1
|
Wang Z, Gu Y, Qu Y, Huang X, Sun T, Wu W, Hu Q, Chen X, Li Y, Zhao H, Hu Y, Wu B, Xu J. Prevention of Intrauterine Adhesion with Platelet-Rich Plasma Double-Network Hydrogel. Adv Biol (Weinh) 2024:e2400336. [PMID: 39673358 DOI: 10.1002/adbi.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/30/2024] [Indexed: 12/16/2024]
Abstract
Intrauterine adhesion (IUA) can negatively impact on pregnancy outcomes, leading to reduced pregnancy rates, secondary infertility, and an increased risk of pregnancy complications. Studies have shown that the application of platelet-rich plasma (PRP) in IUA patients is effective. However, the clinical readhesive rate of IUA after treatment is still high, especially in severe cases. Platelet-rich plasma double-network hydrogel (DN gel) is an engineered PRP double network hydrogel, which is a sodium alginate (SA) based PRP hydrogel with egg carton ion cross-linking and fibrin double network. The results of this study show that intrauterine injection of DN gel has a better effect on promoting endometrial regeneration and enhancing endometrial receptivity than PRP gel. The mechanism is analyzed through single-cell sequencing, which may be achieved by increasing the expression of neutrophils (Neut), natural killer cells (NK), and type I classical dendritic cells (cDC1) in the endometrium and inhibiting the infiltration of M2 macrophages. Overall, based on the good healing efficiency and good biocompatibility of DN gel, it is expected to become a method of treating IUA with better efficacy and faster clinical translation.
Collapse
Affiliation(s)
- Zhuomin Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiyuan Qu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xujia Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Tao Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Department of Assisted Reproduction, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Qianyu Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Huafei Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Bingbing Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Department of Assisted Reproduction, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
2
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis. Appl Microbiol Biotechnol 2024; 108:100. [PMID: 38217256 PMCID: PMC10786974 DOI: 10.1007/s00253-023-12819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded β-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
3
|
Islam P, Abosalha A, Schaly S, Boyajian JL, Santos M, Makhlouf S, Renesteen E, Kassab A, Shum-Tim C, Shum-Tim D, Prakash S. Baculovirus Expressing Tumor Growth Factor-β1 (TGFβ1) Nanoshuttle Augments Therapeutic Effects for Vascular Wound Healing: Design and In Vitro Analysis. ACS Pharmacol Transl Sci 2024; 7:3419-3428. [PMID: 39539270 PMCID: PMC11555499 DOI: 10.1021/acsptsci.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
One of the major challenges in vascular tissue regeneration is effective wound healing that can be resolved by an innovative targeted nanoshuttle that delivers growth factors to blood vessels. This study investigates the production and efficacy of transforming growth factor-β1 (TGFβ1) gene delivery using poly(lactic-co-glycolic acid) (PLGA) baculovirus (BV) nanoshuttles (NSs). They exhibited an encapsulation efficiency of 86.23% ± 0.65% and a negative zeta potential of -29.57 ± 1.27 mV. In vitro studies in human umbilical vein endothelial cells (HUVECs) revealed that a 12 h incubation period optimized virus transduction. The safety and superior intracellular uptake of NSs and BVs in HUVECs were observed. The NSs carrying 100 and 400 MOI exhibited the highest cell proliferation rates in HUVECs. These sustained-release NSs significantly improved vascular cell migration and wound closure compared to free TGFβ1 carrying BV and can be a groundbreaking find in regenerative medicine, cardiovascular diseases, and chronic ulcer conditions.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ahmed Abosalha
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Pharmaceutical
Technology Department, Faculty of Pharmacy, Tanta University, Tanta
Al-Geish St., the Medical Campus, Tanta 31527, Egypt
| | - Sabrina Schaly
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jacqueline L. Boyajian
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Madison Santos
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephanie Makhlouf
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Editha Renesteen
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amal Kassab
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Cedrique Shum-Tim
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Mila−Quebec
AI Institute, McGill University, 6666 Saint-Urbain Street, Montreal, Quebec H2S 3H1, Canada
| | - Dominique Shum-Tim
- Division
of Cardiac Surgery, Royal Victoria Hospital, McGill University Health
Centre, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Satya Prakash
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
4
|
Song Y, Han N, Guo Z, Li H, Guo M, Dou M, Ye J, Peng Z, Lu X, Li M, Wang X, Bai J, Du S. Baicalein-modified chitosan nanofiber membranes with antioxidant and antibacterial activities for chronic wound healing. Int J Biol Macromol 2024; 279:134902. [PMID: 39168207 DOI: 10.1016/j.ijbiomac.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Diabetic foot ulcers, burns and many other trauma can lead to the formation of skin wounds, which often remain open for a long period of time, seriously affecting the quality of patient's life. Oxidative stress and infection are the main factors affecting the healing of chronic wounds, so it is important to develop dressings with dual antioxidant and antimicrobial properties for wound management. In this study, functionalized chitosan was synthesized by modifying chitosan with antioxidant baicalein to enhance the antimicrobial and antioxidant activities of chitosan. Then the obtained baicalein-modified chitosan was prepared into nanofibrous membranes by electrospinning. The membrane structures were characterized, and the antioxidant and antibacterial activities were evaluated by in vivo and in vitro experiments. The results showed that the prepared wound dressings had excellent antioxidant and antibacterial activities and significantly accelerated the wound process. This study provided a reference for the development of novel dressing materials to promote wound healing.
Collapse
Affiliation(s)
- Yang Song
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Mingxue Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minhang Dou
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ziwei Peng
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinying Lu
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minghui Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinran Wang
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- Beijing university of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Kinali H, Kalaycioglu GD, Boyacioglu O, Korkusuz P, Aydogan N, Vargel I. Clinic-oriented injectable smart material for the treatment of diabetic wounds: Coordinating the release of GM-CSF and VEGF. Int J Biol Macromol 2024; 276:133661. [PMID: 38992546 DOI: 10.1016/j.ijbiomac.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Chronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles. GM-CSF promotes inflammation, while VEGF facilitates angiogenesis. The hybrid particles (200-1000 nm) designed within the scope of the study can encapsulate the model proteins Bovine Serum Albumin 65 ± 5 % and Lysozyme 77 ± 10 % and can release stably for 21 days. In vivo tests and histological findings revealed that in the hydrogels containing GM-CSF/VEGF-loaded hybrid particles, wound depth decreased, inflammation phase increased, and fibrotic scar tissue decreased, while mature granulation tissue was formed on day 10. These findings confirm that the hybrid particles first initiate the inflammation phase by delivering GM-CSF, followed by VEGF, increasing the number of vascularization and thus increasing the healing rate of wounds. We emphasize the importance of multi-component and sequential release in wound healing and propose a unifying therapeutic strategy to sequentially deliver ligands targeting wound healing stages, which is very important in the treatment of the diabetic wounds.
Collapse
Affiliation(s)
- Hurmet Kinali
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Gokce Dicle Kalaycioglu
- Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Ozge Boyacioglu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Atılım University, 06830 Gölbaşı, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey.
| | - Ibrahim Vargel
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hacettepe University, 06560 Ankara, Turkey.
| |
Collapse
|
7
|
He H, Huang W, Zhang S, Li J, Zhang J, Li B, Xu J, Luo Y, Shi H, Li Y, Xiao J, Ezekiel OC, Li X, Wu J. Microneedle Patch for Transdermal Sequential Delivery of KGF-2 and aFGF to Enhance Burn Wound Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307485. [PMID: 38623988 DOI: 10.1002/smll.202307485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Indexed: 04/17/2024]
Abstract
Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.
Collapse
Affiliation(s)
- Huacheng He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
| | - Wen Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shihui Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Bingxin Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yuting Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Huiling Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yue Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Odinaka Cassandra Ezekiel
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
8
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
9
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
10
|
Andreadi A, Lodeserto P, Todaro F, Meloni M, Romano M, Minasi A, Bellia A, Lauro D. Nanomedicine in the Treatment of Diabetes. Int J Mol Sci 2024; 25:7028. [PMID: 39000136 PMCID: PMC11241380 DOI: 10.3390/ijms25137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in β-cells or β-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
| | - Marco Meloni
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Maria Romano
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alessandro Minasi
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alfonso Bellia
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Davide Lauro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| |
Collapse
|
11
|
Karam M, Faraj M, Jaffa MA, Jelwan J, Aldeen KS, Hassan N, Mhanna R, Jaffa AA. Development of alginate and alginate sulfate/polycaprolactone nanoparticles for growth factor delivery in wound healing therapy. Biomed Pharmacother 2024; 175:116750. [PMID: 38749174 DOI: 10.1016/j.biopha.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Marwa Faraj
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Joseph Jelwan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Nadine Hassan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon.
| |
Collapse
|
12
|
Lim BY, Azmi F, Ng SF. LL37 Microspheres Loaded on Activated Carbon-chitosan Hydrogel: Anti-bacterial and Anti-toxin Wound Dressing for Chronic Wound Infections. AAPS PharmSciTech 2024; 25:110. [PMID: 38740721 DOI: 10.1208/s12249-024-02826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.
Collapse
Affiliation(s)
- Bee-Yee Lim
- National Pharmaceutical Regulatory Agency, 36, Jalan Profesor Diraja Ungku Aziz, PJS 13, Petaling Jaya, Selangor, 46200, Malaysia
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
13
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
14
|
Monavari M, Sohrabi R, Motasadizadeh H, Monavari M, Fatahi Y, Ejarestaghi NM, Fuentes-Chandia M, Leal-Egaña A, Akrami M, Homaeigohar S. Levofloxacin loaded poly (ethylene oxide)-chitosan/quercetin loaded poly (D,L-lactide-co-glycolide) core-shell electrospun nanofibers for burn wound healing. Front Bioeng Biotechnol 2024; 12:1352717. [PMID: 38605986 PMCID: PMC11007221 DOI: 10.3389/fbioe.2024.1352717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
This study developed a new burn wound dressing based on core-shell nanofibers that co-deliver antibiotic and antioxidant drugs. For this purpose, poly(ethylene oxide) (PEO)-chitosan (CS)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell nanofibers were fabricated through co-axial electrospinning technique. Antibiotic levofloxacin (LEV) and antioxidant quercetin (QS) were incorporated into the core and shell parts of PEO-CS/PLGA nanofibers, respectively. The drugs could bond to the polymer chains through hydrogen bonding, leading to their steady release for 168 h. An in vitro drug release study showed a burst effect followed by sustained release of LEV and QS from the nanofibers due to the Fickian diffusion. The NIH 3T3 fibroblast cell viability of the drug loaded core-shell nanofibers was comparable to that in the control (tissue culture polystyrene) implying biocompatibility of the nanofibers and their cell supportive role. However, there was no significant difference in cell viability between the drug loaded and drug free core-shell nanofibers. According to in vivo experiments, PEO-CS-LEV/PLGA-QS core-shell nanofibers could accelerate the healing process of a burn wound compared to a sterile gauze. Thanks to the synergistic therapeutic effect of LEV and QS, a significantly higher wound closure rate was recorded for the drug loaded core-shell nanofibrous dressing than the drug free nanofibers and control. Conclusively, PEO-CS-LEV/PLGA-QS core-shell nanofibers were shown to be a promising wound healing material that could drive the healing cascade through local co-delivery of LEV and QS to burn wounds.
Collapse
Affiliation(s)
- Mahshid Monavari
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Sohrabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Monavari
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Miguel Fuentes-Chandia
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States
| | - Aldo Leal-Egaña
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Tejedor S, Wågberg M, Correia C, Åvall K, Hölttä M, Hultin L, Lerche M, Davies N, Bergenhem N, Snijder A, Marlow T, Dönnes P, Fritsche-Danielson R, Synnergren J, Jennbacken K, Hansson K. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells 2024; 13:414. [PMID: 38474378 PMCID: PMC10930761 DOI: 10.3390/cells13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.
Collapse
Affiliation(s)
- Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
| | - Maria Wågberg
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Mikko Hölttä
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Leif Hultin
- Imaging and Data Analytics, Clinical and Pharmacological Safety Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nils Bergenhem
- Alliance Management, Business Development and Licensing, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Tom Marlow
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- SciCross AB, 541 35 Skövde, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Kenny Hansson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| |
Collapse
|
16
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
17
|
Hu F, Huang K, Zhang H, Hu W, Tong S, Xu H. IGF-PLGA microspheres promote angiogenesis and accelerate skin flap repair and healing by inhibiting oxidative stress and regulating the Ang 1/Tie 2 signaling pathway. Eur J Pharm Sci 2024; 193:106687. [PMID: 38176662 DOI: 10.1016/j.ejps.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Random flaps are widely used in the treatment of injuries, tumors, congenital malformations, and other diseases. However, postoperative skin flaps are prone to ischemic necrosis, leading to surgical failure. Insulin-like growth factor- 1(IGF-1) belongs to the IGF family and exerts its growth-promoting effects in various tissues through autocrine or paracrine mechanisms. Its application in skin flaps and other traumatic diseases is relatively limited. Poly (lactic-co-glycolic acid) (PLGA) is a degradable high-molecular-weight organic compound commonly used in biomaterials. This study prepared IGF-PLGA sustained-release microspheres to explore their impact on the survival rate of flaps both in vitro and in vivo, as well as the mechanisms involved. The research results demonstrate that IGF-PLGA has a good sustained-release effect. At the cellular level, it can promote 3T3 cell proliferation by inhibiting oxidative stress, inhibit apoptosis, and enhance the tube formation ability of human umbilical vein endothelial cells (HUVEC) . At the animal level, it accelerates flap healing by promoting vascularization through the inhibition of oxidative stress. Furthermore, this study reveals the role of IGF-PLGA in activating the Angiopoietin-1(Ang1)/Tie2 signaling pathway in promoting flap vascularization, providing a strong theoretical basis and therapeutic target for the application of IGF-1 in flaps and other traumatic diseases.
Collapse
Affiliation(s)
- Fei Hu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Ningbo, China
| | - Kai Huang
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo 315300, China
| | - Hanbo Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Ningbo, China
| | - Wenjie Hu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo 315300, China
| | - Songlin Tong
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo 315300, China
| | - Hongming Xu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo 315300, China.
| |
Collapse
|
18
|
Kos Š, Jesenko T, Blagus T. In Vivo Wound Healing Model for Characterization of Gene Electrotransfer Effects in Mouse Skin. Methods Mol Biol 2024; 2773:87-96. [PMID: 38236539 DOI: 10.1007/978-1-0716-3714-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Wound healing is a complex biological response to injury characterized by a sequence of interdependent and overlapping physiological actions. To study wound healing and cutaneous regeneration processes, the complexity of wound healing requires the use of animal models. In this chapter, we describe the protocol to generate skin wounds in a mouse model. In the mouse splinted excisional wound model, two full-thickness wounds are firstly created on the mouse dorsum, which is followed by application of silicone splint around wounded area. A splinting ring tightly adheres to the skin around full-thickness wound, preventing wound contraction and replicating human processes of re-epithelialization and new tissue formation. The wound is easily accessible for treatment as well as for daily monitoring and quantifying the wound closure.This technique represents valuable approach for the study of wound healing mechanisms and for evaluation of new therapeutic modalities. In this protocol, we describe how to utilize the model to study the effect of gene electrotransfer of plasmid DNA coding for antiangiogenic molecules. Additionally, we also present how to precisely regulate electrical parameters and modify electrode composition to reach optimal therapeutic effectiveness of gene electrotransfer into skin around wounded area.
Collapse
Affiliation(s)
- Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Liu W, Zu L, Wang S, Li J, Fei X, Geng M, Zhu C, Shi H. Tailored biomedical materials for wound healing. BURNS & TRAUMA 2023; 11:tkad040. [PMID: 37899884 PMCID: PMC10605015 DOI: 10.1093/burnst/tkad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 10/31/2023]
Abstract
Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.
Collapse
Affiliation(s)
- Wenhui Liu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lihua Zu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu 210009, P.R. China
| | - Jingyao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoyuan Fei
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Meng Geng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunlei Zhu
- Department of Orthopaedics, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Hui Shi
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
21
|
Garg SS, Dubey R, Sharma S, Vyas A, Gupta J. Biological macromolecules-based nanoformulation in improving wound healing and bacterial biofilm-associated infection: A review. Int J Biol Macromol 2023; 247:125636. [PMID: 37392924 DOI: 10.1016/j.ijbiomac.2023.125636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A chronic wound is a serious complication associated with diabetes mellitus and is difficult to heal due to high glucose levels, oxidative stress, and biofilm-associated microbial infection. The structural complexity of microbial biofilm makes it impossible for antibiotics to penetrate the matrix, hence conventional antibiotic therapies became ineffective in clinical settings. This demonstrates an urgent need to find safer alternatives to reduce the prevalence of chronic wound infection associated with microbial biofilm. A novel approach to address these concerns is to inhibit biofilm formation using biological-macromolecule based nano-delivery system. Higher drug loading efficiency, sustained drug release, enhanced drug stability, and improved bioavailability are advantages of employing nano-drug delivery systems to prevent microbial colonization and biofilm formation in chronic wounds. This review covers the pathogenesis, microbial biofilm formation, and immune response to chronic wounds. Furthermore, we also focus on macromolecule-based nanoparticles as wound healing therapies to reduce the increased mortality associated with chronic wound infections.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Rupal Dubey
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Punjab, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Punjab, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
22
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
23
|
Tang K, Cai Z, Lv Y, Liu R, Chen Q, Gu J. Scientometric Research on Trend Analysis of Nano-Based Sustained Drug Release Systems for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041168. [PMID: 37111653 PMCID: PMC10145462 DOI: 10.3390/pharmaceutics15041168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Nanomaterials, such as the nanoparticle (NP), nanomicelle, nanoscaffold, and nano-hydrogel, have been researched as nanocarriers for drug delivery more and more recently. Nano-based drug sustained release systems (NDSRSs) have been used in many medical fields, especially wound healing. However, as we know, no scientometric analysis has been seen on applying NDSRSs in wound healing, which could be of great importance to the relevant researchers. This study collected publications from 1999 to 2022 related to NDSRSs in wound healing from the Web of Science Core Collection (WOSCC) database. We employed scientometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace, VOSviewer, and Bibliometrix. The results indicated that China published the most significant number of documents in the last two decades, Islamic Azad Univ was the most productive institution, and Jayakumar, R was the most influential author. Regarding the analysis of keywords, trend topics indicate that "antibacterial", "chitosan (CS)", "scaffold", "hydrogel", "silver nanoparticle", and "growth factors (GFs)" are the hot topics in recent years. We anticipate that our work will provide a comprehensive overview of research in this field and help scholars better understand the research hotspots and frontiers in this area, thus inspiring further explorations in the future.
Collapse
Affiliation(s)
- Kuangyun Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zhengyu Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yanhan Lv
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Hosseini M, Shafiee A. Vascularization of cutaneous wounds by stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:327-350. [PMID: 37678977 DOI: 10.1016/bs.pmbts.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Differentiated skin cells have limited self-renewal capacity; thus, the application of stem/progenitor cells, adult or induced stem cells, has attracted much attention for wound healing applications. Upon skin injury, vascularization, known as a highly dynamic process, occurs with the contribution of cells, the extracellular matrix, and relevant growth factors. Considering the importance of this process in tissue regeneration, several strategies have been proposed to enhance angiogenesis and accelerate wound healing. Previous studies report the effectiveness of stem/progenitor cells in skin wound healing by facilitating the vascularization process. This chapter reviews and highlights some of the key and recent investigations on application of stem/progenitor cells to induce skin revascularization after trauma.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia; ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
26
|
Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020657. [PMID: 36839979 PMCID: PMC9964857 DOI: 10.3390/pharmaceutics15020657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.
Collapse
|
27
|
Development of L-Lysine-Loaded PLGA Microparticles as a Controlled Release System for Angiogenesis Enhancement. Pharmaceutics 2023; 15:pharmaceutics15020479. [PMID: 36839801 PMCID: PMC9961840 DOI: 10.3390/pharmaceutics15020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.
Collapse
|
28
|
Jang W, Mun SJ, Kim SY, Bong KW. Controlled growth factor delivery via a degradable poly(lactic acid) hydrogel microcarrier synthesized using degassed micromolding lithography. Colloids Surf B Biointerfaces 2023; 222:113088. [PMID: 36577342 DOI: 10.1016/j.colsurfb.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Controlled and targeted delivery of growth factors to biological environments is important for tissue regeneration. Polylactic acid (PLA) hydrogel microparticles are attractive carriers for the delivery of therapeutic cargoes based on their superior biocompatibility and biodegradability, uniform encapsulation of cargoes, and non-requirement of organic solvents during particle synthesis. In this study, we newly present controlled growth factor delivery utilizing PLA-based hydrogel microcarriers synthesized via degassed micromolding lithography (DML). Based on the direct gelation procedure from the single-phase aqueous precursor in DML, bovine serum albumin, a model protein of growth factor, and fibroblast growth factor were encapsulated into microparticles with uniform distribution. In addition, by tuning the monomer concentration and adding a hydrolytically stable crosslinker, the release of encapsulated cargoes was efficiently controlled and extended to 2 weeks. Finally, we demonstrated the biological activity of encapsulated FGF-2 in PLA-based microparticles using a fibroblast proliferation assay.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon-si, Gangwon-do 24289, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
29
|
Sasmal PK, Ganguly S. Polymer in hemostasis and follow‐up wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
30
|
Qin W, Wu Y, Liu J, Yuan X, Gao J. A Comprehensive Review of the Application of Nanoparticles in Diabetic Wound Healing: Therapeutic Potential and Future Perspectives. Int J Nanomedicine 2022; 17:6007-6029. [PMID: 36506345 PMCID: PMC9733571 DOI: 10.2147/ijn.s386585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic wounds are one of the most challenging public health issues of the 21st century due to their inadequate vascular supply, bacterial infections, high levels of oxidative stress, and abnormalities in antioxidant defenses, whereas there is no effective treatment for diabetic wounds. Due to the distinct properties of nanoparticles, such as their small particle size, elevated cellular uptake, low cytotoxicity, antibacterial activity, good biocompatibility, and biodegradability. The application of nanoparticles has been widely used in the treatment of diabetic wound healing due to their superior anti-inflammatory, antibacterial, and antioxidant activities. These nanoparticles can also be loaded with various agents, such as organic molecules (eg, exosomes, small molecule compounds, etc.), inorganic molecules (metals, nonmetals, etc.), or complexed with various biomaterials, such as smart hydrogels (HG), chitosan (CS), and hyaluronic acid (HA), to augment their therapeutic potential in diabetic wounds. This paper reviews the therapeutic potential and future perspective of nanoparticles in the treatment of diabetic wounds. Together, nanoparticles represent a promising strategy in the treatment of diabetic wound healing. The future direction may be to develop novel nanoparticles with multiple effects that not only act in wound healing at all stages of diabetes but also provide a stable physiological environment throughout the wound-healing process.
Collapse
Affiliation(s)
- Wenqi Qin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Ordoño J, Pérez-Amodio S, Ball K, Aguirre A, Engel E. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes. BIOMATERIALS ADVANCES 2022; 139:213035. [PMID: 35907761 PMCID: PMC11061846 DOI: 10.1016/j.bioadv.2022.213035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.
Collapse
Affiliation(s)
- Jesús Ordoño
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
| | - Kristen Ball
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
34
|
Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66:26-37. [PMID: 35690568 DOI: 10.1016/j.cytogfr.2022.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
The process of wound healing involves a complex and vast interplay of growth factors and cytokines that coordinate the recruitment and interaction of various cell types. A series of events involving inflammation, proliferation, and remodeling eventually leads to the restoration of the damaged tissue. Abrogation in the regulation of these events has been shown to result in excessive scarring or non-healing wounds. While the process of wound healing is not fully elucidated, it has been documented that the early events of wound healing play a key role in the outcome of the wound. Furthermore, high levels of inflammation have been shown to lead to scarring. The regulation of these events may result in scarless wound healing, especially in adults. The inhibition of transforming growth factor-β (TGF-β) and the administration of keratinocyte growth factors (KGF), KGF-1 and KGF-2, has in recent years yielded positive results in the acceleration of wound closure and reduced scarring. Here, we encapsulate recent knowledge on the roles of TGF-β, KGF1, and KGF2 in wound healing and scar formation and highlight the areas that need further investigation. We also discuss potential future directions for the use of growth factors in wound management.
Collapse
Affiliation(s)
| | | | - Hui Qi
- Wenzhou Medical University, China
| | | | | | - Lu Chao
- Wenzhou Medical University, China
| | | |
Collapse
|
35
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Bulutoglu B, Acun A, Deng SL, Mert S, Lupon E, Lellouch AG, Cetrulo CL, Uygun BE, Yarmush ML. Combinatorial Use of Therapeutic ELP-Based Micelle Particles in Tissue Engineering. Adv Healthc Mater 2022; 11:e2102795. [PMID: 35373501 PMCID: PMC9262838 DOI: 10.1002/adhm.202102795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Elastin-like peptides (ELPs) are a versatile platform for tissue engineering and drug delivery. Here, micelle forming ELP chains are genetically fused to three therapeutic molecules, keratinocyte growth factor (KGF), stromal cell-derived growth factor 1 (SDF1), and cathelicidin (LL37), to be used in wound healing. Chronic wounds represent a growing problem worldwide. A combinatorial therapy approach targeting different aspects of wound healing would be beneficial, providing a controlled and sustained release of active molecules, while simultaneously protecting these therapeutics from the surrounding harsh wound environment. The results of this study demonstrate that the conjugation of the growth factors KGF and SDF1 and the antimicrobial peptide LL37 to ELPs does not affect the micelle structure and that all three therapeutic moieties retain their bioactivity in vitro. Importantly, when the combination of these micelle ELP nanoparticles are applied to wounds in diabetic mice, over 90 % wound closure is observed, which is significantly higher than when the therapeutics are applied in their naked forms. The application of the nanoparticles designed here is the first report of targeting different aspect of wound healing synergistically.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Present address:
Department of Protein ChemistryGenentechSouth San FranciscoCA94404USA
| | - Aylin Acun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringWidener UniversityChesterPA19013USA
| | - Sarah L. Deng
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Safak Mert
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Elise Lupon
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
| | - Alexandre G. Lellouch
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Curtis L. Cetrulo
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Basak E. Uygun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJ08854USA
| |
Collapse
|
37
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
38
|
Kumar SP, Asokan Y, Balamurugan K, Harsha B. A review of wound dressing materials and its fabrication methods: emphasis on three-dimensional printed dressings. J Med Eng Technol 2022; 46:318-334. [PMID: 35212596 DOI: 10.1080/03091902.2022.2041750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A wound is a trauma caused by some adverse external or blunt forces that can damage the body tissues. Wound healing is a complex process that occurs post-injury which involves the revamping of the structure and function of damaged tissues. Scaffolds are engineered tissue structures manufactured using different materials and methods for facilitating the wound healing process. For external wounds, the antimicrobial property and ability to absorb moisture play an important role in the material selection of the scaffold. Among different methods that exist for designing scaffolds, three-dimensional printing has emerged as a promising technique wherein customised scaffolds can be designed. However, the literature on three-dimensional printed dressings is very much limited compared to conventional ones. Therefore, this review specifically focuses on the methods used to design the scaffolds with special emphasis on different three-dimensional printing techniques. It covers the process of external wound healing, different materials used in the fabrication of scaffolds, and their advantages and drawbacks.
Collapse
Affiliation(s)
- S Pravin Kumar
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - Yuvasri Asokan
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - Keerthana Balamurugan
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - B Harsha
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| |
Collapse
|
39
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
40
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
41
|
Increasing Vascular Response to Injury Improves Tendon Early Healing Outcome in Aged Rats. Ann Biomed Eng 2022; 50:587-600. [PMID: 35303172 PMCID: PMC9107615 DOI: 10.1007/s10439-022-02948-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
Tendon injuries positively correlate with patient age, as aging has significant effects on tendon homeostatic maintenance and healing potential after injury. Vascularity is also influenced by age, with both clinical and animal studies demonstrating reduced blood flow in aged tissues. However, it is unknown how aging effects vascularity following tendon injury, and if this vascular response can be modulated through the delivery of angiogenic factors. Therefore, the objective of this study is to evaluate the vascular response following Achilles tendon injury in adult and aged rats, and to define the alterations to tendon healing in an aged model following injection of angiogenic factors. It was determined that aged rat Achilles tendons have a reduced angiogenesis following injury. Further, the delivery of vascular endothelial growth factor, VEGF, caused an increase in vascular response to tendon injury and improved mechanical outcome in this aged population. This work suggests that reduced angiogenic potential with aging may be contributing to impaired tendon healing response and that the delivery of angiogenic factors can rescue this impaired response. This study was also the first to relate changes in vascular response in an aged model using in vivo measures of blood perfusion to alterations in healing properties.
Collapse
|
42
|
Bhadauria SS, Malviya R. Advancement in Nanoformulations for the Management of Diabetic Wound Healing. Endocr Metab Immune Disord Drug Targets 2022; 22:911-926. [PMID: 35249512 DOI: 10.2174/1871530322666220304214106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
People with diabetes have a very slow tendency for wound healing. Wound healing is a vast process where several factors inhibit the sequence of healing. Nano formulation plays a major role during acute and chronic wound healing. The present manuscript aims to discuss the role of nanoformulation in the treatment of diabetic wound healing. Diabetes is a common disease that has harmful consequences which lead to bad health. During the literature survey, it was observed that nanotechnology has significant advantages in the treatment of diabetic wound healing. The present manuscript summarized the role of nanomaterials in wound healing, challenges in diabetic wound healing, physiology of wound healing, a limitation that comes during wound repair, and treatments available for wound healing. After a comprehensive literature survey, it can be concluded that health worker needs more focus on the area of wound healing in diabetic patients. Medical practitioners, pharmaceutical and biomedical researchers need more attention towards the utilization of nanoformulations for the treatment of wound healing, specifically in the case of diabetes.
Collapse
Affiliation(s)
- Shailendra Singh Bhadauria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
43
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
44
|
Phenytoin-loaded bioactive nanoparticles for the treatment of diabetic pressure ulcers: formulation and in vitro/in vivo evaluation. Drug Deliv Transl Res 2022; 12:2936-2949. [PMID: 35403947 PMCID: PMC9636106 DOI: 10.1007/s13346-022-01156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
Abstract
Drug repurposing offers the chance to explore the full potential of existing drugs while reducing drug development time and costs. For instance, the anticonvulsant drug phenytoin (PHT) has been investigated for its wound healing properties. However, its poor solubility and variability of doses used topically limit its use. Hence, the aim of this study was to improve the properties and wound healing efficacy of PHT for the treatment of diabetic bedsores. PHT was encapsulated, using a modified ionic gelation method, in either positively or negatively charged chitosan-alginate nanoparticles (NPs), which possess previously demonstrated wound healing potential. These NPs were characterized by transmission electron microscopy, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. PHT-loaded NPs were evaluated in vivo for their pressure ulcers' healing potential using diabetic rats. The prepared NPs, especially the positively charged particles, exhibited superior wound healing efficacy compared to PHT suspension, with respect to healing rates, granulation tissue formation, tissue maturation, and collagen content. The positively charged NPs resulted in a 56.54% wound closure at day 7, compared to 37% for PHT suspension. Moreover, skin treated with these NPs showed a mature dermis structure with skin appendages, which were absent in all other groups, in addition to the highest collagen content of 63.65%. In conclusion, the use of a bioactive carrier enhanced the healing properties of PHT and allowed the use of relatively low doses of the drug. Our findings suggest that the prepared NPs offer an effective antibiotic-free delivery system for diabetic wound healing applications.
Collapse
|
45
|
Lim DJ, Jang I. Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers. Polymers (Basel) 2021; 13:polym13234131. [PMID: 34883634 PMCID: PMC8659775 DOI: 10.3390/polym13234131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
In diabetes, lower extremity amputation (LEA) is an irreversible diabetic-related complication that easily occurs in patients with diabetic foot ulcers (DFUs). Because DFUs are a clinical outcome of different causes including peripheral hypoxia and diabetic foot infection (DFI), conventional wound dressing materials are often insufficient for supporting the normal wound healing potential in the ulcers. Advanced wound dressing development has recently focused on natural or biocompatible scaffolds or incorporating bioactive molecules. This review directs attention to the potential of oxygenation of diabetic wounds and highlights current fabrication techniques for oxygen-releasing composites and their medical applications. Based on different oxygen-releasable compounds such as liquid peroxides and solid peroxides, for example, a variety of oxygen-releasing composites have been fabricated and evaluated for medical applications. This review provides the challenges and limitations of utilizing current oxygen releasable compounds and provides perspectives on advancing oxygen releasing composites for diabetic-related wounds associated with DFUs.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA;
| | - Insoo Jang
- Department of Internal Medicine, College of Korean Medicine, Woosuk University, Jeonju 54987, Korea
- Correspondence:
| |
Collapse
|
46
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
47
|
Nain A, Huang HH, Chevrier DM, Tseng YT, Sangili A, Lin YF, Huang YF, Chang L, Chang FC, Huang CC, Tseng FG, Chang HT. Catalytic and photoresponsive BiZ/Cu xS heterojunctions with surface vacancies for the treatment of multidrug-resistant clinical biofilm-associated infections. NANOSCALE 2021; 13:18632-18646. [PMID: 34734624 DOI: 10.1039/d1nr06358h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a one-pot facile synthesis of highly photoresponsive bovine serum albumin (BSA) templated bismuth-copper sulfide nanocomposites (BSA-BiZ/CuxS NCs, where BiZ represents in situ formed Bi2S3 and bismuth oxysulfides (BOS)). As-formed surface vacancies and BiZ/CuxS heterojunctions impart superior catalytic, photodynamic and photothermal properties. Upon near-infrared (NIR) irradiation, the BSA-BiZ/CuxS NCs exhibit broad-spectrum antibacterial activity, not only against standard multidrug-resistant (MDR) bacterial strains but also against clinically isolated MDR bacteria and their associated biofilms. The minimum inhibitory concentration of BSA-BiZ/CuxS NCs is 14-fold lower than that of BSA-CuxS NCs because their multiple heterojunctions and vacancies facilitated an amplified phototherapeutic response. As-prepared BSA-BiZ/CuxS NCs exhibited substantial biofilm inhibition (90%) and eradication (>75%) efficiency under NIR irradiation. Furthermore, MRSA-infected diabetic mice were immensely treated with BSA-BiZ/CuxS NCs coupled with NIR irradiation by destroying the mature biofilm on the wound site, which accelerated the wound healing process via collagen synthesis and epithelialization. We demonstrate that BSA-BiZ/CuxS NCs with superior antimicrobial activity and high biocompatibility hold great potential as an effective photosensitive agent for the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hao-Hsin Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Daniel M Chevrier
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), CEA Cadarache, Bâtiment 1900, Saint-Paul-lez-Durance, France
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei, 10449, Taiwan.
| | - Fu-Chieh Chang
- Infection Control Centre, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- College of Management, Yuan Ze University, Taoyuan City, 32003, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei, 10650, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Research Centre for Applied Sciences Academia Sinica, Taipei 11529, Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
48
|
Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate Is a Metabolic Mediator That Shapes Immune Cell Fate and Function. Front Physiol 2021; 12:688485. [PMID: 34733170 PMCID: PMC8558259 DOI: 10.3389/fphys.2021.688485] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactate and the associated H+ ions are still introduced in many biochemistry and general biology textbooks and courses as a metabolic by-product within fast or oxygen-independent glycolysis. However, the role of lactate as a fuel source has been well-appreciated in the field of physiology, and the role of lactate as a metabolic feedback regulator and distinct signaling molecule is beginning to gain traction in the field of immunology. We now know that while lactate and the associated H+ ions are generally immunosuppressive negative regulators, there are cell, receptor, mediator, and microenvironment-specific effects that augment T helper (Th)17, macrophage (M)2, tumor-associated macrophage, and neutrophil functions. Moreover, we are beginning to uncover how lactate and H+ utilize different transporters and signaling cascades in various immune cell types. These immunomodulatory effects may have a substantial impact in cancer, sepsis, autoimmunity, wound healing, and other immunomodulatory conditions with elevated lactate levels. In this article, we summarize the known effects of lactate and H+ on immune cells to hypothesize potential explanations for the divergent inflammatory vs. anti-inflammatory effects.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
49
|
Tallapaneni V, Kalaivani C, Pamu D, Mude L, Singh SK, Karri VVSR. Acellular Scaffolds as Innovative Biomaterial Platforms for the Management of Diabetic Wounds. Tissue Eng Regen Med 2021; 18:713-734. [PMID: 34048000 PMCID: PMC8440725 DOI: 10.1007/s13770-021-00344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic wound (DW) is one of the leading complications of patients having a long history of uncontrolled diabetes. Moreover, it also imposes an economic burden on people suffering from wounds to manage the treatment. The major impending factors in the treatment of DW are infection, prolonged inflammation and decreased oxygen levels. Since these non-healing wounds are associated with an extended recovery period, the existing therapies provide treatment for a limited period only. The areas covered in this review are general sequential events of wound healing along with DW's pathophysiology, the origin of DW and success, as well as limitations of existing therapies. This systematic review's significant aspect is to highlight the fabrication, characterization and applications of various acellular scaffolds used to heal DW. In addition to that, cellular scaffolds are also described to a limited extent.
Collapse
Affiliation(s)
- Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - C Kalaivani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divya Pamu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | |
Collapse
|
50
|
Ujjwal RR, Yadav A, Tripathi S, Krishna STVS. Polymer-Based Nanotherapeutics for Burn Wounds. Curr Pharm Biotechnol 2021; 23:1460-1482. [PMID: 34579630 DOI: 10.2174/1389201022666210927103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.
Collapse
Affiliation(s)
- Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - S T V Sai Krishna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| |
Collapse
|