1
|
Liu X, Zhou J, Chen M, Chen S, You J, Li Y, Lv H, Zhang Y, Zhou Y. 3D-printed biomimetic bone scaffold loaded with lyophilized concentrated growth factors promotes bone defect repair by regulation the VEGFR2/PI3K/AKT signaling pathway. Int J Biol Macromol 2024; 282:136938. [PMID: 39490882 DOI: 10.1016/j.ijbiomac.2024.136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the effects of concentrated growth factors (CGF) and bone substitutes on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the development of a novel 3D-printed biomimetic bone scaffold. Based on the structure of cancellous bone, 3D-printed bionic bone with sustainable release of growth factors and Ca2+ was prepared. Using BMSCs and EA.hy926 in co-culture with the bionic bone scaffold, experimental results demonstrate that this bionic structural design enhances cell proliferation and adhesion, and that the bionic bone possesses the ability to promote bone and vascular regeneration directly. Transcriptomics, western blot analysis, and flow cytometry are employed to investigate the effects of CGF and Ca2+ on the signaling pathways of BMSCs. The study reports that vascular endothelial growth factor (VEGF) released by CGF activated VEGFR2 on BMSCs, leading to Ca2+ influx and activation of the PI3K/AKT signaling pathway, thereby influencing osteogenesis. Animal experiments confirm the ability of the bionic bone to promote osteogenesis in vivo, and its unique degradation pattern accelerates the in vivo repair of bone defects. In conclusion, this study presents a novel biomimetic strategy and, for the first time, explores the potential mechanism by which VEGF and Ca2+ regulate BMSCs differentiation through the VEGFR2/PI3K/AKT signaling pathway. These insights offer a new perspective for the development of innovative bone substitute materials.
Collapse
Affiliation(s)
- Xiuyu Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jing Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Meiqing Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiaqian You
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yangyang Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huixin Lv
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Ishikawa M, Borges R, Mourão A, Ferreira LM, Lobo AO, Martinho H. Confined Water Dynamics in the Scaffolds of Polylactic Acid. ACS OMEGA 2024; 9:19796-19804. [PMID: 38737045 PMCID: PMC11079869 DOI: 10.1021/acsomega.3c08057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
Resorbable polylactic acid (PLA) ultrathin fibers have been applied as scaffolds for tissue engineering applications due to their micro- and nanoporous structure that favor cell adhesion, besides inducing cell proliferation and upregulating gene expression related to tissue regeneration. Incorporation of multiwalled carbon nanotubes into PLA fibers has been reported to increase the mechanical properties of the scaffold, making them even more suitable for tissue engineering applications. Ideally, scaffolds should be degraded simultaneously with tissue growth. Hydration and swelling are factors related to scaffold degradation. Hydration would negatively impact the mechanical properties since PLA shows hydrolytic degradation. Water absorption critically affects the catalysis and allowance of the hydrolysis reactions. Moreover, either mass transport and chemical reactions are influenced by confined water, which is an unexplored subject for PLA micro- and nanoporous fibers. Here, we probe and investigate confined water onto highly porous PLA microfibers containing few amounts of incorporated carbon nanotubes by Fourier transform infrared (FTIR) spectroscopy. A hydrostatic pressure was applied to the fibers to enhance the intermolecular interactions between water molecules and C=O groups from polyester bonds, which were evaluated over the wavenumber between 1600 and 2000 cm-1. The analysis of temperature dependence of FTIR spectra indicated the presence of confined water which is characterized by a non-Arrhenius to Arrhenius crossover at T0 = 190 K for 1716 and 1817 cm-1 carbonyl bands of PLA. These bands are sensitive to a hydrogen bond network of confined water. The relevance of our finding relies on the challenge detecting confined water in hydrophobic cavities as in the PLA one. To the best of our knowledge, we present the first report referring the presence of confined water in a hydrophobic scaffold as PLA for tissue engineering. Our findings can provide new opportunities to understand the role of confined water in tissue engineering applications. For instance, we argue that PLA degradation may be affected the most by confined water. PLA degradation involves hydrolytic and enzymatic degradation reactions, which can both be sensitive to changes in water properties.
Collapse
Affiliation(s)
- Mariana Ishikawa
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | - Roger Borges
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
- School
of Biomedical Engineering, Faculdade Israelita de Ciências
da Saúde Albert Einstein, Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 09280-560, Brazil
| | - André Mourão
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | | | - Anderson O. Lobo
- Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Department of Materials
Engineering, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
| | | |
Collapse
|
3
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
4
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
5
|
Kamedulski P, Wekwejt M, Zasada L, Ronowska A, Michno A, Chmielniak D, Binkowski P, Łukaszewicz JP, Kaczmarek-Szczepańska B. Evaluating Gelatin-Based Films with Graphene Nanoparticles for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3068. [PMID: 38063764 PMCID: PMC10708143 DOI: 10.3390/nano13233068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 04/12/2024]
Abstract
In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis and cytotoxicity, were evaluated. Then, the selected biocompatible nanoparticles were used as the gelatin film modification with 10% concentration. As a result of solvent evaporation, homogeneous thin films were obtained. The surface's properties, mechanical strength, antioxidant activity, and water vapor permeation rate were examined to select the appropriate film for biomedical applications. We found that the addition of graphene nanoplatelets had a significant effect on the properties of materials, improving surface roughness, surface free energy, antioxidant activity, tensile strength, and Young's modulus. For the most favorable candidate for wound dressing applications, we chose a gelatin film containing nanoparticles with a surface area of 500 m2/g.
Collapse
Affiliation(s)
- Piotr Kamedulski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland;
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland; (A.R.); (A.M.)
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland; (A.R.); (A.M.)
| | - Dorota Chmielniak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| | - Paweł Binkowski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
| | - Jerzy P. Łukaszewicz
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (P.K.); (P.B.); (J.P.Ł.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (L.Z.); (D.C.)
| |
Collapse
|
6
|
Vijayakanth V, Vinodhini V, Chintagumpala K. Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2023:955-986. [DOI: 10.1007/978-981-19-7188-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Ghazimoradi MM, Azad FV, Jalali F, Rafieian-Kopaei M. The Neurotoxic Mechanisms of Graphene Family Nanomaterials at the Cellular Level: A Solution-based Approach Review. Curr Pharm Des 2022; 28:3572-3581. [PMID: 36464882 DOI: 10.2174/1381612829666221202093813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/09/2022]
Abstract
The graphene family nanomaterials (GFNs) have been recognized to have potential applications in biomedicine, especially in the rag nostic, drug delivery and neuroimaging. Multiple studies have examined the neurotoxicity of GFNs to assay their toxic effects on organisms and ecosystems. In this article, we reviewed the different neurotoxicity effects of GFNs at intracellular levels, including nucleus-related effects and cytosolic mechanisms, as well as extracellular levels, including effects on enzyme activity, oxidative stress, behavior, neurotransmitters, and central nervous system (CNS). Furthermore, for the sake of the solution, we discussed the reducing ways of graphene toxicity. A schematic description is shown in Fig. (1).
Collapse
Affiliation(s)
| | - Farhan Vahdat Azad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Jalali
- Medical Laboratory Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Ng IMJ, Shamsi S. Graphene Oxide (GO): A Promising Nanomaterial against Infectious Diseases Caused by Multidrug-Resistant Bacteria. Int J Mol Sci 2022; 23:9096. [PMID: 36012361 PMCID: PMC9408893 DOI: 10.3390/ijms23169096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are major threat due to it being the main cause of enormous morbidity and mortality in the world. Multidrug-resistant (MDR) bacteria put an additional burden of infection leading to inferior treatment by the antibiotics of the latest generations. The emergence and spread of MDR bacteria (so-called "superbugs"), due to mutations in the bacteria and overuse of antibiotics, should be considered a serious concern. Recently, the rapid advancement of nanoscience and nanotechnology has produced several antimicrobial nanoparticles. It has been suggested that nanoparticles rely on very different mechanisms of antibacterial activity when compared to antibiotics. Graphene-based nanomaterials are fast emerging as "two-dimensional wonder materials" due to their unique structure and excellent mechanical, optical and electrical properties and have been exploited in electronics and other fields. Emerging trends show that their exceptional properties can be exploited for biomedical applications, especially in drug delivery and tissue engineering. Moreover, graphene derivatives were found to have in vitro antibacterial properties. In the recent years, there have been many studies demonstrating the antibacterial effects of GO on various types of bacteria. In this review article, we will be focusing on the aforementioned studies, focusing on the mechanisms, difference between the studies, limitations and future directions.
Collapse
Affiliation(s)
| | - Suhaili Shamsi
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
9
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
10
|
Pielesz A, Ślusarczyk C, Sieradzka M, Kukulski T, Biniaś D, Fryczkowski R, Bobiński R, Waksmańska W. Graphene Oxide as a Collagen Modifier of Amniotic Membrane and Burnt Skin. Nanotechnol Sci Appl 2021; 14:221-235. [PMID: 34908830 PMCID: PMC8665888 DOI: 10.2147/nsa.s343540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this interdisciplinary study was to answer the question of whether active antioxidants as graphene oxide (GO), sodium ascorbate, and L-ascorbic acid modify at a molecular and supramolecular level the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. We propose new solutions of modifiers based on GO that will become innovative ingredients to be used in transplants (amnion) and enhance regeneration of epidermis degraded in thermal burn. Methods A Nicolet 6700 spectrophotometer with Omnic software and the EasiDiff diffusion accessory were used in FTIR spectroscopic analysis. A Nicolet Magna-IR 860 spectrometer with an FT Raman accessory was used to record the Raman spectra of the samples. The surface of the samples was examined using a Phenom ProX scanning electron microscope with an energy-dispersive X-ray spectroscopy detector to diagnose and illustrate morphological effects on skin and amnion samples. SAXS measurements were carried out with a compact Kratky camera equipped with the SWAXS optical system. Results Characterisation of amide I-III regions, important for molecular structure, on both FTIR and FTR spectra revealed distinct shifts, testifying to organization of protein structure after GO modification. A wide lipid band associated with ester-group vibrations in phospholipids of cell membranes and vibrations of the carbonyl group of GO in the 1,790-1,720 cm-1 band were observed in the spectra of thermally degraded and GO-modified epidermis and pathological amnion. SAXS studies revealed that GO caused a significant change in the structure of the burnt skin, but its influence on the structure of the amnion was weak. Conclusion Modification of burn-damaged epidermis and pathological amnion by means of GO results in stabilization and regeneration of tissue at the level of molecular (FTIR, FTR) and supramolecular (SAXS) interactions.
Collapse
Affiliation(s)
- Anna Pielesz
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Czesław Ślusarczyk
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Marta Sieradzka
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Tomasz Kukulski
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Dorota Biniaś
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Ryszard Fryczkowski
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Rafał Bobiński
- University of Bielsko-Biała, Faculty of Health Sciences, Bielsko-Biała, 43-300, Poland
| | - Wioletta Waksmańska
- University of Bielsko-Biała, Faculty of Health Sciences, Bielsko-Biała, 43-300, Poland
| |
Collapse
|
11
|
Wu M, Zou L, Jiang L, Zhao Z, Liu J. Osteoinductive and antimicrobial mechanisms of graphene-based materials for enhancing bone tissue engineering. J Tissue Eng Regen Med 2021; 15:915-935. [PMID: 34469046 DOI: 10.1002/term.3239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Graphene-based materials (GMs) have great application prospects in bone tissue engineering due to their osteoinductive ability and antimicrobial activity. GMs induce osteogenic differentiation through several mechanisms and pathways in bone tissue engineering. First of all, the surface and high hardness of the porous folds of graphene or graphene oxide (GO) can generate mechanical stimulation to initiate a cascade of reactions that promote osteogenic differentiation without any chemical inducers. In addition, change of the extracellular matrix (ECM), regulation of macrophage polarization, the oncostatin M (OSM) signaling pathway, the MAPK signaling pathway, the BMP signaling pathway, the Wnt/β-catenin signaling pathway, and other pathways are involved in GMs' regulation of osteogenesis. In bone tissue engineering, GMs prevent the formation of microbial biofilms mainly through preventing microbial adhesion and killing them. The former is mainly achieved by reducing surface free energy (SFE) and increasing hydrophobicity. The latter mainly includes oxidative stress and photothermal/photodynamic effects. Graphene and its derivatives (GDs) are mainly combined with bioactive ceramic materials, metal materials and macromolecular polymers to play an antimicrobial effect in bone tissue engineering. Concentration, number of layers, and type of GDs often affect the antimicrobial activity of GMs. In this paper, we reviewed relevant osteoinductive and antimicrobial mechanisms of GMs and their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mengsong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Luo S, Chen X, He Y, Gu Y, Zhu C, Yang GH, Qu LL. Recent advances in graphene nanoribbons for biosensing and biomedicine. J Mater Chem B 2021; 9:6129-6143. [PMID: 34291262 DOI: 10.1039/d1tb00871d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, a new type of quasi-one-dimensional graphene-based material, graphene nanoribbons (GNRs), has attracted increasing attention. The limited domain width and rich edge configurations of GNRs endow them with unique properties and wide applications in comparison to two-dimensional graphene. This review article mainly focuses on the electrical, chemical and other properties of GNRs, and further introduces the typical preparation methods of GNRs, including top-down and bottom-up strategies. Then, their biosensing and biomedical applications are highlighted in detail, such as biosensors, photothermal therapy, drug delivery, etc. Finally, the challenges and future prospects in the synthesis and application of functionalized GNRs are discussed. It is expected that GNRs will have significant practical use in biomedical applications in the future.
Collapse
Affiliation(s)
- Siyu Luo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Oliveira FC, Carvalho JO, Magalhães LSSM, da Silva JM, Pereira SR, Gomes Júnior AL, Soares LM, Cariman LIC, da Silva RI, Viana BC, Silva-Filho EC, Afewerki S, da Cunha HN, Vega ML, Marciano FR, Lobo AO. Biomineralization inspired engineering of nanobiomaterials promoting bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111776. [PMID: 33545906 DOI: 10.1016/j.msec.2020.111776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapatite (nHA). Various scaffolds were devised [nHA/PLA, PLA/GNR, and PLA/nHA/GNR (1 and 3%)] and their structure and morphology characterized through Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Atomic force microscope (AFM). Moreover, thorough biocompatibility and toxicity studies were performed. Here, in vivo studies on toxicity and cytotoxicity were conducted in aqueous dispersions of the biomaterials at concentrations of 30, 60, and 120 μg/mL using the Allium cepa test. Further toxicity studies were performed through hemolysis toxicity tests and genotoxicity tests evaluating the damage index and damage frequencies of DNAs through comet assays with samples of the animals' peripheral blood, marrow, and liver. Additionally, the regenerative activity of the scaffolds was analyzed by measuring the cortical tibiae of rats oophorectomized implanted with the biomaterials. Biochemical analyzes [glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea, calcium, phosphorus, and alkaline phosphatase (ALP)] were also performed on blood samples. The results suggested a toxicity and cytotoxicity level for the GNR biomaterials at a concentration of 60 and 120 μg/mL, but non-toxicity and cytotoxicity for the 30 μg/mL concentration. The scaffolds obtained at a concentration of 0.3 mg/cm2 were not toxic in the hemolysis test and demonstrated no cytotoxicity, genotoxicity, and mutagenicity in the blood, marrow, and liver analyzes of the animals, corroborating data from the biochemical markers of GPT, GOT, and urea. Tissue regeneration was performed in all groups and was more pronounced in the group containing the combination of nHA/GNR (3%), which is consistent with the data obtained for the calcium, serum phosphorus, and ALP concentrations. Consequently, the study indicates that the engineered nanobiomaterial is a promising candidate for bone tissue repair and regenerative applications. STATEMENT OF SIGNIFICANCE: The scientific contribution of this study is the engineering of a synthetic hybrid biomaterial, in nanoscale by a pressing and heating process. A biodegradable polymeric matrix was covered on both sides with a carbonated hybrid bioceramic/graphene nanoribbons (GNR), which has hydrophilic characteristics, with chemical elements stoichiometrically similar to bone mineral composition. The nanomaterial displayed promising bone regeneration ability, which is the first example to be used in an osteoporotic animal model. Moreover, detailed biocompatibility and toxicity studies were performed on the nanomaterials and their compositions, which is of great interest for the scientific community.
Collapse
Affiliation(s)
- Francilio Carvalho Oliveira
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil; Faculdade Estácio Teresina, Teresina, PI 64046-700, Brazil
| | - Jancineide Oliveira Carvalho
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Leila S S M Magalhães
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Juliana Marques da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Saronny Rose Pereira
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Antonio Luiz Gomes Júnior
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | | | - Laynna Ingrid Cruz Cariman
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Ruan Inácio da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Bartolomeu C Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil; Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Health Science and Technology, Harvard University - Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Helder Nunes da Cunha
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Maria Leticia Vega
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | | | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
14
|
Vasconcellos LMR, Santana-Melo GF, Silva E, Pereira VF, Araújo JCR, Silva ADR, Furtado ASA, Elias CDMV, Viana BC, Marciano FR, Lobo AO. Electrospun Poly(butylene-adipate-co-terephthalate)/Nano-hyDroxyapatite/Graphene Nanoribbon Scaffolds Improved the In Vivo Osteogenesis of the Neoformed Bone. J Funct Biomater 2021; 12:11. [PMID: 33562592 PMCID: PMC7931057 DOI: 10.3390/jfb12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Electrospun ultrathin fibrous scaffold filed with synthetic nanohydroxyapatite (nHAp) and graphene nanoribbons (GNR) has bioactive and osteoconductive properties and is a plausible strategy to improve bone regeneration. Poly(butylene-adipate-co-terephthalate) (PBAT) has been studied as fibrous scaffolds due to its low crystallinity, faster biodegradability, and good mechanical properties; however, its potential for in vivo applications remains underexplored. We proposed the application of electrospun PBAT with high contents of incorporated nHAp and nHAp/GNR nanoparticles as bone grafts. Ultrathin PBAT, PBAT/nHAp, and PBAT/nHAp/GNR fibers were produced using an electrospinning apparatus. The produced fibers were characterized morphologically and structurally using scanning electron (SEM) and high-resolution transmission electron (TEM) microscopies, respectively. Mechanical properties were analyzed using a texturometer. All scaffolds were implanted into critical tibia defects in rats and analyzed after two weeks using radiography, microcomputed tomography, histological, histomorphometric, and biomechanical analyses. The results showed through SEM and high-resolution TEM characterized the average diameters of the fibers (ranged from 0.208 µm ± 0.035 to 0.388 µm ± 0.087) and nHAp (crystallite around 0.28, 0.34, and 0.69 nm) and nHAp/GNR (200-300 nm) nanoparticles distribution into PBAT matrices. Ultrathin fibers were obtained, and the incorporated nHAp and nHAp/GNR nanoparticles were well distributed into PBAT matrices. The addition of nHAp and nHAp/GNR nanoparticles improved the elastic modulus of the ultrathin fibers compared to neat PBAT. High loads of nHAp/GNR (PBATnH5G group) improved the in vivo lamellar bone formation promoting greater radiographic density, trabecular number and stiffness in the defect area 2 weeks after implantation than control and PBAT groups.
Collapse
Affiliation(s)
- Luana Marotta Reis Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Gabriela F. Santana-Melo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Edmundo Silva
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Vanessa Fernandes Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | - Juliani Caroline Ribeiro Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Paulo 12450-000, Brazil; (G.F.S.-M.); (E.S.); (V.F.P.); (J.C.R.A.)
| | | | - André S. A. Furtado
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piaui, Teresina 64049-550, Brazil;
| | | | - Bartolomeu Cruz Viana
- Department of Physics, Federal University of Piaui, Teresina 64049-550, Brazil; (B.C.V.); (F.R.M.)
| | | | - Anderson Oliveira Lobo
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piaui, Teresina 64049-550, Brazil;
| |
Collapse
|
15
|
Graphene nanoribbons: A state-of-the-art in health care. Int J Pharm 2021; 595:120269. [DOI: 10.1016/j.ijpharm.2021.120269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023]
|
16
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
17
|
PMMA-silica nanocomposite coating: Effective corrosion protection and biocompatibility for a Ti6Al4V alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110713. [DOI: 10.1016/j.msec.2020.110713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
18
|
Soares LES, Nahórny S, de Faria Braga V, Marciano FR, Bhattacharjee TT, Lobo AO. Raman spectroscopy-multivariate analysis related to morphological surface features on nanomaterials applied for dentin coverage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117818. [PMID: 31780307 DOI: 10.1016/j.saa.2019.117818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Raman spectroscopy and scanning electron microscopy (SEM) were used to investigate the effect of coating materials and acidulated phosphate fluoride gel (APF) treatment on dentin before and after erosion-abrasion cycles. A multi-walled carbon nanotube/graphene oxide hybrid carbon-based material (MWCNTO-GO), nanohydroxyapatite (nHAp), or a combined composite (nHAp/MWCNTO-GO) were used as a coating. Seventy root dentin fragments obtained from 40 bovine teeth were prepared and divided into groups (n = 10): negative control, artificial saliva - C, positive control - APF; nHAp; MWCNTO-GO; APF_nHAp; APF_MWCNTO-GO and APF_nHAp/MWCNTO-GO. All samples were subjected to cycles of demineralization (orange juice, pH ~3.7, room temperature, 1 min) followed by remineralization (saliva, 37 °C, 1 h). The remineralization procedures were followed by tooth brushing (150 strokes). The above cycle was repeated 3×/day for 5 days. The previous APF treatment of dentin allowed a better affinity of nHAp and MWCNTO-GO with the inorganic and organic portion of dentin, respectively. This interaction indicates the formation of a protective layer for the dentin surface and for the collagen giving possible protection against erosion. SEM micrographs illustrated the formation of a protective layer after application of the biomaterials and that it was partially or totally removed after the erosion and abrasion. Raman spectroscopy combined with multivariate analysis could distinguish samples with respect to treatment efficacy. The APF_nHAP/MWCNT-GO composite has shown to be a promising material since it has binding characteristics both to the inorganic and organic portion of the dentin and reduced solubility. Mineral-to-matrix ratio (MMR) parameter analysis confirmed the binding capability of MWCNTO-GO-based materials to dentin.
Collapse
Affiliation(s)
- Luís Eduardo Silva Soares
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| | - Sídnei Nahórny
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Vivian de Faria Braga
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | | | - Anderson Oliveira Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI - Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
19
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Afewerki S, Bassous N, Harb S, Palo-Nieto C, Ruiz-Esparza GU, Marciano FR, Webster T, Lobo AO. Advances in Antimicrobial and Osteoinductive Biomaterials. RACING FOR THE SURFACE 2020:3-34. [DOI: 10.1007/978-3-030-34471-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Afewerki S, Bassous N, Harb S, Palo-Nieto C, Ruiz-Esparza GU, Marciano FR, Webster TJ, Furtado ASA, Lobo AO. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102143. [PMID: 31862427 DOI: 10.1016/j.nano.2019.102143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
A vast growing problem in orthopaedic medicine is the increase of clinical cases with antibiotic resistant pathogenic microbes, which is predicted to cause higher mortality than all cancers combined by 2050. Bone infectious diseases limit the healing ability of tissues and increase the risk of future injuries due to pathologic tissue remodelling. The traditional treatment for bone infections has several drawbacks and limitations, such as lengthy antibiotic treatment, extensive surgical interventions, and removal of orthopaedic implants and/or prosthesis, all of these resulting in long-term rehabilitation. This is a huge burden to the public health system resulting in increased healthcare costs. Current technologies e.g. co-delivery systems, where antibacterial and osteoinductive agents are delivered encounter challenges such as site-specific delivery, sustained and prolonged release, and biocompatibility. In this review, these aspects are highlighted to promote the invention of the next generation biomaterials to prevent and/or treat bone infections and promote tissue regeneration.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women´s Hospital, Cambridge, MA, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA, USA.
| | - Nicole Bassous
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Samarah Harb
- Institute of Chemistry, São Paulo State University, Araraquara, - SP, Brazil
| | - Carlos Palo-Nieto
- Department of Medicinal Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women´s Hospital, Cambridge, MA, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA, USA
| | - Fernanda R Marciano
- Department of Physics, UFPI- Federal University of Piauí, Teresina, PI, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - André Sales Aguiar Furtado
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI- Federal University of Piauí, Teresina, PI, Brazil
| | - Anderson O Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI- Federal University of Piauí, Teresina, PI, Brazil; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
23
|
Liu X, Tang J, Wang L, Liu Q, Liu R. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:308-317. [PMID: 31102898 DOI: 10.1016/j.jenvman.2019.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Ball-milled biochar has recently attracted a lot of attention due to the simplicity of its preparation and low cost. However, it is unknown if the biochar is environmentally safe. Here, the toxic effect of ball-milled biochar on Streptomyces was compared to that of pristine biochar and two other carbon nanomaterials of different shapes-graphene oxide and multi-walled carbon nanotubes. The effect of these different materials on antibiotic production was characterized. The results showed that even at concentrations of up to 10 mg/L, pristine biochar had a negligible effect on toxicity and antibiotic production in Streptomyces. However, after ball milling, the physical and chemical properties of biochar changed dramatically. Cells were severely damaged, and there was a significant increase in antibiotic production after the addition of ball-milled biochar. Exposure to 10 mg/L of ball-milled biochar caused massive cell disruption; the survival rate of Streptomyces coelicolor M145 cells was only 68.2% as compared to 90% after treatment with 10 mg/L graphene oxide and multi-walled carbon nanotubes. The secretion of the antibiotics- the red intracellular pigment undecylprodigiosin (RED) and blue diffusible pigment actinorhodin (ACT) was enhanced with the highest level in treatment with ball milled biochar, as compared to that with the other two carbon nanomaterials. This effect can be attributed to increased expression of pathway-specific regulatory genes redD, redZ and actⅡ-ORF4. Ball-milled biochar can be developed as an effective additive to increase antibiotic yield. However, we should restrict the large-scale use of ball-milled biochar before fully understanding its impact on the environment and human health.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
24
|
de Vasconcellos LMR, do Prado RF, Sartori EM, Mendonça DBS, Mendonça G, Marciano FR, Lobo AO. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:81. [PMID: 31254104 DOI: 10.1007/s10856-019-6271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces. A multi-walled carbon nanotube (MWCNT) was firstly grown using chemical vapor deposition and then exfoliated using chemical and oxygen plasma treatments to obtain graphene nanoribbons (GNR). The hybrid composites nHAp/GNR were prepared using the wet method assisted by ultrasound irradiation with different amounts of GNR (1.0, 2.0 and 3.0 wt %). Five groups were tested in cell cultures. Group 1: synthesized nHAp; Group 2: synthesized GNR; Group 3: nHAp and 1.0% of GNR; Group 4: nHAp and 2.0% of GNR and group 5: nHAp and 3.0% of GNR. Real time reverse transcription polymerase chain reactions were performed, and all data was submitted to Kruskal Wallis and Dunn tests, at a significance level of 5%. As a result, three nanocomposites with different proportions of GNR were successfully produced. After cell culture, the expression of osteogenic genes demonstrated no significant differences among the groups and periods. However, bone morphogenetic protein II (BMP II), integrin binding sialoprotein (IBSP), and Osterix highest expressions were observed in the group containing 3.0% of GNR. In conclusion, our hybrid composites may be useful in bone interventions requiring mesenchymal stem cell differentiation into osteoblasts for healing.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Elisa Mattias Sartori
- Department of Surgery and Integrated Clinics, School of Dentistry of Araçatuba, Sao Paulo State University, Araçatuba, Brazil
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Fernanda Roberta Marciano
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil
| | - Anderson Oliveira Lobo
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil.
- Interdisciplinary Laboratory for Advanced Materials, Post-graduation Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil.
| |
Collapse
|
25
|
|
26
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
27
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
28
|
de Carvalho JO, de Carvalho Oliveira F, Freitas SAP, Soares LM, de Cássia Barros Lima R, de Sousa Gonçalves L, Webster TJ, Marciano FR, Lobo AO. Carbon Nanomaterials for Treating Osteoporotic Vertebral Fractures. Curr Osteoporos Rep 2018; 16:626-634. [PMID: 30203250 DOI: 10.1007/s11914-018-0476-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To identify the use of carbon nanomaterials in bone regeneration and present new data on the regenerative capacity of bone tissue in osteopenic rats treated with graphene nanoribbons (GNRs). RECENT FINDINGS The results show that the physical and chemical properties of the nanomaterials are suitable for the fabrication of scaffolds intended for bone regeneration. The in vitro tests suggested a non-toxicity of the GNRs as well as improved biocompatibility and bone mineralization activity. Here, for the first time, we evaluated the potential of GNRs in remodeling and repairing bone defects in osteoporotic animal models in vivo. Interestingly, bone mineralization and the initiation of the remodeling cycle by osteoclasts/osteoblasts were observed after the implantation of GNRs, thus implying healthy bone remodeling when using GNRs. This study, therefore, has opened our perspectives and certainly calls for more attention to the use of carbon nanomaterials for a wide range of osteoporosis applications.
Collapse
Affiliation(s)
- Jancineide Oliveira de Carvalho
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo, 08230-030, Brazil
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, n 6123, Bairro Uruguai, Teresina, Piauí, 64073-505, Brazil
- Departamento de Medicina Especializada, Universidade Federal do Piauí, Teresina, Piauí, 64049-550, Brazil
| | - Francilio de Carvalho Oliveira
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo, 08230-030, Brazil
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, n 6123, Bairro Uruguai, Teresina, Piauí, 64073-505, Brazil
| | - Sérgio Antonio Pereira Freitas
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, n 6123, Bairro Uruguai, Teresina, Piauí, 64073-505, Brazil
| | - Liana Martha Soares
- Hospital Universitário de Teresina, Campus Universitário Ministro Petrônio Portela, SG 07, s/n - Ininga, Teresina, Piauí, 64049-550, Brazil
| | - Rita de Cássia Barros Lima
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, n 6123, Bairro Uruguai, Teresina, Piauí, 64073-505, Brazil
| | - Licia de Sousa Gonçalves
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, n 6123, Bairro Uruguai, Teresina, Piauí, 64073-505, Brazil
| | - Thomas Jay Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Fernanda Roberta Marciano
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo, 08230-030, Brazil
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anderson Oliveira Lobo
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo, 08230-030, Brazil.
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, Teresina, Piauí, 64049-550, Brazil.
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 18-393, Cambridge, MA, 02139, USA.
| |
Collapse
|
29
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
30
|
Tang Z, Zhao L, Yang Z, Liu Z, Gu J, Bai B, Liu J, Xu J, Yang H. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int J Nanomedicine 2018; 13:2907-2919. [PMID: 29844673 PMCID: PMC5961647 DOI: 10.2147/ijn.s159388] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Graphene and its derivative graphene oxide (GO) have been implicated in a wide range of anticancer effects. Purpose The objective of this study was to systematically evaluate the toxicity and underlying mechanisms of GO on two osteosarcoma (OSA) cancer cell lines, MG-63 and K7M2 cells. Methods MG-63 and K7M2 cells were treated by GO (0–50 µg/mL) for various time periods. Cell viability was tested by MTT and Live/Dead assays. A ROS Detection Kit based on DHE oxidative reaction was used for ROS detection. An Annexin V-FITC Apoptosis Kit was used for apoptosis detection. Dansylcadaverine (MDC) dyeing was applied for seeking unspecific autophagosomes. Western blot and Immunofluorescence analysis were used for related protein expression and location. Results K7M2 cells were more sensitive to GO compared with MG-63 cells. The mechanism was attributed to the different extent of the generation of reactive oxygen species (ROS). In K7M2 cells, ROS was easily stimulated and the apoptosis pathway was subsequently activated, accompanied by elevated expression of proapoptosis proteins (such as caspase-3) and decreased expression levels of antiapoptosis proteins (such as Bcl-2). A ROS inhibitor (N-acetylcysteine) could alleviate the cytotoxic effects of GO in K7M2 cells. However, the production of ROS in MG-63 cells was probably inhibited by the activation of an antioxidative factor, nuclear factor-E2-related factor-2, which translocated from the cytoplasm to the nucleus after GO treatment, while a nuclear factor-E2-related factor-2 inhibitor (ML385) significantly increased ROS production in MG-63 cells when combined with GO treatment. In addition, autophagy was simultaneously stimulated by characteristic autophagosome formation, autophagy flux, and increased the expression level of autophagy-related proteins (such as LC3I to LC3II conversion, ATG5, and ATG7). Conclusion This paper proposes various underlying mechanisms of the anticancer effect of GO. The novel synthetic use of GO with an oxidizing agent is the key step for further potential applications in clinical OSA cancer therapy.
Collapse
Affiliation(s)
- Zhibing Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Lin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhaohui Liu
- Department of Anatomy and Histology and Embryology, Basic Medical and Biological Sciences, School of Medicine, Soochow University, Suzhou, China
| | - Jia Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing Bai
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jinlian Liu
- Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jiaying Xu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Mohammadrezaei D, Golzar H, Rezai Rad M, Omidi M, Rashedi H, Yazdian F, Khojasteh A, Tayebi L. In vitroeffect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. J Biomed Mater Res A 2018; 106:2284-2343. [DOI: 10.1002/jbm.a.36422] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Dorsa Mohammadrezaei
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Hossein Golzar
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University, GC, Velenjak; Tehran Iran
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering; Faculty of New Science and Technologies, University of Tehran; Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Oral and Maxillofacial Surgery; Shahid Beheshti University of Medical Sciences, Tehran; Tehran Iran
| | - Lobat Tayebi
- Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine; Stanford University; Palo Alto California
- Marquette University School of Dentistry; Milwaukee Wisconsin
| |
Collapse
|
32
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
S. Medeiros J, Oliveira AM, Carvalho JOD, Ricci R, Martins MDCC, Rodrigues BVM, Webster TJ, Viana BC, Vasconcellos LMR, Canevari RA, Marciano FR, Lobo AO. Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation. ACS Biomater Sci Eng 2018; 4:1580-1590. [DOI: 10.1021/acsbiomaterials.7b01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Joelson S. Medeiros
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
| | - Aureliano M. Oliveira
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
| | - Jancineide O. de Carvalho
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
- Centro Universitário Uninovafapi, Rua Vitorino Orthiges Fernandes, 6123, Bairro Uruguai, Teresina, Piauí 64073-505, Brazil
| | - Ritchelli Ricci
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil
| | | | - Bruno V. M. Rodrigues
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | | | - Luana M. R. Vasconcellos
- Departamento de Biociências e Diagnóstico Oral, Instituto de Ciência e Tecnologia, Universidade Estadual de São Paulo, Avenida Eng. Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, São Paulo 12245-000, Brazil
| | - Renata A. Canevari
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil
| | - Fernanda R. Marciano
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Anderson O. Lobo
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca, 584, Bairro Itaquera, São Paulo 08230-030, Brazil
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 18-393, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 2018; 92:121-141. [PMID: 29273819 PMCID: PMC5773666 DOI: 10.1007/s00204-017-2144-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.
Collapse
Affiliation(s)
- Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Christian Riebeling
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Otto Creutzenberg
- Department of Inhalation Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Astrid Epp
- Department of Risk Communication, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Laboratoire de Fougères, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf Dem Aberg 1, 57392, Schmallenberg, Germany
| | - Norbert Jakubowski
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Peter Kearns
- OECD Environment, Health and Safety Division 2, rue Andre-Pascal, 75775, Paris Cedex 16, France
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Hubert Rauscher
- Joint Research Centre (JRC) of the European Commission, Directorate Health, Consumers and Reference Materials, Via E. Fermi, 2749, 21027, Ispra, Italy
| | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1a, 43126, Parma, Italy
| | - Angela Störmer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
| | - Axel Thielmann
- Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139, Karlsruhe, Germany
| | - Uwe Mühle
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277, Dresden, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
35
|
Shah A, Izman S, Abdul-Kadir MR, Mas-Ayu H. Influence of Substrate Temperature on Adhesion Strength of TiN Coating of Biomedical Ti–13Zr–13Nb Alloy. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2647-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|