1
|
Singh A, Patel A, Chaudhary H, Yadav K, Minocha N. Nanotheranostics: The Fabrication of Theranostics with Nanoparticles and their Application to Treat the Neurological Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:17-34. [PMID: 37464820 DOI: 10.2174/1872210517666230718115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Theranostics is a method that focuses on providing patient-centred care and is evolving as a targeted, safe, and effective pharmacotherapy. Nanotheranostics combines diagnosis and therapeutic modalities that bridge traditional treatment and personalised medicine. Theranostics provides novel ideas for nanotechnology. This review describes the current state of nanotechnology-based therapies used to treat neurological illnesses. Some patents on theranostics are also discussed in this review. OBJECTIVE This study aims to provide a more comprehensive review of the diagnosis and therapeutic properties of nanotheranostics, the present state of nanotechnology-based treatment of neurological disorders, and the future potential of theranostics. METHODS The phrase "theranostics" refers to a treatment strategy that integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. Theranostics is a crucial component of personalised medicine and calls for significant advancements in predictive medicine. The term "theranostics" refers to a diagnosis that screens patients for potential adverse drug reactions and targets drug delivery depending on the test results. Theranostics treats neurological disorders (like brain tumours (glioma), Parkinson's disease, Alzheimer's disease, and neurovascular diseases). Many review articles on Google Scholar, PubMed, Google Patents, and Scopus were used to gather information for this review. Data acquired from many sources was compiled in this review to provide more information on theranostics. RESULTS The role of various nanocarrier systems as theranostic agents for neurological illnesses and the fabrication of nanomaterials for theranostics are discussed in this article after evaluating a substantial number of review articles. CONCLUSION The distinctive intrinsic features of nanoparticles make them useful for functionalization and imaging. Theranostics in nuclear medicine include diagnostic imaging and therapy using the same molecule that is radiolabeled differently or the same medication at various doses. It is possible to determine if a patient will benefit from a given treatment by visualising potential targets. Targeted nuclear therapy has been shown to be beneficial in patients if chosen carefully and has a good safety profile.
Collapse
Affiliation(s)
- Astha Singh
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Aakriti Patel
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Hema Chaudhary
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Kiran Yadav
- Department of Pharmaceutical Sciences, Chandigarh College of Pharmacy, CGC, Landran, Mohali, 140307, India
| | - Neha Minocha
- Amity Institute of Pharmacy, Amity University, Gurgaon, 122412, Haryana, India
| |
Collapse
|
2
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
4
|
Pang ASR, Dinesh T, Pang NYL, Dinesh V, Pang KYL, Yong CL, Lee SJJ, Yip GW, Bay BH, Srinivasan DK. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024; 29:2873. [PMID: 38930939 PMCID: PMC11206617 DOI: 10.3390/molecules29122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.
Collapse
Affiliation(s)
- Alexander Shao-Rong Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Tarini Dinesh
- Department of Medicine, Government Kilpauk Medical College, Chennai 600010, Tamilnadu, India;
| | - Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Vishalli Dinesh
- Department of Pathology, Dhanalakshmi Srinivasan Medical College Hospital, Perambalur 621113, Tamilnadu, India;
| | - Kimberley Yun-Lin Pang
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Shawn Jia Jun Lee
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| |
Collapse
|
5
|
Rastegari B, Ghamar Talepoor A, Khosropanah S, Doroudchi M. In Vitro Targeted Delivery of Simvastatin and Niacin to Macrophages Using Mannan-Grafted Magnetite Nanoparticles. ACS OMEGA 2024; 9:658-674. [PMID: 38222576 PMCID: PMC10785661 DOI: 10.1021/acsomega.3c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Atherosclerosis, a leading cause of mortality worldwide, involves various subsets of macrophages that contribute to its initiation and progression. Current treatment approaches focus on systemic, long-term administration of cholesterol-lowering antioxidants such as statins and certain vitamins, which unfortunately come with prolonged side effects. To overcome these drawbacks, a mannose-containing magnetic nanoparticle (NP) is introduced as a drug delivery system to specifically target macrophages in vitro using simvastatin or niacin and a combinational therapy approach that reduces local inflammation while avoiding unwanted side effects. The synthesized NPs exhibited superparamagnetic behavior, neutrally charged thin coating with a hydrodynamic size of 77.23 ± 13.90 nm, and a metallic core ranging from 15 to 25 nm. Efficient loading of niacin (87.21%) and simvastatin (75.36%) on the NPs was achieved at respective weights of 20.13 and 5.03 (w/w). In the presence of a mannan hydrolyzing enzyme, 79.51% of simvastatin and 67.23% of niacin were released from the NPs within 90 min, with a leakage rate below 19.22%. Additionally, the coated NPs showed no destructive effect on J774A macrophages up to a concentration of 200 μg/mL. Simvastatin-loaded NPs exhibited a minimal increase in IL-6 expression. The low dosage of simvastatin decreased both IL-6 and ARG1 expressions, while niacin and combined simvastatin/niacin increased the level of ARG1 expression significantly. Toxicity evaluations on human umbilical vein endothelial cells and murine liver cells revealed that free simvastatin administration caused significant toxicity, whereas the encapsulated forms of simvastatin, niacin, and a combination of simvastatin/niacin at equivalent concentrations exhibited no significant toxicity. Hence, the controlled release of the encapsulated form of simvastatin and niacin resulted in the effective modulation of macrophage polarization. The delivery system showed suitability for targeting macrophages to atherosclerotic plaque.
Collapse
Affiliation(s)
- Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, School of Paramedical
Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefe Ghamar Talepoor
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Shahdad Khosropanah
- Department
of Cardiology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mehrnoosh Doroudchi
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
6
|
Zhang J, Chen R, Chen S, Yu D, Elkamchouchi DH, Alqahtani MS, Assilzadeh H, Huang Z, Huang Y. Application of lipid and polymeric-based nanoparticles for treatment of inner ear infections via XGBoost. ENVIRONMENTAL RESEARCH 2023; 239:117115. [PMID: 37717809 DOI: 10.1016/j.envres.2023.117115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Taking hearing loss as a prevalent sensory disorder, the restricted permeability of blood flow and the blood-labyrinth barrier in the inner ear pose significant challenges to transporting drugs to the inner ear tissues. The current options for hear loss consist of cochlear surgery, medication, and hearing devices. There are some restrictions to the conventional drug delivery methods to treat inner ear illnesses, however, different smart nanoparticles, including inorganic-based nanoparticles, have been presented to regulate drug administration, enhance the targeting of particular cells, and decrease systemic adverse effects. Zinc oxide nanoparticles possess distinct characteristics that facilitate accurate drug delivery, improved targeting of specific cells, and minimized systemic adverse effects. Zinc oxide nanoparticles was studied for targeted delivery and controlled release of therapeutic drugs within specific cells. XGBoost model is used on the Wideband Absorbance Immittance (WAI) measuring test after cochlear surgery. There were 90 middle ear effusion samples (ages = 1-10 years, mean = 34.9 months) had chronic middle ear effusion for four months and verified effusion for seven weeks. In this research, 400 sets underwent wideband absorbance imaging (WAI) to assess inner ear performance after surgery. Among them, 60 patients had effusion Otitis Media with Effusion (OME), while 30 ones had normal ears (control). OME ears showed significantly lower absorbance at 250, 500, and 1000 Hz than controls (p < 0.001). Absorbance thresholds >0.252 (1000 Hz) and >0.330 (2000 Hz) predicted a favorable prognosis (p < 0.05, odds ratio: 6). It means that cochlear surgery and WAI showed high function in diagnosis and treatment of inner ear infections. Regarding the R2 0.899 and RMSE 1.223, XGBoost shows excellent specificity and sensitivity for categorizing ears as having effusions absent or present or partial or complete flows present, with areas under the curve (1-0.944).
Collapse
Affiliation(s)
- Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Ru Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuainan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Die Yu
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| | - Zhongguan Huang
- Department of Otolaryngology, Pingyang Affiliated Hospital of Wenzhou Medical University, Pingyang, Zhejiang, 325400, China.
| | - Yideng Huang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China.
| |
Collapse
|
7
|
de Oliveira Laterza Ribeiro M, Correia VM, Herling de Oliveira LL, Soares PR, Scudeler TL. Evolving Diagnostic and Management Advances in Coronary Heart Disease. Life (Basel) 2023; 13:951. [PMID: 37109480 PMCID: PMC10143565 DOI: 10.3390/life13040951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable improvement in diagnostic modalities and therapeutic options over the last few decades, the global burden of ischemic heart disease is steadily rising, remaining a major cause of death worldwide. Thus, new strategies are needed to lessen cardiovascular events. Researchers in different areas such as biotechnology and tissue engineering have developed novel therapeutic strategies such as stem cells, nanotechnology, and robotic surgery, among others (3D printing and drugs). In addition, advances in bioengineering have led to the emergence of new diagnostic and prognostic techniques, such as quantitative flow ratio (QFR), and biomarkers for atherosclerosis. In this review, we explore novel diagnostic invasive and noninvasive modalities that allow a more detailed characterization of coronary disease. We delve into new technological revascularization procedures and pharmacological agents that target several residual cardiovascular risks, including inflammatory, thrombotic, and metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
8
|
Wang S, Wang Y, Lai X, Sun J, Hu M, Chen M, Li C, Xu F, Fan C, Liu X, Song Y, Chen G, Deng Y. Minimalist Nanocomplex with Dual Regulation of Endothelial Function and Inflammation for Targeted Therapy of Inflammatory Vascular Diseases. ACS NANO 2023; 17:2761-2781. [PMID: 36719043 DOI: 10.1021/acsnano.2c11058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vascular disorders, characterized by vascular endothelial dysfunction combined with inflammation, are correlated with numerous fatal diseases, such as coronavirus disease-19 and atherosclerosis. Achieving vascular normalization is an urgent problem that must be solved when treating inflammatory vascular diseases. Inspired by the vascular regulatory versatility of nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) catalyzing l-arginine (l-Arg), the eNOS-activating effects of l-Arg, and the powerful anti-inflammatory and eNOS-replenishing effects of budesonide (BUD), we constructed a bi-prodrug minimalist nanoplatform co-loaded with BUD and l-Arg via polysialic acid (PSA) to form BUD-l-Arg@PSA. This promoted vascular normalization by simultaneously regulating vascular endothelial dysfunction and inflammation. Mediated by the special affinity between PSA and E-selectin, which is highly expressed on the surface of activated endothelial cells (ECs), BUD-l-Arg@PSA selectively accumulated in activated ECs, targeted eNOS expression and activation, and promoted NO production. Consequently, the binary synergistic regulation of the NO/eNOS signaling pathway occurred and improved vascular endothelial function. NO-induced nuclear factor-kappa B alpha inhibitor (IκBα) stabilization and BUD-induced nuclear factor-kappa B (NF-κB) response gene site occupancy achieved dual-site blockade of the NF-κB signaling pathway, thereby reducing the inflammatory response and inhibiting the infiltration of inflammation-related immune cells. In a renal ischemia-reperfusion injury mouse model, BUD-l-Arg@PSA reduced acute injury. In an atherosclerosis mouse model, BUD-l-Arg@PSA decreased atherosclerotic plaque burden and improved vasodilation. This represents a revolutionary therapeutic strategy for inflammatory vascular diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jianwen Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Feng Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
9
|
Effects of Diamond Nanoparticles Immobilisation on the Surface of Yeast Cells: A Phenomenological Study. FERMENTATION 2023. [DOI: 10.3390/fermentation9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
An interesting development of biotechnology has linked microbial cell immobilisation with nanoparticles. The main task of our research was to reveal the possible influences of differently electrically charged diamond nanoparticles upon physiological characteristics of the yeast Saccharomyces cerevisiae. It was revealed that the adverse impact of these nanoparticles can manifest not only against prokaryotes, but also against eukaryotic yeast cells. However, the obtained results also indicate that it is possible to reduce and, most likely, completely eliminate the dangerous effects of nanoparticles to cells by using special physical approaches. Comparison of non-arylated and arylated nanoparticles showed that in terms of changes in the physiological activity of cells, which are important to biotechnology and biomedicine, the selection of certain nanoparticles (non-arylated or arylated) may be necessary in each specific case, depending on the purpose of their use.
Collapse
|
10
|
Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy. J Thromb Haemost 2022; 21:983-994. [PMID: 36696210 PMCID: PMC10148984 DOI: 10.1016/j.jtha.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrin-rich clot formation in thrombo-occlusive pathologies is currently treated by systemic administration of plasminogen activators (e.g. tPA), to convert fibrin-associated plasminogen to plasmin for fibrinolytic action. However, this conversion is not restricted to clot site only but also occurs on circulating plasminogen, causing systemic fibrinogenolysis and bleeding risks. To address this, past research has explored tPA delivery using clot-targeted nanoparticles. OBJECTIVES We designed a nanomedicine system that can (1) target clots via binding to activated platelets and fibrin, (2) package plasmin instead of tPA as a direct fibrinolytic agent, and (3) release this plasmin triggered by thrombin for clot-localized action. METHODS Clot-targeted thrombin-cleavable nanoparticles (CTNPs) were manufactured using self-assembly of peptide-lipid conjugates. Plasmin loading and its thrombin-triggered release from CTNPs were characterized by UV-visible spectroscopy. CTNP-targeting to clots under flow was studied using microfluidics. Fibrinolytic effect of CTNP-delivered plasmin was studied in vitro using BioFlux imaging and D-dimer analysis and in vivo in a zebrafish thrombosis model. RESULTS Plasmin-loaded CTNPs significantly bound to clots under shear flow and showed thrombin-triggered enhanced release of plasmin. BioFlux studies confirmed that thrombin-triggered plasmin released from CTNPs rendered fibrinolysis similar to free plasmin, further corroborated by D-dimer analysis. In the zebrafish model, CTNP-delivered plasmin accelerated time-to-recanalization, or completely prevented occlusion when infused before thrombus formation. CONCLUSION Considering that the very short circulation half-life (<1 second) of plasmin prevents its systemic use but also makes it safer without off-target drug effects, clot-targeted delivery of plasmin using CTNPs can enable safer and more efficacious fibrinolytic therapy.
Collapse
|
11
|
Cao YL, Chen WL, Lei Q, Gao F, Ren WX, Chen L, Wang HX, Chen T, Li QB, Chen ZC. The transplantation of rapamycin-treated senescent human mesenchymal stem cells with enhanced proangiogenic activity promotes neovascularization and ischemic limb salvage in mice. Acta Pharmacol Sin 2022; 43:2885-2894. [PMID: 35365781 PMCID: PMC9622830 DOI: 10.1038/s41401-022-00896-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/06/2022] [Indexed: 12/30/2022] Open
Abstract
Few therapies can reverse the proangiogenic activity of senescent mesenchymal stromal/stem cells (MSCs). In this study, we investigated the effects of rapamycin on the proangiogenic ability of senescent human umbilical cord MSCs (UCMSCs). An in vitro replicative senescent cell model was established in cultured UCMSCs. We found that late passage (P25 or later) UCMSCs (LP-UCMSCs) exhibited impaired proangiogenic abilities. Treatment of P25 UCMSCs with rapamycin (900 nM) reversed the senescent phenotype and notably enhanced the proangiogenic activity of senescent UCMSCs. In a nude mouse model of hindlimb ischemia, intramuscular injection of rapamycin-treated P25 UCMSCs into the ischemic limb significantly promoted neovascularization and ischemic limb salvage. We further analyzed the changes in the expression of angiogenesis-associated genes in rapamycin-primed MSCs and found higher expression of several genes related to angiogenesis, such as VEGFR2 and CTGF/CCN2, in primed cells than in unprimed MSCs. Taken together, our data demonstrate that rapamycin is a potential drug to restore the proangiogenic activity of senescent MSCs, which is of importance in treating ischemic diseases and tissue engineering.
Collapse
Affiliation(s)
- Yu-Lin Cao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Lan Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Lei
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fei Gao
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wen-Xiang Ren
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Chen
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hong-Xiang Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting Chen
- Hubei Engineering Research Center for Application of Extracelluar Vesicle, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qiu-Bai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Application of Extracelluar Vesicle, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhi-Chao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Singla A, Simbassa SB, Chirra B, Gairola A, Southerland MR, Shah KN, Rose RE, Chen Q, Basharat A, Baeza J, Raina R, Chapman MJ, Hassan AM, Ivanov I, Sen A, Wu HJ, Cannon CL. Hetero-Multivalent Targeted Liposomal Drug Delivery to Treat Pseudomonas aeruginosa Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40724-40737. [PMID: 36018830 PMCID: PMC9480101 DOI: 10.1021/acsami.2c12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas aeruginosa is the leading nosocomial and community-acquired pathogen causing a plethora of acute and chronic infections. The Centers for Disease Control and Prevention has designated multidrug-resistant isolates of P. aeruginosa as a serious threat. A novel delivery vehicle capable of specifically targeting P. aeruginosa, and encapsulating antimicrobials, may address the challenges associated with these infections. We have developed hetero-multivalent targeted liposomes functionalized with host cell glycans to increase the delivery of antibiotics to the site of infection. Previously, we have demonstrated that compared with monovalent liposomes, these hetero-multivalent liposomes bind with higher affinity to P. aeruginosa. Here, compared with nontargeted liposomes, we have shown that greater numbers of targeted liposomes are found in the circulation, as well as at the site of P. aeruginosa (PAO1) infection in the thighs of CD-1 mice. No significant difference was found in the uptake of targeted, nontargeted, and PEGylated liposomes by J774.A1 macrophages. Ciprofloxacin-loaded liposomes were formulated and characterized for size, encapsulation, loading, and drug release. In vitro antimicrobial efficacy was assessed using CLSI broth microdilution assays and time-kill kinetics. Lastly, PAO1-inoculated mice treated with ciprofloxacin-loaded, hetero-multivalent targeted liposomes survived longer than mice treated with ciprofloxacin-loaded, monovalent targeted, or nontargeted liposomes and free ciprofloxacin. Thus, liposomes functionalized with host cell glycans target P. aeruginosa resulting in increased retention of the liposomes in the circulation, accumulation at the site of infection, and increased survival time in a mouse surgical site infection model. Consequently, this formulation strategy may improve outcomes in patients infected with P. aeruginosa.
Collapse
Affiliation(s)
- Akshi Singla
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sabona B. Simbassa
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Bhagath Chirra
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Anirudh Gairola
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Marie R. Southerland
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Kush N. Shah
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Robert E. Rose
- Comparative
Medicine Program, Texas A&M University, College Station, Texas 77843, United States
| | - Qingquan Chen
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Ahmed Basharat
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Jaime Baeza
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Rohit Raina
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Morgan J. Chapman
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Adel M. Hassan
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Ivan Ivanov
- Department
of Veterinary Physiology and Pharmacology, Texas A&M University, College
Station, Texas 77843, United States
| | - Anindito Sen
- Microscopy
and Imaging Center, Texas A&M University, College Station, Texas 77843, United States
| | - Hung-Jen Wu
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carolyn L. Cannon
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| |
Collapse
|
13
|
Moore TL, Cook AB, Bellotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv Transl Res 2022; 12:2019-2037. [PMID: 35284984 PMCID: PMC9242933 DOI: 10.1007/s13346-022-01143-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Collapse
Affiliation(s)
- Thomas L Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.
| | - Alexander B Cook
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Purnima Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| |
Collapse
|
14
|
Mabrouk M, Ibrahim Fouad G, El-Sayed SAM, Rizk MZ, Beherei HH. Hepatotoxic and Neurotoxic Potential of Iron Oxide Nanoparticles in Wistar Rats: a Biochemical and Ultrastructural Study. Biol Trace Elem Res 2022; 200:3638-3665. [PMID: 34704196 DOI: 10.1007/s12011-021-02943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Iron oxide nanoparticles (IONPs) are increasingly being employed for in vivo biomedical nanotheranostic applications. The development of novel IONPs should be accompanied by careful scrutiny of their biocompatibility. Herein, we studied the effect of administration of three formulations of IONPs, based on their starting materials along with synthesizing methods, IONPs-chloride, IONPs-lactate, and IONPs-nitrate, on biochemical and ultrastructural aspects. Different techniques were utilized to assess the effect of different starting materials on the physical, morphological, chemical, surface area, magnetic, and particle size distribution accompanied with their surface charge properties. Their nanoscale sizes were below 40 nm and demonstrated surface up to 69m2/g, and increased magnetization of 71.273 emu/g. Moreover, we investigated the effects of an oral IONP administration (100 mg/kg/day) in rat for 14 days. The liver enzymatic functions were investigated. Liver and brain tissues were analyzed for oxidative stress. Finally, a transmission electron microscope (TEM) and inductively coupled plasma optical emission spectrometer (ICP-OES) were employed to investigate the ultrastructural alterations and to estimate content of iron in the selected tissues of IONP-exposed rats. This study showed that magnetite IONPs-chloride exhibited the safest toxicological profile and thus could be regarded as a promising nanotherapeutic candidate for brain or liver disorders.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St, 12622, Dokki, Cairo, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St, 12622, Dokki, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St, PO Box 12622, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Lopez-Cazares G, Eniola-Adefeso O. Dual Coating of Chitosan and Albumin Negates the Protein Corona-Induced Reduced Vascular Adhesion of Targeted PLGA Microparticles in Human Blood. Pharmaceutics 2022; 14:pharmaceutics14051018. [PMID: 35631604 PMCID: PMC9143524 DOI: 10.3390/pharmaceutics14051018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular-targeted carriers (VTCs) have the potential to localize therapeutics and imaging agents to inflamed, diseased sites. Poly (lactic-co-glycolic acid) (PLGA) is a negatively charged copolymer commonly used to construct VTCs due to its biodegradability and FDA approval. Unfortunately, PLGA VTCs experienced reduced adhesion to inflamed endothelium in the presence of human plasma proteins. In this study, PLGA microparticles were coated with chitosan (CS), human serum albumin (HSA), or both (HSA-CS) to improve adhesion. The binding of sialyl Lewis A (a ligand for E-selectin)-targeted PLGA, HSA-PLGA, CSPLGA, and HSA-CSPLGA to activated endothelial cells was evaluated in red blood cells in buffer or plasma flow conditions. PLGA VTCs with HSA-only coating showed improvement and experienced 35–52% adhesion in plasma compared to plasma-free buffer conditions across all shear rates. PLGA VTCs with dual coating—CS and HSA—maintained 80% of their adhesion after exposure to plasma at low and intermediate shears and ≈50% at high shear. Notably, the protein corona characterization showed increases at the 75 and 150 kDa band intensities for HSA-PLGA and HSA-CSPLGA, which could correlate to histidine-rich glycoprotein and immunoglobulin G. The changes in protein corona on HSA-coated particles seem to positively influence particle binding, emphasizing the importance of understanding plasma protein–particle interactions.
Collapse
Affiliation(s)
- Genesis Lopez-Cazares
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0856
| |
Collapse
|
16
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Manners N, Priya V, Mehata AK, Rawat M, Mohan S, Makeen HA, Albratty M, Albarrati A, Meraya AM, Muthu MS. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040441. [PMID: 35455438 PMCID: PMC9029632 DOI: 10.3390/ph15040441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular and related diseases (CVRDs) are among the most prevalent chronic diseases in the 21st century, with a high mortality rate. This review summarizes the various nanomedicines for diagnostic and therapeutic applications in CVRDs, including nanomedicine for angina pectoris, myocarditis, myocardial infarction, pericardial disorder, thrombosis, atherosclerosis, hyperlipidemia, hypertension, pulmonary arterial hypertension and stroke. Theranostic nanomedicines can prolong systemic circulation, escape from the host defense system, and deliver theranostic agents to the targeted site for imaging and therapy at a cellular and molecular level. Presently, discrete non-invasive and non-surgical theranostic methodologies are such an advancement modality capable of targeted diagnosis and therapy and have better efficacy with fewer side effects than conventional medicine. Additionally, we have presented the recent updates on nanomedicine in clinical trials, targeted nanomedicine and its translational challenges for CVRDs. Theranostic nanomedicine acts as a bridge towards CVRDs amelioration and its management.
Collapse
Affiliation(s)
- Natasha Manners
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Manoj Rawat
- Novartis Healthcare Private Limited, Hyderabad 500078, India;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia;
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
- Correspondence: ; Tel.: +91-923-519-5928; Fax: +91-542-236-8428
| |
Collapse
|
18
|
De Negri Atanasio G, Ferrari PF, Campardelli R, Perego P, Palombo D. Innovative nanotools for vascular drug delivery: the atherosclerosis case study. J Mater Chem B 2021; 9:8558-8568. [PMID: 34609399 DOI: 10.1039/d1tb01071a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the leading cause of mortality in the Western world. Among them, atherosclerosis represents one of the most common diseases in the modern society due to a common sedentary lifestyle, high-fat diet, and smoking. In the near future, a new approach could potentially improve the therapy of vascular pathologies, where to date the non-specific treatments present several limitations, such as poor biodistribution, quick elimination from the body, and undesired side-effects. In this field, nanotechnology has a great potential for the therapy and diagnosis of atherosclerosis with more and more recent and innovative publications. This review is a critical analysis of the results reported in the literature regarding the different and possible new approaches for the therapy and diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Giulia De Negri Atanasio
- Department of Experimental Medicine, University of Genoa, via Leon Battista Alberti, 2, 16132 Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Roberta Campardelli
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy. .,Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy
| | - Domenico Palombo
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy.,Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.,Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
19
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
20
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
21
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sahoo RK, Singh H, Thakur K, Gupta U, Goyal AK. Theranostic Applications of Nanomaterials in the Field of Cardiovascular Diseases. Curr Pharm Des 2021; 28:91-103. [PMID: 34218771 DOI: 10.2174/1381612827666210701154305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
A large percentage of people are being exposed to mortality due to cardiovascular diseases. Convention approaches have not provided satisfactory outcomes in the management of these diseases. To overcome the limitations of conventional approaches, nanomaterials like nanoparticles, nanotubes, micelles, lipid based nanocarriers, dendrimers, carbon based nano-formulations represent the new aspect of diagnosis and treatment of cardiovascular diseases. The unique inherent properties of the nanomaterials are the major reasons for their rapidly growing demand in the field of medicine. Profound knowledge in the field of nanotechnology and biomedicine is needed for the notable translation of nanomaterials into theranostic cardiovascular applications. In this review, the authors have summarized different nanomaterials which are being extensively used to diagnose and treat the diseases such as coronary heart disease, myocardial infarction, atherosclerosis, stroke and thrombosis.
Collapse
Affiliation(s)
- Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Kamlesh Thakur
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Amit K Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
23
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Somszor K, Allison-Logan S, Karimi F, McKenzie T, Fu Q, O'Connor A, Qiao G, Heath D. Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules 2021; 22:2554-2562. [PMID: 33983713 DOI: 10.1021/acs.biomac.1c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of hydrophilic drugs from hydrophobic polymers is a long-standing challenge in the biomaterials field due to the limited solubility of the therapeutic agent within the polymer matrix. In this work, we develop a drug delivery mechanism that enables the impregnation and subsequent elution of hydrophilic drugs from a hydrophobic polymer material. This was achieved by synthesizing core cross-linked star polymer amphiphiles with hydrophilic cores and hydrophobic coronas. While significant work has been done to create nanocarriers for hydrophilic drugs, this work is distinct from previous work in that it designs amphiphilic and core cross-linked particles for controlled release from hydrophobic matrices. Ultraviolet-mediated atom transfer radical polymerization was used to synthesize the poly(ethylene glycol) (PEG)-based hydrophilic cores of the star polymers, and hydrophobic coronas of poly(caprolactone) (PCL) were then built onto the stars using ring-opening polymerization. We illustrated the cytocompatibility of PCL loaded with these star polymers through human endothelial cell adhesion and proliferation for up to 7 days, with star loadings of up to 40 wt %. We demonstrated successful loading of the hydrophilic drug heparin into the star polymer core, achieving a loading efficiency and content of 50 and 5%, respectively. Finally, the heparin-loaded star polymers were incorporated into a PCL matrix and sustained release of heparin was illustrated for over 40 days. These results support the use of core cross-linked star polymer amphiphiles for the delivery of hydrophilic drugs from hydrophobic polymer matrices. These materials were developed for application as drug-eluting and biodegradable coronary artery stents, but this flexible drug delivery platform could have impact in a broad range of medical applications.
Collapse
Affiliation(s)
- Katarzyna Somszor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Stephanie Allison-Logan
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Fatemeh Karimi
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thomas McKenzie
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Qiang Fu
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Andrea O'Connor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Greg Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Daniel Heath
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| |
Collapse
|
25
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
26
|
Ferrari PF, Zattera E, Pastorino L, Perego P, Palombo D. Dextran/poly-L-arginine multi-layered CaCO 3-based nanosystem for vascular drug delivery. Int J Biol Macromol 2021; 177:548-558. [PMID: 33577822 DOI: 10.1016/j.ijbiomac.2021.02.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/31/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
The development of heterogeneous drug delivery systems leads to innovative strategies for targeted therapy of common pathologies, such as cancer, immunological and neurological disorders. Nowadays, it is possible to choose among a great variety of nanoparticles on the basis of the needs they have to satisfy. However, a candidate for the treatment of cardiovascular pathologies is still missing. In this context, a targeted therapy implies the conceptualization of nanoparticles that take active part in the treatment of vascular pathologies. The aim of this work was to provide a method to produce multi-layered calcium carbonate (CaCO3) nanoparticles encapsulating a model protein, bovine serum albumin, with model antibodies on their surface. CaCO3 nanoparticles were produced by the combination of complex coacervation and mineralization and were engineered using layer-by-layer technique with a polysaccharide, dextran sulfate, and a homo-poly-amino acid, poly-L-arginine. Morphology, biocompatibility, cellular uptake, influence on cell expression of the inflammatory marker matrix metalloproteinase-9, and hemocompatibility of the nanoparticles were studied. The presence of the dextran/poly-L-arginine layers did not negatively affect the nanoparticle overall characteristics and they did not trigger proinflammatory response in vitro. Taking together all the obtained results, we consider the proposed CaCO3 nanoparticles as a promising tool in cardiovascular field.
Collapse
Affiliation(s)
- Pier Francesco Ferrari
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy.
| | - Elena Zattera
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via Opera Pia, 13, 16145 Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy
| | - Domenico Palombo
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
27
|
Biomedical nanoparticle design: What we can learn from viruses. J Control Release 2021; 329:552-569. [PMID: 33007365 PMCID: PMC7525328 DOI: 10.1016/j.jconrel.2020.09.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023]
Abstract
Viruses are nanomaterials with a number of properties that surpass those of many synthetic nanoparticles (NPs) for biomedical applications. They possess a rigorously ordered structure, come in a variety of shapes, and present unique surface elements, such as spikes. These attributes facilitate propitious biodistribution, the crossing of complex biological barriers and a minutely coordinated interaction with cells. Due to the orchestrated sequence of interactions of their stringently arranged particle corona with cellular surface receptors they effectively identify and infect their host cells with utmost specificity, while evading the immune system at the same time. Furthermore, their efficacy is enhanced by their response to stimuli and the ability to spread from cell to cell. Over the years, great efforts have been made to mimic distinct viral traits to improve biomedical nanomaterial performance. However, a closer look at the literature reveals that no comprehensive evaluation of the benefit of virus-mimetic material design on the targeting efficiency of nanomaterials exists. In this review we, therefore, elucidate the impact that viral properties had on fundamental advances in outfitting nanomaterials with the ability to interact specifically with their target cells. We give a comprehensive overview of the diverse design strategies and identify critical steps on the way to reducing them to practice. More so, we discuss the advantages and future perspectives of a virus-mimetic nanomaterial design and try to elucidate if viral mimicry holds the key for better NP targeting.
Collapse
|
28
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
29
|
Machado MGC, Pound-Lana G, de Oliveira MA, Lanna EG, Fialho MCP, de Brito ACF, Barboza APM, Aguiar-Soares RDDO, Mosqueira VCF. Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide. Drug Deliv Transl Res 2020; 10:1626-1643. [DOI: 10.1007/s13346-020-00812-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Eufrásio-da-Silva T, Ruiz-Hernandez E, O'Dwyer J, Picazo-Frutos D, Duffy GP, Murphy BP. Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regen Med 2019; 14:1013-1028. [PMID: 31746270 DOI: 10.2217/rme-2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Cell repopulation of tissue-engineered vascular grafts (TEVGs) from decellularized arterial scaffolds is limited by dense concentric tunica media layers which impede cells migrating radially between the layers. We aimed to develop and validate a new microneedle device to modify decellularized carotid arteries with radial microchannels to enhance medial layer repopulation. Material & methods: Modified decellularized porcine arteries were seeded with rat mesenchymal stem cells using either standard longitudinal injection, or a dual vacuum-perfusion bioreactor. Mechanical tests were used to assess the arterial integrity following modification. Results & conclusion: The method herein achieved radial recellularization of arteries in vitro without significant loss of mechanical integrity, Thus, we report a novel method for successful radial repopulation of decellularized carotid artery-based tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Tatiane Eufrásio-da-Silva
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Eduardo Ruiz-Hernandez
- Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin, Ireland
| | - Joanne O'Dwyer
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,School of Pharmacy, RCSI, Dublin, Ireland.,Anatomy, School of Medicine, College of Medicine Nursing & Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dolores Picazo-Frutos
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,School of Pharmacy, RCSI, Dublin, Ireland
| | - Garry P Duffy
- Department of Anatomy, Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,Anatomy, School of Medicine, College of Medicine Nursing & Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Bruce P Murphy
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Advanced Materials & BioEngineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland.,Department of Mechanical & Manufacturing Engineering, TCD, Dublin, Ireland
| |
Collapse
|
31
|
Bandelli D, Weber C, Schubert US. Strontium Isopropoxide: A Highly Active Catalyst for the Ring-Opening Polymerization of Lactide and Various Lactones. Macromol Rapid Commun 2019; 40:e1900306. [PMID: 31506988 DOI: 10.1002/marc.201900306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Commercially available strontium isopropoxide represents a suitable catalyst/initiator for the ring-opening polymerization (ROP) of lactide (LA), ε-caprolactone, δ-valerolactone, δ-caprolactone, and δ-decalactone. Well-defined polyesters are accessible via the solution polymerization of lactide in toluene with a [LA]:[Sr] ratio of 100:1 at room temperature with or without the addition of dodecanol as coinitiator. Kinetic studies and detailed analysis by means of matrix-assisted laser desorption ionization mass spectrometry reveal pseudo-first-order kinetics of the ROP as well as excellent endgroup fidelity of the polylactide (PLA) with isopropyl and dodecyl α-endgroups. Both isopropanolate moieties as well as the coinitiator each initiate PLA chains, enabling the synthesis of PLA with tailored molar mass. The polymerization of ε-caprolactone and δ-valerolactone confirms the high catalyst activity, which causes quantitative monomer conversion after 1 min polymerization time but broad molar mass distributions. In contrast, the catalyst is well suited for the ROP of the less reactive δ-caprolactone and δ-decalactone. Although kinetic studies reveal initially bimodal molar mass distributions, polyesters with dispersity values Ð < 1.2 and unimodal molar mass distributions can be obtained at moderate to high monomer conversions.
Collapse
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
32
|
Yun CW, Lee SH. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20040982. [PMID: 30813471 PMCID: PMC6412804 DOI: 10.3390/ijms20040982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease. Despite the fact that the precise mechanism of MSCs remains unclear, their therapeutic capability to treat ischemic diseases has been tested in phase I/II clinical trials. MSCs have the potential to become an effective therapeutic strategy for the treatment of ischemic and non-ischemic cardiovascular disorders. The molecular mechanism underlying the efficacy of MSCs in promoting engraftment and accelerating the functional recovery of injury sites is still unclear. It is hypothesized that the mechanisms of paracrine effects for the cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cardiovascular disease. We focus on MSCs, highlighting their roles in cardiovascular disease repair, differentiation, and MSC niche, and discuss their therapeutic efficacy and the current status of MSC-based cardiovascular disease therapies.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 34538, Korea.
| |
Collapse
|
33
|
Sharma M, Dube T, Chibh S, Kour A, Mishra J, Panda JJ. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv 2019; 16:113-128. [PMID: 30572726 DOI: 10.1080/17425247.2019.1562443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Effective therapy of various neurological disorders is hindered on account of the failure of various therapeutics crossing blood-brain-barrier (BBB). Nanotheranostics has emerged as a cutting-edge unconventional theranostic nanomedicine, capable of realizing accurate diagnosis together with effective and targeted delivery of therapeutics across BBB to the unhealthy regions of the brain for potential clinical success. AREAS COVERED We have tried to review the current status of nanotheranostic based approaches followed to manage neurological disorders. The focus has been majorly laid on to explore various theranostic nanoparticles and their application potential towards image-guided neurotherapies. Additionally, the usefulness of exceptional diagnostic, imaging techniques including magnetic resonance imaging and fluorescence imaging are being discussed by highlighting their promising opportunities in the detection, diagnosis, and treatment of the neurological disorders. EXPERT OPINION Inimitable diagnostic and therapeutic potential of nanotheranostics have accomplished the aim of personalized therapies by governing the therapeutic efficacy of the system along with facilitating patient pre-selection grounded on non-invasive imaging, thereby predicting the responses of patients to nanomedicine treatments. While these accomplishments are encouraging, they are still the minority and demands for a continuous effort to improve sensitivity and precision in screening/diagnosis along with improving therapeutic efficacy in various neural disorders.
Collapse
Affiliation(s)
- Manju Sharma
- a Institute of Nano Science and Technology , Mohali , India
| | - Taru Dube
- a Institute of Nano Science and Technology , Mohali , India
| | - Sonika Chibh
- a Institute of Nano Science and Technology , Mohali , India
| | - Avneet Kour
- a Institute of Nano Science and Technology , Mohali , India
| | - Jibanananda Mishra
- b School of Bioengineering and Biosciences , Lovely Professional University , Phagwara , India
| | | |
Collapse
|
34
|
Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int 2018; 2018:8179075. [PMID: 30402112 PMCID: PMC6196793 DOI: 10.1155/2018/8179075] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases such as myocardial infarction, ischemic stroke, and critical limb ischemia are immense public health challenges. Current pharmacotherapy and surgical approaches are insufficient to completely heal ischemic diseases and are associated with a considerable risk of adverse effects. Alternatively, human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for ischemic disease therapy. This review summarizes the pathogenesis of ischemic diseases, discusses the potential therapeutic effects and mechanisms of hMSCs for these diseases, and provides an overview of challenges of using hMSCs clinically for treating ischemic diseases.
Collapse
|
35
|
Chen L, Glass JJ, De Rose R, Sperling C, Kent SJ, Houston ZH, Fletcher NL, Rolfe BE, Thurecht KJ. Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 1:756-767. [DOI: 10.1021/acsabm.8b00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Joshua J. Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden D-01069, Germany
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
36
|
Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0856-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Noukeu LC, Wolf J, Yuan B, Banerjee S, Nguyen KT. Nanoparticles for Detection and Treatment of Peripheral Arterial Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800644. [PMID: 29952061 DOI: 10.1002/smll.201800644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Peripheral arterial disease (PAD) is defined as a slow, progressive disorder of the lower extremity arterial vessels characterized by chronic narrowing that often results in occlusion and is associated with loss of functional capacity. Although the PAD occurrence rate is increasing in the elderly population, outcomes with current treatment strategies are suboptimal. Hence, there is an urgent need to develop new technologies that overcome limitations of traditional modalities for PAD detection and therapy. In this Review, the application of nanotechnology as a tool that bridges the gap in PAD diagnosis and therapy is in focus. Several materials including synthetic, natural, biodegradable, and biocompatible materials are used to develop nanoparticles for PAD diagnostic and/or therapeutic applications. Moreover, various recent research approaches are being explored to diagnose PAD through multimodality imaging with different nanoplatforms. Further efforts include targeted delivery of various therapeutic agents using nanostructures as carriers to treat PAD. Last, but not least, despite being a fairly new field, researchers are exploring the use of nanotheranostics for PAD detection and therapy.
Collapse
Affiliation(s)
- Linda C Noukeu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Joseph Wolf
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Baohong Yuan
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Subhash Banerjee
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| |
Collapse
|
38
|
Gupta MK, Lee Y, Boire TC, Lee JB, Kim WS, Sung HJ. Recent strategies to design vascular theranostic nanoparticles. Nanotheranostics 2017; 1:166-177. [PMID: 29071185 PMCID: PMC5646719 DOI: 10.7150/ntno.18531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular disease is a leading cause of death and disability worldwide. Current surgical intervention and treatment options for vascular diseases have exhibited limited long-term success, emphasizing the need to develop advanced treatment paradigms for early detection and more effective treatment of dysfunctional cells in a specific blood vessel lesion. Advances in targeted nanoparticles mediating cargo delivery enables more robust prevention, screening, diagnosis, and treatment of vascular disorders. In particular, nanotheranostics integrates diagnostic imaging and therapeutic function into a single agent, and is an emerging platform towards more effective and localized vascular treatment. This review article highlights recent advances and current challenges associated with the utilization of targeted nanoparticles for real-time diagnosis and treatment of vascular diseases. Given recent developments, nanotheranostics offers great potential to serve as an effective platform for targeted, localized, and personalized vascular treatment.
Collapse
Affiliation(s)
- Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
| | - Jung-Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
| | - Won Shik Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, South Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
39
|
Meyers MW, Rink JS, Jiang Q, Kelly ME, Vercammen JM, Thaxton CS, Kibbe MR. Systemically administered collagen-targeted gold nanoparticles bind to arterial injury following vascular interventions. Physiol Rep 2017; 5:e13128. [PMID: 28242820 PMCID: PMC5328771 DOI: 10.14814/phy2.13128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022] Open
Abstract
Surgical and endovascular therapies for severe atherosclerosis often fail due to the development of neointimal hyperplasia and arterial restenosis. Our objective was to synthesize, characterize, and evaluate the targeting specificity and biocompatibility of a novel systemically injected nanoparticle. We hypothesize that surface-functionalization of gold nanoparticles (AuNPs) with a collagen-targeting peptide will be biocompatible and target specifically to vascular injury. 13 nm AuNPs were surface functionalized with a peptide-molecular fluorophore and targeted to collagen (T-AuNP) or a scrambled peptide sequence (S-AuNP). After rat carotid artery balloon injury and systemic injection of T-AuNP or S-AuNP, arteries and organs were harvested and assessed for binding specificity and biocompatibility. The T-AuNP bound with specificity to vascular injury for a minimum of 24 h. No significant inflammation was evident locally at arterial injury or systemically in major organs. The T-AuNP did not impact endothelial cell viability or induce apoptosis at the site of injury in vivo. No major changes were evident in hepatic or renal blood chemistry profiles. Herein, we synthesized a biocompatible nanoparticle that targets to vascular injury following systemic administration. These studies demonstrate proof-of-principle and serve as the foundation for further T-AuNP optimization to realize systemic, targeted delivery of therapeutics to the sites of vascular injury.
Collapse
Affiliation(s)
- Molly Wasserman Meyers
- Department of Surgery, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
| | - Jonathan S Rink
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Qun Jiang
- Department of Surgery, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
| | - Megan E Kelly
- Department of Surgery, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
| | - Janet M Vercammen
- Department of Surgery, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
| | - Colby S Thaxton
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Melina R Kibbe
- Department of Surgery, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1267-1280. [DOI: 10.1016/j.msec.2016.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
41
|
Roozbahani M, Kharaziha M, Emadi R. pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity. Int J Pharm 2017; 518:312-319. [PMID: 28062364 DOI: 10.1016/j.ijpharm.2017.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/16/2022]
|
42
|
Gaurab R, Dattatrya S, Amit Y, Gopal C K. Nanomedicine. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nanomedicine, an offshoot of nanotechnology, is considered as one of the most promising technologies of the 21st century. Due to their minute size, nanomedicines can easily target difficult-to-reach sites with improved solubility and bioavailability and reduced adverse effects. They also act as versatile delivery systems, carrying both chemotherapeutics and imaging agents to targeted sites. Hence, nanomedicine can be used to achieve the same therapeutic effect at smaller doses than their conventional counterparts and can offer impressive resolutions for various life-threatening diseases. Although certain issues have been raised about the potential toxicities of nanomaterials, it is anticipated that the advances in nanomedicine will furnish clarifications to many of modern medicine's unsolved problems. This chapter aims to provide a comprehensive and contemporary survey of various nanomedicine products along with the major risks and side effects associated with the nanoparticles.
Collapse
Affiliation(s)
- Roy Gaurab
- National Center for Cell Science (NCCS) – Pune, India
| | | | - Yadav Amit
- National Center for Cell Science (NCCS) – Pune, India
| | - Kundu Gopal C
- National Center for Cell Science (NCCS) – Pune, India
| |
Collapse
|
43
|
Nethi SK, Nanda HS, Steele TWJ, Patra CR. Functionalized nanoceria exhibit improved angiogenic properties. J Mater Chem B 2017; 5:9371-9383. [DOI: 10.1039/c7tb01957b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overall schematic representation of the synthesis, characterization and proangiogenic activity of functionalized nanoceria.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Himansu Sekhar Nanda
- School of Materials Science and Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Terry W. J. Steele
- School of Materials Science and Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Chitta Ranjan Patra
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
44
|
Hu Q, Prakash J, Rijcken CJ, Hennink WE, Storm G. High systemic availability of core-crosslinked polymeric micelles after subcutaneous administration. Int J Pharm 2016; 514:112-120. [DOI: 10.1016/j.ijpharm.2016.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/20/2022]
|
45
|
Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 2016; 105:167-184. [DOI: 10.1016/j.biomaterials.2016.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023]
|
46
|
Dou Y, Guo J, Chen Y, Han S, Xu X, Shi Q, Jia Y, Liu Y, Deng Y, Wang R, Li X, Zhang J. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. J Control Release 2016; 235:48-62. [DOI: 10.1016/j.jconrel.2016.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/24/2016] [Accepted: 05/21/2016] [Indexed: 02/04/2023]
|
47
|
Chollet L, Saboural P, Chauvierre C, Villemin JN, Letourneur D, Chaubet F. Fucoidans in Nanomedicine. Mar Drugs 2016; 14:E145. [PMID: 27483292 PMCID: PMC4999906 DOI: 10.3390/md14080145] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Fucoidans are widespread cost-effective sulfated marine polysaccharides which have raised interest in the scientific community over last decades for their wide spectrum of bioactivities. Unsurprisingly, nanomedicine has grasped these compounds to develop innovative therapeutic and diagnostic nanosystems. The applications of fucoidans in nanomedicine as imaging agents, drug carriers or for their intrinsic properties are reviewed here after a short presentation of the main structural data and biological properties of fucoidans. The origin and the physicochemical specifications of fucoidans are summarized in order to discuss the strategy of fucoidan-containing nanosystems in Human health. Currently, there is a need for reproducible, well characterized fucoidan fractions to ensure significant progress.
Collapse
Affiliation(s)
- Lucas Chollet
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
- Algues & Mer, Kernigou, F-29242 Ouessant, France.
| | - Pierre Saboural
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | - Cédric Chauvierre
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | | | - Didier Letourneur
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | - Frédéric Chaubet
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| |
Collapse
|
48
|
Development of antithrombotic nanoconjugate blocking integrin α2β1-collagen interactions. Sci Rep 2016; 6:26292. [PMID: 27195826 PMCID: PMC4872532 DOI: 10.1038/srep26292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
An antithrombotic nanoconjugate was designed in which a designed biomimetic peptide LWWNSYY was immobilized to the surface of poly(glycidyl methacrylate) nanoparticles (PGMA NPs). Our previous work has demonstrated LWWNSYY to be an effective inhibitor of integrin α2β1-collagen interaction and subsequent thrombus formation, however its practical application suffered from the formation of clusters in physiological environment caused by its high hydrophobicity. In our present study, the obtained LWWNSYY-PGMA nanoparticles (L-PGMA NPs) conjugate, with an improved dispersibility of LWWNSYY by PGMA NPs, have shown binding to collagen receptors with a Kd of 3.45 ± 1.06 μM. L-PGMA NPs have also proven capable of inhibiting platelet adhesion in vitro with a reduced IC50 of 1.83 ± 0.29 μg/mL. High inhibition efficiency of L-PGMA NPs in thrombus formation was further confirmed in vivo with a 50% reduction of thrombus weight. Therefore, L-PGMA NPs were developed as a high-efficiency antithrombotic nanomedicine targeted for collagen exposed on diseased blood vessel wall.
Collapse
|
49
|
Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, Sahandi Zangabad P, Moosavi Basri SM, Bakhtiari L, Hamblin MR. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine (Lond) 2016; 11:513-30. [PMID: 26906471 DOI: 10.2217/nnm.16.3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis. Nanotechnology can increase the efficiency of drugs, improve local and systematic delivery to atherosclerotic plaques and reduce the inflammatory or angiogenic response after intravascular intervention. Nanocarriers have potential for delivery of imaging and diagnostic agents to precisely targeted destinations. This review paper will cover the current applications and future outlook of nanotechnology, as well as the main diagnostic methods, in the treatment of CAD.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Amirala Bakhshian Nik
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran 1439957131 Tehran, Iran
| | - Narges Yazdani
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohammad Hamrang
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Elmira Mohamed
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science & Engineering, Sharif University of Technology, P.O. Box 11365-9466, 14588 Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- School of Computer Science, Institute for Research in Fundamental Sciences, Tehran, Iran.,Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Leila Bakhtiari
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Yu K, Zhou Y, Li Y, Sun X, Sun F, Wang X, Mu H, Li J, Liu X, Teng L, Li Y. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomater Sci 2016; 4:1219-32. [DOI: 10.1039/c6bm00308g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed an improved pre-conjugation strategy, in which herceptin as a ligand was pre-conjugated with DSPE-PEG2000-Mal via chemical cross-linking, followed by conjugation onto the surface of pre-prepared paclitaxel-loaded PLGA/DODMA nanoparticles through hydrophobic interaction and electrostatic attraction for paclitaxel delivery.
Collapse
Affiliation(s)
- Kongtong Yu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Yulin Zhou
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Yuhuan Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xiangshi Sun
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Fengying Sun
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xinmei Wang
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Hongyan Mu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Jie Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Xiaoyue Liu
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Lesheng Teng
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| | - Youxin Li
- School of life sciences
- Jilin University
- Changchun
- People's Republic of China
| |
Collapse
|