1
|
Pereira ENGDS, de Araujo BP, Rodrigues KL, Silvares RR, Guimarães FV, Martins CSM, Flores EEI, Silva PMRE, Daliry A. Cholesterol Exacerbates the Pathophysiology of Non-Alcoholic Steatohepatitis by Upregulating Hypoxia-Inducible Factor 1 and Modulating Microcirculatory Dysfunction. Nutrients 2023; 15:5034. [PMID: 38140293 PMCID: PMC10745917 DOI: 10.3390/nu15245034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a pivotal lipotoxic molecule that contributes to the progression of Non-Alcoholic Steatohepatitis NASH). Additionally, microcirculatory changes are critical components of Non-Alcoholic Fatty Liver Disease (NAFLD) pathogenesis. This study aimed to investigate the role of cholesterol as an insult that modulates microcirculatory damage in NAFLD and the underlying mechanisms. The experimental model was established in male C57BL/6 mice fed a high-fat high-carbohydrate (HFHC) diet for 39 weeks. Between weeks 31-39, 2% cholesterol was added to the HFHC diet in a subgroup of mice. Leukocyte recruitment and hepatic stellate cells (HSC) activation in microcirculation were assessed using intravital microscopy. The hepatic microvascular blood flow (HMBF) was measured using laser speckle flowmetry. High cholesterol levels exacerbated hepatomegaly, hepatic steatosis, inflammation, fibrosis, and leukocyte recruitment compared to the HFHC group. In addition, cholesterol decreased the HMBF-cholesterol-induced activation of HSC and increased HIF1A expression in the liver. Furthermore, cholesterol promoted a pro-inflammatory cytokine profile with a Th1-type immune response (IFN-γ/IL-4). These findings suggest cholesterol exacerbates NAFLD progression through microcirculatory dysfunction and HIF1A upregulation through hypoxia and inflammation. This study highlights the importance of cholesterol-induced lipotoxicity, which causes microcirculatory dysfunction associated with NAFLD pathology, thus reinforcing the potential of lipotoxicity and microcirculation as therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Evelyn Nunes Goulart da Silva Pereira
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Beatriz Peres de Araujo
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Karine Lino Rodrigues
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Raquel Rangel Silvares
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Fernanda Verdini Guimarães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Souza Machado Martins
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Edgar Eduardo Ilaquita Flores
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | | | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| |
Collapse
|
2
|
Yuan S, Zhang HM, Li JX, Li Y, Wang Q, Kong GY, Li AH, Nan JX, Chen YQ, Zhang QG. Gasotransmitters in non-alcoholic fatty liver disease: just the tip of the iceberg. Eur J Pharmacol 2023; 954:175834. [PMID: 37329970 DOI: 10.1016/j.ejphar.2023.175834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by fatty lesions and fat accumulation in hepatic parenchymal cells, which is in the absence of excessive alcohol consumption or definite liver damage factors. The exact pathogenesis of NAFLD is not fully understood, but it is now recognized that oxidative stress, insulin resistance, and inflammation are essential mechanisms involved in the development and treatment of NAFLD. NAFLD therapy aims to stop, delay or reverse disease progressions, as well as improve the quality of life and clinical outcomes of patients with NAFLD. Gasotransmitters are produced by enzymatic reactions, regulated through metabolic pathways in vivo, which can freely penetrate cell membranes with specific physiological functions and targets. Three gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide have been discovered. Gasotransmitters exhibit the effects of anti-inflammatory, anti-oxidant, vasodilatory, and cardioprotective agents. Gasotransmitters and their donors can be used as new gas-derived drugs and provide new approaches to the clinical treatment of NAFLD. Gasotransmitters can modulate inflammation, oxidative stress, and numerous signaling pathways to protect against NAFLD. In this paper, we mainly review the status of gasotransmitters research on NAFLD. It provides clinical applications for the future use of exogenous and endogenous gasotransmitters for the treatment of NAFLD.
Collapse
Affiliation(s)
- Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jia-Xin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Guang-Yao Kong
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ao-Han Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ji-Xing Nan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ying-Qing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| |
Collapse
|
3
|
Sato A, Yumita Y, Kagami K, Ishinoda Y, Kimura T, Osaki A, Toya T, Namba T, Endo S, Ido Y, Nagatomo Y, Satoh Y, Adachi T. Endothelial Extracellular Signal-Regulated Kinase/Thromboxane A2/Prostanoid Receptor Pathway Aggravates Endothelial Dysfunction and Insulin Resistance in a Mouse Model of Metabolic Syndrome. J Am Heart Assoc 2022; 11:e027538. [PMID: 36382966 PMCID: PMC9851435 DOI: 10.1161/jaha.122.027538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Metabolic syndrome is characterized by insulin resistance, which impairs intracellular signaling pathways and endothelial NO bioactivity, leading to cardiovascular complications. Extracellular signal-regulated kinase (ERK) is a major component of insulin signaling cascades that can be activated by many vasoactive peptides, hormones, and cytokines that are elevated in metabolic syndrome. The aim of this study was to clarify the role of endothelial ERK2 in vivo on NO bioactivity and insulin resistance in a mouse model of metabolic syndrome. Methods and Results Control and endothelial-specific ERK2 knockout mice were fed a high-fat/high-sucrose diet (HFHSD) for 24 weeks. Systolic blood pressure, endothelial function, and glucose metabolism were investigated. Systolic blood pressure was lowered with increased NO products and decreased thromboxane A2/prostanoid (TP) products in HFHSD-fed ERK2 knockout mice, and Nω-nitro-l-arginine methyl ester (L-NAME) increased it to the levels observed in HFHSD-fed controls. Acetylcholine-induced relaxation of aortic rings was increased, and aortic superoxide level was lowered in HFHSD-fed ERK2 knockout mice. S18886, an antagonist of the TP receptor, improved endothelial function and decreased superoxide level only in the rings from HFHSD-fed controls. Glucose intolerance and the impaired insulin sensitivity were blunted in HFHSD-fed ERK2 knockout mice without changes in body weight. In vivo, S18886 improved endothelial dysfunction, systolic blood pressure, fasting serum glucose and insulin levels, and suppressed nonalcoholic fatty liver disease scores only in HFHSD-fed controls. Conclusions Endothelial ERK2 increased superoxide level and decreased NO bioactivity, resulting in the deterioration of endothelial function, insulin resistance, and steatohepatitis, which were improved by a TP receptor antagonist, in a mouse model of metabolic syndrome.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yusuke Yumita
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Kazuki Kagami
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yuki Ishinoda
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Toyokazu Kimura
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Ayumu Osaki
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Takumi Toya
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Takayuki Namba
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Shogo Endo
- Department of Aging NeuroscienceTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Yasuo Ido
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yuji Nagatomo
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yasushi Satoh
- Department of BiochemistryNational Defense Medical CollegeTokorozawaJapan
| | - Takeshi Adachi
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| |
Collapse
|
4
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Datsko V, Loi H, Datsko T, Mudra A, Mykolenko A, Golovata T, Furdela M, Orel Y, Smachylo I, Burak A, Klantsa M, Oleshchuk O. Nitric oxide-mediated effects of L-ornithine-L-aspartate in acute toxic liver injury. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e83067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was aimed to investigate nitric oxide-dependent mechanisms of L-ornithine-L-aspartate (LOLA) action in acute toxic liver injury in rats. Acute hepatitis was induced in Wistar rats using 50% oil solution of tetrachloromethane (CCl4) intragastrically (2 g/kg) twice in a 24 hour interval. Intraperitoneal treatment with LOLA (200 mg/kg) was started 6 hours after the second CCl4 administration and maintained for 3 consecutive days. L-Nω-Nitroarginine Methyl Ester (L-NAME) was used intraperitoneally (10 mg/kg). In CCl4-induced hepatitis, LOLA restores the structure of hepatocytes and prevents aminotransferases, alkaline phosphatase and gamma-glutamyl transferase elevation. It decreases total bilirubin concentration but does not affect increased cholesterol level. LOLA augments urea concentration, total protein level in blood and liver as well as serum and liver content of nitrite anions. LOLA enhances activity of catalase, glutathione S-transferase, manganese superoxide dismutase, increases reduced glutathione level and total antioxidant capacity and decreases thiobarbituric acid reactive substances level. The concomitant use of L-NAME inhibits the action of LOLA to enhance nitrite anions synthesis both in serum and liver, to delay the recovery of hepatocytes, to counteract LOLA effect against blood total protein reduction, to prevent the decline in aminotransferases, alkaline phosphatase,, gamma-glutamyl transferase and glutathione S-transferase activity and to reduce catalase activity and reduced glutathione level. Therefore, in CCl4-induced hepatitis, LOLA effectively prevents cytolysis and cholestasis, improves liver metabolism and protects against oxidative stress. Partially, these changes occur in nitric oxide-mediated mechanism since the use of L-NAME declines most of LOLA effects.
Collapse
|
6
|
Ogresta D, Mrzljak A, Cigrovski Berkovic M, Bilic-Curcic I, Stojsavljevic-Shapeski S, Virovic-Jukic L. Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. J Clin Transl Hepatol 2022; 10:339-355. [PMID: 35528987 PMCID: PMC9039716 DOI: 10.14218/jcth.2021.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to insulin resistance, type 2 diabetes mellitus and obesity. It is considered a multisystem disease and there is a strong association with cardiovascular disease and arterial hypertension, which interfere with changes in the coagulation system. Coagulation disorders are common in patients with hepatic impairment and are dependent on the degree of liver damage. Through a review of the literature, we consider and discuss possible disorders in the coagulation cascade and fibrinolysis, endothelial dysfunction and platelet abnormalities in patients with NAFLD.
Collapse
Affiliation(s)
- Doris Ogresta
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Maja Cigrovski Berkovic
- Department for Endocrinology, Diabetes and Pharmacology, University Hospital Dubrava, Zagreb, Croatia
- Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
| | - Ines Bilic-Curcic
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, Osijek, Croatia
| | | | - Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
- Correspondence to: Lucija Virović-Jukić, University of Zagreb School of Medicine, Department of Medicine; Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, Zagreb 10000, Croatia. ORCID: https://orcid.org/0000-0002-6350-317X. Tel: +385-1-3787178, Fax: +385-1-3787448, E-mail:
| |
Collapse
|
7
|
Lino Rodrigues K, Vieira Dias Da Silva V, Nunes Goulart da Silva Pereira E, Rangel Silvares R, Peres de Araujo B, Eduardo Ilaquita Flores E, Ramos IP, Pereira Borges J, Fernandes-Santos C, Daliry A. Aerobic Exercise Training Improves Microvascular Function and Oxidative Stress Parameters in Diet-Induced Type 2 Diabetic Mice. Diabetes Metab Syndr Obes 2022; 15:2991-3005. [PMID: 36200064 PMCID: PMC9527816 DOI: 10.2147/dmso.s365496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Type 2 diabetic (T2D) patients have liver and adipose tissue microcirculation disturbances associated with metabolic dysfunction and disease progression. However, the potential role of aerobic training on hepatic and white adipose tissue (WAT) microcirculation and the underlying mechanisms have not been elucidated to date. Therefore, we investigated the role of aerobic training on liver and WAT microcirculation and AGE-RAGE modulation in T2D mice. METHODS The control group (CTL) was fed standard chow, and T2D was induced by feeding male C57BL/6 a high-fat, high-carbohydrate diet for 24 weeks. In the following 12 weeks, mice underwent aerobic training (CTL EX and T2D EX groups), or were kept sedentary (CTL and T2D groups). We assessed metabolic parameters, biochemical markers, oxidative damage, the AGE-RAGE axis, hepatic steatosis, hepatic stellate cells activation (HSC) and liver and WAT microcirculation. RESULTS Hepatic microcirculation was improved in T2D EX mice which were associated with improvements in body, liver and fat mass, blood pressure, hepatic steatosis and fibrosis, and decreased HSC and AGE-RAGE activation. In contrast, improvement in WAT microcirculation, that is, decreased leukocyte recruitment and increased perfusion, was associated with increased catalase antioxidant activity. CONCLUSION Physical training improves hepatic and adipose tissue microcirculatory dysfunction associated with T2D, likely due to downregulation of AGE-RAGE axis, decreased HSC activation and increased antioxidant activity.
Collapse
Affiliation(s)
- Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Beatriz Peres de Araujo
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Isalira Peroba Ramos
- National Center of Structural Biology and Bio-imaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Fernandes-Santos
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Department of Basic Sciences, Federal Fluminense University, Nova Friburgo, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Correspondence: Anissa Daliry, Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Pavilhão Ozorio de Almeida Av. Brasil, 4365 (Room 14), Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil, Tel +55 212562-1312, Email
| |
Collapse
|
8
|
Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, Yanagisawa H, Nagasaki T, Yasuda K, Oshiro S, Taura M, McConnell MJ, Oniki K, Sonoda K, Wakayama T, Kinoshita M, Shuto T, Kai H, Tanaka M, Sasaki Y, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J Control Release 2021; 341:457-474. [PMID: 34856227 DOI: 10.1016/j.jconrel.2021.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Matthew J McConnell
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
DesOrmeaux GJ, Petrick HL, Brunetta HS, Holloway GP. Independent of mitochondrial respiratory function, dietary nitrate attenuates HFD-induced lipid accumulation and mitochondrial ROS emission within the liver. Am J Physiol Endocrinol Metab 2021; 321:E217-E228. [PMID: 34229472 DOI: 10.1152/ajpendo.00610.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
The liver is particularly susceptible to the detrimental effects of a high-fat diet (HFD), rapidly developing lipid accumulation and impaired cellular homeostasis. Recently, dietary nitrate has been shown to attenuate HFD-induced whole body glucose intolerance and liver steatosis, however, the underlying mechanism(s) remain poorly defined. In the current study, we investigated the ability of dietary nitrate to minimize possible impairments in liver mitochondrial bioenergetics following 8 wk of HFD (60% fat) in male C57BL/6J mice. Consumption of a HFD caused whole body glucose intolerance (P < 0.0001), and within the liver, increased lipid accumulation (P < 0.0001), mitochondrial-specific reactive oxygen species emission (P = 0.007), and markers of oxidative stress. Remarkably, dietary nitrate attenuated almost all of these pathological responses. Despite the reduction in lipid accumulation and redox stress (reduced TBARS and nitrotyrosine), nitrate did not improve insulin signaling within the liver or whole body pyruvate tolerance (P = 0.313 HFD vs. HFD + nitrate). Moreover, the beneficial effects of nitrate were independent of changes in weight gain, 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) signaling, mitochondrial content, mitochondrial respiratory capacity and ADP sensitivity or antioxidant protein content. Combined, these data suggest nitrate supplementation represents a potential therapeutic strategy to attenuate hepatic lipid accumulation and decrease mitochondrial ROS emission following HFD, processes linked to improvements in whole body glucose tolerance. However, the beneficial effects of nitrate within the liver do not appear to be a result of increased oxidative capacity or mitochondrial substrate sensitivity.NEW & NOTEWORTHY The mechanism(s) for how dietary nitrate prevents high-fat diet (HFD)-induced glucose intolerance remain poorly defined. We show that dietary nitrate attenuates HFD-induced increases in lipid accumulation, mitochondrial-specific reactive oxygen species (ROS) emission, and markers of oxidative stress within the liver. The beneficial effects of nitrate were independent of changes 5' AMP-activated protein kinase signaling, mitochondrial content/respiratory capacity, or lipid-supported respiratory sensitivity. Combined, these data provide potential mechanisms underlying the therapeutic potential of dietary nitrate.
Collapse
Affiliation(s)
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Henver S Brunetta
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Accumulation of 8-hydroxydeoxyguanosine, L-arginine and Glucose Metabolites by Liver Tumor Cells Are the Important Characteristic Features of Metabolic Syndrome and Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21207746. [PMID: 33092030 PMCID: PMC7594076 DOI: 10.3390/ijms21207746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
To uncover mechanisms and explore novel biomarkers of obesity, type 2 diabetes (T2DM) and nonalcoholic steatohepatitis (NASH)-associated hepatocarcinogenesis, cellular and molecular alterations in the liver, and hepatocellular carcinomas (HCCs) were investigated in NASH model 60-week-old Tsumura, Suzuki, Obese Diabetic (TSOD) mice and NASH HCC patients. Markedly elevated lipid deposition, inflammation, fibrosis, and peroxisome proliferation in the liver, preneoplastic lesions, and HCCs of TSOD mice were accompanied by accumulation of polysaccharides in the cellular cytoplasm and nuclei and increase of oxidative DNA damage marker, 8-hydroxydeoxyguanosine (8-OHdG) formation in the liver and altered foci. Metabolomics of TSOD mice HCCs demonstrated significant elevation of the concentration of amino acid L-arginine, phosphocreatine, S-adenosylmethionine/S-adenosylhomocysteine ratio, adenylate, and guanylate energy charges in coordination with tremendous rise of glucose metabolites, mostly fructose 1,6-diphosphate. L-arginine accumulation in HCCs was associated with significant under-expression of arginase 1 (ARG1), suppression of the urea cycle, methionine and putrescine degradation pathways, activation of Ser and Thr kinase Akt AKT, phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase 1/2 (ERK1/2) kinases, β-catenin, mammalian target of rapamycin (mTOR), and cell proliferation. Furthermore, clinicopathological analysis in 20 metabolic syndrome/NASH and 80 HCV-positive HCC patients demonstrated significant correlation of negative ARG1 expression with poor tumor differentiation, higher pathological stage, and significant decrease of survival in metabolic syndrome/NASH-associated HCC patients, thus indicating that ARG1 could become a potential marker for NASH HCC. From these results, formation of oxidative stress and 8-OHdG in the DNA and elevation of glucose metabolites and L-arginine due to ARG1 suppression in mice liver cells are the important characteristics of T2DM/NASH-associated hepatocarcinogenesis, which may take part in activating oxidative stress resistance, synthesis of phosphocreatine, cell signaling, methylation, and proliferation.
Collapse
|
11
|
Dumortier J, Chambon-Augoyard C, Guillaud O, Pioche M, Rivory J, Valette PJ, Adham M, Ponchon T, Scoazec JY, Boillot O. Anastomotic bilio-biliary stricture after adult liver transplantation: A retrospective study over 20 years in a single center. Clin Res Hepatol Gastroenterol 2020; 44:564-571. [PMID: 31547998 DOI: 10.1016/j.clinre.2019.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biliary complications are the main surgical complication after liver transplantation (LT). The aims of the present retrospective single center study were to describe anastomotic bilio-biliary strictures (ABS) in a large cohort of liver transplant recipients with long follow-up. METHODS All adult LT recipients who underwent a LT, with bilio-biliary anastomosis, between 1990 and 2010 in Edouard Herriot hospital, Lyon, France were included in the study. RESULTS The study population consisted in 783 patients (70.0% males), median age 50.5 years; main indication was alcohol-related liver disease (46.8%). The median follow-up after LT was 11.9 years (range 0-27 years). The overall incidence of anastomotic biliary complications was 9.7%: 50 patients developed an ABS (6.6%), after a median delay of 4.4 months (range 0.1-245.2) after LT and 32 (4.1%) developed biliary leakage after a median delay of 25 days (range 1-179). The actuarial risk of developing an ABS was 1.6% at 1-month, 2.7% at 3-months, 4.1% at 6-months, and 5.1%, 6.0%, 6.4%, 6.6%, 7.3% at 1-, 2-, 5-, 10- and 15-years, respectively. Univariate analysis disclosed that post-reperfusion syndrome and liver graft steatosis (≥30%) were significant risk factors for ABS. Multivariate analysis disclosed that graft steatosis (OR=6.262, 95%CI 1.936-20.257, P=0.002) and MELD score (OR=1.071, 95%CI 1.018-1.128, P=0.008) were significant risk factors for ABS. The first-line treatment of ABS consisted in endoscopic stenting for 44 patients (88.0%) and immediate success rate was 75.0%. Delayed recurrence of ABS occurred in 8/33 patients (24.0%). CONCLUSION Our results suggest that steatotic grafts should be used for recipients without severe liver failure to avoid ABS, and that endoscopic stenting of post-LT ABS leads to a high success rate, but is associated with a significant risk of recurrence.
Collapse
Affiliation(s)
- Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Unité de Transplantation hépatique, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France.
| | - Christine Chambon-Augoyard
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Unité de Transplantation hépatique, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France
| | - Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Unité de Transplantation hépatique, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France
| | - Mathieu Pioche
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France
| | - Jérôme Rivory
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France
| | - Pierre-Jean Valette
- Université Claude Bernard Lyon 1, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Radiologie digestive, Lyon, France
| | - Mustapha Adham
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Unité de Transplantation hépatique, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Thierry Ponchon
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hépato-gastroentérologie, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Yves Scoazec
- Université Claude Bernard Lyon 1, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Anatomie et Cytologie Pathologiques, Lyon, France
| | - Olivier Boillot
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Unité de Transplantation hépatique, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Czigany Z, Lurje I, Schmelzle M, Schöning W, Öllinger R, Raschzok N, Sauer IM, Tacke F, Strnad P, Trautwein C, Neumann UP, Fronek J, Mehrabi A, Pratschke J, Schlegel A, Lurje G. Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications. J Clin Med 2020; 9:E846. [PMID: 32244972 PMCID: PMC7141496 DOI: 10.3390/jcm9030846] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) constitutes a significant source of morbidity and mortality after orthotopic liver transplantation (OLT). The allograft is metabolically impaired during warm and cold ischemia and is further damaged by a paradox reperfusion injury after revascularization and reoxygenation. Short-term and long-term complications including post-reperfusion syndrome, delayed graft function, and immune activation have been associated with IRI. Due to the current critical organ shortage, extended criteria grafts are increasingly considered for transplantation, however, with an elevated risk to develop significant features of IRI. In recent years, ex vivo machine perfusion (MP) of the donor liver has witnessed significant advancements. Here, we describe the concept of hypothermic (oxygenated) machine perfusion (HMP/HOPE) approaches and highlight which allografts may benefit from this technology. This review also summarizes clinical applications and the main aspects of ongoing randomized controlled trials on hypothermic perfusion. The mechanistic aspects of IRI and hypothermic MP-which include tissue energy replenishment, optimization of mitochondrial function, and the reduction of oxidative and inflammatory damage following reperfusion-will be comprehensively discussed within the context of current preclinical and clinical evidence. Finally, we highlight novel trends and future perspectives in the field of hypothermic MP in the context of recent findings of basic and translational research.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
| | - Isabella Lurje
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Robert Öllinger
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Pavel Strnad
- Department of Gastroenterology, Metabolic Disorders and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Gastroenterology, Metabolic Disorders and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
| | - Jiri Fronek
- Department of Transplant Surgery, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Andrea Schlegel
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK;
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| |
Collapse
|
13
|
Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 2019; 70:1278-1291. [PMID: 30797053 DOI: 10.1016/j.jhep.2019.02.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its complications are an expanding health problem associated with the metabolic syndrome. Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells localized at the interface between the blood derived from the gut and the adipose tissue on the one side, and other liver cells on the other side. In physiological conditions, LSECs are gatekeepers of liver homeostasis. LSECs display anti-inflammatory and anti-fibrogenic properties by preventing Kupffer cell and hepatic stellate cell activation and regulating intrahepatic vascular resistance and portal pressure. This review focusses on changes occurring in LSECs in NAFLD and on their consequences on NAFLD progression and complications. Capillarization, namely the loss of LSEC fenestrae, and LSEC dysfunction, namely the loss of the ability of LSECs to generate vasodilator agents in response to increased shear stress both occur early in NAFLD. These LSEC changes favour steatosis development and set the stage for NAFLD progression. At the stage of non-alcoholic steatohepatitis, altered LSECs release inflammatory mediators and contribute to the recruitment of inflammatory cells, thus promoting liver injury and inflammation. Altered LSECs also fail to maintain hepatic stellate cell quiescence and release fibrogenic mediators, including Hedgehog signalling molecules, promoting liver fibrosis. Liver angiogenesis is increased in NAFLD and contributes to liver inflammation and fibrosis, but also to hepatocellular carcinoma development. Thus, improving LSEC health appears to be a promising approach to prevent NAFLD progression and complications.
Collapse
Affiliation(s)
- Adel Hammoutene
- Inserm, UMR-970, Paris Cardiovascular Research Center, PARCC, Paris, France; University Paris Descartes, Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, UMR-970, Paris Cardiovascular Research Center, PARCC, Paris, France; INSERM, UMR1149, Centre de Recherche sur l'Inflammation, Paris, France; University Paris Diderot, Paris, France; Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, DHU Unity, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, AP-HP, Clichy, France.
| |
Collapse
|
14
|
L-Ornithine L-Aspartate for the Treatment of Sarcopenia in Chronic Liver Disease: The Taming of a Vicious Cycle. Can J Gastroenterol Hepatol 2019; 2019:8182195. [PMID: 31183339 PMCID: PMC6512019 DOI: 10.1155/2019/8182195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a common complication of cirrhosis with a negative impact on posttransplant outcome, health-related quality of life (HRQOL), and patient survival. Studies in experimental animals and in patients demonstrate that ammonia is directly implicated in the pathogenesis of sarcopenia in cirrhosis via mechanisms involving increased expression of myostatin and of autophagy markers such as LC3 lipidation and p62 leading to muscle dysmetabolism and sarcopenia. Paradoxically, skeletal muscle replaces liver as the primary ammonia-detoxifying site as a result of the modification of genes coding for key proteins implicated in ammonia-lowering pathways in cirrhosis. Thus, a vicious cycle occurs whereby hyperammonemia causes severe muscle damage and sarcopenia that, in turn, limits the capacity of muscle to remove excess blood-borne ammonia and the cycle continues. Randomized clinical trials and meta-analyses confirm that L-ornithine L-aspartate (LOLA) is an effective ammonia-lowering agent currently employed for the treatment of hepatic encephalopathy (HE) that stimulates both urea synthesis by residual hepatocytes and muscle glutamine synthesis together with putative hepatoprotective actions. Treatment of cirrhotic patients with LOLA limits ammonia-induced sarcopenia by improving muscle protein synthesis and function. It is conceivable that the antisarcopenic action of LOLA contributes to its efficacy for the treatment of HE in cirrhosis.
Collapse
|
15
|
Kircheis G, Lüth S. Pharmacokinetic and Pharmacodynamic Properties of L-Ornithine L-Aspartate (LOLA) in Hepatic Encephalopathy. Drugs 2019; 79:23-29. [PMID: 30706424 PMCID: PMC6416235 DOI: 10.1007/s40265-018-1023-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
L-Ornithine L-aspartate (LOLA), a stable salt of L-ornithine and L-aspartate, readily dissociates into its constituent amino acids that are readily absorbed by active transport, distributed, and metabolized. L-ornithine serves as an intermediary in the urea cycle in periportal hepatocytes in the liver and as an activator of carbamoyl phosphate synthetase, and, like L-aspartate, by transamination to glutamate via glutamine synthetase in perivenous hepatocytes as well as by skeletal muscle and brain. By way of these metabolic pathways, both amino acids participate in reactions whereby the ammonia molecule is incorporated into urea and glutamine and it is the nature, cellular, and biological location of these pathways that underpins the application of LOLA as an effective ammonia-lowering strategy widely used for the management and treatment of hepatic encephalopathy. These metabolic pathways were elucidated based upon studies in experimental animals and were confirmed by studies in patients with severe liver diseases. More recent studies suggest that LOLA may have additional direct hepatoprotective properties. Moreover, its use may result in improvements in skeletal muscle function in cirrhosis.
Collapse
Affiliation(s)
- Gerald Kircheis
- Department of Gastroenterology, Hepatology and Diabetology, Brandenburg Medical School, Center of Internal Medicine II, University Hospital Brandenburg, Hochstraße 29, 14770, Brandenburg an der Havel, Germany.
| | - Stefan Lüth
- Department of Gastroenterology, Hepatology and Diabetology, Brandenburg Medical School, Center of Internal Medicine II, University Hospital Brandenburg, Hochstraße 29, 14770, Brandenburg an der Havel, Germany
| |
Collapse
|
16
|
Soliman GF, Rashed LA, Morsi H, Ibrahim W, Abdallah H, Bastawy N, Abdel Maksoud OM. Interrelation of liver vascularity to non-alcoholic fatty liver through a comparative study of the vasodilator effect of carvedilol or nicorandil in rats. Life Sci 2019; 222:175-182. [PMID: 30826497 DOI: 10.1016/j.lfs.2019.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
AIM An experimental study of the effect of two vasodilators, carvedilol (B blocker with alpha-antagonist) and nicorandil (NO donor) on nonalcoholic fatty liver (NAFLD) induced by hypercholesterolemia and fatty diet in rats through studying the possible anti-inflammatory and antioxidant mechanisms. MAIN METHODS The rats were divided into 4 groups (6 rats each): The first (negative control group). The second, third and fourth groups were fed with cholesterol and fat- enriched diet for one month that stopped and continued on the standard diet for another month without treatment in the second group but treated with carvedilol and nicorandil in the third and fourth group respectively. KEY FINDINGS They revealed that both improved NAFLD especially nicorandil treated proved by the reduction of liver enzymes (AST, ALT), the fatty infiltration determined histologically and biochemically (decrease liver triglycerides). This may be due to either being antioxidants (reduced malondialdehyde and elevated reduced glutathione) or anti-inflammatory (decreased of TNF-α) together with the reduction of insulin resistance and adiponectin elevation or gene expression (increased liver NF-κB and decreased eNOS expression) and finally maybe by their obvious effect on improvements of lipid parameters. SIGNIFICANCE Carvedilol and nicorandil improved NAFLD through the interrelationship between inflammatory cytokines, antioxidants and insulin resistance.
Collapse
Affiliation(s)
- Ghada Farouk Soliman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Heba Morsi
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Walaa Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Hanan Abdallah
- Department of Medical Histology, Faculty of Medicine, Cairo University, Egypt
| | - Nermeen Bastawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
17
|
Alhusseiny SM, El-Beshbishi SN, Abu Hashim MM, El-nemr HEDE, Handoussa AE. Effectiveness of vinpocetine and isosorbide-5-mononitrate on experimental schistosomiasis mansoni: Biochemical and immunohistochemical study. Acta Trop 2018; 186:16-23. [PMID: 29963994 DOI: 10.1016/j.actatropica.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
Schistosomiasis is one of the most important tropical and subtropical devastating diseases, where praziquantel is the sole drug of choice. Praziquantel effectively kills the adult worms, however, drug resistance has been repeatedly reported. Moreover, there is currently no efficient anti-fibrotic therapy available for chronic schistosomiasis. So, novel drugs which exert anti-fibrotic efficacy are urgently needed. This research is complementary to our previous work that evaluated the anti-schistosomal effects of the anti-inflammatory vinpocetine, as well as the vasodilator and the anti-oxidant isosorbide-5-mononitrate. In the present study, we assessed the therapeutic efficacies of drugs in Swiss albino female mice experimentally infected with an Egyptian strain of Schistosoma mansoni, using some biochemical and immunohistochemical parameters. Our results revealed that both vinpocetine and isosorbide-5-mononitrate monotherapy significantly decreased hepatic nuclear factor-kappaB, 10 weeks post infection. The best effects were seen in mice administered praziquantel combined with isosorbide-5-mononitrate, as detected by reduction in hydroxyproline and collagen contents of the liver, and significant increase in the hepatic nitric oxide content. The data provides insight into the potential effects of the assessed drugs with isosorbide-5-mononitrate being more superior to vinpocetine, hence it can be used as novel adjuvant to praziquantel to alleviate schistosomal hepatic fibrosis. However, molecular mechanism/s and clinical trials are worthy to be scrutinized.
Collapse
|
18
|
Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V. Intrahepatic vascular changes in non-alcoholic fatty liver disease: Potential role of insulin-resistance and endothelial dysfunction. World J Gastroenterol 2017; 23:6777-6787. [PMID: 29085222 PMCID: PMC5645612 DOI: 10.3748/wjg.v23.i37.6777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a cluster of several clinical conditions characterized by insulin-resistance and high cardiovascular risk. Non-alcoholic fatty liver disease is the liver expression of the metabolic syndrome, and insulin resistance can be a frequent comorbidity in several chronic liver diseases, in particular hepatitis C virus infection and/or cirrhosis. Several studies have demonstrated that insulin action is not only relevant for glucose control, but also for vascular homeostasis. Insulin regulates nitric oxide production, which mediates to a large degree the vasodilating, anti-inflammatory and antithrombotic properties of a healthy endothelium, guaranteeing organ perfusion. The effects of insulin on the liver microvasculature and the effects of IR on sinusoidal endothelial cells have been studied in animal models of non-alcoholic fatty liver disease. The hypotheses derived from these studies and the potential translation of these results into humans are critically discussed in this review.
Collapse
Affiliation(s)
- Marcos Pasarín
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, 08036 Barcelona, Spain
| | - Juan G Abraldes
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Eleonora Liguori
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| | - Beverley Kok
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Vincenzo La Mura
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| |
Collapse
|
19
|
Anavi S, Madar Z, Tirosh O. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers. Redox Biol 2017; 13:386-392. [PMID: 28667907 PMCID: PMC5493836 DOI: 10.1016/j.redox.2017.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Zecharia Madar
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
20
|
Gonzalez-Paredes FJ, Hernández Mesa G, Morales Arraez D, Marcelino Reyes R, Abrante B, Diaz-Flores F, Salido E, Quintero E, Hernández-Guerra M. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLoS One 2016; 11:e0156650. [PMID: 27227672 PMCID: PMC4882009 DOI: 10.1371/journal.pone.0156650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Introduction Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD), which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD. Materials and Methods Sprague-Dawley rats were fed standard diet (control-diet, CD) or high-fat-diet (HFD) for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA), indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO) bioavailability and thromboxane B2 levels. Results HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response. Conclusions Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease.
Collapse
Affiliation(s)
- Francisco Javier Gonzalez-Paredes
- Institute of Biomedical Technologies and Center of Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Tenerife, Spain
| | - Goretti Hernández Mesa
- Gastroenterology Department, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
| | - Dalia Morales Arraez
- Gastroenterology Department, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
| | - Raquel Marcelino Reyes
- Gastroenterology Department, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
| | - Beatriz Abrante
- Institute of Biomedical Technologies and Center of Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Tenerife, Spain
| | - Felicitas Diaz-Flores
- Central Laboratory, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
| | - Eduardo Salido
- Institute of Biomedical Technologies and Center of Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Tenerife, Spain
| | - Enrique Quintero
- Institute of Biomedical Technologies and Center of Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Tenerife, Spain
- Gastroenterology Department, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
- Department of Medicine and Psychiatry, University of La Laguna, La Laguna, Tenerife, Spain
| | - Manuel Hernández-Guerra
- Institute of Biomedical Technologies and Center of Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Tenerife, Spain
- Gastroenterology Department, University Hospital of the Canary Islands, La Laguna, Tenerife, Spain
- Department of Medicine and Psychiatry, University of La Laguna, La Laguna, Tenerife, Spain
- * E-mail:
| |
Collapse
|
21
|
Kus K, Walczak M, Maslak E, Zakrzewska A, Gonciarz-Dytman A, Zabielski P, Sitek B, Wandzel K, Kij A, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics. Drug Metab Dispos 2015; 43:1028-36. [PMID: 25870102 PMCID: PMC11024901 DOI: 10.1124/dmd.115.063388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/09/2015] [Indexed: 04/20/2024] Open
Abstract
V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.
Collapse
Affiliation(s)
- Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Anna Gonciarz-Dytman
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Piotr Zabielski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Adrian Chabowski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Ryan J Holland
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Joseph E Saavedra
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Larry K Keefer
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| |
Collapse
|
22
|
Maslak E, Zabielski P, Kochan K, Kus K, Jasztal A, Sitek B, Proniewski B, Wojcik T, Gula K, Kij A, Walczak M, Baranska M, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. The liver-selective NO donor, V-PYRRO/NO, protects against liver steatosis and improves postprandial glucose tolerance in mice fed high fat diet. Biochem Pharmacol 2015; 93:389-400. [PMID: 25534988 DOI: 10.1016/j.bcp.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Piotr Zabielski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Kamila Kochan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Katarzyna Gula
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Małgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Ryan J Holland
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
| | - Joseph E Saavedra
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.
| | - Larry K Keefer
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Experimental Pharmacology (Chair of Pharmacology), Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland.
| |
Collapse
|
23
|
|
24
|
Schleicher J, Guthke R, Dahmen U, Dirsch O, Holzhuetter HG, Schuster S. A theoretical study of lipid accumulation in the liver-implications for nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:62-9. [PMID: 23999488 DOI: 10.1016/j.bbalip.2013.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/08/2023]
Abstract
A hallmark of the nonalcoholic fatty liver disease is the accumulation of lipids. We developed a mathematical model of the hepatic lipid dynamics to simulate the fate of fatty acids in hepatocytes. Our model involves fatty acid uptake, lipid oxidation, and lipid export. It takes into account that storage of triacylglycerol within hepatocytes leads to cell enlargement reducing the sinusoids radius and impairing hepatic microcirculation. Thus oxygen supply is reduced, which impairs lipid oxidation. The analysis of our model revealed a bistable behavior (two stable steady states) of the system, in agreement with histological observations showing distinct areas of lipid accumulation in lobules. The first (healthy) state is characterized by intact lipid oxidation and a low amount of stored lipids. The second state in our model may correspond to the steatotic cell; it is marked by a high amount of stored lipids and a reduced lipid oxidation caused by impaired oxygen supply. Our model stresses the role of insufficient oxygen supply for the development of steatosis. We discuss implications of our results in regard to the experimental design aimed at exploring lipid metabolism reactions under steatotic conditions. Moreover, the model helps to understand the reversibility of lipid accumulation and predicts the reversible switch to show hysteresis. The system can switch from the steatotic state back to the healthy state by reduction of fatty acid uptake below the threshold at which steatosis started. The reversibility corresponds to the observation that caloric restriction can reduce the lipid content in the liver.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Lattanzi B, Lai Q, Guglielmo N, Giannelli V, Merli M, Giusto M, Melandro F, Ginanni Corradini S, Mennini G, Berloco PB, Rossi M. Graft macrosteatosis and time of T-tube removal as risk factors for biliary strictures after liver transplantation. Clin Transplant 2013; 27:E332-8. [DOI: 10.1111/ctr.12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Barbara Lattanzi
- Gastroenterology Department of Clinical Medicine; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Quirino Lai
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Nicola Guglielmo
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Valerio Giannelli
- Gastroenterology Department of Clinical Medicine; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Manuela Merli
- Gastroenterology Department of Clinical Medicine; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Michela Giusto
- Gastroenterology Department of Clinical Medicine; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Stefano Ginanni Corradini
- Gastroenterology Department of Clinical Medicine; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Gianluca Mennini
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation; Umberto I Hospital; Sapienza University of Rome; Rome; Italy
| |
Collapse
|
26
|
Alam MA, Kauter K, Withers K, Sernia C, Brown L. Chronic l-arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats. Food Funct 2012; 4:83-91. [PMID: 23010865 DOI: 10.1039/c2fo30096f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
l-Arginine is an important dietary amino acid in both health and disease, especially of the cardiovascular system. This study has determined whether dietary supplementation with l-arginine attenuates cardiovascular, metabolic, pancreatic and liver changes in a rat model of the human metabolic syndrome. Male Wistar rats (8-9 weeks old) were divided into four groups. Two groups of rats were fed a corn starch-rich diet (C) whereas the other two groups were given a high carbohydrate, high fat diet (H) with 25% fructose in the drinking water, for 16 weeks. One group fed each diet was supplemented with 5% l-arginine in the food for the final 8 weeks of this protocol. The corn starch diet (C) contained ∼68% carbohydrates mainly as polysaccharides, while the high-carbohydrate, high-fat diet contained ∼68% carbohydrates mainly as fructose and sucrose together with 24% fat mainly as saturated and monounsaturated fats from beef tallow. The high-carbohydrate, high-fat diet-fed rats showed the symptoms of metabolic syndrome including obesity and hypertension with heart and liver damage. Supplementation with l-arginine attenuated impairment in left ventricular and liver structure and function, glucose tolerance, and decreased blood pressure, abdominal fat pads, inflammatory cell infiltration, pancreatic cell hypertrophy and oxidative stress. This study indicates that oral supplementation with l-arginine attenuated or normalised obesity-related changes in the heart, liver and pancreas by reducing inflammation and oxidative stress associated with high carbohydrate, high fat feeding in rats.
Collapse
Affiliation(s)
- Md Ashraful Alam
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
27
|
Martindale RG, DeLegge M, McClave S, Monroe C, Smith V, Kiraly L. Nutrition delivery for obese ICU patients: delivery issues, lack of guidelines, and missed opportunities. JPEN J Parenter Enteral Nutr 2012; 35:80S-7S. [PMID: 21881018 DOI: 10.1177/0148607111415532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The most appropriate enteral formula for the severely obese population has yet to be determined. The obese patient in the intensive care unit (ICU) creates numerous difficulties for managing care, one being the ability to deliver appropriate and timely nutrition. Access for nutrition therapy, either enteral or parenteral, can also create a challenge. Currently, no specific guidelines are available on a national or international scale to address the issues of how and when to feed the obese patient in the ICU. A bias against feeding these patients exists, secondary to the perception that an enormous quantity of calories is stored in adipose tissue. Making a specialty enteral formula for obesity from existing commercial formulas and other modular nutrient components is not practical, secondary to difficulty with solubility issues, dilution of the formula, and safety concerns. Using today's concepts and current metabolic data, a formula could be produced that would address many of the specific metabolic derangements noted in obesity. This formula should have a high-protein, low-carbohydrate content with at least a portion of the lipid source coming from fish oil. Specific nutrients that may be beneficial in obesity include arginine, glutamine, leucine, L-carnitine, lipoic acid, S-adenosylmethionine, and betaine. Certain trace minerals such as magnesium, zinc, and selenium may also be of value in the obese population. The concept of a specific bariatric formulation for the ICU setting is theoretically sound, is scientifically based, and could be delivered to patients safely.
Collapse
Affiliation(s)
- Robert G Martindale
- Department of Surgery, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Hurt RT, Frazier TH, McClave SA, Cave MC. Pharmaconutrition for the Obese, Critically Ill Patient. JPEN J Parenter Enteral Nutr 2011; 35:60S-72S. [DOI: 10.1177/0148607111413775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ryan T. Hurt
- Department of Medicine
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Thomas H. Frazier
- Department of Medicine
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky
| | - Stephen A. McClave
- Department of Medicine
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matt C. Cave
- Department of Medicine
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
29
|
Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5:233-44. [PMID: 21476918 DOI: 10.1586/egh.11.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly understood and the mechanisms are still being elucidated. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of free radicals that in turn trigger lipid peroxidation and cell death. In this article, we review the role of mitochondria in fat metabolism, energy homeostasis and reactive oxygen species production, with a focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. The potential effects of some molecules targeted to mitochondria are also discussed.
Collapse
Affiliation(s)
- Gaetano Serviddio
- CURE (Centre for Liver Disease Research and Treatment), Department of Medical and Occupational Sciences, University of Foggia, 70124 Foggia, Italy.
| | | | | | | |
Collapse
|
30
|
Baccarani U, Isola M, Adani GL, Avellini C, Lorenzin D, Rossetto A, Currò G, Comuzzi C, Toniutto P, Risaliti A, Soldano F, Bresadola V, De Anna D, Bresadola F. Steatosis of the hepatic graft as a risk factor for post-transplant biliary complications. Clin Transplant 2011; 24:631-5. [PMID: 19878512 DOI: 10.1111/j.1399-0012.2009.01128.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite recent advances in organ preservation, immunosuppression, and surgical techniques, the biliary tree is still considered the Achilles' heel of liver transplantation. The aim of this study is to retrospectively analyze the incidence of biliary complications and identify risk factors that might predispose to the development of biliary problems. METHODS From January 2004 to December 2007, 117 consecutive liver transplantations were retrospectively analyzed for the development of biliary complications by the review of medical records. Patients were divided into group 1 with biliary complications (n = 43) and group 2 without biliary complications (n = 74). RESULTS The overall biliary complication rate was 36.8% (leakage 6% and stricture 30.8%). Univariate analysis indicated that significant predictors of biliary complications were the time interval between portal and arterial reperfusion (p = 0.037) and macrovacuolar steatosis of the graft > 25% (p = 0.004). Stepwise logistic regression model demonstrated that a macrosteatosis of the graft > 25% (OR = 5.21 CI 95% [1.79-15.15], p = 0.002) was the only independent risk factor predicting biliary complications after liver transplantation. No differences in patient's and graft's survival were noted between the two groups. CONCLUSION According to our experience, transplanting a liver with > 25% of steatosis is a risk factor for the development of biliary complication.
Collapse
Affiliation(s)
- Umberto Baccarani
- Department of Tissue & Organ Transplantation, University Hospital of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sugioka N, Haraya K, Fukushima K, Ito Y, Takada K. Effects of obesity induced by high-fat diet on the pharmacokinetics of nelfinavir, a HIV protease inhibitor, in laboratory rats. Biopharm Drug Dispos 2010; 30:532-41. [PMID: 19862765 DOI: 10.1002/bdd.689] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of obesity induced by a high-fat diet on the pharmacokinetics (PK) of nelfinavir (NFV) was investigated, focusing on the change of distribution and elimination caused by dyslipidemia and hepatic steatosis.The plasma unbound fraction (f(u)) of NFV in obese rats (0.61+/-0.03%) was significantly lower than in the control (1.10+/-0.09%), caused by increasing the plasma triglyceride-rich lipoprotein level. After intravenous (i.v.) administration of NFV, the marked decrease of the distribution volume and slower total clearance (39.5% and 69.1% of the control, respectively) caused by the lower f(u) were the main reasons for the significantly higher area under the blood concentration versus time curve (AUC) in obese rats (145.3% of the control). The absorption of NFV after intraduodenal (i.d.) administration in obese rats was significantly greater than in the control (AUC; 170.4% of the control). The increased bile in obese rats was the main reason for the increasing absorption of NFV, and the lower expression of intestinal P-glycoprotein was also considered. On the other hand, although higher AUCs in obese rats were shown, unbound AUCs in the obese rats were slightly lower than in the control, namely, the plasma NFV concentration in obese rats to obtain the same pharmacological effect was higher than in the control, suggesting the difficulty of drug monitoring. These results suggest that it is necessary to pay further attention to therapeutic drug monitoring of NFV in patients manifesting metabolic syndrome, such as dyslipidemia and visceral fat accumulation, including hepatic steatosis.
Collapse
Affiliation(s)
- Nobuyuki Sugioka
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|
32
|
Hepatoprotective effects of the nitric oxide donor isosorbide-5-mononitrate alone and in combination with the natural hepatoprotectant, silymarin, on carbon tetrachloride-induced hepatic injury in rats. Inflammopharmacology 2010; 18:87-94. [PMID: 20069380 DOI: 10.1007/s10787-009-0027-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/10/2009] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the effect of the nitric oxide donor isosorbide-5-mononitrate (5-ISMN) alone or in combination with the natural hepatoprotectant with anti-oxidant activity silymarin on the carbon tetrachloride (CCl(4))-induced hepatic injury in rats. 5-ISMN (1.8, 3.6 or 7.2 mg/kg), silymarin (25 mg/kg) or 5-ISMN (1.8, 3.6 or 7.2 mg/kg) combined with silymarin was given once daily orally simultaneously with CCl(4) and for 15 days thereafter. Liver damage was assessed by determining serum enzyme activities and hepatic histopathology. 5-ISMN given at the above doses conferred significant protection against the hepatotoxic actions of CCl(4) in rats, reducing serum alanine aminotransferase (ALT) levels by 31.2, 39.3 and 61.6%, respectively, when compared with controls. Serum aspartate aminotransferase (AST) levels decreased by 19.8, 22.7 and 59.4%, respectively, while alkaline phosphatase (ALP) decreased by 26.1 and 32.6% by the drug at 3.6 and 7.2 mg/kg, respectively. When silymarin was added to 5-ISMN (1.8, 3.6 or 7.2 mg/kg), ALT decreased by 32.8, 59.6, 70.2% and AST by 28.7, 50.3, 60%, when compared with CCl(4) control group levels. Silymarin in combination with 3.6 or 7.2 mg/kg 5-ISMN resulted in 37.5 and 39.2% reductions in ALP when compared with CCl(4) control group. Meanwhile, silymarin alone reduced ALT, AST and ALP levels by 65.9, 52 and 62.3%, respectively. Blood levels of reduced glutathione were markedly decreased in CCl(4)-treated rats. Reduced glutathione levels were increased by the administration of 5-ISMN and restored to near normal values by silymarin treatment. Histopathological alterations by CCl(4) were markedly reduced after treatment with 5-ISMN alone or in combination with silymarin. Histopathologic examination of the livers of CCl(4)-treated rats administered 5-ISMN at 7.2 mg/kg showed marked restoration of the normal architecture of the liver tissue and minimal fibrosis. Silymarin co-administered with 5-ISMN resulted in further improvement of the histologic picture. These results indicates that treatment with 5-ISMN protects against hepatocellular necrosis induced by CCl(4). The study suggests a potential therapeutic use for 5-ISMN in combination with silymarin in liver injury.
Collapse
|
33
|
Hataji K, Watanabe T, Oowada S, Nagaya M, Kamibayashi M, Murakami E, Kawakami H, Ishiuchi A, Kumai T, Nakano H, Kobayashi S, Otsubo T. Effects of a calcium-channel blocker (CV159) on hepatic ischemia/reperfusion injury in rats: evaluation with selective NO/pO2 electrodes and an electron paramagnetic resonance spin-trapping method. Biol Pharm Bull 2010; 33:77-83. [PMID: 20045940 DOI: 10.1248/bpb.33.77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Nitric oxide (NO) and the partial pressure of oxygen (pO(2)) in the liver were simultaneously quantified in rats with partial hepatic ischemia/reperfusion injury (PHIRI). Real-time NO/pO(2) monitoring and immunohistochemical analysis for superoxide dismutase and inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) were performed to evaluate the protective effects of a dihydropyridine-type calcium-channel blocker--CV159--on PHIRI. Serum high-mobility-group box-1 (HMGB-1) was measured to assess cellular necrosis. Moreover, we used in vitro/ex vivo electron paramagnetic resonance spin trapping to assess the hydroxyl radical (*OH)-scavenging activity (OHSA) of CV159 and the liver tissue. The NO levels were significantly higher in CV159-treated rats than in control rats throughout the ischemic phase. Immediately after reperfusion, the levels temporarily increased in waves and then gradually decreased in the treated rats but remained constant in the control rats. pO(2) was continually higher in the treated rats. In these rats, hepatic eNOS expression increased, whereas iNOS expression decreased. The treated rats exhibited significantly higher cytosolic and mitochondrial concentrations NOx (NO(2)+NO(3)). The serum HMGB-1 levels significantly decreased in the treated rats. Moreover, CV159 directly scavenged *OH and both mitochondrial and cytosolic OHSA were preserved in the treated rats. Thus, CV159-mediated inhibition of intracellular Ca(2+) overloading may effectively minimize organ damage and also have *OH-scavenging activity and the cytoprotective effects of eNOS-derived NO.
Collapse
Affiliation(s)
- Keizo Hataji
- Department of Gastroenterological and General Surgery, St. Marianna University Hospital, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baccarani U, Adani GL, Lorenzin D, Donini A, Risaliti A. The role of steatosis of the liver graft in the development of post-transplant biliary complications. Transpl Int 2009; 23:239. [PMID: 19906029 DOI: 10.1111/j.1432-2277.2009.00997.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Matheson PJ, Hurt RT, Franklin GA, McClain CJ, Garrison RN. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock. Surgery 2009; 146:739-47; discussion 747-8. [PMID: 19789034 DOI: 10.1016/j.surg.2009.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/09/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). METHODS Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. RESULTS Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. CONCLUSION These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.
Collapse
Affiliation(s)
- Paul J Matheson
- Department of Surgery, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
36
|
Tirosh O, Ilan E, Budick-Harmelin N, Ramadori G, Madar Z. Downregulation of eNOS in a nutritional model of fatty liver. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.eclnm.2009.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Abstract
NAFLD (non-alcoholic fatty liver disease), associated with obesity and the cardiometabolic syndrome, is an important medical problem affecting up to 20% of western populations. Evidence indicates that mitochondrial dysfunction plays a critical role in NAFLD initiation and progression to the more serious condition of NASH (non-alcoholic steatohepatitis). Herein we hypothesize that mitochondrial defects induced by exposure to a HFD (high fat diet) contribute to a hypoxic state in liver and this is associated with increased protein modification by RNS (reactive nitrogen species). To test this concept, C57BL/6 mice were pair-fed a control diet and HFD containing 35% and 71% total calories (1 cal≈4.184 J) from fat respectively, for 8 or 16 weeks and liver hypoxia, mitochondrial bioenergetics, NO (nitric oxide)-dependent control of respiration, and 3-NT (3-nitrotyrosine), a marker of protein modification by RNS, were examined. Feeding a HFD for 16 weeks induced NASH-like pathology accompanied by elevated triacylglycerols, increased CYP2E1 (cytochrome P450 2E1) and iNOS (inducible nitric oxide synthase) protein, and significantly enhanced hypoxia in the pericentral region of the liver. Mitochondria from the HFD group showed increased sensitivity to NO-dependent inhibition of respiration compared with controls. In addition, accumulation of 3-NT paralleled the hypoxia gradient in vivo and 3-NT levels were increased in mitochondrial proteins. Liver mitochondria from mice fed the HFD for 16 weeks exhibited depressed state 3 respiration, uncoupled respiration, cytochrome c oxidase activity, and mitochondrial membrane potential. These findings indicate that chronic exposure to a HFD negatively affects the bioenergetics of liver mitochondria and this probably contributes to hypoxic stress and deleterious NO-dependent modification of mitochondrial proteins.
Collapse
|
38
|
Grattagliano I, Caraceni P, Calamita G, Ferri D, Gargano I, Palasciano G, Portincasa P. Severe liver steatosis correlates with nitrosative and oxidative stress in rats. Eur J Clin Invest 2008; 38:523-30. [PMID: 18578693 DOI: 10.1111/j.1365-2362.2008.01963.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Little is known about nitric oxide (NO) metabolism and redox changes with hepatocyte adipocytic transformation. The aims of this study were to investigate the changes occurring in plasma and hepatic NO metabolites and redox balance in a rat experimental model of simple fatty liver, and to relate plasma with hepatic and mitochondrial changes at different degrees of steatosis. MATERIALS AND METHODS Circulating and hepatic redox active and nitrogen regulating molecules thioredoxin, glutathione, protein thiols (PSH), mixed disulfides (PSSG), NO metabolites nitrosothiols, nitrite plus nitrate (NOx), and lipid peroxides (TBARs) were measured in rats fed a choline deprived (CD) diet for 30 days. RESULTS At histology, the CD diet resulted in hepatocellular steatosis (75% of liver weight at day 30) with no signs of necro-inflammation. In plasma, thioredoxin, nitrosothiols and NOx were unchanged, while TBARs levels increased significantly and were positively related with hepatic TBARs (r = 0.87, P < 0.001) and lipid content (r = 0.90, P < 0.001). In the liver, glutathione initially increased (day 3) and then decreased. From day 14, PSH decreased and NO derivatives increased. Thioredoxin 1 had initially increased (days 7-14) and then decreased. In the mitochondria, on day 14, nitrosothiols were inversely related to thioredoxin 2 (r = 0.988, P < 0.05); on day 30, PSH were decreased by 70%, PSSG were doubled and related with nitrosothiols levels (r = 0.925, P < 0.001). CONCLUSION Adipocytic transformation of hepatocytes is accompanied by major interrelated modifications of redox parameters and NO metabolism especially at mitochondrial level, suggesting an early adaptive protective response but also an increased predisposition towards pro-oxidant insults.
Collapse
Affiliation(s)
- I Grattagliano
- Section of Internal Medicine, DIMIMP, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Cave MC, Hurt RT, Frazier TH, Matheson PJ, Garrison RN, McClain CJ, McClave SA. Obesity, inflammation, and the potential application of pharmaconutrition. Nutr Clin Pract 2008; 23:16-34. [PMID: 18203961 DOI: 10.1177/011542650802300116] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity is an emerging problem worldwide. Hospitalized obese patients often have a worse outcome than patients of normal weight, particularly in the setting of trauma and critical care. Obesity creates a low-grade systemic inflammatory response syndrome (SIRS) that is similar (but on a much smaller scale) to gram-negative sepsis. This process involves up-regulation of systemic immunity, is characterized clinically by insulin resistance and the metabolic syndrome, and puts the patient at increased risk for organ failure, infectious morbidity, and mortality. Through lipotoxicity and cytokine dysregulation, obesity may act to prime the immune system, predisposing to an exaggerated subsequent immune response when a second clinical insult occurs (such as trauma, burns, or myocardial infarction). Specialized nutrition therapy for such patients currently consists of a hypocaloric, high-protein diet. However, this approach does not address the putative pathophysiologic mechanisms of inflammation and altered metabolism associated with obesity. A number of dietary agents such as arginine, fish oil, and carnitine may correct these problems at the molecular level. Pharmaconutrition formulas may provide exciting innovations for the nutrition therapy of the obese patient.
Collapse
Affiliation(s)
- Matt C Cave
- Department of Medicine, University of Louisville School of Medicine, 500 S. Jackson Street, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Angele MK, Rentsch M, Hartl WH, Wittmann B, Graeb C, Jauch KW, Loehe F. Effect of graft steatosis on liver function and organ survival after liver transplantation. Am J Surg 2008; 195:214-20. [PMID: 18154767 DOI: 10.1016/j.amjsurg.2007.02.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/18/2007] [Accepted: 02/18/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND It was the aim to determine the effect of graft steatosis on intraoperative organ blood flow, postoperative liver function, and organ survival. METHODS A total of 225 consecutive liver transplants were reviewed. Liver blood flow, hepatic function (AST, ALT, prothrombin time), and organ survival were determined. Donor liver grafts were categorized into 2 subgroups: mild (<30%) (n = 175) and moderate to severe (>/=30%) (n = 50) macrovesicular steatosis. RESULTS Moderate to severe steatosis was associated with significantly increased AST and ALT levels and significantly diminished prothrombin time on the first and second postoperative day. By day 7 differences in liver function were no longer evident. Organ blood flow was not affected by steatosis. After adjustment for potential confounders, organ survival did not depend on the degree of donor steatosis (5-year-survival rates: 68% and 58% with steatosis <30%, or >/= 30%, respectively) (hazard ratio .754, confidence interval .458-1.242, P = .268). CONCLUSION Steatotic livers can be transplanted safely with good results for long-term organ survival if other contraindications are absent.
Collapse
Affiliation(s)
- Martin K Angele
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians University Munich, Marchioninistr. 15, D-81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Berthiaume F, Barbe L, Mokuno Y, MacDonald AD, Jindal R, Yarmush ML. Steatosis reversibly increases hepatocyte sensitivity to hypoxia-reoxygenation injury. J Surg Res 2008; 152:54-60. [PMID: 18599084 DOI: 10.1016/j.jss.2007.12.784] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/19/2007] [Accepted: 12/26/2007] [Indexed: 12/14/2022]
Abstract
BACKGROUND Steatosis decreases survival of liver grafts after transplantation due to poorly understood mechanisms. We examined the effect of steatosis on the survival of liver grafts in a rat liver transplantation model and the viability of cultured rat hepatocytes after hypoxia and reoxygenation. MATERIALS AND METHODS Rats were fed a choline and methionine-deficient diet to induce hepatic steatosis, and the livers were transplanted into recipient rats after 6 h of cold storage. Cultured hepatocytes were made steatotic by incubation for 3 d in fatty acid-supplemented medium. Hypoxia and reoxygenation were induced by placing the cultures in a 90% N(2)/10% CO(2) atmosphere for 4 h, followed by return to normoxic conditions for 6 h. Hepatocyte viability was assessed by lactate dehydrogenase release and mitochondrial potential staining. RESULTS Transplanted steatotic livers exhibited 0% viability compared with 90% for lean liver controls. When donor choline and methionine-deficient diet rats were returned to a normal diet, hepatic fat content decreased while viability of the grafts after transplantation increased. Cultured steatotic hepatocytes generated more mitochondrial superoxide, exhibited a lowered mitochondrial membrane potential, and released significantly more lactate dehydrogenase after hypoxia and reoxygenation than lean hepatocyte controls. When steatotic hepatocytes were defatted by incubating in fatty acid-free medium, they became less sensitive to hypoxia and reoxygenation as the remaining intracellular triglyceride content decreased. CONCLUSIONS Hepatic steatosis reversibly decreases viability of hepatocytes after hypoxia and reoxygenation in vitro. The decreased viability of steatotic livers after transplantation may be due to a direct effect of hypoxia and reoxygenation on hepatocytes, and can be reversed by defatting.
Collapse
Affiliation(s)
- François Berthiaume
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Ramalho FS, Fernandez-Monteiro I, Rosello-Catafau J, Peralta C. Hepatic microcirculatory failure. Acta Cir Bras 2007; 21 Suppl 1:48-53. [PMID: 17013514 DOI: 10.1590/s0102-86502006000700012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liver ischemia has been considered a frequent problem in medical practice, and can be associated to a number of surgical and clinical situations, such as massive hepatic resections, sepsis, liver trauma, circulatory shock and liver transplantation. After restoring blood flow, the liver is further subjected to an additional injury more severe than that induced by ischemia. On account of the complexity of mechanisms related to pathophysiology of ischemia and reperfusion (I/R) injury, this review deals with I/R effects on sinusoidal microcirculation, especially when steatosis is present. Alterations in hepatic microcirculation are pointed as a main factor to explain lower tolerance of fatty liver to ischemia-reperfusion insult. The employment of therapeutic strategies that interfere directly with vasoactive mediators (nitric oxide and endothelins) acting on the sinusoidal perfusion seem to be determinant for the protection of the liver parenchyma against I/R. These approaches could be very suitable to take advantage of marginal specimens as fatty livers, in which the microcirculatory disarrangements hamper its employment in liver transplantation.
Collapse
|