1
|
Oontawee S, Siriarchavatana P, Rodprasert W, Padeta I, Pamulang YV, Somparn P, Pisitkun T, Nambooppha B, Sthitmatee N, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Small extracellular vesicles derived from sequential stimulation of canine adipose-derived mesenchymal stem cells enhance anti-inflammatory activity. BMC Vet Res 2025; 21:31. [PMID: 39838398 DOI: 10.1186/s12917-024-04465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol. IVFG, ES20, and IVES were applied simultaneously with a control condition. Stimulated cAD-MSCs were evaluated for morphological changes, cell viability, and gene expressions. Conditioned media were collected and purified for sEV isolation on Day1, Day2, and Day3. To validate the efficacy of IVES for sEV production, various analyses were conducted, including microscopic examination, surface marker assessment, zeta-potential measurement, protein quantification, nanoparticle tracking analysis, and determination of anti-inflammatory activity. RESULTS We found that IVES demonstrated non-cytotoxicity and induced crucial genotypic changes associated with sEV production in cAD-MSCs. Interestingly, IVFG influenced cellular adaptation, while ES20 induced hypoxia activation. By merging these stimulations, IVES enhanced sEV stability and quality profiles. The cAD-MSC-derived sEVs exhibited anti-inflammatory activity in lipopolysaccharide-induced RAW264.7 macrophages, emphasizing their improved effectiveness without cytotoxicity or immunogenicity. These effects were consistent across day 3 collection, indicating the establishment of an effective protocol for sEV production. CONCLUSIONS This research established an innovative sequential stimulation method with positive impact on sEV characteristics including stability, quality, and anti-inflammatory activity. This study not only contributes to the enhancement of sEV production but also sheds light on their functional aspects for therapeutic interventions.
Collapse
Affiliation(s)
- Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Irma Padeta
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yudith Violetta Pamulang
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Palumbos SD, Popolow J, Goldsmith J, Holzbaur EL. Autophagic stress activates distinct compensatory secretory pathways in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.621551. [PMID: 39574677 PMCID: PMC11580983 DOI: 10.1101/2024.11.07.621551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Autophagic dysfunction is a hallmark of neurodegenerative disease, leaving neurons vulnerable to the accumulation of damaged organelles and proteins. However, the late onset of diseases suggests that compensatory quality control mechanisms may be engaged to delay the deleterious effects induced by compromised autophagy. Neurons expressing common familial Parkinson's disease (PD)-associated mutations in LRRK2 kinase exhibit defective autophagy. Here, we demonstrate that both primary murine neurons and human iPSC-derived neurons harboring pathogenic LRRK2 upregulate the secretion of extracellular vesicles. We used unbiased proteomics to characterize the secretome of LRRK2G2019S neurons and found that autophagic cargos including mitochondrial proteins were enriched. Based on these observations, we hypothesized that autophagosomes are rerouted toward secretion when cell-autonomous degradation is compromised, likely to mediate clearance of undegraded cellular waste. Immunoblotting confirmed the release of autophagic cargos and immunocytochemistry demonstrated that secretory autophagy was upregulated in LRRK2G2019S neurons. We also found that LRRK2G2019S neurons upregulate the release of exosomes containing miRNAs. Live-cell imaging confirmed that this upregulation of exosomal release was dependent on hyperactive LRRK2 activity, while pharmacological experiments indicate that this release staves off apoptosis. Finally, we show that markers of both vesicle populations are upregulated in plasma from mice expressing pathogenic LRRK2. In sum, we find that neurons expressing pathogenic LRRK2 upregulate the compensatory release of secreted autophagosomes and exosomes, to mediate waste disposal and transcellular communication, respectively. We propose that this increased secretion contributes to the maintenance of cellular homeostasis, delaying neurodegenerative disease progression over the short term while potentially contributing to increased neuroinflammation over the longer term.
Collapse
Affiliation(s)
- Sierra D. Palumbos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jacob Popolow
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliet Goldsmith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Silva P, Hernández N, Tapia H, Gaete-Ramírez B, Torres P, Flores T, Herrera D, Cáceres-Verschae A, Acuña RA, Varas-Godoy M, Torres VA. Tumor-derived hypoxic small extracellular vesicles promote endothelial cell migration and tube formation via ALS2/Rab5/β-catenin signaling. FASEB J 2024; 38:e23716. [PMID: 38847490 DOI: 10.1096/fj.202400265r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 11/01/2024]
Abstract
Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the β-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of β-catenin. These events converged in the expression of β-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.
Collapse
Affiliation(s)
- Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Nadia Hernández
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Héctor Tapia
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pedro Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Tania Flores
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Daniela Herrera
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Albano Cáceres-Verschae
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo A Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Manuel Varas-Godoy
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Teles RHG, Engelmayr D, Meybohm P, Burek M. Isolation of Extracellular Vesicles Using Formulas to Adapt Centrifugation to Different Centrifuges. Methods Mol Biol 2024; 2761:39-48. [PMID: 38427227 DOI: 10.1007/978-1-0716-3662-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer vesicles released by cells to facilitate cell-to-cell communication. To study their biological roles and functions, they need to be isolated and purified, which can be achieved through a variety of methods. Here, we describe different methods for isolating and purifying EVs, with a focus on calculating the required g-force and centrifugation time with different centrifuges and rotors. We have compiled key formulas and tested predicted parameters for EV acquisitions to provide a comprehensive guide for EV isolation.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, Sao Paulo, Brazil
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Daniela Engelmayr
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Lei Z, Jiang H, Liu J, Liu Y, Wu D, Sun C, Du Q, Wang L, Wu G, Wang S, Zhang X. Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53859-53870. [PMID: 37909306 DOI: 10.1021/acsami.3c13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) have shown great potential in the field of cancer metastasis research. However, inefficient EV biofabrication has become a barrier to large-scale research on cancer-derived EVs. Here, we presented a novel method to enhance the biofabrication of cancer-derived EVs via audible acoustic wave (AAW), which yielded mechanical stimuli, including surface acoustic pressure and surface stress. Compared to EV yield in conventional static culture, AAW increased the number of cancer-derived EVs by up to 2.5-folds within 3 days. Furthermore, cancer-derived EVs under AAW stimulation exhibited morphology, size, and zeta potential comparable to EVs generated in conventional static culture, and more importantly, they showed the capability to promote cancer cell migration and invasion under both 2D and 3D culture conditions. Additionally, the elevation in EV biofabrication correlated with the activation of the ESCRT pathway and upregulation of membrane fusion-associated proteins (RAB family, SNARE family, RHO family) in response to AAW stimulation. We believe that AAW represents an attractive approach to achieving high-quantity and high-quality production of EVs and that it has the potential to enhance EV biofabrication from other cell types, thereby facilitating EV-based scientific and translational research.
Collapse
Affiliation(s)
- Zhuoyue Lei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuping Liu
- Fuyang Tumor Hospital, Yingzhou District146 Hebin East Rd, Fuyang 236048, China
| | - Di Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qijun Du
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohua Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Shuqi Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
9
|
Shelke GV, Williamson CD, Jarnik M, Bonifacino JS. Inhibition of endolysosome fusion increases exosome secretion. J Cell Biol 2023; 222:e202209084. [PMID: 37213076 PMCID: PMC10202829 DOI: 10.1083/jcb.202209084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/04/2023] [Accepted: 03/17/2023] [Indexed: 05/23/2023] Open
Abstract
Exosomes are small vesicles that are secreted from cells to dispose of undegraded materials and mediate intercellular communication. A major source of exosomes is intraluminal vesicles within multivesicular endosomes that undergo exocytic fusion with the plasma membrane. An alternative fate of multivesicular endosomes is fusion with lysosomes, resulting in degradation of the intraluminal vesicles. The factors that determine whether multivesicular endosomes fuse with the plasma membrane or with lysosomes are unknown. In this study, we show that impairment of endolysosomal fusion by disruption of a pathway involving the BLOC-one-related complex (BORC), the small GTPase ARL8, and the tethering factor HOPS increases exosome secretion by preventing the delivery of intraluminal vesicles to lysosomes. These findings demonstrate that endolysosomal fusion is a critical determinant of the amount of exosome secretion and suggest that suppression of the BORC-ARL8-HOPS pathway could be used to boost exosome yields in biotechnology applications.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D. Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Wang L, Wang D, Ye Z, Xu J. Engineering Extracellular Vesicles as Delivery Systems in Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300552. [PMID: 37080941 PMCID: PMC10265081 DOI: 10.1002/advs.202300552] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Di Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| |
Collapse
|
11
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
12
|
Mignogna G, Fabrizi C, Correani V, Giorgi A, Maras B. Rab11A Depletion in Microglia-Derived Extracellular Vesicle Proteome upon Beta-Amyloid Treatment. Cell Biochem Biophys 2023:10.1007/s12013-023-01133-4. [PMID: 36995559 DOI: 10.1007/s12013-023-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microglia, the macrophage-like glial cells, behave as sentinels against exogenous pathogens invading the neural tissue. Their commitment is not only confined to the defensive function, but they also perform balancing trophic activities such as neuronal postnatal development, remodeling and pruning of synapses. Likewise, microglia-derived extracellular vesicles (EVs) can play strategic roles in maintaining a healthy brain by modulating neuronal activity and by controlling neurite outgrowth as well as innate immune response. Nevertheless, strong evidence also points to their role in the development of neurodegenerative pathologies such as Alzheimer's disease (AD). Here, we explored EV protein content released by BV2 microglial cells in a resting state and after stimulation with beta-amyloid peptides (Aβ), mimicking conditions occurring in AD. In the resting BV2 cells, we extended the list of proteins present in mouse microglia EV cargo with respect to those reported in the Vesiclepedia exosome database while, in amyloid-triggered microglia, we highlighted a pronounced drop in EV protein content. Focusing on Rab11A, a key factor in the recycling routes of amyloid species, we observed a dramatic decrease of this protein in Aβ-treated microglia EV cargo with respect to the EVs from the untreated sample. This decrease might affect the delivery of Rab11A to neurons thus increasing the harmful amyloid burden in neuronal cells that eventually may lead to their death. We tentatively proposed that alterations observed in EVs derived from Aβ-treated microglia may represent molecular features that, among others, shape the disease-associated microglial phenotype, a recently proposed subset of microglial population, present in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Giuseppina Mignogna
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Cinzia Fabrizi
- Dipartimento di Scienze, Anatomiche Istologiche Medico-Legali e dell'Apparato Locomotore Sapienza Università di Roma, Rome, Italy
| | - Virginia Correani
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Bruno Maras
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
13
|
Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, Brisson A, Buzas E, Emanueli C, Jansen F, Katsur M, Lacroix R, Lim SK, Mackman N, Mayr M, Menasché P, Nieuwland R, Sahoo S, Takov K, Thum T, Vader P, Wauben MHM, Witwer K, Sluijter JPG. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res 2023; 119:45-63. [PMID: 35325061 PMCID: PMC10233250 DOI: 10.1093/cvr/cvac031] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Chantal M Boulanger
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
| | - Elena Aikawa
- Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu i Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, 6900 Lugano, Switzerland
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alain Brisson
- Molecular Imaging and NanoBioTechnology, UMR-5248-CBMN, CNRS-University of Bordeaux-IPB, Bat. B14, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, HCEMM-SU and ELKH-SE Immune Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center, University Hospital Bonn, Bonn, Germany
| | - Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Romaric Lacroix
- Aix Marseille University, INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Haematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Pieter Vader
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 2, Utrecht, The Netherlands
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol 2023; 278:277-304. [PMID: 36894791 DOI: 10.1007/164_2023_637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.
Collapse
Affiliation(s)
- Christian Wahl-Schott
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.
| | - Konstantin Hennis
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Hristo Varbanov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover(MHH), Hannover, Germany
| |
Collapse
|
15
|
Ortega FG, Rio C, Jahn A, Gayá A, Calvo J, Monjo M, Montes-Worboys A, Molina-Molina M, Sala-Llinas E, Ramis JM. Antifibrotic Effects of Extracellular Vesicles From Umbilical Cord-Mesenchymal Stem Cells on Lung Myofibroblast Cells. Arch Bronconeumol 2023:S0300-2896(23)00020-0. [PMID: 36822880 DOI: 10.1016/j.arbres.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Francisco G Ortega
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; IBS Granada, Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain; Unidad de Gestión Clínica Cartuja, Distrito Sanitario Granada-Metropolitano, 18013 Granada, Spain
| | - Carlos Rio
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreas Jahn
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antonio Gayá
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004 Palma, Spain
| | - Javier Calvo
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004 Palma, Spain
| | - Marta Monjo
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| | - Ana Montes-Worboys
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, Pneumology Research Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, Pneumology Research Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ernest Sala-Llinas
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; ILD Unit, Respiratory Department, University Hospital of Bellvitge, Pneumology Research Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; Respiratory Department, Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Joana M Ramis
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| |
Collapse
|
16
|
Ye Z, Xiong Y, Peng W, Wei W, Huang L, Yue J, Zhang C, Lin G, Huang F, Zhang L, Zheng S, Yue J. Manipulation of PD-L1 Endosomal Trafficking Promotes Anticancer Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206411. [PMID: 36567273 PMCID: PMC9951344 DOI: 10.1002/advs.202206411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 05/28/2023]
Abstract
The aberrant regulation of PD-L1 in tumor cells remains poorly understood. Here, the authors systematically investigate the endosomal trafficking of plasma membrane PD-L1 in tumor cells. They show that plasma membrane PD-L1 is continuously internalized, and then trafficked from early endosomes to multivesicular bodies/late endosomes, recycling endosomes, lysosomes, and/or extracellular vesicles (EVs). This constitutive endocytic trafficking of PD-L1 is Rab5- and clathrin-dependent. Triazine compound 6J1 blocks the endosomal trafficking of PD-L1 and induces its accumulation in endocytic vesicles by activating Rab5. 6J1 also promotes exosomal PD-L1 secretion by activating Rab27. Together, these effects result in a decrease in the membrane level of PD-L1 in 6J1-treated tumor cells and enables tumor cells to be more susceptible to the tumor-killing activity of T cells in vitro. 6J1 also increases tumor-infiltrating cytotoxic T cells and promotes chemokines secretion in the tumor microenvironment. Rab27 knockdown abolishes 6J1-induced PD-L1 secretion in EVs and revokes the exhausted tumor-infiltrating T cells in tumors, thereby improving the anticancer efficacy of 6J1. Furthermore, a combination of 6J1 and an anti-PD-1 antibody significantly improves the anticancer immune response. Therefore, manipulating PD-L1 endosomal trafficking provides a promising means to promote an anticancer immune response in addition to the immune checkpoint-blocking antibody therapy.
Collapse
Affiliation(s)
- Zuodong Ye
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Yiding Xiong
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Wenjie Wei
- Research Core FacilitiesSouth University of Science and Technology of ChinaShenzhen518052China
| | - Lihong Huang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Juliana Yue
- Department of BiologyBrigham Young UniversityProvoUT84602USA
| | - Chunyuan Zhang
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ge Lin
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Feng Huang
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Songguo Zheng
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Division of Natural and Applied SciencesSynear Molecular Biology LabDuke Kunshan UniversityKunshan215316China
| |
Collapse
|
17
|
Enhancement of Immunosuppressive Activity of Mesenchymal Stromal Cells by Platelet-Derived Factors is Accompanied by Apoptotic Priming. Stem Cell Rev Rep 2022; 19:713-733. [PMID: 36417151 PMCID: PMC10070232 DOI: 10.1007/s12015-022-10471-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Abstract
The pro-inflammatory phase of bone healing, initiated by platelet activation and eventually hematoma formation, impacts bone marrow mesenchymal stromal cells (MSCs) in unknown ways. Here, we created platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of encapsulated MSCs in comparison to a non-inflammatory fibrin (FBR) hydrogel environment. MSCs were isolated from human bone marrow, while PRP was collected from pooled apheresis thrombocyte concentrates and used for hydrogel preparation. After their encapsulation in hydrogels for 72 h, retrieved MSCs were analyzed for immunomodulatory activities, apoptosis, stem cell properties, senescence, CD9+, CD63+ and CD81+ extracellular vesicle (EV) release, and metabolism-related changes. PRP-hydrogels stimulated immunosuppressive functions of MSCs, along with their upregulated susceptibility to cell death in communication with PBMCs and augmented caspase 3/7 activity. We found impaired clonal growth and cell cycle progression, and more pronounced β-galactosidase activity as well as accumulation of LC3-II-positive vacuoles in PRP-MSCs. Stimuli derived from PRP-hydrogels upregulated AKT and reduced mTOR phosphorylation in MSCs, which suggests an initiation of survival-related processes. Our results showed that PRP-hydrogels might represent a metabolically stressful environment, inducing acidification of MSCs, reducing polarization of the mitochondrial membrane and increasing lipid accumulation. These features were not detected in FBR-MSCs, which showed reduced CD63+ and CD81+ EV production and maintained clonogenicity. Our data revealed that PRP-derived hematoma components cause metabolic adaptation of MSCs followed by increased immune regulatory functions. For the first time, we showed that PRP stimuli represent a survival challenge and “apoptotic priming” that are detrimental for stem cell-like growth of MSCs and important for their therapeutic consideration.
Graphical Abstract
Collapse
|
18
|
Prasad V, Bartenschlager R. A snapshot of protein trafficking in SARS-CoV-2 infection. Biol Cell 2022; 115:e2200073. [PMID: 36314261 PMCID: PMC9874443 DOI: 10.1111/boc.202200073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is a human pathogenic virus responsible for the COVID-19 (coronavirus disease 2019) pandemic. The infection cycle of SARS-CoV-2 involves several related steps, including virus entry, gene expression, RNA replication, assembly of infectious virions and their egress. For all of these steps, the virus relies on and exploits host cell factors, cellular organelles, and processes such as endocytosis, nuclear transport, protein secretion, metabolite transport at membrane contact sites (MSC) and exocytotic pathways. To do this, SARS-CoV-2 has evolved multifunctional viral proteins that hijack cellular factors and modulate their function by unique strategies. In this Review, we highlight cellular trafficking factors, processes, and organelles of relevance to the SARS-CoV-2 infection cycle and how viral proteins make use of and perturb cellular transport during the viral infection cycle.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityHeidelbergGermany
| | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityHeidelbergGermany,Division Virus‐Associated CarcinogenesisGerman Cancer Research CenterHeidelbergGermany,German Center for Infection ResearchHeidelberg Partner SiteHeidelbergGermany
| |
Collapse
|
19
|
Wu H, Zhang Z, Zhang Y, Zhao Z, Zhu H, Yue C. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis? Front Bioeng Biotechnol 2022; 10:1043320. [PMID: 36420445 PMCID: PMC9676268 DOI: 10.3389/fbioe.2022.1043320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Exposure of the skin to an external stimulus may lead to a series of irreversible dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis. Nowadays, many cutaneous treatments have failed to strike a balance between cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of the most promising therapeutic tools. EVs are cell-derived nanoparticles that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins. They also have the ability to communicate with neighboring or distant cells. A growing body of evidence suggests that EVs play a significant role in skin repair. We summarize the current findings of EV therapy in skin aging, refractory wound, and pigmented dermatosis and also describe the novel engineering strategies for optimizing EV function and therapeutic outcomes.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenchun Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemeng Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
20
|
Solvik TA, Nguyen TA, Tony Lin YH, Marsh T, Huang EJ, Wiita AP, Debnath J, Leidal AM. Secretory autophagy maintains proteostasis upon lysosome inhibition. J Cell Biol 2022; 221:e202110151. [PMID: 35446347 PMCID: PMC9036093 DOI: 10.1083/jcb.202110151] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
The endolysosome system plays central roles in both autophagic degradation and secretory pathways, including the release of extracellular vesicles and particles (EVPs). Although previous work reveals important interconnections between autophagy and EVP-mediated secretion, our understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition, which mediates EVP-associated release of autophagic cargo receptors, including p62/SQSTM1. This secretion is highly regulated and dependent on multiple ATGs required for autophagosome formation, as well as the small GTPase Rab27a. Furthermore, disrupting autophagosome maturation, either via genetic inhibition of autophagosome-to-autolysosome fusion or expression of SARS-CoV-2 ORF3a, is sufficient to induce EVP secretion of autophagy cargo receptors. Finally, ATG-dependent EVP secretion buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Thus, we propose secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis during endolysosomal dysfunction or impaired autophagosome maturation.
Collapse
Affiliation(s)
- Tina A. Solvik
- Department of Pathology, University of California, San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Tan A. Nguyen
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Yu-Hsiu Tony Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Timothy Marsh
- Department of Pathology, University of California, San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Eric J. Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Andrew M. Leidal
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
21
|
Extracellular vesicles in mammalian reproduction: a review. ZYGOTE 2022; 30:440-463. [PMID: 35652626 DOI: 10.1017/s0967199422000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last decades, extracellular vesicles (EVs) have been found to be implicated in a complex universal mechanism of communication between different cell types. EVs are nanostructures of lipid nature that have an exosomal or ectosomal biogenesis, responsible for the intercellular transport of proteins, lipids, carbohydrates, nucleic acids, ions, among other molecules. The content of EVs can vary due to various factors such as hormonal stimuli, non-physiological conditions, metabolic state, etc. Once EVs reach their target cell, they can modulate processes such as gene expression, metabolism, response to external factors, and can even be associated with the delivery of molecules involved in epigenetic inheritance processes in germ cells. In mammalian reproduction, EVs have been shown to play an important role, either in vivo or in vitro, modulating a variety of processes in sperm, oocytes and embryos, and in their respective environments. Moreover, EVs represent a biodegradable, harmless and specific vehicle, which makes them attractive allies to consider when improving assisted reproductive technologies (ARTs). Therefore, the present review aims to describe the content of the main EVs involved in mammalian reproduction and how they can vary due to different factors, as well as to detail how EVs modulate, directly or indirectly, different molecular processes in gametes and embryos. In addition, we will highlight the mechanisms that remain to be elucidated. We will also propose new perspectives according to the characteristics of each particular EV to improve the different ARTs.
Collapse
|
22
|
Dehkordi NR, Dehkordi NR, Farjoo MH. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur J Pharmacol 2022; 920:174839. [DOI: 10.1016/j.ejphar.2022.174839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
23
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
24
|
Huang L, Li H, Ye Z, Xu Q, Fu Q, Sun W, Qi W, Yue J. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLs-mediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg Microbes Infect 2021; 10:1257-1271. [PMID: 34102949 PMCID: PMC8238074 DOI: 10.1080/22221751.2021.1941276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is an important pathogen that causes human and animal infectious diseases in Asia. So far, no effective antiviral agents are available to treat JEV infection. Here, we found that LDLR is a host factor required for JEV entry. Berbamine significantly decreases the level of LDLR at the plasma membrane by inducing the secretion of LDLR via extracellular vesicles (EVs), thereby inhibiting JEV infection. Mechanistically, berbamine blocks TRPMLs (Ca2+ permeable non-selective cation channels in endosomes and lysosomes) to compromise the endolysosomal trafficking of LDLR. This leads to the increased secretion of LDLR via EVs and the concomitant decrease in its level at the plasma membrane, thereby rendering cells resistant to JEV infection. Berbamine also protects mice from the lethal challenge of JEV. In summary, these results indicate that berbamine is an effective anti-JEV agent by preventing JEV entry.
Collapse
Affiliation(s)
- Lihong Huang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Huanan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Qiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qiang Fu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Wei Sun
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China.,City University of Hong Kong Chengdu Research Institute, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. Signal Transduct Target Ther 2021; 6:168. [PMID: 33895782 PMCID: PMC8065329 DOI: 10.1038/s41392-021-00584-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
|
26
|
Sola F, Canonico B, Montanari M, Volpe A, Barattini C, Pellegrino C, Cesarini E, Guescini M, Battistelli M, Ortolani C, Ventola A, Papa S. Uptake and Intracellular Trafficking Studies of Multiple Dye-Doped Core-Shell Silica Nanoparticles in Lymphoid and Myeloid Cells. Nanotechnol Sci Appl 2021; 14:29-48. [PMID: 33727804 PMCID: PMC7954439 DOI: 10.2147/nsa.s290867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Since most biologically active macromolecules are natural nanostructures, operating in the same scale of biomolecules gives the great advantage to enhance the interaction with cellular components. Noteworthy efforts in nanotechnology, particularly in biomedical and pharmaceutical fields, have propelled a high number of studies on the biological effects of nanomaterials. Moreover, the determination of specific physicochemical properties of nanomaterials is crucial for the evaluation and design of novel safe and efficient therapeutics and diagnostic tools. In this in vitro study, we report a physicochemical characterisation of fluorescent silica nanoparticles (NPs), interacting with biological models (U937 and PBMC cells), describing the specific triggered biologic response. Methods Flow Cytometric and Confocal analyses are the main method platforms. However TEM, NTA, DLS, and chemical procedures to synthesize NPs were employed. Results NTB700 NPs, employed in this study, are fluorescent core-shell silica nanoparticles, synthesized through a micelle-assisted method, where the fluorescence energy transfer process, known as FRET, occurs at a high efficiency rate. Using flow cytometry and confocal microscopy, we observed that NTB700 NP uptake seemed to be a rapid, concentration-, energy- and cell type-dependent process, which did not induce significant cytotoxic effects. We did not observe a preferred route of internalization, although their size and the possible aggregated state could influence their extrusion. At this level of analysis, our investigation focuses on lysosome and mitochondria pathways, highlighting that both are involved in NP co-localization. Despite the main mitochondria localization, NPs did not induce a significant increase of intracellular ROS, known inductors of apoptosis, during the time course of analyses. Finally, both lymphoid and myeloid cells are able to release NPs, essential to their biosafety. Discussion These data allow to consider NTB700 NPs a promising platform for future development of a multifunctional system, by combining imaging and localized therapeutic applications in a unique tool.
Collapse
Affiliation(s)
- Federica Sola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | | | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| |
Collapse
|
27
|
Ortega FG, Regiart MD, Rodríguez-Martínez A, de Miguel-Pérez D, Serrano MJ, Lorente JA, Tortella G, Rubilar O, Sapag K, Bertotti M, Fernández-Baldo MA. Sandwich-Type Electrochemical Paper-Based Immunosensor for Claudin 7 and CD81 Dual Determination on Extracellular Vesicles from Breast Cancer Patients. Anal Chem 2021; 93:1143-1153. [PMID: 33301317 DOI: 10.1021/acs.analchem.0c04180] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study is focused on identifying novel epithelial markers in circulating extracellular vesicles (EVs) through the development of a dual sandwich-type electrochemical paper-based immunosensor for Claudin 7 and CD81 determination, as well as its validation in breast cancer (BC) patients. This immunosensor allows for rapid, sensitive, and label-free detection of these two relevant BC biomarkers. Under optimum conditions, the limit of detection for Claudin 7 was 0.4 pg mL-1, with a wide linear range of 2 to 1000 pg mL-1, while for CD81, the limit of detection was 3 pg mL-1, with a wide linear range of 0.01 to 10 ng mL-1. Finally, we validated Claudin 7 and CD81 determination in EVs from 60 BC patients and 20 healthy volunteers, reporting higher diagnostic accuracy than the one observed with classical diagnostic markers. This analysis provides a low-cost, specific, versatile, and user-friendly strategy as a robust and reliable tool for early BC diagnosis.
Collapse
Affiliation(s)
- Francisco G Ortega
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma de Mallorca, Spain
| | - Matías D Regiart
- LSEME, Laboratório de Sensores Eletroquímicos e Métodos Eletroanalíticos. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970 São Paulo, São Paulo, Brazil
| | - Alba Rodríguez-Martínez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Diego de Miguel-Pérez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain
| | - María J Serrano
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain
| | - José A Lorente
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Gonzalo Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, 4811230 Temuco, Chile.,Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), 4811230 Temuco, Chile
| | - Olga Rubilar
- Departamento de Ingeniería Química, Universidad de La Frontera, 4811230 Temuco, Chile.,Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), 4811230 Temuco, Chile
| | - Karim Sapag
- INFAP, Laboratorio de Solidos Porosos, Universidad Nacional de San Luis, CONICET, Ejercito de los Andes 950, D5700BWS San Luis, Argentina
| | - Mauro Bertotti
- LSEME, Laboratório de Sensores Eletroquímicos e Métodos Eletroanalíticos. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970 São Paulo, São Paulo, Brazil
| | - Martín A Fernández-Baldo
- INQUISAL, Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS San Luis, Argentina
| |
Collapse
|
28
|
Morris G, Athan E, Walder K, Bortolasci CC, O'Neil A, Marx W, Berk M, Carvalho AF, Maes M, Puri BK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262:118541. [PMID: 33035581 PMCID: PMC7537668 DOI: 10.1016/j.lfs.2020.118541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
The possibility is examined that immunomodulatory pharmacotherapy may be clinically useful in managing the pandemic coronavirus disease 2019 (COVID-19), known to result from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded RNA virus. The dominant route of cell entry of the coronavirus is via phagocytosis, with ensconcement in endosomes thereafter proceeding via the endosomal pathway, involving transfer from early (EEs) to late endosomes (LEs) and ultimately into lysosomes via endolysosomal fusion. EE to LE transportation is a rate-limiting step for coronaviruses. Hence inhibition or dysregulation of endosomal trafficking could potentially inhibit SARS-CoV-2 replication. Furthermore, the acidic luminal pH of the endolysosomal system is critical for the activity of numerous pH-sensitive hydrolytic enzymes. Golgi sub-compartments and Golgi-derived secretory vesicles also depend on being mildly acidic for optimal function and structure. Activation of endosomal toll-like receptors by viral RNA can upregulate inflammatory mediators and contribute to a systemic inflammatory cytokine storm, associated with a worsened clinical outcome in COVID-19. Such endosomal toll-like receptors could be inhibited by the use of pharmacological agents which increase endosomal pH, thereby reducing the activity of acid-dependent endosomal proteases required for their activity and/or assembly, leading to suppression of antigen-presenting cell activity, decreased autoantibody secretion, decreased nuclear factor-kappa B activity and decreased pro-inflammatory cytokine production. It is also noteworthy that SARS-CoV-2 inhibits autophagy, predisposing infected cells to apoptosis. It is therefore also suggested that further pharmacological inhibition of autophagy might encourage the apoptotic clearance of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Eugene Athan
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Infectious Disease, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Wolf Marx
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
29
|
Pezzana C, Agnely F, Bochot A, Siepmann J, Menasché P. Extracellular Vesicles and Biomaterial Design: New Therapies for Cardiac Repair. Trends Mol Med 2020; 27:231-247. [PMID: 33218944 DOI: 10.1016/j.molmed.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
There is increasing evidence that extracellular vesicles (EVs) mediate the paracrine effects of stem cells. Although EVs have several attractive characteristics, they also raise issues related to delivery. For patients with cardiac disease that require a surgical procedure, direct intramyocardial (IM) administration of EVs is straightforward but its efficacy may be limited by fast wash-out, hence the interest of incorporating EVs into a controlled release polymer to optimize their residence time. For patients without surgical indication, the intravenous (IV) route is attractive because of its lack of invasiveness; however, whole-body distribution limits the fraction of EVs that reach the heart, hence the likely benefits of EV engineering to increase EV homing to the target tissue.
Collapse
Affiliation(s)
- Chloé Pezzana
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France.
| | - Florence Agnely
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Amélie Bochot
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Juergen Siepmann
- Unité 1008 INSERM, Université de Lille, Centre Hospitalier Universitaire Lille, 59000 Lille, France
| | - Philippe Menasché
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
30
|
Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal 2020; 75:109771. [PMID: 32896608 DOI: 10.1016/j.cellsig.2020.109771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Exosomes represent an evolutionarily conserved signaling pathway which can act as an alarming mechanism in responses to diverse stresses, e.g. chronic inflammation activates the budding of exosomal vesicles in both immune and non-immune cells. Exosomes can contain both pro- and anti-inflammatory cargos but in chronic inflammation, exosomes mostly carry immunosuppressive cargos, e.g. enzymes and miRNAs. The aging process is associated with chronic low-grade inflammation and the accumulation of pro-inflammatory senescent cells into tissues. There is clear evidence that aging increases the number of exosomes in both the circulation and tissues. Especially, the secretion of immunosuppressive exosomes robustly increases from senescent cells. There are observations that the exosomes from senescent cells are involved in the expansion of senescence into neighbouring cells. Interestingly, the age-related exosomes contain immune suppressive cargos which enhance the immunosuppression within recipient immune cells, i.e. tissue-resident and recruited immune cells including M2 macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). It seems that increased immunosuppression with aging impairs the clearance of senescent cells and their accumulation within tissues augments the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
31
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
32
|
Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020; 15:6485-6502. [PMID: 32922012 PMCID: PMC7457829 DOI: 10.2147/ijn.s238099] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of cell-derived, lipid bilayer membrane composed vesicles, and some of them such as exosomes and ectosomes have been proven, playing remarkable roles in transmitting intercellular information, and being involved in each property of cell physiological activities. Nowadays, EVs are considered as potential nanocarriers which could partially resolve the problems of current chemotherapy because of their distinctive advantages. As endogenous membrane encompassed vesicles with nanosize, EVs are able to pass through the natural barriers with prolonged circulation time in vivo and have intrinsic cell targeting properties, they are less toxic, and less immunogenic. Recently, studies focusing on EV-based drug delivery system for cancer therapy have exploded dramatically. This review aims to outline the current applications of EVs as potential nanosized drug carriers in cancer therapy. Firstly, the characteristics and biofunctions of each EV subtype are described. Then the variety of therapeutic cargoes, the loading methods, and the targeting strategy of engineered EVs are emphatically introduced. Thereafter the pros and cons of EVs applied as therapeutic carriers, as well as the future prospects in this field, are discussed.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Hongduo Li
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Hourong Peng
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jinzhao Chen
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, Datong, Shanxi Province 037301, People's Republic of China
| | - Ruixin Yang
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
33
|
Coban C. The host targeting effect of chloroquine in malaria. Curr Opin Immunol 2020; 66:98-107. [PMID: 32823144 PMCID: PMC7431399 DOI: 10.1016/j.coi.2020.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Due to the rapid onset and spread of the COVID-19 pandemic, the treatment of COVID-19 patients by hydroxychloroquine alone or in combination with other drugs has captured a great deal of attention and triggered considerable debate. Historically, the worldwide use of quinoline based-drugs has led to a spectacular reduction in death from malaria. Unfortunately, scientists have been forced to seek alternative drugs to treat malaria due to the emergence of chloroquine-resistant parasites in the 1960s. The repurposing of hydroxychloroquine against viral infections, various types of cancer and autoimmune diseases has been ongoing for more than 70 years, with no clear understanding of its mechanism of action (MOA). Here, we closely examine the MOA of this old but influential drug in and beyond malaria. Better insights into how chloroquine targets the host's cellular and immune responses may help to develop applications against to new pathogens and diseases, and perhaps even restore the clinical utility of chloroquine against malaria.
Collapse
Affiliation(s)
- Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan; Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.
| |
Collapse
|
34
|
Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett 2020; 486:18-28. [PMID: 32439419 DOI: 10.1016/j.canlet.2020.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohammad Razaq
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vipul Pareek
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebaz Ahmed
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
35
|
Yuana Y, Balachandran B, van der Wurff-Jacobs KMG, Schiffelers RM, Moonen CT. Potential Use of Extracellular Vesicles Generated by Microbubble-Assisted Ultrasound as Drug Nanocarriers for Cancer Treatment. Int J Mol Sci 2020; 21:E3024. [PMID: 32344752 PMCID: PMC7216118 DOI: 10.3390/ijms21083024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs)-carrying biomolecules derived from parental cells have achieved substantial scientific interest for their potential use as drug nanocarriers. Ultrasound (US) in combination with microbubbles (MB) have been shown to trigger the release of EVs from cancer cells. In the current study, the use of microbubbles-assisted ultrasound (USMB) to generate EVs containing drug cargo was investigated. The model drug, CellTracker™ green fluorescent dye (CTG) or bovine serum albumin conjugated with fluorescein isothiocyanate (BSA FITC) was loaded into primary human endothelial cells in vitro using USMB. We found that USMB loaded CTG and BSA FITC into human endothelial cells (HUVECs) and triggered the release of EVs containing these compounds in the cell supernatant within 2 h after treatment. The amount of EV released seemed to be correlated with the increase of US acoustic pressure. Co-culturing these EVs resulted in uptake by the recipient tumour cells within 4 h. In conclusion, USMB was able to load the model drugs into endothelial cells and simultaneously trigger the release of EVs-carrying model drugs, highlighting the potential of EVs as drug nanocarriers for future drug delivery in cancer.
Collapse
Affiliation(s)
- Yuana Yuana
- Imaging Division, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, The Netherlands
| | - Banuja Balachandran
- Imaging Division, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Raymond M. Schiffelers
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Chrit T. Moonen
- Imaging Division, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
36
|
de Miguel Pérez D, Rodriguez Martínez A, Ortigosa Palomo A, Delgado Ureña M, Garcia Puche JL, Robles Remacho A, Exposito Hernandez J, Lorente Acosta JA, Ortega Sánchez FG, Serrano MJ. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients. Sci Rep 2020; 10:3974. [PMID: 32132553 PMCID: PMC7055306 DOI: 10.1038/s41598-020-60212-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Disseminated disease is present in ≈50% of colorectal cancer patients upon diagnosis, being responsible for most of cancer deaths. Addition of biological drugs, as Bevacizumab, to chemotherapy, has increased progression free survival and overall survival of metastatic colorectal cancer (mCRC) patients. However, these benefits have been only reported in a small proportion of patients. To date, there are not biomarkers that could explain the heterogeneity of this disease and would help in treatment selection. Recent findings demonstrated that microRNAs (miRNAs) play an important role in cancer and they can be encapsulated with high stability into extracellular vesicles (EVs) that are released in biological fluids. EVs can act as cell-to-cell communicators, transferring genetic information, such as miRNAs. In this context, we aimed to investigate serum EV associated miRNAs (EV-miRNAs) as novel non-invasive biomarkers for the diagnosis and prognosis of Bevacizumab-treated mCRC patients. We observed that baseline miRNA-21 and 92a outperformed carcinoembryonic antigen levels in the diagnosis of our 44 mCRC patients, compared to 17 healthy volunteers. In addition, patients who died presented higher levels of miRNA-92a and 222 at 24 weeks. However, in the multivariate Cox analysis, higher levels of miRNA-222 at 24 weeks were associated with lower overall survival. Altogether, these data indicate that EV-miRNAs have a strong potential as liquid biopsy biomarkers for the identification and prognosis of mCRC.
Collapse
Affiliation(s)
- Diego de Miguel Pérez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Granada, Spain
| | - Alba Rodriguez Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Granada, Spain
| | - Alba Ortigosa Palomo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - Mayte Delgado Ureña
- Integral Oncology Division, University Hospital Virgen de las Nieves, IBS Granada, Instituto de Investigación Biosanitaria de Granada, 18012, Granada, Spain
| | - Jose Luis Garcia Puche
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain.,Integral Oncology Division, University Hospital Virgen de las Nieves, IBS Granada, Instituto de Investigación Biosanitaria de Granada, 18012, Granada, Spain
| | - Agustín Robles Remacho
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - José Exposito Hernandez
- Integral Oncology Division, University Hospital Virgen de las Nieves, IBS Granada, Instituto de Investigación Biosanitaria de Granada, 18012, Granada, Spain
| | - Jose Antonio Lorente Acosta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Granada, Spain
| | - Francisco Gabriel Ortega Sánchez
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma de Mallorca, Spain. .,Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ma Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and metastasis research group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain. .,Integral Oncology Division, University Hospital Virgen de las Nieves, IBS Granada, Instituto de Investigación Biosanitaria de Granada, 18012, Granada, Spain.
| |
Collapse
|
37
|
Rossi F, Noren H, Sarria L, Schiller PC, Nathanson L, Beljanski V. Combination therapies enhance immunoregulatory properties of MIAMI cells. Stem Cell Res Ther 2019; 10:395. [PMID: 31852519 PMCID: PMC6921447 DOI: 10.1186/s13287-019-1515-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs), adult stromal cells most commonly isolated from bone marrow (BM), are being increasingly utilized in various therapeutic applications including tissue repair via immunomodulation, which is recognized as one of their most relevant mechanism of action. The promise of MSC-based therapies is somewhat hindered by their apparent modest clinical benefits, highlighting the need for approaches that would increase the efficacy of such therapies. Manipulation of cellular stress-response mechanism(s) such as autophagy, a catabolic stress-response mechanism, with small molecules prior to or during MSC injection could improve MSCs’ therapeutic efficacy. Unfortunately, limited information exists on how manipulation of autophagy affects MSCs’ response to inflammation and subsequent immunoregulatory properties. Methods In this study, we exposed BM-MSC precursor cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, to autophagy modulators tamoxifen (TX) or chloroquine (CQ), together with IFN-γ. Exposed cells then underwent RNA sequencing (RNAseq) to determine the effects of TX or CQ co-treatments on cellular response to IFN-γ at a molecular level. Furthermore, we evaluated their immunoregulatory capacity using activated CD4+ T cells by analyzing T cell activation marker CD25 and the percentage of proliferating T cells after co-culturing the cells with MIAMI cells treated or not with TX or CQ. Results RNAseq data indicate that the co-treatments alter both mRNA and protein levels of key genes responsible for MSCs’ immune-regulatory properties. Interestingly, TX and CQ also altered some of the microRNAs targeting such key genes. In addition, while IFN-γ treatment alone increased the surface expression of PD-L1 and secretion of IDO, this increase was further enhanced with TX. An improvement in MIAMI cells’ ability to decrease the activation and proliferation of T cells was also observed with TX, and to a lesser extent, CQ co-treatments. Conclusion Altogether, this work suggests that both TX and CQ have a potential to enhance MIAMI cells’ immunoregulatory properties. However, this enhancement is more pronounced with TX co-treatment.
Collapse
Affiliation(s)
- Fiorella Rossi
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Leonor Sarria
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Paul C Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA.,Prime Cell Biomedical Inc., Miami, FL, USA
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA.
| |
Collapse
|