medicinal plant. Given the promising health-promoting properties of this plant, a comparative toxicological assessment and antioxidant bioevaluation of extracts from different parts of the plant were carried out in relation to their chemical profile. Toxicity was examined at multiple endpoints using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), Comet and the γH2AX In-Cell Western Assay, while hyphenated ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis was carried out to identify main constituents. None of the extracts showed any cytotoxic and genotoxic effect on cell lines used, apart from the flower extract in HepG2 cells at the highest concentration tested (2.5 mg/mL). Both fruit flesh and seed extracts demonstrated a prominent protective effect against H2O2-induced genotoxicity in almost all concentrations tested, while extracts originated from flowers and cladodes were effective only at the low non-cytotoxic (0.312 and 0.625 mg/mL) and high (1.25 and 2.5 mg/mL) concentrations, respectively. In total, 2 phenolic acids, 12 flavonoids, along with 3 feruloyl derivatives and the plant pigment indicaxanthin, were tentatively identified by UHPLC-HRMS analysis. Phenolic acids (compounds 1 and 2) were mainly distributed in cladodes (64.6%), while flavonoids (3-14) in the flowers (81.8%). Overall, the highest amount of total flavonoids (22.76 ± 0.015 mg of quercetin equivalent [QE]/g) and total phenolics (62.80 ± 0.009 mg gallic acid equivalents [GAE]/g) was found in the flower extract. Flavonoid glycosides have not been detected in the seeds and the flesh, while the fruit seed extract contained mainly feruloyl derivatives. Our data provide convincing evidences for the lack of cytotoxic and genotoxic effects of O. ficus indica aqueous extracts and, in parallel, support the potential for further exploitation of this plant in the food supplement or functional food sector.
Collapse
Affiliation(s)
- Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrosini S Katsanou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Katerina Kyriakopoulou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Eirini-Christina Psarou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Iliana Raptaki
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Alexios L Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Marc Audebert
- UMR1331 Toxalim, Research Centre in Food Toxicology, INRA, Toulouse, France
| | - Kyriaki A Machera
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Han Y, Ma M, Oda Y, Rao K, Wang Z, Yang R, Liu Y. Insight into the generation of toxic products during chloramination of carbamazepine: Kinetics, transformation pathway and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:221-228. [PMID: 31082595 DOI: 10.1016/j.scitotenv.2019.04.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
As a widely used antiepileptic drug, carbamazepine (CBZ) has been frequently detected in aquatic environments, even in drinking water. Chloramine is a widely used alternative disinfectant due to its low-level formation of regulated disinfection byproducts (DBPs). However, there is previous evidence linking product mixtures of chloraminated CBZ to stronger DNA damage effects than those caused by CBZ itself. The present study further investigated the reaction rate, transformation mechanism and multi-endpoint toxicity of transformation products (TPs) of CBZ treated with NH2Cl under different pH conditions. The results showed that the reaction between CBZ and NH2Cl at pH 8.5, where NH2Cl is stable, is a second-order reaction with a rate of 4.2 M-1 h-1. Compared to both alkaline and acidic conditions, CBZ was quickly degraded at pH 7. This indicated that HOCl produced from NH2Cl hydrolysis is more effective in degrading CBZ than NH2Cl and NHCl2. Furthermore, the concentration variation of four TPs formed during the chloramination of CBZ under different pH conditions was investigate by quantitative analysis, and the transformation pathway from CBZ to 9(10H)-acridone was confirmed. Three of the detected TPs showed cytotoxicity, DNA damage effects or chromosome damage effects. Acridine and 9(10H)-acridone, which accumulated with increasing time, showed higher cytotoxic or genotoxic effects than CBZ itself. In addition, a similar transformation mechanism was observed in real ambient water during simulated chloramination with a low level of CBZ. These results suggested that despite the chloramination of CBZ being slower than chlorination, TPs with higher cytotoxicity or genotoxicity may lead to greater toxic risks.
Collapse
Affiliation(s)
- Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai college, 6-2-28 Tsurumi, Tsurumi-ku, Osaka 538-0053, Japan
| | - Kaifeng Rao
- State Key laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zijian Wang
- State Key laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing 100093, China
| | - Yihong Liu
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing 100093, China
| |
Collapse
|
15
|
Kopp B, Khoury L, Audebert M. Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol 2019; 93:2103-2114. [DOI: 10.1007/s00204-019-02511-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
16
|
Takeiri A, Matsuzaki K, Motoyama S, Yano M, Harada A, Katoh C, Tanaka K, Mishima M. High-content imaging analyses of γH2AX-foci and micronuclei in TK6 cells elucidated genotoxicity of chemicals and their clastogenic/aneugenic mode of action. Genes Environ 2019; 41:4. [PMID: 30766621 PMCID: PMC6362597 DOI: 10.1186/s41021-019-0117-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background The in vitro micronucleus (MN) test is an important component of a genotoxicity test battery that evaluates chemicals. Although the standard method of manually scoring micronucleated (MNed) cells by microscope is a reliable and standard method, it is laborious and time-consuming. A high-throughput assay system for detecting MN cells automatically has long been desired in the fields of pharmaceutical development or environmental risk monitoring. Although the MN test per se cannot clarify whether the mode of MN induction is aneugenic or clastogenic, this clarification may well be made possible by combining the MN test with an evaluation of γH2AX, a sensitive marker of DNA double strand breaks (DSB). In the present study, we aimed to establish a high-content (HC) imaging assay that automatically detects micronuclei (MNi) and simultaneously measures γH2AX foci in human lymphoblastoid TK6 cells. Results TK6 cells were fixed on the bottom of each well in 96-well plates hypotonically, which spreads the cells thinly to detach MNi from the primary nuclei. Then, the number of MNi and immunocytochemically-stained γH2AX foci were measured using an imaging analyzer. The system correctly judged 4 non-genotoxins and 13 genotoxins, which included 9 clastogens and 4 aneugens representing various genotoxic mechanisms, such as DNA alkylation, cross-linking, topoisomerase inhibition, and microtubule disruption. Furthermore, all the clastogens induced both γH2AX foci and MNi, while the aneugens induced only MNi, not γH2AX foci; therefore, the HC imaging assay clearly discriminated the aneugens from the clastogens. Additionally, the test system could feasibly analyze cell cycle, to add information about a chemical’s mode of action. Conclusions A HC imaging assay to detect γH2AX foci and MNi in TK6 cells was established, and the assay provided information on the aneugenic/clastogenic mode of action. Electronic supplementary material The online version of this article (10.1186/s41021-019-0117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Takeiri
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Kaori Matsuzaki
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Shigeki Motoyama
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Mariko Yano
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Asako Harada
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Chiaki Katoh
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Kenji Tanaka
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Masayuki Mishima
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| |
Collapse
|
17
|
Mesak C, Montalvão MF, Paixão CFC, Mendes BDO, Araújo APDC, Quintão TC, Malafaia G. Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6234-6243. [PMID: 30637546 DOI: 10.1007/s11356-019-04155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Antineoplastic drugs (AD) have been increasingly used, but the disposal of their wastes in the environment via hospital effluent and domestic sewage has emerged as an environmental issue. The current risks posed to these animals and effects of pollutants on the reptiles' population level remain unknown due to lack of studies on the topic. The aim of the present study was to evaluate the mutagenicity of neonate Podocnemis expansa exposed to environmental concentrations (EC) of cyclophosphamide (Cyc). The adopted doses were EC-I 0.2 μg/L and EC-II 0.5 μg/L Cyc. These doses correspond to 1/10 and ¼ of concentrations previously identified in hospital effluents. Turtles exposed to the CyC recorded larger total number of erythrocyte nuclear abnormalities than the ones in the control group after 48-h exposure. The total number of abnormalities for both groups (EC-I and EC-II) 96 h after the experiment had started was statistically similar to that of animals exposed to high Cyc concentration (positive control 5 × 104 μg/L). This outcome confirms the mutagenic potential of Cyc, even at low concentrations. On the other hand, when the animals were taken to a pollutant-free environment, their mutagenic damages disappeared after 240 h. After such period, their total of abnormalities matched the basal levels recorded for the control group. Therefore, our study is the first evidence of AD mutagenicity in reptiles, even at EC and short-term exposure, as well as of turtles' recovery capability after the exposure to Cyc.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Caroliny Fátima Chaves Paixão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Chagas Quintão
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
18
|
Chaufan G, Galvano C, Nieves M, Mudry MD, Ríos de Molina MDC, Andrioli NB. Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione. Chem Res Toxicol 2019; 32:745-752. [DOI: 10.1021/acs.chemrestox.8b00405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriela Chaufan
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Camila Galvano
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| | - Mariela Nieves
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Marta D. Mudry
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Maria del Carmen Ríos de Molina
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Nancy B. Andrioli
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
19
|
Qu D, Jiang M, Huang D, Zhang H, Feng L, Chen Y, Zhu X, Wang S, Han J. Synergistic Effects of The Enhancements to Mitochondrial ROS, p53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules 2019; 24:E457. [PMID: 30696035 PMCID: PMC6384600 DOI: 10.3390/molecules24030457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 01/26/2023] Open
Abstract
The safety of food additives has been widely concerned. Using single additives in the provisions of scope is safe, but the combination of additives, may induce additive, synergy, antagonism and other joint effects. This study investigated the cytotoxicity of aspartame (AT) together with potassium sorbate (PS). Thiazolyl Blue Tetrazolium Bromide (MTT) assay indicated that AT and PS had IC50 values of 0.48 g/L and 1.25 g/L at 24 h, respectively. High content analysis (HCA) showed that both AT and PS had a negative effect on mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and DNA damage while the joint group behaved more obviously. The biochemical assays revealed typical cell morphological changes and the activation of cytochrome c and caspase-3 verified apoptosis induced by AT together with PS. With dissipation of MMP and increase of cell membrane permeability (CMP), it indicated AT together with PS-induced apoptosis was mediated by mitochondrial pathway. Meanwhile, p53 were involved in DNA damage, and the ratio of Bax/Bcl-2 was increased. Moreover, excessive ROS induced by AT together with PS is a key initiating factor for apoptosis. All these results proved that p53 was involved in apoptosis via mitochondria-mediated pathway and the process was regulated by ROS.
Collapse
Affiliation(s)
- Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Mengxue Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Dongping Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Hui Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Lifang Feng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Yuewen Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Xuan Zhu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Suhua Wang
- Wenzhou Entry-exit Inspection and Quarantine Bureau, Wenzhou 325027, China.
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|
20
|
Kopp B, Dario M, Zalko D, Audebert M. Assessment of a panel of cellular biomarkers and the kinetics of their induction in comparing genotoxic modes of action in HepG2 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:516-528. [PMID: 29668064 DOI: 10.1002/em.22197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
One major challenge for in vitro genotoxicology is the determination of the genotoxic mode of action of tested compounds. The quantification of the phosphorylation of the histones H3 (pH3) and H2AX (γH2AX) allows an efficient discrimination between aneugenic and clastogenic compounds. However, these two biomarkers do not permit to deduct the specific mechanisms involved in the action of clastogenic compounds. The aim of this study was to investigate other possible cellular biomarkers allowing differentiating clastogenic properties. For this purpose, we analyzed γH2AX and pH3 plus six other biomarkers involved in the DNA damage signaling pathway in HepG2 cells treated with nine clastogens exhibiting different mechanisms of action, as well as one aneugen. All compounds were tested at various concentrations and with kinetics of 2, 6, 24 and 48 hr. Our results demonstrate the activation of the investigated biomarkers by the tested compounds in a time and concentration dependent manner. Notably, we observed for some nondirect genotoxic clastogens, notably dNTPs pool imbalance inducers, a different kinetic of DNA damage induction compared with direct genotoxins (oxidative stress). However, no specific biomarker signature of mechanisms of clastogenic action could be specified. Multiparametric analysis demonstrates a strong correlation between γH2AX and p-p53(S15) for clastogen compounds. Environ. Mol. Mutagen. 59:516-528, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Kopp
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Environmental and Occupational Health and Safety, Toxicology of Contaminants Unit, French Agency for Food, Fougères, France
| | - Morgane Dario
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marc Audebert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
21
|
Ates G, Mertens B, Heymans A, Verschaeve L, Milushev D, Vanparys P, Roosens NHC, De Keersmaecker SCJ, Rogiers V, Doktorova TY. A novel genotoxin-specific qPCR array based on the metabolically competent human HepaRG™ cell line as a rapid and reliable tool for improved in vitro hazard assessment. Arch Toxicol 2018; 92:1593-1608. [DOI: 10.1007/s00204-018-2172-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/31/2018] [Indexed: 02/01/2023]
|
22
|
Han Y, Ma M, Li N, Hou R, Huang C, Oda Y, Wang Z. Chlorination, chloramination and ozonation of carbamazepine enhance cytotoxicity and genotoxicity: Multi-endpoint evaluation and identification of its genotoxic transformation products. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:679-688. [PMID: 28903093 DOI: 10.1016/j.jhazmat.2017.08.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Investigations have focused on the removal and transformation of pharmaceuticals during drinking water and wastewater treatment. In the present study, we investigated for the first time the changes of the cytotoxicity and genotoxicity based on different modes of action (MoAs) during chlorination, chloramination and ozonation processes of the anti-epileptic drug carbamazepine (CBZ). The results illustrated that ozonation enhanced the cytotoxicity and the chromosome damage effects on CHO-K1 cells detected by cytokinesis-block micronucleus (CBMN) assay based on high-content screening technique, though ozonation showed the highest removal efficiency for CBZ. Non-target chemical analysis followed by quantitative structure-activity relationship (QSAR) analysis for the transformation products (TPs) suggested that the chromosomal damage effects could probably be attributed to 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD). In contrast to CBZ itself and the ozonated sample, the chlorinated and chloraminated samples caused DNA damage effects in SOS/umu test. Acridine, 9 (10) H-acridone, chlorinated 9 (10) H-acridone and TP-237, which were first identified in the chlorination or chloramination processes, were predicted to be the DNA damaging agents. These genotoxic TPs were primarily generated from the oxidation of seven-membered N-heterocyclic in CBZ. This study highlighted the potential adverse effects generated in ozonation process and the oxidation of N-heterocyclic containing pollutants.
Collapse
Affiliation(s)
- Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, 6-2-28 Tsurumi, Tsurumi-ku, Osaka 538-0053, Japan
| | - Zijian Wang
- State Key laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
23
|
Huang ZH, Li N, Rao KF, Liu CT, Huang Y, Ma M, Wang ZJ. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay. Hum Exp Toxicol 2017; 37:285-294. [PMID: 29233020 DOI: 10.1177/0960327117695635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
Collapse
Affiliation(s)
- Z H Huang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - N Li
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - K F Rao
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - C T Liu
- 3 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Huang
- 4 College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - M Ma
- 5 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,6 Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Z J Wang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Novak M, Žegura B, Modic B, Heath E, Filipič M. Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:293-300. [PMID: 28558277 DOI: 10.1016/j.scitotenv.2017.05.115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Anticancer drugs enter aquatic environment predominantly via hospital and municipal wastewater effluents where they may, due to their genotoxic potential, cause adverse environmental effects even at very low doses. In this study we evaluated cytotoxic and genotoxic potential of two widely used anticancer drugs, cyclophosphamide (CP) and ifosfamide (IF) as individual compounds and in a complex mixture together with 5-fluorouracil (5-FU) and cisplatin (CDDP) because these four drugs have been frequently detected in an oncological ward effluents. As an experimental model we used zebrafish liver cell (ZFL) line. The cytotoxicity was determined with the MTS assay and genotoxicity with the comet assay and cytokinesis block micronucleus (CBMN) assay that measure the formation of DNA strand breaks and genomic instability, respectively. CP and IF exerted low cytotoxicity towards ZFL cells. Both compounds induced DNA strand breaks and genomic instability, however at relatively high concentrations that are not relevant for the contamination of aquatic environment. The mixture of CP, IF, 5-FU and CDDP was tested at maximal detected concentrations of each drug as determined in the effluents from the oncological ward. The mixture was not cytotoxic and did not induce genomic instability, but it induced significant increase in the formation of DNA strand breaks at concentrations of individual compounds that were several orders of magnitude lower from those that were effective when tested as individual compounds. The results indicate that such mixtures of anticancer drugs may pose a threat to aquatic organisms at environmentally relevant concentrations and contribute to the accumulating evidence that it is not always possible to predict adverse effects of complex mixtures based on the toxicological data for individual compounds.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Ecological Engineering Institute, Ljubljanska ulica 9, 2000 Maribor, Slovenia; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Barbara Modic
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Institute Jozef Stefan, Jadranska 29, 1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Huang C, Li N, Yuan S, Ji X, Ma M, Rao K, Wang Z. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:775-786. [PMID: 28732339 DOI: 10.1016/j.envpol.2017.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Na Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
26
|
Chevereau M, Glatt H, Zalko D, Cravedi JP, Audebert M. Role of human sulfotransferase 1A1 and N-acetyltransferase 2 in the metabolic activation of 16 heterocyclic amines and related heterocyclics to genotoxicants in recombinant V79 cells. Arch Toxicol 2017; 91:3175-3184. [PMID: 28160022 DOI: 10.1007/s00204-017-1935-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
Heterocyclic aromatic amines (HAAs) are primarily produced during the heating of meat or fish. HAAs are mutagenic and carcinogenic, and their toxicity in model systems depend on metabolic activation. This activation is mediated by cytochrome P450 (CYP) enzymes, in particular CYP1A2. Some studies have indicated a role of human sulfotransferase (SULT) 1A1 and N-acetyltransferase (NAT) 2 in the terminal activation of HAAs. In this study, we conducted a metabolism/genotoxicity relationship analysis for 16 HAAs and related heterocyclics. We used the γH2AX genotoxicity assay in V79 cells (deficient in CYP, SULT and NAT) and V79-derived cell lines genetically engineered to express human CYP1A2 alone or in combination with human SULT1A1 or NAT2. Our data demonstrated genotoxic properties for 13 out of the 16 compounds tested. A clear relationship between metabolic bioactivation and genotoxicity allowed to distinguish four groups: (1) Trp-P-1 genotoxicity was linked to CYP1A2 bioactivation only-with negligible effects of phase II enzymes; (2) Glu-P-2, Glu-P-1, Trp-P-2, APNH, MeAαC and AαC were bioactivated by CYP1A2 in combination with either phase II enzyme tested (NAT2 or SULT1A1); (3) IQ, 4-MeIQ, IQx, 8-MeIQx, and 4,8-DiMeIQx required CYP1A2 in combination with NAT2 to be genotoxic, whereas SULT1A1 did not enhance their genotoxicity; (4) PhIP became genotoxic after CYP1A2 and SULT1A1 bioactivation-NAT2 had not effect. Our results corroborate some previous data regarding the genotoxic potency of seven HAAs and established the genotoxicity mechanism for five others HAAs. This study also permits to compare efficiently the genotoxic potential of these 13 HAAs.
Collapse
Affiliation(s)
- Matthieu Chevereau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA-UMR1331, ENVT, INP-Purpan, UPS, Toxalim, 180 chemin de Tournefeuille BP 93173, 31027, Toulouse Cedex 3, France
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), 14558, Nuthetal, Germany.,Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA-UMR1331, ENVT, INP-Purpan, UPS, Toxalim, 180 chemin de Tournefeuille BP 93173, 31027, Toulouse Cedex 3, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA-UMR1331, ENVT, INP-Purpan, UPS, Toxalim, 180 chemin de Tournefeuille BP 93173, 31027, Toulouse Cedex 3, France
| | - Marc Audebert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA-UMR1331, ENVT, INP-Purpan, UPS, Toxalim, 180 chemin de Tournefeuille BP 93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
27
|
Donato MT, Gómez-Lechón MJ, Tolosa L. Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 2016; 12:201-211. [DOI: 10.1080/17460441.2017.1271784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
28
|
Moutsatsos IK, Hossain I, Agarinis C, Harbinski F, Abraham Y, Dobler L, Zhang X, Wilson CJ, Jenkins JL, Holway N, Tallarico J, Parker CN. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform. SLAS DISCOVERY 2016; 22:238-249. [PMID: 27899692 PMCID: PMC5322829 DOI: 10.1177/1087057116679993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.
Collapse
Affiliation(s)
| | - Imtiaz Hossain
- 2 Centre for Proteomic Chemistry, NIBR, Postfach, Basel, Switzerland
| | - Claudia Agarinis
- 3 Developmental and Molecular Pathways, NIBR, Postfach, Basel, Switzerland
| | | | - Yann Abraham
- 5 The Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Vlaanderen, Belgium
| | - Luc Dobler
- 6 République et Canton du Jura, Switzerland
| | - Xian Zhang
- 2 Centre for Proteomic Chemistry, NIBR, Postfach, Basel, Switzerland
| | | | - Jeremy L Jenkins
- 1 Developmental and Molecular Pathways, NIBR, Cambridge, MA, USA
| | - Nicholas Holway
- 7 Scientific Computing, NIBR Informatics, Novartis, Postfach, Basel, Switzerland
| | - John Tallarico
- 1 Developmental and Molecular Pathways, NIBR, Cambridge, MA, USA
| | - Christian N Parker
- 3 Developmental and Molecular Pathways, NIBR, Postfach, Basel, Switzerland
| |
Collapse
|
29
|
Han Y, Li N, Oda Y, Ma M, Rao K, Wang Z, Jin W, Hong G, Li Z, Luo Y. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:448-456. [PMID: 27517142 DOI: 10.1016/j.ecoenv.2016.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore, to identify causative pollutants with harmful biological effects, chemical analyses for the pollutants listed in water quality standards is not sufficient, and single-endpoint bioassays may underestimate adverse effects. Thus, a battery of bioassays based on different MOAs is required for the comprehensive detection of harmful biological effects. In conclusion, for genotoxicity screening of surface waters, the SOS/umu test system by using different strains combined with the CBMN assay was a useful approach.
Collapse
Affiliation(s)
- Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, 6-2-28 Tsurumi, Tsurumi-Ku, Osaka 538-0053, Japan.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Wei Jin
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Gang Hong
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Zhiguo Li
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Yi Luo
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| |
Collapse
|
30
|
Persson M, Hornberg JJ. Advances in Predictive Toxicology for Discovery Safety through High Content Screening. Chem Res Toxicol 2016; 29:1998-2007. [DOI: 10.1021/acs.chemrestox.6b00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mikael Persson
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Jorrit J. Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
31
|
Ocampo IZ, de Queiroz Souza Passos P, Ramirez de Carvalho L, Lira da Cruz CA, Esteves-Pedro NM, Medeiros da Silva F, Higa OZ, Dias LAP, Okazaki K, Vieira DP. In vitro cytotoxic and genotoxic evaluation of peptides used in nuclear medicine (DOTATATE and Ubiquicidin 29-41) in CHO-K1 cells. Cytotechnology 2016; 68:2301-2310. [PMID: 27686814 DOI: 10.1007/s10616-016-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
Micronucleus (MN) assay constitutes a valuable surrogate to the chromosome aberration technique for in vitro testing of the genotoxicity of substances. As test substances, two peptidic compounds (DOTATATE and Ubiquicidin29-41) used in nuclear medicine, were tested for in vitro cytotoxicity and genotoxicity in CHO-K1 cells. None of the compounds showed detectable cytotoxicity (0.5-7.3 ng/mL for DOTATATE and 0.3-4.5 ng/mL for UBI29-41), genotoxicity (0.72, 7.2 and 72.0 ng/ml for DOTATATE and 0.45, 4.5 and 45.0 ng/mL for UBI29-41) or cell cycle changes as compared to untreated controls at the concentrations tested. Statistical analysis showed good concordance between two independent analysts. The results corroborate the notion of the safety of the compounds and present improvements of the in vitro MN assay when performed in a pre-clinical trial context that increase the throughput of small-to-medium testing facilities as an alternative to high content screening systems.
Collapse
Affiliation(s)
- Ivette Zegarra Ocampo
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil
| | | | - Luma Ramirez de Carvalho
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Camila Ayala Lira da Cruz
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil
| | | | | | - Olga Zazuco Higa
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil.,Biosynthesis Laboratory, São Paulo, SP, Brazil
| | - Luiz Alberto Pereira Dias
- Center of Radiopharmacy, Quality Control Management, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Kayo Okazaki
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Daniel Perez Vieira
- Laboratory of Radiobiology, Center of Biotechnology, Institute of Nuclear and Energetic Research IPEN/CNEN-SP, Av. LineuPrestes, 2242, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
32
|
Yoon J, Kim J, Jeong HE, Sudo R, Park MJ, Chung S. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell–ECM interactions. Biofabrication 2016; 8:035014. [DOI: 10.1088/1758-5090/8/3/035014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Le Bihanic F, Di Bucchianico S, Karlsson HL, Dreij K. In vivo
micronucleus screening in zebrafish by flow cytometry. Mutagenesis 2016; 31:643-653. [DOI: 10.1093/mutage/gew032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbø LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafström R, Prina-Mello A, Dusinska M. High throughput toxicity screening and intracellular detection of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27273980 PMCID: PMC5215403 DOI: 10.1002/wnan.1413] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read‐across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter‐experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM‐cell interactions. Validation of in vitroHTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose‐ and time‐dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label‐free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance‐based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew R Collins
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway
| | | | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Marco Dorn
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Carolin Merker
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Emil Cimpan
- Department of Electrical Engineering, Faculty of Engineering, Bergen University College, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Naouale El Yamani
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway.,Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Sylvie Chevillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Vincent Paget
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Romain Grall
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Jozo Delic
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | | | | | - Valérie Fessard
- ANSES Fougères Laboratory, Contaminant Toxicology Unit, France
| | | | - Lise Maria Fjellsbø
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Elise Runden Pran
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Tana Brzicova
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge and Centre for Toxicogenomics and Human Health, NMS/FCM, UNL, Lisbon, Portugal
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - J M Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adriele Prina-Mello
- Nanomedicine Group, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
35
|
Hendriks G, Derr RS, Misovic B, Morolli B, Calléja FMGR, Vrieling H. The Extended ToxTracker Assay Discriminates Between Induction of DNA Damage, Oxidative Stress, and Protein Misfolding. Toxicol Sci 2016; 150:190-203. [PMID: 26719371 PMCID: PMC5009621 DOI: 10.1093/toxsci/kfv323] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemical exposure of cells may damage biomolecules, cellular structures, and organelles thereby jeopardizing cellular homeostasis. A multitude of defense mechanisms have evolved that can recognize specific types of damaged molecules and will initiate distinct cellular programs aiming to remove the damage inflicted and prevent cellular havoc. As a consequence, quantitative assessment of the activity of the cellular stress responses may serve as a sensitive reporter for the induction of specific types of damage. We have previously developed the ToxTracker assay, a mammalian stem cell-based genotoxicity assay employing two green fluorescent protein reporters specific for DNA damage and oxidative stress. We have now expanded the ToxTracker assay with an additional four reporter cell lines to include monitoring of additional stress signaling pathways. This panel of six green fluorescent protein reporters is able to discriminate between different primary reactivity of chemicals being their ability to react with DNA and block DNA replication, induce oxidative stress, activate the unfolded protein response, or cause a general P53-dependent cellular stress response. Extensive validation using the compound library suggested by the European Centre for the Validation of Alternative Methods (ECVAM) and a large panel of reference chemicals shows that the ToxTracker assay has an outstanding sensitivity and specificity. In addition, we developed Toxplot, a dedicated software tool for automated data analysis and graphical representation of the test results. Rapid and reliable identification by the ToxTracker assay of specific biological reactivity can significantly improve in vitro human hazard assessment of chemicals.
Collapse
Affiliation(s)
- Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Remco S Derr
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Branislav Misovic
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Bruno Morolli
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Fabienne M G R Calléja
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
36
|
De Grandis RA, Resende FA, da Silva MM, Pavan FR, Batista AA, Varanda EA. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 798-799:11-8. [PMID: 26994489 DOI: 10.1016/j.mrgentox.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 01/24/2023]
Abstract
Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health.
Collapse
Affiliation(s)
- Rone Aparecido De Grandis
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Flávia Aparecida Resende
- Department of Biological Sciences and Health, Centro Universitário de Araraquara, UNIARA, Araraquara, São Paulo, Brazil.
| | - Monize Martins da Silva
- Department of Inorganic Chemistry, Federal University of São Carlos, UFSCAR, São Carlos, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Alzir Azevedo Batista
- Department of Inorganic Chemistry, Federal University of São Carlos, UFSCAR, São Carlos, São Paulo, Brazil
| | - Eliana Aparecida Varanda
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
37
|
Abstract
Visualization of micronuclei induction by chemicals and drugs enables measurement of possible compound genotoxicity. A loss of entire chromosome or a fragment of chromosome can lead to formation of micronuclei (MNi). The in vitro micronucleus assay can be conducted using nuclear dyes with high-content imaging platforms. This chapter describes the cytochalasin block method of measuring micronuclei in CHO-K1 cell lines.
Collapse
|
38
|
Peng C, Muthusamy S, Xia Q, Lal V, Denison MS, Ng JC. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis 2015; 30:593-602. [DOI: 10.1093/mutage/gev021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
39
|
High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 2015; 89:1007-22. [PMID: 25787152 DOI: 10.1007/s00204-015-1503-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/13/2023]
Abstract
High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.
Collapse
|
40
|
Thougaard AV, Christiansen J, Mow T, Hornberg JJ. Validation of a high throughput flow cytometric in vitro micronucleus assay including assessment of metabolic activation in TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:704-718. [PMID: 25111698 DOI: 10.1002/em.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/22/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
Genotoxicity is an unacceptable property for new drug candidates and we employ three screening assays during the drug discovery process to identify genotoxicity early and optimize chemical series. One of these methods is the flow cytometric in vitro micronucleus assay for which protocol optimizations have been described recently. Here, we report further validation of the assay in TK6 cells including assessment of metabolic activation. We first optimized assay conditions to allow for testing with and without metabolic activation in parallel in a 96-well plate format. Then, we tested a set of 48 compounds carefully selected to contain known in vivo genotoxins, nongenotoxins and drugs. Avoidance of irrelevant positives, a known issue with mammalian cell-based genotoxicity assays, is important to prevent early deselection of potentially promising compounds. Therefore, we enriched the validation set with compounds that were previously reported to produce irrelevant positive results in mammalian cell-based genotoxicity assays. The resulting dataset was used to set the relevant cut-off values for scoring a compound positive or negative, such that we obtained an optimal balance of high sensitivity (88%) and high specificity (87%). Finally, we tested an additional set of 16 drugs to further probe assay performance and 14 of them were classified correctly. To our knowledge, the present study is the most comprehensive validation of the in vitro flow cytometric micronucleus assay and the first to report parallel assessment with metabolic activation in reasonable throughput. The assay allows for rapidly screening novel compounds for genotoxicity and is therefore well-suited for use in early drug discovery projects. Environ.
Collapse
Affiliation(s)
- Annemette V Thougaard
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | | | | | | |
Collapse
|
41
|
Sahu SC, Njoroge J, Bryce SM, Yourick JJ, Sprando RL. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometricin vitromicronucleus assay. J Appl Toxicol 2014; 34:1226-34. [DOI: 10.1002/jat.3065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/19/2014] [Accepted: 07/20/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | - Joyce Njoroge
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | | | - Jeffrey J. Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | - Robert L. Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| |
Collapse
|
42
|
Roustan A, Aye M, De Meo M, Di Giorgio C. Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. CHEMOSPHERE 2014; 108:93-100. [PMID: 24875917 DOI: 10.1016/j.chemosphere.2014.02.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 01/29/2014] [Accepted: 02/22/2014] [Indexed: 05/26/2023]
Abstract
The photo-inducible cytogenetic toxicity of glyphosate, atrazine, aminomethyl phosphoric acid (AMPA), desethyl-atrazine (DEA), and their various mixtures was assessed by the in vitro micronucleus assay on CHO-K1 cells. Results demonstrated that the cytogenetic potentials of pesticides greatly depended on their physico-chemical environment. The mixture made with the four pesticides exhibited the most potent cytogenetic toxicity, which was 20-fold higher than those of the most active compound AMPA, and 100-fold increased after light-irradiation. Intracellular ROS assessment suggested the involvement of oxidative stress in the genotoxic impact of pesticides and pesticide mixtures. This study established that enhanced cytogenetic activities could be observed in pesticide mixtures containing glyphosate, atrazine, and their degradation products AMPA and DEA. It highlighted the importance of cocktail effects in environmental matrices, and pointed out the limits of usual testing strategies based on individual molecules, to efficiently estimate environmental risks.
Collapse
Affiliation(s)
- A Roustan
- Laboratoire de Mutagenèse et Toxicologie Environnementales, IMBE - UMR CNRS 7263/IRD 237, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | - M Aye
- Laboratoire de Mutagenèse et Toxicologie Environnementales, IMBE - UMR CNRS 7263/IRD 237, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | - M De Meo
- Laboratoire de Mutagenèse et Toxicologie Environnementales, IMBE - UMR CNRS 7263/IRD 237, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | - C Di Giorgio
- Laboratoire de Mutagenèse et Toxicologie Environnementales, IMBE - UMR CNRS 7263/IRD 237, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| |
Collapse
|
43
|
Gonçalves TS, Menezes LMD, Trindade C, Machado MDS, Thomas P, Fenech M, Henriques JAP. Cytotoxicity and genotoxicity of orthodontic bands with or without silver soldered joints. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 762:1-8. [DOI: 10.1016/j.mrgentox.2014.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
|
44
|
Ye Y, Weiwei J, Na L, Mei M, Donghong W, Zijian W, Kaifeng R. Assessing of genotoxicity of 16 centralized source-waters in China by means of the SOS/umu assay and the micronucleus test: Initial identification of the potential genotoxicants by use of a GC/MS method and the QSAR Toolbox 3.0. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 763:36-43. [DOI: 10.1016/j.mrgentox.2013.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/10/2013] [Accepted: 11/02/2013] [Indexed: 10/25/2022]
|
45
|
Rajakrishna L, Krishnan Unni S, Subbiah M, Sadagopan S, Nair AR, Chandrappa R, Sambasivam G, Sukumaran SK. Validation of a human cell based high-throughput genotoxicity assay ‘Anthem’s Genotoxicity screen’ using ECVAM recommended lists of genotoxic and non-genotoxic chemicals. Toxicol In Vitro 2014; 28:46-53. [DOI: 10.1016/j.tiv.2013.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022]
|
46
|
Ye Y, Weiwei J, Na L, Mei M, Kaifeng R, Zijian W. Application of the SOS/umu test and high-contentin vitromicronucleus test to determine genotoxicity and cytotoxicity of nine benzothiazoles. J Appl Toxicol 2014; 34:1400-8. [DOI: 10.1002/jat.2972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Ye
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing 100085 People's Republic of China
| | - Jiang Weiwei
- National Engineering Research Center of Urban Water Resources; Shanghai 200082 People's Republic of China
| | - Li Na
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing 100085 People's Republic of China
| | - Ma Mei
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing 100085 People's Republic of China
| | - Rao Kaifeng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing 100085 People's Republic of China
| | - Wang Zijian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing 100085 People's Republic of China
| |
Collapse
|
47
|
van der Linden SC, von Bergh ARM, van Vught-Lussenburg BMA, Jonker LRA, Teunis M, Krul CAM, van der Burg B. Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 760:23-32. [PMID: 24362253 DOI: 10.1016/j.mrgentox.2013.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 08/13/2013] [Accepted: 09/28/2013] [Indexed: 12/22/2022]
Abstract
The lack of toxicological information on many of the compounds that humans use or are exposed to, intentionally or unintentionally, poses a big problem in risk assessment. To fill this data gap, more emphasis is given to fast in vitro screening tools that can add toxicologically relevant information regarding the mode(s) of action via which compounds can elicit adverse effects, including genotoxic effects. By use of bioassays that can monitor the activation of specific cellular signalling pathways, many compounds can be screened in a high-throughput manner. We have developed two new specific reporter-gene assays that can monitor the effects of compounds on two pathways of interest: the p53 pathway (p53 CALUX) for genotoxicity and the Nrf2 pathway (Nrf2 CALUX) for oxidative stress. To exclude non-specific effects by compounds influencing the luciferase reporter-gene expression non-specifically, a third assay was developed to monitor changes in luciferase expression by compounds in general (Cytotox CALUX). To facilitate interpretation of the data and to avoid artefacts, all three reporter-gene assays used simple and defined reporter genes and a similar cellular basis, the human U2OS cell line. The three cell lines were validated with a range of reference compounds including genotoxic and non-genotoxic agents. The sensitivity (95%) and specificity (85%) of the p53 CALUX was high, showing that the assay is able to identify various types of genotoxic compound, while avoiding the detection of false positives. The Nrf2 CALUX showed specific responses to oxidants only, enabling the identification of compounds that elicit part of their genotoxicity via oxidative stress. All reporter-gene assays can be used in a high-throughput screening format and can be supplemented with other U2OS-based reporter-gene assays that can profile nuclear receptor activity, and several other signalling pathways.
Collapse
Affiliation(s)
| | - Anne R M von Bergh
- Innovative Testing in Life Sciences and Chemistry, Research Centre Technology & Innovation, University of Applied Sciences Utrecht, The Netherlands
| | | | | | - Marc Teunis
- Innovative Testing in Life Sciences and Chemistry, Research Centre Technology & Innovation, University of Applied Sciences Utrecht, The Netherlands
| | - Cyrille A M Krul
- Innovative Testing in Life Sciences and Chemistry, Research Centre Technology & Innovation, University of Applied Sciences Utrecht, The Netherlands
| | | |
Collapse
|
48
|
Khoury L, Zalko D, Audebert M. Validation of high-throughput genotoxicity assay screening using γH2AX in-cell western assay on HepG2 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:737-746. [PMID: 24105934 DOI: 10.1002/em.21817] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/19/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
In vitro genotoxicity tests used in regulatory toxicology studies are sensitive, but the occurrence of irrelevant positive results is high compared with carcinogenicity studies in rodents. Current in vitro genotoxicity tests are also often limited by relatively low throughput. The aim of this study was to validate an in vitro genotoxic assay in a 96-well plate format that allows the simultaneous examination of cytotoxicity and genotoxicity. The test is based on the quantification of the phosphorylation of the histone H2AX (γH2AX), which reflects a global genotoxic insult, using the In-Cell Western technique. The assay was evaluated on HepG2 cells by testing a list of 61 compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), whose genotoxic potential has already been characterized. The γH2AX assay on HepG2 cell line was highly sensitive: 75% of the genotoxic compounds gave a positive result, and specific: 90-100% of nongenotoxic compounds gave negative results. Compared with the micronucleus genotoxicity assay using the same cell line and test compounds, the γH2AX assay was more sensitive and specific. In sum, the high-throughput γH2AX assay described here can accurately detect simultaneously the genotoxic and the cytotoxic potential of compounds with different modes of mutagenic action, notably those who required metabolic activation. The use of this assay in the early discovery phase of drug development may prove to be a valuable way to assess the genotoxic potential of xenobiotics.
Collapse
Affiliation(s)
- Laure Khoury
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027, Toulouse, France; Université de Toulouse, INPT, UPS, UMR1331, F-31062, Toulouse, France
| | | | | |
Collapse
|
49
|
Bernardi M, Adami V, Albiero E, Madeo D, Rodeghiero F, Astori G. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium. ACTA ACUST UNITED AC 2013; 66:111-6. [PMID: 24290702 DOI: 10.1016/j.etp.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 01/03/2023]
Abstract
Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products.
Collapse
Affiliation(s)
- Martina Bernardi
- Hematology Project Foundation Research Laboratories, Contrà S. Francesco 41, Vicenza, Italy; Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, Vicenza, Italy
| | - Valentina Adami
- High Throughput Screening Core Facility, CIBIO (Centre for Integrative Biology) - University of Trento, via delle Regole 101, Mattarello (TN), Italy
| | - Elena Albiero
- Hematology Project Foundation Research Laboratories, Contrà S. Francesco 41, Vicenza, Italy; Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, Vicenza, Italy
| | - Domenico Madeo
- Hematology Project Foundation Research Laboratories, Contrà S. Francesco 41, Vicenza, Italy
| | - Francesco Rodeghiero
- Hematology Project Foundation Research Laboratories, Contrà S. Francesco 41, Vicenza, Italy; Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, Vicenza, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, Vicenza, Italy.
| |
Collapse
|
50
|
The automated micronucleus assay for early assessment of genotoxicity in drug discovery. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:1-11. [DOI: 10.1016/j.mrgentox.2012.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/24/2012] [Accepted: 10/14/2012] [Indexed: 01/22/2023]
|