1
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
2
|
Ning J, Bao X, Chen H, Yan Z, Ding L, Shu C. A highly sensitive and specific fluorescent probe for thrombin detection and high-throughput screening of thrombin inhibitors in complex matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125136. [PMID: 39299075 DOI: 10.1016/j.saa.2024.125136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Thrombin plays a critical role in hemostasis and hemolysis, and is a significant biomarker for blood-related diseases. Detection and inhibitors screening of thrombin are essential in medical research. In this study, we developed a fluorescent sensor based on the interaction between quantum dots (QDs) and fibrinogen (Fib) for thrombin detection and its inhibitors screening. Upon the presence of thrombin, the fibrinogen of soluble QDs-Fib were converted into insoluble fibrin precipitate, causing a change of fluorescence intensity in the supernatant. Under optimized conditions, our method exhibited an excellent linearity (R2 ≥0.99) over the range of 2∼100 U/L with a limit of detection (LOD) as low as 0.29 U/L. Moreover, we employed this method to screen for thrombin inhibitors using dabigatran as an exemplary direct thrombin inhibitor (DTI), even at concentrations as low as 1 nM. Finally, the established method was successfully used to screen thrombin inhibitors in 23 different extracts from Eupolyphaga sinensis walker. The method provided not only a sensitive, specific and high throughput assay for the detection of thrombin activity in biological samples, but also a reliable strategy for the screening of thrombin inhibitors in complex matrices.
Collapse
Affiliation(s)
- Jiangyue Ning
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Xingyan Bao
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Haotian Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Zelong Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Li Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Chang Shu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
3
|
Tian C, Tang F, Wang M, Zhou J, Yue X, Luan F, Zhuang X. Sensitive detection of H2S in the environment with electrochemiluminescence and fluorescence double-mode sensor constructed by Eu2O3@CDs NPs. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136582. [DOI: 10.1016/j.snb.2024.136582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
5
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Wibowo A, Jahir Khan M, Sansanaphongpricha K, Khemthong P, Laosiripojana N, Yu YS, Wu KCW, Sakdaronnarong C. Carbon Dots in Photodynamic Therapy: The Role of Dopant and Solvent on Optical and Photo-Responsive Properties. Chemistry 2024; 30:e202400885. [PMID: 39032088 DOI: 10.1002/chem.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Carbon dots (CDs) are novel carbon-based luminescent materials with wide-ranging applications in biosensing, bioimaging, drug transportation, optical devices, and beyond. Their advantageous attributes, including biocompatibility, biodegradability, antioxidant activity, photostability, small particle size (<10 nm), and strong light absorption and excitation across a broad range of wavelengths, making them promising candidates in the field of photodynamic therapy (PDT) as photosensitizers (PSs). Further enhancements in functionality are imperative to enhance the effectiveness of CDs in PDT applications, notwithstanding their inherent benefits. Recently, doping agents and solvents have been demonstrated to improve CDs' optical properties, solubility, cytotoxicity, and organelle targeting efficiency. These improvements result from modifications to the CDs' carbon skeleton matrices, functional groups on the surface state, and chemical structures. This review discusses the modification of CDs with heteroatom dopants, dye dopants, and solvents to improve their physicochemical and optical properties for PDT applications. The correlations between the surface chemistry, functional groups, the structure of the CDs, and their optical characteristics toward quantum yield, redshift feature, and reactive oxygen species (ROS) generation, have also been discussed. Finally, the progressive trends for the use of CDs in PDT applications are also addressed in this review.
Collapse
Affiliation(s)
- Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Kanokwan Sansanaphongpricha
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
7
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
8
|
Dai P, Cong Z, Jiang C, Jiang C, Chen P, Sun Y, Dong T. Mechanoluminescence of ZnS: Cu@Al 2O 3 enabled optical fiber microlens passive tactile sensor for hardness recognition. OPTICS LETTERS 2024; 49:4991-4994. [PMID: 39208017 DOI: 10.1364/ol.537534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
We propose an optical fiber microlens (OFM) passive tactile sensor (OFMPTS) for hardness recognition. The sensor features a core-shell structure, with an OFM as the core and an elastic mechanoluminescence (ML) matrix shell, which is composed of ZnS: Cu@Al2O3 doped with 10 nm SiO2 particles and polydimethylsiloxane (PDMS). Utilizing the Hertz model, the ML intensity of the sensor is correlated to the elastic modulus of the sample, which enables precise hardness detection. The microlens fiber structure significantly enhances photon collection efficiency, thereby allowing for effective coupling of the ML signal. In press mode, OFMPTS differentiates between five PDMS hardness levels. It can also operate in scan or tap mode, identifying hidden foreign bodies and tissue masses through response curve analysis. The sensor, which requires no external light source, expands the capabilities of optical hardness measurement.
Collapse
|
9
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Mohanaraman SP, Chidambaram R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 2024; 10:e35760. [PMID: 39220916 PMCID: PMC11365325 DOI: 10.1016/j.heliyon.2024.e35760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.
Collapse
Affiliation(s)
- Shanmuga Priya Mohanaraman
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Huang Y, Zhang Y, Dai Z, Miao R, Chen H. One-Pot Synthesis of Silicon Quantum Dots-Based Fluorescent Nanomaterial and Its Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37513-37520. [PMID: 38980811 DOI: 10.1021/acsami.4c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Conventionally obtained silicon quantum dots (Si QDs) generally suffer from the disadvantages of a cumbersome preparation process, large fluctuation in the quality of Si QDs, poor water solubility, and aggregation-caused quenching (ACQ) phenomenon. Here we report a facile one-pot strategy to synthesize a novel Si QDs-based fluorescent nanomaterial in which Si QDs are confined into dendritic mesoporous silica, named as SiQDs@DMSNs. The prepared SiQDs@DMSNs, with adjustable particle sizes ranging from 140 to 300 nm, emit blue fluorescence around 410 nm upon excitation by ultraviolet light at a wavelength of 300 nm. It is found that the addition of sodium salicylate (NaSAL) plays a crucial role in the in situ generation of Si QDs. The obtained SiQDs@DMSNs exhibit excellent fluorescence intensity, water solubility, and stability, facilitating easy surface modification, without being limited by the ACQ phenomenon. It is expected to be widely used in many fields such as biosensors, nanomedicines, in vivo imaging, fingerprint identification, and anticounterfeiting labels.
Collapse
Affiliation(s)
- Yuefeng Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zideng Dai
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Runjie Miao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
13
|
Lin Y, Tang Y, Yi O, Zhu J, Su Z, Li G, Zhou H, Liu L, Liu B, Cai X. Graphene oxide quantum dots-loaded sinomenine hydrochloride nanocomplexes for effective treatment of rheumatoid arthritis via inducing macrophage repolarization and arresting abnormal proliferation of fibroblast-like synoviocytes. J Nanobiotechnology 2024; 22:383. [PMID: 38951875 PMCID: PMC11218134 DOI: 10.1186/s12951-024-02645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.
Collapse
Affiliation(s)
- Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junping Zhu
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, University of Chinese Medicine, Guangzhou, 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, University of Chinese Medicine, Guangzhou, 510006, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
14
|
Lu X, Jia J, Wang Z, Wang W. MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1090. [PMID: 38998695 PMCID: PMC11243324 DOI: 10.3390/nano14131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Co-N-CDs-based MXene nanocomposites (MXene@PDA/Co-N-CDs) were constructed by decorating Co-N-CDs on polydopamine-functionalized MXene nanosheets. Both Co-N-CDs and MXene nanosheets have peroxidase-like activity; when the two materials are combined to form MXene@PDA/Co-N-CDs nanocomposites, the peroxide-like activity can be further enhanced. MXene@PDA/Co-N-CDs could oxidize the substrate 3,3'5,5'-tetramethylbenziline (TMB) to form ox-TMB, as confirmed by detecting the absorption of the blue products. A highly selective colorimetric biosensor was developed for the determination of glutathione (GSH) in the concentration range of 0.3 to 20 µM with a lower detection limit (LOD) of 0.12 µM, which realized the accurate detection of GSH in human serum and urine samples. Moreover, in the tumor microenvironment, MXene@PDA/Co-N-CDs could catalyze hydrogen peroxide to produce hydroxyl free radicals and produce a photothermal effect under the exposure of NIR-I irradiation. The catalytic activity of MXene@PDA/Co-N-CD nanocomposites was fully achieved for the death of cancer cells through photothermal/photodynamic synergistic therapy. The MXene@PDA/Co-N-CDs nanozyme offers multiple applications in GSH detection and tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China; (X.L.); (J.J.); (Z.W.)
| |
Collapse
|
15
|
Li X, Li Y, Du M, Petrov YV, Baulin VE, Wang Y, Yuan H, Zhou Y, Li B. Target-Oriented Synthesis of Triphenylphosphine Functionalized Carbon Dots with Negative Charge for ROS Scavenging and Mitochondrial Targeting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28991-29002. [PMID: 38769310 DOI: 10.1021/acsami.4c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.
Collapse
Affiliation(s)
- Xiangli Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yingjie Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yujin Wang
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R. China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
16
|
Rainu SK, Singh N. 3D microscaffolds with triple-marker sensitive nanoprobes for studying fatty liver disease in vitro. NANOSCALE 2024; 16:10048-10063. [PMID: 38712552 DOI: 10.1039/d4nr00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition that encompasses a wide range of liver diseases that progresses from simple hepatic steatosis to the life-threatening state of cirrhosis. However, due to the heterogeneity of this disease, comprehensive analysis of several physicochemical and biological factors that drive its progression is necessary. Therefore, an in vitro platform is required that would enable real-time monitoring of these changes to better understand the progression of these diseases. The earliest stage of NAFLD, i.e. hepatic steatosis, is characterised by triglyceride accumulation in the form of lipid vacuoles in the cytosol of hepatocytes. This fatty acid accumulation is usually accompanied by hepatic inflammation, leading to tissue acidification and dysregulated expression of certain proteases such as matrix metalloproteinases (MMPs). Taking cues from the biological parameters of the disease, we report here a 3D in vitro GelMA/alginate microscaffold platform encapsulating a triple-marker (pH, MMP-3 and MMP-9) sensitive fluorescent nanoprobe for monitoring, and hence, distinguishing the fatty liver disease (hepatic steatosis) from healthy livers on the basis of pH change and MMP expression. The nanoprobe consists of a carbon nanoparticle (CNP) core, which exhibits intrinsic pH-dependent fluorescence properties, decorated either with an MMP-3 (NpMMP3) or MMP-9 (NpMMP9) sensitive peptide substrate. These peptide substrates are flanked with a fluorophore-quencher pair that separates on enzymatic cleavage, resulting in fluorescence emission. The cocktail of these nanoprobes generated multiple fluorescence signals corresponding to slightly acidic pH (blue) and overexpression of MMP-3 (green) and MMP-9 (red) enzymes in a 3D in vitro fatty liver model, whereas no/negligible fluorescence signals were observed in a healthy liver model. Moreover, this platform enabled us to mimic fatty liver disease in a more realistic manner. Therefore, this 3D in vitro platform encapsulating triple-marker sensitive fluorescent nanoprobes would facilitate the monitoring of the changes in pH and MMP expression, thereby enabling us to distinguish a healthy liver from a diseased liver and to study liver disease stages on the basis of these markers.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
17
|
Kong J, Zhou F. Preparation and Application of Carbon Dots Nanozymes. Antioxidants (Basel) 2024; 13:535. [PMID: 38790640 PMCID: PMC11117996 DOI: 10.3390/antiox13050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Carbon dot (CD) nanozymes have enzyme-like activity. Compared with natural enzymes, CD nanozymes offer several advantages, including simple preparation, easy preservation, good stability and recycling, which has made them a popular research topic in various fields. In recent years, researchers have prepared a variety of CD nanozymes for biosensing detection, medicine and tumor therapy, and many of them are based on oxidative stress regulation and reactive oxygen species clearance. Particularly to expand their potential applications, elemental doping has been utilized to enhance the catalytic capabilities and other properties of CD nanozymes. This review discusses the prevalent techniques utilized in the synthesis of CD nanozymes and presents the diverse applications of CD nanozymes based on their doping characteristics. Finally, the challenges encountered in the current utilization of CD nanozymes are presented. The latest research progress of synthesis, application and the challenges outlined in the review can help and encourage the researchers for the future research on preparation, application and other related researches of CD nanozymes.
Collapse
|
18
|
Xie C, Wang B, Qi X, Bao L, Zhai J, Xu X, Zhang C, Yu H. Investigation of Anticancer Therapy Using pH-Sensitive Carbon Dots-Functionalized Doxorubicin in Cubosomes. ACS APPLIED BIO MATERIALS 2024; 7:1958-1967. [PMID: 38363649 DOI: 10.1021/acsabm.3c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Cancer remains a highly lethal disease due to its elusive early detection, rapid spread, and significant side effects. Nanomedicine has emerged as a promising platform for drug delivery, diagnosis, and treatment monitoring. In particular, carbon dots (CDs), a type of fluorescent nanomaterial, offer excellent fluorescence properties and the ability to carry multiple drugs simultaneously through covalent bonding. In this work, CDs with carbonyl groups on the surface were prepared by aldol condensation and reacted with amine groups in the structure of doxorubicin (DOX) through Schiff base reaction to generate pH-responsive CDs-DOX. On the other hand, cubosomes with three-dimensional lattice structures formed by lipid bilayers have advantageous capabilities of encapsulating various hydrophilic, amphiphilic, and hydrophobic substances. The pH-responsive CDs-DOX are subsequently loaded into cubosomes to form an anticancer therapeutic nanosystem, CDs-DOX@cubosome. Leveraging the unique properties of CDs-DOX and cubosomes, our CDs-DOX@cubosome can enter tumor tissue through the enhanced permeation and retention effect first and conduct membrane fusion with tumor cells to intracellularly release CDs-DOX. Then, the imine bond in CDs-DOX breaks under acidic conditions within human cancer cell lines (HeLa and HepG-2 cells), releasing DOX and achieving enhanced treatment of tumors. Additionally, fluorescent CDs can synchronously achieve real-time in situ diagnosis of tumor tissue. We demonstrate that our CDs-DOX@cubosome works as an excellent drug delivery system with therapeutic efficiency enhancement to the tumor and reduced side effects.
Collapse
Affiliation(s)
- Caiyang Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
- Zhengzhou University of Industrial Technology, Zhengzhou 451100, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinyu Qi
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xu Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunli Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Ikram Z, Azmat E, Perviaz M. Degradation Efficiency of Organic Dyes on CQDs As Photocatalysts: A Review. ACS OMEGA 2024; 9:10017-10029. [PMID: 38463277 PMCID: PMC10918811 DOI: 10.1021/acsomega.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Across the globe, the task of providing clean and safe drinking water is getting harder. Organic contaminants, including dyes and pharmaceutical medications, are a significant environmental threat, especially in aquatic bodies due to their uncontrolled emission. Therefore, a method for their degradation in water bodies that is both environmentally friendly and commercially feasible must be developed. In the realm of photocatalysis, carbon-based nanomaterials have drawn more attention in the last ten years. Due to their exceptional and distinct qualities, metal-free carbon-based photocatalytic systems have received a lot of attention recently for their ability to degrade organic contaminants into semiconductor quantum dots, which are already available. A class of nanomaterials with a particle size between 2 and 10 nm showing distinct optoelectrical characteristics is among the variety of catalytic quantum dots. This review covers several synthesis techniques such as electrochemical, laser ablation, microwave radiation, hydrothermal, and optical features of CQDs such as the photoluminescent (PL) property and quantum confinement effect. The uses of CQDs in the degradation of various dyes as well as the difficulties that still exist and the opportunities that lie ahead have also been explored.
Collapse
Affiliation(s)
- Zulkifle Ikram
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Esha Azmat
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Muhammad Perviaz
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| |
Collapse
|
20
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
21
|
Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus 2024; 16:e52511. [PMID: 38371088 PMCID: PMC10874252 DOI: 10.7759/cureus.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer involves intricate pathological mechanisms marked by complexities such as cytotoxicity, drug resistance, stem cell proliferation, and inadequate specificity in current chemotherapy approaches. Cancer therapy has embraced diverse nanomaterials renowned for their unique magnetic, electrical, and optical properties to address these challenges. Despite the expanding corpus of knowledge in this area, there has been less advancement in approving nano drugs for use in clinical settings. Nanotechnology, and more especially the development of intelligent nanomaterials, has had a profound impact on cancer research and treatment in recent years. Due to their large surface area, nanoparticles can adeptly encapsulate diverse compounds. Furthermore, the modification of nanoparticles is achievable through a broad spectrum of bio-based substrates, including DNA, aptamers, RNA, and antibodies. This functionalization substantially enhances their theranostic capabilities. Nanomaterials originating from biological sources outperform their conventionally created counterparts, offering advantages such as reduced toxicity, lower manufacturing costs, and enhanced efficiency. This review uses carbon nanomaterials, including graphene-based materials, carbon nanotubes (CNTs) based nanomaterials, and carbon quantum dots (CQDs), to give a complete overview of various methods used in cancer theranostics. We also discussed their advantages and limitations in cancer diagnosis and treatment settings. Carbon nanomaterials might significantly improve cancer theranostics and pave the way for fresh tumor diagnosis and treatment approaches. More study is needed to determine whether using nano-carriers for targeted medicine delivery may increase material utilization. More insight is required to explore the correlation between heightened cytotoxicity and retention resulting from increased permeability.
Collapse
Affiliation(s)
| | - Danial Tahir
- Internal Medicine, Nazareth Hospital, Philadelphia, USA
| | - Muhammad Asim
- Internal Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, GBR
| | | | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Dan Dan Xu
- Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, CHN
| |
Collapse
|
22
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
23
|
Azadpour B, Aharipour N, Paryab A, Omid H, Abdollahi S, Madaah Hosseini H, Malek Khachatourian A, Toprak MS, Seifalian AM. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. BIOMATERIALS ADVANCES 2023; 154:213657. [PMID: 37844415 DOI: 10.1016/j.bioadv.2023.213657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.
Collapse
Affiliation(s)
- Behnam Azadpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nazli Aharipour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Alberta, Canada
| | | | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
24
|
Zhu H, Peng N, Liang X, Yang S, Cai S, Chen Z, Yang Y, Wang J, Wang Y. Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials. Biomed Mater 2023; 18:062002. [PMID: 37722396 DOI: 10.1088/1748-605x/acfada] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Antibiotics play an important role in the treatment of diseases, but bacterial resistance caused by their widespread and unreasonable use has become an urgent problem in clinical treatment. With the rapid advancement of nanoscience and nanotechnology, the development of nanomedicine has been transformed into a new approach to the problem of bacterial resistance. As a new type of carbon-based nanomaterial, carbon dots (CDs) have attracted the interest of antibacterial researchers due to their ease of preparation, amphiphilicity, facile surface functionalization, and excellent optical properties, among other properties. This article reviewed the synthesis methods and properties of various CDs and their composites in order to highlight the advancements in the field of CDs-based antibacterial agents. Then we focused on the relationship between the principal properties of CDs and the antibacterial mechanism, including the following: (1) the physical damage caused by the small size, amphiphilicity, and surface charge of CDs. (2) Photogenerated electron transfer characteristics of CDs that produce reactive oxygen species (ROS) in themselves or in other compounds. The ability of ROS to oxidize can lead to the lipid peroxidation of cell membranes, as well as damage proteins and DNA. (3) The nano-enzyme properties of CDs can catalyze reactions that generate ROS. (4) Synergistic antibacterial effect of CDs and antibiotics or other nanocomposites. Finally, we look forward to the challenges that CDs-based nanocomposites face in practical antibacterial applications and propose corresponding solutions to further expand the application potential of nanomaterials in the treatment of infectious diseases, particularly drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Song Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Shenghao Cai
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zifan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
25
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
26
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
27
|
Pan K, Zhu Z, Liu C, Tao S, Tang X, Wei X, Yang B. Flexible Transparent Hydrophobic Coating Films with Excellent Scratch Resistance Using Si-Doped Carbonized Polymer Dots as Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37209113 DOI: 10.1021/acsami.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Flexible transparent hydrophobic coating films with excellent scratch resistance have important applications in many fields, especially for optical materials. Herein, a hydrophobic composite coating film was prepared and used as a polymer film protective material by combining 3-glycidyloxypropyltrimethoxysilane (GPTMS)-modified Si-doped carbonized polymer dots (Si-CPDs) with mono-trimethoxysilyl-terminated poly(dimethyl siloxane) (PDMS). The Si-CPDs derived from tetramethyl disiloxane propylamine tetraacetic acid and multi-amino oligosiloxanes were successfully prepared via one-step hydrothermal method and then grafted by GPTMS to obtain modified Si-CPDs (mSi-CPDs). Among them, mSi-CPDs act as a matrix layer, and PDMS acts as a low-surface energy layer. Cross-linking the Si-O-Si network of the coating film was formed through sol-gel chemistry. Driven by the hydrophilic-hydrophobic effect, PDMS trends to aggregate at the film surface, thus avoiding the phase separation which can affect transparency. The highly cross-linked network and the presence of hard silica core provide a high hardness to stand the steel-wool scratch. Flexible polymer chains impart the coating film an outstanding bendability. Introduction of PDMS makes the coating film possess hydrophobicity and anti-graffiti function.
Collapse
Affiliation(s)
- Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyu Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
28
|
Yuan P, Min Y, Zhao Z. Multifunctional nanoparticles for the treatment and diagnosis of osteosarcoma. BIOMATERIALS ADVANCES 2023; 151:213466. [PMID: 37229927 DOI: 10.1016/j.bioadv.2023.213466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in adolescents. Currently, the commonly used treatment strategies for OS include surgery, chemotherapy and radiotherapy. However, these methods have some problems that cannot be ignored, such as postoperative sequelae and severe side effects. Therefore, in recent years, researchers have been looking for other means to improve the treatment or diagnosis effect of OS and increase the overall survival rate of patients. With the development of nanotechnology, nanoparticles (NPs) have presented excellent properties in improving the therapeutic efficacy of drugs for OS. Nanotechnology makes it possible for NPs to combine various functional molecules and drugs to achieve multiple therapeutic effects. This review presents the important properties of multifunctional NPs for the treatment and diagnosis of OS and focuses on the research progress of common NPs applied for drug or gene delivery, phototherapy and diagnosis of OS, such as carbon-based quantum dots, metal, chitosan and liposome NPs. Finally, the promising prospects and challenges of developing multifunctional NPs with enhanced efficacy are discussed, which lays the foundation and direction for improving the future therapeutic and diagnostic methods of OS.
Collapse
Affiliation(s)
- Ping Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
29
|
He YF, Cheng K, Zhong ZT, Hou XL, An CZ, Chen W, Liu B, Zhao YD. Simultaneous labeling and multicolor fluorescence imaging of multiple immune cells on liver frozen section by polychromatic quantum dots below freezing points. J Colloid Interface Sci 2023; 636:42-54. [PMID: 36621128 DOI: 10.1016/j.jcis.2022.12.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
A method for simultaneous labeling and multicolor fluorescence imaging of different hepatic immune cells below freezing point is established based on quantum dots. In the experiment, carbon quantum dots with emission wavelength of 435 nm, CdTe@CdS quantum dots at 542 nm and CdSe@ZnS quantum dots at 604 nm are synthesized respectively, it is found that when the mass fractions of KCl (as antifreeze) are 12 %, 14 %, and 12 %, respectively, the three quantum dot dispersion systems remain liquid state at -20 °C. After they are conjugated with the corresponding secondary antibodies, agarose gel electrophoresis, circular dichroism and capillary electrophoresis confirm the effectiveness of conjugation. By indirect immunofluorescence method, the above three quantum dot fluorescent probes are used to simultaneously and specifically target a variety of liver immune cells, and the multi-color simultaneous imaging of different liver immune cells is realized under the same excitation wavelength, it is found that hepatic macrophages are arranged radially in the liver, hepatic stellate cells present punctate distribution, and hepatic sinusoidal endothelial cells present circular distribution, which is consistent with the results of H&E staining and ultrathin section TEM. This study provides an important technical means for elucidating the structure and function of the liver.
Collapse
Affiliation(s)
- Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chang-Zhi An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
30
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
32
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
33
|
Wei X, Li J, Hu Z, Wang C, Gao Z, Cao Y, Han J, Li Y. Carbon Quantum Dot/Chitosan-Derived Hydrogels with Photo-stress-pH Multiresponsiveness for Wearable Sensors. Macromol Rapid Commun 2023; 44:e2200928. [PMID: 36786588 DOI: 10.1002/marc.202200928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Indexed: 02/15/2023]
Abstract
In recent years, hydrogels have attracted extensive attention in smart sensing owing to their biocompatibility and high elasticity. However, it is still a challenge to develop hydrogels with excellent multiple responsiveness for smart wearable sensors. In this paper, a facile synthesis of carbon quantum dots (CQDs)-doped cross-linked chitosan quaternary/carboxymethylcellulose hydrogels (CCCDs) is presented. Designing of dual network hydrogels decorated with CQDs provides abundant crosslinking and improves the mechanical properties of the hydrogels. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor: 9.88), linearity (R2 : 0.97), stretchable ability (stress: 0.67 MPa; strain: 404%), good cyclicity, and durability. The luminescent properties are endowed by the CQDs further broaden the application of hydrogels for realizing flexible electronics. More interestingly, the strain sensor based on CCCDs hydrogel demonstrates photo responsiveness (ΔR/R0 ≈20%) and pH responsiveness (pH range ≈4-7) performance. CCCDs hydrogels can be used for gesture recognition and light sensing switch. As a proof-of-concept, a smart wearable sensor is designed for monitoring human activities and detecting pH variation in human sweat during exercise. This study reveals new possibilities for further applications in wearable health monitoring.
Collapse
Affiliation(s)
- Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
34
|
Liu H, Huang R, Zhao X, Yang S, He F, Qin W, Huang J, Yu G, Feng Y, Li J, Liao C. Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: Visualization and sustained-release performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
35
|
da Silva TN, de Lima EV, Barradas TN, Testa CG, Picciani PH, Figueiredo CP, do Carmo FA, Clarke JR. Nanosystems for gene therapy targeting brain damage caused by viral infections. Mater Today Bio 2023; 18:100525. [PMID: 36619201 PMCID: PMC9816812 DOI: 10.1016/j.mtbio.2022.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.
Collapse
Affiliation(s)
| | - Emanuelle V. de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Carla G. Testa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo H.S. Picciani
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Flavia A. do Carmo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author.
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author. Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
36
|
Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin, Srivastava S, Minkina T, Igwegbe CA, Singh M, Kumar A. Emerging application of nanotechnology for mankind. EMERGENT MATERIALS 2023; 6:439-452. [PMID: 36743193 PMCID: PMC9888745 DOI: 10.1007/s42247-023-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Collapse
Affiliation(s)
- Rahul Kanaoujiya
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Shruti Kumari Saroj
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Alimuddin
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, 500032, Hyderabad, Telangana India
| | - Shekhar Srivastava
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamadi Azikiwe University, P. M. B., 5025 Awka, Nigeria
| | - Mukta Singh
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Aditya Kumar
- Department of Physics, School of Science, IFTM University Moradabad, 244102 Moradabad, India
| |
Collapse
|
37
|
Xiao Q, Luo H, Cao H, Li B, Liu J, Liu Y, Huang S. Investigation on conformational variation and enzymatic activity of trypsin affected by Ti 3C 2 QDs via spectroscopic technique and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121878. [PMID: 36183537 DOI: 10.1016/j.saa.2022.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
In this paper, Ti3C2 quantum dots (Ti3C2 QDs) were synthesized by simply treating Ti3C2 MXene powder with acid and base via hydrothermal method. Ti3C2 QDs exhibited superior fluorescence property and were used for the fluorescent imaging of living HeLa cells successfully. In order to evaluate the influence of Ti3C2 QDs on protease with specific biological functions, binding interaction of Ti3C2 QDs with trypsin was studied comprehensively and deeply through spectroscopic strategies and molecular modeling technique. The intrinsic fluorescence of trypsin was spontaneously quenched by Ti3C2 QDs through static quenching mode under van der Waals interaction force, and Ti3C2 QDs bound with the inactive residue domain of trypsin firmly with stoichiometric ratio of 1:1. Ti3C2 QDs induced the microenvironmental variation of the amino acid residues in trypsin, reducing the thermal stability of trypsin significantly. Gel electrophoresis experiments and microscopic imaging experiments demonstrated that Ti3C2 QDs inhibited the enzymatic activity of trypsin on the digestion of human serum albumin and HeLa cells obviously. These results revealed not only the deep interaction mechanism between Ti3C2 QDs and protease but also the influence of Ti3C2 QDs on the enzymatic activity of trypsin, paving the way for the safe biological application of Ti3C2 QDs in the diagnosis and the therapy of protease-related diseases.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huishan Cao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300378, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
38
|
El-Semary MS, El-Emam AA, Belal F, El-Masry AA. Microwave assisted synthesis of fluorescent hetero atom doped carbon dots for determination of betrixaban with greenness evaluation †. RSC Adv 2023; 13:11044-11054. [PMID: 37033428 PMCID: PMC10077337 DOI: 10.1039/d3ra00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
A simple, rapid and eco-friendly method for synthesis of nitrogen and sulfur doped carbon dots (N,S-CDs) is described. The method involved one step carbonization assisted by a green microwave irradiation route using available and cheap sources, as sucrose (source for C) and thiourea (source for N and S). The formed aqueous solution of N,S-CDs showed excellent optical and electronic properties with high compatibility and stability. The particles of the prepared dots were spherical with a narrow range of size from 1.7 to 3.7 nm with a quantum yield of 0.20. These dots act as a fluorescent probe, as they showed an intense blue fluorescence at 413 nm after excitation at 330 nm. The N,S-CDs were utilized for determination of the anticoagulant drug, betrixaban maleate (BTM), based on quenching of their fluorescence upon its gradual addition. The quenching process was found to be through an inner filter effect mechanism. The proposed method showed a good linearity over a concentration range of (1.0–100.0 μM) with LOD and LOQ values of 0.33 μM and 0.99 μM, respectively. All validation parameters met the acceptance criteria according to ICH guidelines. The high specificity and sensitivity of the performed method contributed to further assay of BTM in dosage form and spiked human plasma sample with high percent recoveries and low values of RSD. Interference from co-administered drugs was studied. Finally, the greenness of the proposed method was evaluated adopting a ComplexGapi approach, the excellent green profile has supported its applicability in quality control laboratories. Schematic sketch clarified the stepwise synthesis process of N,S-CDs.![]()
Collapse
Affiliation(s)
- Mariam S. El-Semary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University35516 MansouraEgypt+20 502200242+20 502200520
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University35516 MansouraEgypt+20 502200242+20 502200520
| | - F. Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University35516 MansouraEgypt
| | - Amal A. El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University35516 MansouraEgypt+20 502200242+20 502200520
| |
Collapse
|
39
|
Zhai J, Bao L, Walduck AK, Dyett BP, Cai X, Li M, Nasa Z, Drummond CJ. Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers. NANOSCALE 2022; 14:17940-17954. [PMID: 36349848 DOI: 10.1039/d2nr03415h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Anna K Walduck
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Miaosi Li
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zeyad Nasa
- Micro Nano Research Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
40
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
41
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
42
|
Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
44
|
Mohagheghpour E, Farzin L, Ghoorchian A, Sadjadi S, Abdouss M. Selective detection of manganese(II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121409. [PMID: 35617832 DOI: 10.1016/j.saa.2022.121409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Herein, water-soluble emissive carbon quantum dots (His-CQDs) were synthesized from pyrolysis of sodium citrate in the presence of histidine under hydrothermal conditions. The as-synthesized His-CQDs were characterized using Fourier transform infrared (FT-IR), fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques. The obtained His-CQDs display a strong emission peak at 534 nm when excited at 476 nm with a high quantum yield (61.8 %). The as-synthesized His-CQDs were applied as a new platform for highly selective determination of Mn(II) based on the fluorescence "turn-on" response with a limit of detection of 1.85 µg L-1 (at 3σ) and a linear range of 3.50-35.5 µg L-1 in aqueous solution. The sensing mechanism of the His-CQDs probe for the detection of Mn(II) was studied via density functional theory (DFT), FT-IR, and EDTA complexation methodology. In addition, His-CQDs were successfully applied to determine the accurate amounts of Mn(II) in whole blood control material. More importantly, the integrating such an efficient sensor with point-of-care technology can enable portable, easy-to-use, and rapid sensing systems for better biological and clinical applications.
Collapse
Affiliation(s)
- Elham Mohagheghpour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
45
|
Ratiometric detection of propafenone hydrochloride with one-pot synthesized dual emissive carbon dots. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
47
|
Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
48
|
Rainu S, Parameswaran S, Krishnakumar S, Singh N. Dual-sensitive fluorescent nanoprobes for detection of matrix metalloproteinases and low pH in a 3D tumor microenvironment. J Mater Chem B 2022; 10:5388-5401. [PMID: 35770560 DOI: 10.1039/d2tb00519k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overexpression of matrix metalloproteinases and low extracellular pH are two key physiological parameters involved in cancer initiation, progression, and metastasis. These have been the targets for several cancer detection and imaging modalities. Here, dual-sensitive nanoprobes have been fabricated from carbon nanoparticles decorated with a MMP-9 sensitive peptide sequence. Carbon nanoparticles are known for their intrinsic fluorescence properties and hence used as a pH-sensing moiety in the nanoprobes. In addition to this, selective-cleavage of the peptide sequence by MMP-9 results in the generation of a fluorescence signal due to separation of the quencher molecule from the fluorophore attached onto the MMP-9 sensitive peptide sequence, resulting in its detection. This protease-specific activation of the nanoprobes helps in precise tumor environment detection and imaging. The nanoprobes were thoroughly characterized for their chemical, physical and biological activities. The potential of these dual-sensitive nanoprobes to distinguish tumor-like microenvironments (low pH and elevated MMP-9 levels) from non-cancerous ones was evaluated in vitro in 2D cell culture as well as in 3D microscaffolds. The fluorescence microscopy images obtained in both in vitro systems revealed that low pH and high MMP-9 levels could be successfully visualised using these dual-sensitive nanoprobes. Therefore, these nanoprobes would find potential applications as a non-invasive imaging tool for visualising tumor margins in real-time.
Collapse
Affiliation(s)
- Simran Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sowmya Parameswaran
- Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, Tamil Nadu, India
| | - Subramanian Krishnakumar
- Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, Tamil Nadu, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. .,Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
49
|
Meng F, Xu H, Wang S, Wei J, Zhou W, Wang Q, Li P, Kong F, Zhang Y. One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(vi) and ascorbic acid detection. RSC Adv 2022; 12:19686-19694. [PMID: 35919374 PMCID: PMC9277421 DOI: 10.1039/d2ra01758j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
In this research, a nitrogen- (N) and sulfur- (S) codoped carbon dot (CDs-IPM)-based sensor was synthesized using a single-step hydrothermal method. Specifically, microcrystalline cellulose (MCC) was the main raw material, which was extracted from banana pseudo-stem-based waste, while autonomous sulfonic acid-functionalized ionic liquid (SO3H-IL) and polyethylene glycol 400 (PEG 400) acted as the N, S dopant, and surface modifier, respectively. Comprehensive spectroscopic characterization of the synthesized CDs-IPM revealed the introduction of S, N atoms in the matrix with existence of surface oxygenic functional groups. The CDs-IPM possessed enhanced photoluminescence (PL) intensity, synthetic yield, and PL quantum yield (PLQY). Additionally, electron transfer between the CDs-IPM, hexavalent chromium (Cr(vi)), and subsequent ascorbic acid (AA) succeeded in turning the fluorescence on and off. The detection limit was 17 nM for Cr(vi), while it was 103 nM for AA. Our study data can simplify the process of synthesis of CDs utilizing biodegradable starting materials. The probe reported in this study may serve as a valuable addition to the field of environment monitoring by virtue of its enhanced detection sensitivity, high selectivity, and stability.
Collapse
Affiliation(s)
- Fanrong Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
- College of Food and Biological Engineering, Jimei University Xiamen 361021 P. R. China
| | - Haoran Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Shuolin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jingxian Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wengong Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yucang Zhang
- College of Food and Biological Engineering, Jimei University Xiamen 361021 P. R. China
| |
Collapse
|
50
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|