1
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer's disease: SARS-CoV-2 on the cusp. Front Aging Neurosci 2023; 15:1129640. [PMID: 37009449 PMCID: PMC10050697 DOI: 10.3389/fnagi.2023.1129640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Increasing evidence highlights that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has long-term effects on cognitive function, which may cause neurodegenerative diseases like Alzheimer's disease (AD) in the future. We performed an analysis of a possible link between SARS-CoV-2 infection and AD risk and proposed several hypotheses for its possible mechanism, including systemic inflammation, neuroinflammation, vascular endothelial injury, direct viral infection, and abnormal amyloid precursor protein metabolism. The purpose of this review is to highlight the impact of infection with SASR-CoV-2 on the future risk of AD, to provide recommendations on medical strategies during the pandemic, and to propose strategies to address the risk of AD induced by SASR-CoV-2. We call for the establishment of a follow-up system for survivors to help researchers better understand the occurrence, natural history, and optimal management of SARS-CoV-2-related AD and prepare for the future.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Y, Alwin Prem Anand A, Bode L, Ludwig H, Emrich HM, Dietrich DE. Word recognition memory and serum levels of Borna disease virus specific circulating immune complexes in obsessive-compulsive disorder. BMC Psychiatry 2022; 22:597. [PMID: 36076225 PMCID: PMC9454108 DOI: 10.1186/s12888-022-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that persistently infects mammals including humans. BoDV-1 worldwide occurring strains display highly conserved genomes with overlapping genetic signatures between those of either human or animal origin. BoDV-1 infection may cause behavioral and cognitive disturbances in animals but has also been found in human major depression and obsessive-compulsive disorder (OCD). However, the impact of BoDV-1 on memory functions in OCD is unknown. METHOD To evaluate the cognitive impact of BoDV-1 in OCD, event-related brain potentials (ERPs) were recorded in a continuous word recognition paradigm in OCD patients (n = 16) and in healthy controls (n = 12). According to the presence of BoDV-1-specific circulating immune complexes (CIC), they were divided into two groups, namely group H (high) and L (low), n = 8 each. Typically, ERPs to repeated items are characterized by more positive waveforms beginning approximately 250 ms post-stimulus. This "old/new effect" has been shown to be relevant for memory processing. The early old/new effect (ca. 300-500 ms) with a frontal distribution is proposed to be a neural correlate of familiarity-based recognition. The late old/new effect (post-500 ms) is supposed to reflect memory recollection processes. RESULTS OCD patients were reported to show a normal early old/new effect and a reduced late old/new effect compared to normal controls. In our study, OCD patients with a high virus load (group H) displayed exactly these effects, while patients with a low virus load (group L) did not differ from healthy controls. CONCLUSION These results confirmed that OCD patients had impaired memory recollection processes compared to the normal controls which may to some extent be related to their BoDV-1 infection.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany. .,Present Address: Social Psychiatry Counseling Center, Region Hannover, Podbielskistr. 157, 30177, Hanover, Germany.
| | - A Alwin Prem Anand
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, Beerenstr. 41, 14163 Berlin, Germany
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, Beerenstr. 41, 14163 Berlin, Germany
| | - Hinderk M. Emrich
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany
| | - Detlef E. Dietrich
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany ,AMEOS Klinikum Hildesheim, Goslarsche Landstr. 60, 31135 Hildesheim, Germany ,grid.412970.90000 0001 0126 6191Center for Systems Neuroscience Hannover, Hanover, Germany
| |
Collapse
|
4
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Picornavirus May Be Linked to Parkinson’s Disease through Viral Antigen in Dopamine-Containing Neurons of Substantia Nigra. Microorganisms 2022; 10:microorganisms10030599. [PMID: 35336174 PMCID: PMC8953350 DOI: 10.3390/microorganisms10030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease linked with the loss of dopaminergic neurons in the brain region called substantia nigra and caused by unknown pathogenic mechanisms. Two currently recognized prominent features of PD are an inflammatory response manifested by glial reaction and T-cell infiltration, as well as the presence of various toxic mediators derived from activated glial cells. PD or parkinsonism has been described after infection with several different viruses and it has therefore been hypothesized that a viral infection might play a role in the pathogenesis of the disease. We investigated formalin-fixed post-mortem brain tissue from 9 patients with Parkinson’s disease and 11 controls for the presence of Ljungan virus (LV) antigen using a polyclonal antibody against the capsid protein of this recently identified picornavirus with neurotropic properties, suspected of being both a human and an animal pathogen. Evidence of viral antigen was found in 7 out of 9 Parkinson’s disease cases and in only 1 out of 11 controls (p = 0.005). The picornavirus antigen was present in dopamine-containing neurons of the substantia nigra. We propose that LV or an LV-related virus initiates the pathological process underlying sporadic PD. LV-related picornavirus antigen has also been reported in patients with Alzheimer’s disease. Potentially successful antiviral treatment in Alzheimer’s disease suggests a similar treatment for Parkinson's disease. Amantadine, originally developed as an antiviral drug against influenza infection, has also been used for symptomatic treatment of patients with PD for more than 50 years and is still commonly used by neurologists today. The fact that amantadine also has an antiviral effect on picornaviruses opens the question of this drug being re-evaluated as potential PD therapy in combination with other antiviral compounds directed against picornaviruses.
Collapse
|
6
|
Howe CL, LaFrance-Corey RG, Overlee BL, Johnson RK, Clarkson BDS, Goddery EN. Inflammatory monocytes and microglia play independent roles in inflammatory ictogenesis. J Neuroinflammation 2022; 19:22. [PMID: 35093106 PMCID: PMC8800194 DOI: 10.1186/s12974-022-02394-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pathogenic contribution of neuroinflammation to ictogenesis and epilepsy may provide a therapeutic target for reduction of seizure burden in patients that are currently underserved by traditional anti-seizure medications. The Theiler's murine encephalomyelitis virus (TMEV) model has provided important insights into the role of inflammation in ictogenesis, but questions remain regarding the relative contribution of microglia and inflammatory monocytes in this model. METHODS Female C57BL/6 mice were inoculated by intracranial injection of 2 × 105, 5 × 104, 1.25 × 104, or 3.125 × 103 plaque-forming units (PFU) of the Daniel's strain of TMEV at 4-6 weeks of age. Infiltration of inflammatory monocytes, microglial activation, and cytokine production were measured at 24 h post-infection (hpi). Viral load, hippocampal injury, cognitive performance, and seizure burden were assessed at several timepoints. RESULTS The intensity of inflammatory infiltration and the extent of hippocampal injury induced during TMEV encephalitis scaled with the amount of infectious virus in the initial inoculum. Cognitive performance was preserved in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV, but peak viral load at 72 hpi was equivalent between the inocula. CCL2 production in the brain was attenuated by 90% and TNFα and IL6 production was absent in mice inoculated with 1.25 × 104 PFU TMEV. Acute infiltration of inflammatory monocytes was attenuated by more than 80% in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV but microglial activation was equivalent between groups. Seizure burden was attenuated and the threshold to kainic acid-induced seizures was higher in mice inoculated with 1.25 × 104 PFU TMEV but low-level behavioral seizures persisted and the EEG exhibited reduced but detectable abnormalities. CONCLUSIONS The size of the inflammatory monocyte response induced by TMEV scales with the amount of infectious virus in the initial inoculum, despite the development of equivalent peak infectious viral load. In contrast, the microglial response does not scale with the inoculum, as microglial hyper-ramification and increased Iba-1 expression were evident in mice inoculated with either 1.25 × 104 or 2 × 105 PFU TMEV. Inoculation conditions that drive inflammatory monocyte infiltration resulted in robust behavioral seizures and EEG abnormalities, but the low inoculum condition, associated with only microglial activation, drove a more subtle seizure and EEG phenotype.
Collapse
Affiliation(s)
- Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA.
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Brittany L Overlee
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA
| | - Renee K Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA
| | - Benjamin D S Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emma N Goddery
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Moderna, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep 2021; 11:23819. [PMID: 34893671 PMCID: PMC8664856 DOI: 10.1038/s41598-021-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR−/− mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.
Collapse
|
8
|
Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ, Johnson AJ. Microglia and Perivascular Macrophages Act as Antigen Presenting Cells to Promote CD8 T Cell Infiltration of the Brain. Front Immunol 2021; 12:726421. [PMID: 34526998 PMCID: PMC8435747 DOI: 10.3389/fimmu.2021.726421] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.
Collapse
Affiliation(s)
- Emma N. Goddery
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Cori E. Fain
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Chloe G. Lipovsky
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Lila T. Yokanovich
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Courtney S. Malo
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Roman H. Khadka
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Zachariah P. Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Lawley KS, Rech RR, Elenwa F, Han G, Perez Gomez AA, Amstalden K, Welsh CJ, Young CR, Threadgill DW, Brinkmeyer-Langford CL. Host genetic diversity drives variable central nervous system lesion distribution in chronic phase of Theiler's Murine Encephalomyelitis Virus (TMEV) infection. PLoS One 2021; 16:e0256370. [PMID: 34415947 PMCID: PMC8378701 DOI: 10.1371/journal.pone.0256370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.
Collapse
Affiliation(s)
- Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Raquel R. Rech
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
| | - Faith Elenwa
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Gang Han
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Aracely A. Perez Gomez
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - David W. Threadgill
- Texas A&M University, College Station, TX, United States of America
- Department of Molecular and Cellular Medicine, College Station, TX, United States of America
| | - Candice L. Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| |
Collapse
|
10
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Pavasutthipaisit S, Stoff M, Ebbecke T, Ciurkiewicz M, Mayer-Lambertz S, Störk T, Pavelko KD, Lepenies B, Beineke A. CARD9 Deficiency Increases Hippocampal Injury Following Acute Neurotropic Picornavirus Infection but Does Not Affect Pathogen Elimination. Int J Mol Sci 2021; 22:ijms22136982. [PMID: 34209576 PMCID: PMC8268812 DOI: 10.3390/ijms22136982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. Caspase recruitment domain containing family member 9 (CARD9) controls protective immunity in a variety of infectious disorders. To investigate the effect of CARD9 in neurotropic virus infection, CARD9−/− and corresponding C57BL/6 wild-type control mice were infected with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue was analyzed by histology, immunohistochemistry and molecular analyses, and spleens by flow cytometry. To determine the impact of CARD9 deficiency on T cell responses in vitro, antigen presentation assays were utilized. Genetic ablation of CARD9 enhanced early pro-inflammatory cytokine responses and accelerated infiltration of T and B cells in the brain, together with a transient increase in TMEV-infected cells in the hippocampus. CARD9−/− mice showed an increased loss of neuronal nuclear protein+ mature neurons and doublecortin+ neuronal precursor cells and an increase in β-amyloid precursor protein+ damaged axons in the hippocampus. No effect of CARD9 deficiency was found on the initiation of CD8+ T cell responses by flow cytometry and co-culture experiments using virus-exposed dendritic cells or microglia-enriched glial cell mixtures, respectively. The present study indicates that CARD9 is dispensable for the initiation of early antiviral responses and TMEV elimination but may contribute to the modulation of neuroinflammation, thereby reducing hippocampal injury following neurotropic virus infection.
Collapse
Affiliation(s)
- Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Tim Ebbecke
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Sabine Mayer-Lambertz
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bernd Lepenies
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Correspondence: ; Tel.: +49-51-195-38640
| |
Collapse
|
12
|
Fernández-Alarcón C, Meyer LE, McVoy MA, Lokensgard JR, Hu S, Benneyworth MA, Anderholm KM, Janus BC, Schleiss MR. Impairment in neurocognitive function following experimental neonatal guinea pig cytomegalovirus infection. Pediatr Res 2021; 89:838-845. [PMID: 32555536 PMCID: PMC8168912 DOI: 10.1038/s41390-020-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS Newborn pups were challenged intraperitoneally (i.p.) with a pathogenic red fluorescent protein-tagged GPCMV, or sham inoculated. On days 15-19 post infection (p.i.), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS Viremia (DNAemia) was detected at day 3 p.i. in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in the lung, liver, and spleen. CD4-positive (CD4+) and CD8-positive (CD8+) T cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance traveled (p < 0.0001). CONCLUSION Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions. IMPACT CMV impairs neonatal neurocognition and memory in the setting of postnatal infection. The MWM can be used to examine memory and learning in a guinea pig model of neonatal CMV infection. CD4+ and CD8+ T cells infiltrate the brain following neonatal CMV challenge. This article demonstrates that the MWM can be used to evaluate memory and learning after neonatal GPCMV challenge. The guinea pig can be used to examine central nervous system pathology caused by neonatal CMV infection and this attribute may facilitate the study of vaccines and antivirals.
Collapse
Affiliation(s)
| | - Lucy E Meyer
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James R Lokensgard
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Shuxian Hu
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Kaitlyn M Anderholm
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bradley C Janus
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Niklasson B, Lindquist L, Klitz W, Englund E. Picornavirus Identified in Alzheimer's Disease Brains: A Pathogenic Path? J Alzheimers Dis Rep 2020; 4:141-146. [PMID: 32587947 PMCID: PMC7306919 DOI: 10.3233/adr-200174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
We investigated formalin-fixed postmortem brain tissue from the hippocampus region of 18 AD cases and 11 age-matched controls using a polyclonal antibody against Ljungan virus (LV) capsid protein 1. Evidence of a LV antigen was found in all AD cases but in none of the control specimens (p < 0.0001). The antibodies reacted with neurons and astrocytes and also showed distinct positive reaction in the amyloid/neuritic plaques. The possible role of an incompletely characterized picornavirus as the etiologic agent in AD open up the possibility of treatment with antiviral therapy directed against picornaviruses. The positive result of such treatment in a small number of patients is presented separately back to back to this report.
Collapse
Affiliation(s)
- Bo Niklasson
- Jordbro Primary Health Care Center, Stockholm, Sweden
| | - Lars Lindquist
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - William Klitz
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Netherlands Brain Bank
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Pathology, University of Lund, Lund, Sweden
| |
Collapse
|
14
|
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 2020; 10:3101. [PMID: 32080242 PMCID: PMC7033282 DOI: 10.1038/s41598-020-59808-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA.
| | - Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Animal Biology, UIUC, Urbana, USA
| | - Jessica Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Adam R Hamilton
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Nicholas L Naeger
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Entomology, UIUC, Urbana, USA
| |
Collapse
|
15
|
Bijalwan M, Young CR, Tingling J, Zhou XJ, Rimmelin AR, Leibowitz JL, Welsh CJ. Characterization of Plaque-Sized Variants of Daniel's (DA) Strain in Theiler's Virus-Induced Epilepsy. Sci Rep 2019; 9:3444. [PMID: 30837498 PMCID: PMC6401140 DOI: 10.1038/s41598-019-38967-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a complex neurological disease characterized by recurrent seizures. Patients with viral encephalitis have a 16-fold increased risk of developing epilepsy, and this risk can persist for about 15 years after the occurrence of initial viral infection. Theiler's murine encephalomyelitis virus (TMEV) infection induces a well-characterized experimental model of epilepsy in C57BL/6 mice. In response to intracerebral (I.C.) injection of Daniel's (DA) strain of TMEV, there is vigorous immune response, which is detrimental to neurons and contributes to acute seizures, rendering mice susceptible to epilepsy. A comparative in vivo challenge study with either one of the two variants of the DA strain, small (DA-DS) or large (DA-CL) plaque forming variants, revealed differences in the diseases they induced in C57BL/6 mice. Compared to DA-CL-, DA-DS-infected mice exhibited significantly more seizures, higher clinical scores, neuroinflammation, and neuronal damage (mainly in the CA1-CA2 regions of hippocampus). Moreover, the brains of DA-DS infected mice contained approximately five-fold higher virus than those of DA-CL infected mice. A sequence comparison of the DA-CL and DA-DS genome sequences showed mutations in the leader (L) and L* proteins of DA-CL variant, which may be the cause of attenuating phenotype of DA-CL variant in the C57BL/6 mouse model of epilepsy.
Collapse
Affiliation(s)
- M Bijalwan
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - C R Young
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J Tingling
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
| | - X J Zhou
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- College Station High School, Texas A&M Health Science Center, College Station, Texas, USA
| | - A R Rimmelin
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J L Leibowitz
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - C J Welsh
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA.
- Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, Texas, USA.
| |
Collapse
|
16
|
Anjum SMM, Käufer C, Hopfengärtner R, Waltl I, Bröer S, Löscher W. Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy Behav 2018; 88:189-204. [PMID: 30292054 DOI: 10.1016/j.yebeh.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus (TMEV) replicates many features of viral encephalitis-induced epilepsy in humans, including neuroinflammation, early (insult-associated) and late (spontaneous) seizures, neurodegeneration in the hippocampus, and cognitive and behavioral alterations. Thus, this model may be ideally suited to study mechanisms involved in encephalitis-induced epilepsy as potential targets for epilepsy prevention. However, spontaneous recurrent seizures (SRS) occur too infrequently to be useful as a biomarker of epilepsy, e.g., for drug studies. This prompted us to evaluate whether epileptiform spikes or spike clusters in the cortical electroencephalogram (EEG) may be a useful surrogate of epilepsy in this model. For this purpose, we developed an algorithm that allows efficient and large-scale EEG analysis of early and late seizures, spikes, and spike clusters in the EEG. While 77% of the infected mice exhibited early seizures, late seizures were only observed in 33% of the animals. The clinical characteristics of early and late seizures did not differ except that late generalized convulsive (stage 5) seizures were significantly longer than early stage 5 seizures. Furthermore, the frequency of SRS was much lower than the frequency of early seizures. Continuous (24/7) video-EEG monitoring over several months following infection indicated that the latent period to onset of SRS was 61 (range 16-91) days. Spike and spike clusters were significantly more frequent in infected mice with late seizures than in infected mice without seizures or in mock-infected sham controls. Based on the results of this study, increases in EEG spikes and spike clusters in groups of infected mice may be used as a new readout for studies on antiepileptogenic or disease-modifying drug effects in this model, because the significant increase in average spike counts in mice with late seizures obviously indicates a proepileptogenic alteration.
Collapse
Affiliation(s)
- Syed Muhammad Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
17
|
Uhde AK, Ciurkiewicz M, Herder V, Khan MA, Hensel N, Claus P, Beckstette M, Teich R, Floess S, Baumgärtner W, Jung K, Huehn J, Beineke A. Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Sci Rep 2018; 8:6106. [PMID: 29666403 PMCID: PMC5904160 DOI: 10.1038/s41598-018-24378-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/27/2018] [Indexed: 12/24/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV) infection represents an experimental mouse model to study hippocampal damage induced by neurotropic viruses. IL-10 is a pleiotropic cytokine with profound anti-inflammatory properties, which critically controls immune homeostasis. In order to analyze IL-10R signaling following virus-induced polioencephalitis, SJL mice were intracerebrally infected with TMEV. RNA-based next generation sequencing revealed an up-regulation of Il10, Il10rα and further genes involved in IL-10 downstream signaling, including Jak1, Socs3 and Stat3 in the brain upon infection. Subsequent antibody-mediated blockade of IL-10R signaling led to enhanced hippocampal damage with neuronal loss and increased recruitment of CD3+ T cells, CD45R+ B cells and an up-regulation of Il1α mRNA. Increased expression of Tgfβ and Foxp3 as well as accumulation of Foxp3+ regulatory T cells and arginase-1+ macrophages/microglia was detected in the hippocampus, representing a potential compensatory mechanism following disturbed IL-10R signaling. Additionally, an increased peripheral Chi3l3 expression was found in spleens of infected mice, which may embody reactive regulatory mechanisms for prevention of excessive immunopathology. The present study highlights the importance of IL-10R signaling for immune regulation and its neuroprotective properties in the context of an acute neurotropic virus infection.
Collapse
Affiliation(s)
- Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany.,Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - René Teich
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
18
|
Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 2017; 14:238. [PMID: 29202854 PMCID: PMC5715496 DOI: 10.1186/s12974-017-1015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler’s murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. Methods Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. Results Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. Conclusions We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.
Collapse
Affiliation(s)
- Charles L Howe
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA. .,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA. .,Department of Neurology, Mayo Clinic, Rochester, USA. .,Department of Neuroscience, Mayo Clinic, Rochester, USA. .,Department of Immunology, Mayo Clinic, Rochester, USA. .,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA. .,Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA.
| | - Reghann G LaFrance-Corey
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Emma N Goddery
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Immunology, Mayo Clinic, Rochester, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA
| | - Renee K Johnson
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Kanish Mirchia
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| |
Collapse
|
19
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
20
|
Ciurkiewicz M, Herder V, Khan MA, Uhde AK, Teich R, Floess S, Baumgärtner W, Huehn J, Beineke A. Cytotoxic CD8 + T cell ablation enhances the capacity of regulatory T cells to delay viral elimination in Theiler's murine encephalomyelitis. Brain Pathol 2017; 28:349-368. [PMID: 28452087 DOI: 10.1111/bpa.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Theiler's murine encephalomyelitis (TME) of susceptible mouse strains is a commonly used infectious animal model for multiple sclerosis. The study aim was to test the hypothesis whether cytotoxic T cell responses account for the limited impact of regulatory T cells on antiviral immunity in TME virus-induced demyelinating disease (TMEV-IDD) resistant C57BL/6 mice. TME virus-infected C57BL/6 mice were treated with (i) interleukin-2/-anti-interleukin-2-antibody-complexes to expand regulatory T cells ("Treg-expansion"), (ii) anti-CD8-antibodies to deplete cytotoxic T cells ("CD8-depletion") or (iii) with a combination of Treg-expansion and CD8-depletion ("combined treatment") prior to infection. Results showed that "combined treatment", but neither sole "Treg-expansion" nor "CD8-depletion," leads to sustained hippocampal infection and virus spread to the spinal cord in C57BL/6 mice. Prolonged infection reduces myelin basic protein expression in the spinal cord together with increased accumulation of β-amyloid precursor protein in axons, characteristic of myelin loss and axonal damage, respectively. Chronic spinal cord infection upon "combined treatment" was also associated with increased T and B cell recruitment, accumulation of CD107b+ microglia/macrophages and enhanced mRNA expression of interleukin (IL)-1α, IL-10 and tumor necrosis factor α. In conclusion, data revealed that the suppressive capacity of Treg on viral elimination is efficiently boosted by CD8-depletion, which renders C57BL/6 mice susceptible to develop chronic neuroinfection and TMEV-IDD.
Collapse
Affiliation(s)
- Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - René Teich
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
21
|
Kakizaki M, Watanabe R. IL-10 expression in pyramidal neurons after neuropathogenic coronaviral infection. Neuropathology 2017; 37:398-406. [PMID: 28493345 PMCID: PMC7167951 DOI: 10.1111/neup.12386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 02/04/2023]
Abstract
The apoptosis of pyramidal neurons in CA2 and CA3 subregions of the hippocampus is induced after infection with Mu-3 virus (Mu-3), a neuropathogenic strain of the JHM virus (JHMV), at 4-5 days post-inoculation (dpi). The viral antigens in the hippocampus are mainly found in the CD11b-positive cells distributed in the stratum oriens located outside the pyramidal layer, and only a few pyramidal neurons are infected. Furthermore, the apoptotic cells, indicated as showing caspase 3 (Cas3) activation, consist of a high number of uninfected cells. Therefore, it is considered that the apoptotic lesions occur through the indirect effects of infection, and not as a result of direct infection with Mu-3, similar to the reported neuronal apoptosis in the hippocampus after other types of infection. The apoptosis in the pyramidal neurons is accompanied by various types of proinflammatory cytokines depending on the causative agents. Thus, the local expression of proinflammatory cytokines was studied, revealing no correlation in the distribution of cytokine expression with the subregions showing apoptosis. However, the anti-inflammatory cytokine IL-10 was produced by pyramidal neurons of CA2 and CA3 at 3 dpi when there is no destructive change or viral invasion in the hippocampus.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Rihito Watanabe
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
22
|
Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep 2016; 6:28699. [PMID: 27345730 PMCID: PMC4921808 DOI: 10.1038/srep28699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022] Open
Abstract
Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel's strain of Theiler's murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders.
Collapse
Affiliation(s)
- Charles L Howe
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Neuroscience, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Immunology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | | | - Kanish Mirchia
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Brian M Sauer
- Neurobiology of Disease PhD program, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Renee M McGovern
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Eric J Buenz
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| |
Collapse
|
23
|
Petro MS, Agarkova IV, Petro TM. Effect of Chlorovirus ATCV-1 infection on behavior of C57Bl/6 mice. J Neuroimmunol 2016; 297:46-55. [PMID: 27397075 DOI: 10.1016/j.jneuroim.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Abstract
Neuroinflammation induced during immune responses to viral infections in the brain affect behavior. Unexpected evidence that oral gavage of an algal virus in its host algal cells could alter cognition was further examined by directly injecting purified algal virus ATCV-1 intracranially into C57BL/6 mice. After 4weeks, the ATCV-1 infection impaired delayed location recognition memory, and also reduced and anxiety. Corresponding to these effects, heightened ATCV-1, IL-6, iNOS, IFN-γ, and CD11b expression in brains was observed 3-days and/or 8-weeks post infection compared with control mice. These results imply that ATCV-1 infection damages the hippocampus via induction of inflammatory factors.
Collapse
Affiliation(s)
- Marilyn S Petro
- Nebraska Wesleyan University, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States.
| | - Irina V Agarkova
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States; Department of Oral Biology, University of Nebraska-Medical Center, Lincoln, NE 68583, United States
| |
Collapse
|
24
|
Mantri S, Shah BB. Enterovirus causes rapidly progressive dementia in a 28-year-old immunosuppressed woman. J Neurovirol 2016; 22:538-40. [DOI: 10.1007/s13365-015-0418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
25
|
Response of Mammalian Macrophages to Challenge with the Chlorovirus Acanthocystis turfacea Chlorella Virus 1. J Virol 2015; 89:12096-107. [PMID: 26401040 DOI: 10.1128/jvi.01254-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/16/2015] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED It was recently reported that 44% of the oropharyngeal samples from the healthy humans in a study cohort had DNA sequences similar to that of the chlorovirus ATCV-1 (Acanthocystis turfacea chlorella virus 1, family Phycodnaviridae) and that these study subjects had decreases in visual processing and visual motor speed compared with individuals in whom no virus was detected. Moreover, mice inoculated orally with ATCV-1 developed immune responses to ATCV-1 proteins and had decreases in certain cognitive domains. Because heightened interleukin-6 (IL-6), nitric oxide (NO), and ERK mitogen-activated protein (MAP) kinase activation from macrophages are linked to cognitive impairments, we evaluated cellular responses and viral PFU counts in murine RAW264.7 cells and primary macrophages after exposure to ATCV-1 in vitro for up to 72 h after a virus challenge. Approximately 8% of the ATCV-1 inoculum was associated with macrophages after 1 h, and the percentage increased 2- to 3-fold over 72 h. Immunoblot assays with rabbit anti-ATCV-1 antibody detected a 55-kDa protein consistent with the viral capsid protein from 1 to 72 h and increasing de novo synthesis of a previously unidentified 17-kDa protein beginning at 24 h. Emergence of the 17-kDa protein did not occur and persistence of the 55-kDa protein declined over time when cells were exposed to heat-inactivated ATCV-1. Moreover, starting at 24 h, RAW264.7 cells exhibited cytopathic effects, annexin V staining, and cleaved caspase 3. Activation of ERK MAP kinases occurred in these cells by 30 min postchallenge, which preceded the expression of IL-6 and NO. Therefore, ATCV-1 persistence in and induction of inflammatory factors by these macrophages may contribute to declines in the cognitive abilities of mice and humans. IMPORTANCE Virus infections that persist in and stimulate inflammatory factors in macrophages contribute to pathologies in humans. A previous study showed that DNA sequences homologous to the chlorovirus ATCV-1 were found in a significant fraction of oropharyngeal samples from a healthy human cohort. We show here that ATCV-1, whose only known host is a eukaryotic green alga (Chlorella heliozoae) that is an endosymbiont of the heliozoon Acanthocystis turfacea, can unexpectedly persist within murine macrophages and trigger inflammatory responses including factors that contribute to immunopathologies. The inflammatory factors that are produced in response to ATCV-1 include IL-6 and NO, whose induction is preceded by the activation of ERK MAP kinases. Other responses of ATCV-1-challenged macrophages include an apoptotic cytopathic effect, an innate antiviral response, and a metabolic shift toward aerobic glycolysis. Therefore, mammalian encounters with chloroviruses may contribute to chronic inflammatory responses from macrophages.
Collapse
|
26
|
Linsenbardt HR, Cook JL, Young EE, Vichaya EG, Young CR, Reusser NM, Storts R, Welsh CJ, Meagher MW. Social disruption alters pain and cognition in an animal model of multiple sclerosis. J Neuroimmunol 2015; 288:56-68. [PMID: 26531695 DOI: 10.1016/j.jneuroim.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/29/2023]
Abstract
Although pain and cognitive deficits are widespread and debilitating symptoms of multiple sclerosis (MS), they remain poorly understood. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS where disease course is exacerbated by prior stressors. Here chronic infection coupled with prior social stress increased pain behavior and impaired hippocampal-dependent memory consolidation during the demyelinating phase of disease in SJL mice. These results suggest that the TMEV model may be useful in investigating pain and cognitive impairments in MS. However, in contrast to prior Balb/cJ studies, stress failed to consistently alter behavioral and physiological indicators of disease course.
Collapse
Affiliation(s)
- H R Linsenbardt
- Department of Psychology, Texas A&M University, College Station, TX, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - J L Cook
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - E E Young
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - E G Vichaya
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - C R Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - N M Reusser
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - R Storts
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - C J Welsh
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - M W Meagher
- Department of Psychology, Texas A&M University, College Station, TX, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
27
|
Lokensgard JR, Schachtele SJ, Mutnal MB, Sheng WS, Prasad S, Hu S. Chronic reactive gliosis following regulatory T cell depletion during acute MCMV encephalitis. Glia 2015; 63:1982-1996. [PMID: 26041050 DOI: 10.1002/glia.22868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.
Collapse
Affiliation(s)
- James R Lokensgard
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott J Schachtele
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Manohar B Mutnal
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Wen S Sheng
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sujata Prasad
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shuxian Hu
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
28
|
Avila J, Perry G, Strange BA, Hernandez F. Alternative neural circuitry that might be impaired in the development of Alzheimer disease. Front Neurosci 2015; 9:145. [PMID: 25954151 PMCID: PMC4407584 DOI: 10.3389/fnins.2015.00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/08/2015] [Indexed: 11/13/2022] Open
Abstract
It is well established that some individuals with normal cognitive capacity have abundant senile plaques in their brains. It has been proposed that those individuals are resilient or have compensation factors to prevent cognitive decline. In this comment, we explore an alternative mechanism through which cognitive capacity is maintained. This mechanism could involve the impairment of alternative neural circuitry. Also, the proportion of molecules such as Aβ or tau protein present in different areas of the brain could be important.
Collapse
Affiliation(s)
- Jesus Avila
- Neurobiology, Centro de Biologia Molecular Severo Ochoa (CSIC-UAM) Madrid, Spain ; Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas Madrid, Spain
| | - George Perry
- College of Sciences, The University of Texas at San Antonio San Antonio, TX, USA
| | - Bryan A Strange
- Department of Neuroimaging, Reina Sofia Foundation, Center for Alzheimer Research, FCIEN Madrid, Spain ; Laboratory for Clinical Neuroscience, CTB, Universidad Politecnica de Madrid Madrid, Spain
| | - Felix Hernandez
- Neurobiology, Centro de Biologia Molecular Severo Ochoa (CSIC-UAM) Madrid, Spain ; Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas Madrid, Spain
| |
Collapse
|
29
|
Guha SK, Tillu R, Sood A, Patgaonkar M, Nanavaty IN, Sengupta A, Sharma S, Vaidya VA, Pathak S. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 2014; 42:123-37. [PMID: 24953429 DOI: 10.1016/j.bbi.2014.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rucha Tillu
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ankit Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishira N Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
30
|
Kakizaki M, Kashiwazaki H, Watanabe R. Mutant murine hepatitis virus-induced apoptosis in the hippocampus. Jpn J Infect Dis 2014; 67:9-16. [PMID: 24451095 DOI: 10.7883/yoken.67.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mutant virus Mu-3 was isolated from the soluble receptor-resistant mutant 7 virus (srr7), which is a neuropathogenic strain of the mouse hepatitis virus JHMV, and cloned as a soluble receptor-resistant mutant from the highly neuropathogenic JHMV strain cl-2 virus (cl-2). In order to identify specific characteristics of Mu-3, the pathology of Mu-3-infected mice was compared with that of srr7- and cl-2-infected mice. The neuropathology after Mu-3 infection exhibited a mixed pattern comparable to that induced by srr7 and cl-2 infections. In addition, Mu-3 infection caused marked apoptotic lesions in the hippocampal region, particularly in the CA2 and CA3 subregions, in the brains of all infected mice. In contrast, in cl-2 infection, 10-20% of the infected mice exhibited apoptosis in the hippocampus, which was primarily observed in the CA1 subregion. Apoptosis also occurred in the pyramidal neurons and CD11b-bearing cells. The apoptotic cells, indicated by caspase 3-activation, were a mixed population of infected and a higher number of uninfected cells. These data indicated that apoptosis observed in Mu-3 infection could be induced by the indirect effects of infection in addition to direct effects of the infected cells occurring in a cell-autonomous manner.
Collapse
|
31
|
Morrey JD, Siddharthan V, Wang H. Neurological approaches for investigating West Nile virus disease and its treatment in rodents. Antiviral Res 2013; 100:535-45. [PMID: 24055448 DOI: 10.1016/j.antiviral.2013.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
West Nile virus (WNV) has had a major public health impact since its emergence in the Western Hemisphere; in 2012, nearly 3000 cases of WN neuroinvasive disease were identified in the United States. The underlying mechanisms of WN neurologic disease can only be studied to a limited extent in patients, but can be investigated in much greater detail in animal models. In this paper, we describe how we and others have employed a variety of electrophysiological and neurological techniques to study experimental WNV infections in hamsters and mice. The methods have included electrophysiological motor unit number estimation; optogenetic photoactivation of the spinal cord and electromyography; plethysmography; measurement of heart rate variability as an indication of autonomic nervous system dysfunction; and an assessment of spatial memory loss using the Morris water maze. These techniques provide a more refined assessment of disease manifestations in rodents than traditional measurements of weight loss and mortality, and should make it possible to identify targets for therapeutic intervention and to directly assess the effects of novel treatments.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, School of Veterinary Medicine, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | | |
Collapse
|
32
|
Howe CL, Lafrance-Corey RG, Sundsbak RS, Sauer BM, Lafrance SJ, Buenz EJ, Schmalstieg WF. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection. Sci Rep 2012; 2:545. [PMID: 22848791 PMCID: PMC3408132 DOI: 10.1038/srep00545] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain.
Collapse
Affiliation(s)
- Charles L Howe
- Department of Neurology, College ofMedicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Howe CL, Lafrance-Corey RG, Sundsbak RS, Lafrance SJ. Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J Neuroinflammation 2012; 9:50. [PMID: 22405261 PMCID: PMC3368782 DOI: 10.1186/1742-2094-9-50] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 03/09/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Neuropathology caused by acute viral infection of the brain is associated with the development of persistent neurological deficits. Identification of the immune effectors responsible for injuring the brain during acute infection is necessary for the development of therapeutic strategies that reduce neuropathology but maintain immune control of the virus. METHODS The identity of brain-infiltrating leukocytes was determined using microscopy and flow cytometry at several acute time points following intracranial infection of mice with the Theiler's murine encephalomyelitis virus. Behavioral consequences of immune cell depletion were assessed by Morris water maze. RESULTS Inflammatory monocytes, defined as CD45hiCD11b++F4/80+Gr1+1A8-, and neutrophils, defined as CD45hiCD11b+++F4/80-Gr1+1A8+, were found in the brain at 12 h after infection. Flow cytometry of brain-infiltrating leukocytes collected from LysM: GFP reporter mice confirmed the identification of neutrophils and inflammatory monocytes in the brain. Microscopy of sections from infected LysM:GFP mice showed that infiltrating cells were concentrated in the hippocampal formation. Immunostaining confirmed that neutrophils and inflammatory monocytes were localized to the hippocampal formation at 12 h after infection. Immunodepletion of inflammatory monocytes and neutrophils but not of neutrophils only resulted in preservation of hippocampal neurons. Immunodepletion of inflammatory monocytes also preserved cognitive function as assessed by the Morris water maze. CONCLUSIONS Neutrophils and inflammatory monocytes rapidly and robustly responded to Theiler's virus infection by infiltrating the brain. Inflammatory monocytes preceded neutrophils, but both cell types were present in the hippocampal formation at a timepoint that is consistent with a role in triggering hippocampal pathology. Depletion of inflammatory monocytes and neutrophils with the Gr1 antibody resulted in hippocampal neuroprotection and preservation of cognitive function. Specific depletion of neutrophils with the 1A8 antibody failed to preserve neurons, suggesting that inflammatory monocytes are the key effectors of brain injury during acute picornavirus infection of the brain. These effector cells may be important therapeutic targets for immunomodulatory or immunosuppressive therapies aimed at reducing or preventing central nervous system pathology associated with acute viral infection.
Collapse
Affiliation(s)
- Charles L Howe
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
34
|
Ruller CM, Tabor-Godwin JM, Van Deren DA, Robinson SM, Maciejewski S, Gluhm S, Gilbert PE, An N, Gude NA, Sussman MA, Whitton JL, Feuer R. Neural stem cell depletion and CNS developmental defects after enteroviral infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1107-1120. [PMID: 22214838 DOI: 10.1016/j.ajpath.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022]
Abstract
Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.
Collapse
Affiliation(s)
- Chelsea M Ruller
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Jenna M Tabor-Godwin
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Donn A Van Deren
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Scott M Robinson
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Sonia Maciejewski
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Shea Gluhm
- Department of Psychology, San Diego State University, San Diego, California
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, California
| | - Naili An
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Natalie A Gude
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - Mark A Sussman
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California
| | - Ralph Feuer
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California.
| |
Collapse
|
35
|
Smeraski CA, Siddharthan V, Morrey JD. Treatment of spatial memory impairment in hamsters infected with West Nile virus using a humanized monoclonal antibody MGAWN1. Antiviral Res 2011; 91:43-9. [PMID: 21554903 DOI: 10.1016/j.antiviral.2011.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/23/2023]
Abstract
In addition to functional disorders of paresis, paralysis, and cardiopulmonary complications, subsets of West Nile virus (WNV) patients may also experience neurocognitive deficits and memory disturbances. A previous hamster study has also demonstrated spatial memory impairment using the Morris water maze (MWM) paradigm. The discovery of an efficacious therapeutic antibody MGAWN1 from pre-clinical rodent studies raises the possibility of preventing or treating WNV-induced memory deficits. In the current study, hamsters were treated intraperitoneally (i.p.) with 32 mg/kg of MGAWN1 at 4.5 days after subcutaneously (s.c.) challenging with WNV. As expected, MGAWN1 prevented mortality, weight loss, and improved food consumption of WNV-infected hamsters. The criteria for entry of surviving hamsters into the study were that they needed to have normal motor function (forelimb grip strength, beam walking) and normal spatial reference memory in the MWM probe task. Twenty-eight days after the acute phase of the disease had passed, MGAWN1- and saline-treated infected hamsters were again trained in the MWM. Spatial memory was evaluated 48 h after this training in which the hamsters searched for the location where a submerged escape platform had been positioned. Only 56% of infected hamsters treated with saline spent more time in the correct quadrant than the other three quadrants, as compared to 92% of MGAWN1-treated hamsters (P⩽0.05). Overall these studies support the possibility that WNV can cause spatial memory impairment and that therapeutic intervention may be considered.
Collapse
Affiliation(s)
- Cynthia A Smeraski
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | | | | |
Collapse
|
36
|
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411:288-305. [PMID: 21251690 PMCID: PMC3060663 DOI: 10.1016/j.virol.2010.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.
Collapse
Affiliation(s)
| | | | | | - Ralph Feuer
- Corresponding author. Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, 5500 Campanile Drive; San Diego, CA 92182-4614, USA. Fax: +1 619 594 0777.
| |
Collapse
|
37
|
Development of postinfection epilepsy after Theiler's virus infection of C57BL/6 mice. J Neuropathol Exp Neurol 2010; 69:1210-9. [PMID: 21107134 DOI: 10.1097/nen.0b013e3181ffc420] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Viral infection of the central nervous system can lead to long-term neurologic defects, including increased risk for the development of epilepsy. We describe the development of the first mouse model of viral-induced epilepsy after intracerebral infection with Theiler's murine encephalomyelitis virus. Mice were monitored with long-term video-electroencephalogram at multiple time points after infection. Most mice exhibited short-term symptomatic seizures within 3 to 7 days of infection. This was followed by a distinct latent period in which no seizures were observed. Prolonged video-electroencephalogram recordings at 2, 4, and 7 months after the initial infection revealed that a significant proportion of the mice developed profound, spontaneous epileptic seizures. Neuropathologic examination revealed hippocampal sclerosis in animals with epilepsy. Theiler's murine encephalomyelitis virus-infected C57BL/6 mice represent a novel "hit-and-run" model to investigate mechanisms underlying viral-induced short-term symptomatic seizures, epileptogenesis, and epilepsy. Importantly, this model will also be useful to investigate novel therapies for the treatment and prevention of epilepsy.
Collapse
|
38
|
Stewart KAA, Wilcox KS, Fujinami RS, White HS. Theiler's virus infection chronically alters seizure susceptibility. Epilepsia 2009; 51:1418-28. [PMID: 20002148 DOI: 10.1111/j.1528-1167.2009.02405.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Central nervous system infections greatly increase the risk for the development of seizures and epilepsy (recurrent unprovoked seizures). We have previously shown that Theiler's murine encephalomyelitis virus (Theiler's virus or TMEV) infection causes acute symptomatic seizures in C57BL/6 (B6) mice. The objective of the present study was threefold: (1) to assess pathologic changes associated with acute TMEV infection and infection-induced seizures, (2) to determine whether Theiler's virus infection and associated acute seizures lead to chronically altered seizure susceptibility, and (3) to determine whether genetic background influences seizure susceptibility following Theiler's virus infection. METHODS Immunohistochemical techniques were used to assess Theiler's virus antigen localization in the brain and associated neuronal cell death. A battery of electroconvulsive threshold (ECT) tests and corneal kindling studies were conducted to assess whether there were chronic alterations in seizure susceptibility and kindling development. Studies were conducted in both B6 and SJL/J mice to assess strain-dependent effects. RESULTS Histopathologic analyses indicate that TMEV has specific tropism for limbic structures and causes widespread cell death in these regions. Results from ECT studies demonstrate that B6 mice that displayed acute symptomatic seizures have significantly reduced seizure thresholds and kindle faster than either control mice or infected mice without acute seizures. Furthermore, these effects were mouse-strain dependent, since SJL/J mice displayed a different seizure threshold spectrum. DISCUSSION These findings indicate that Theiler's virus infection leads to chronically altered seizure susceptibility in mice. It is important to note that Theiler's virus infection of B6 mice represents a novel model to study postinfection hyperexcitability.
Collapse
Affiliation(s)
- Kerry-Ann A Stewart
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
39
|
Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MCJ. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 2009; 20:738-50. [PMID: 20002440 DOI: 10.1111/j.1750-3639.2009.00354.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term neurological sequela is common among herpes simplex encephalitis (HSE) survivors. Animal models for HSE are used to investigate mechanisms of acute disease, but little has been done to model chronic manifestations of HSE. The current study presents a detailed, systematic analysis of chronic neuropathology, including characterization of topography and sequential progression of degenerative lesions and inflammation. Subsequent to intranasal HSV-1 infection, inflammatory responses that were temporally and spatially distinct persisted in infected cortical and brain stem regions. Neutrophils were present exclusively within the olfactory bulb and brain stem regions during the acute phase of infection, while the chronic inflammation was marked by plasma cells, lymphocytes and activated microglia. The chronic lymphocytic infiltrate, cytokine production, and activated microglia were associated with the loss of cortical neuropile in the entorhinal cortex and hippocampus. Animals surviving the acute infection showed a spectrum of chronic lesions from decreased brain volume, neuronal loss, activated astrocytes, and glial scar formation to severe atrophy and cavitations of the cortex. These lesions were also associated with severe spatial memory deficits in surviving animals. Taken together, this model can be utilized to further investigate the mechanisms of neurological defects that follow in the wake of HSE.
Collapse
Affiliation(s)
- Anibal G Armien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Honjo K, van Reekum R, Verhoeff NPLG. Alzheimer's disease and infection: do infectious agents contribute to progression of Alzheimer's disease? Alzheimers Dement 2009; 5:348-60. [PMID: 19560105 DOI: 10.1016/j.jalz.2008.12.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/08/2008] [Accepted: 12/04/2008] [Indexed: 12/31/2022]
Abstract
Infection with several important pathogens could constitute risk factors for cognitive impairment, dementia, and Alzheimer's disease (AD) in particular. This review summarizes the data related to infectious agents that appear to have a relationship with AD. Infections with herpes simplex virus type 1, picornavirus, Borna disease virus, Chlamydia pneumoniae, Helicobacter pylori, and spirochete were reported to contribute to the pathophysiology of AD or to cognitive changes. Based on these reports, it may be hypothesized that central nervous system or systemic infections may contribute to the pathogenesis or pathophysiology of AD, and chronic infection with several pathogens should be considered a risk factor for sporadic AD. If this hypothesis holds true, early intervention against infection may delay or even prevent the future development of AD.
Collapse
Affiliation(s)
- Kie Honjo
- L.C. Campbell Cognitive Neurology Research Unit, Heart and Stroke Foundation Centre for Stroke Recovery, Section of Neurology, Department of Medicine, Sunnybrook Health Science Centre and University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:668-84. [PMID: 19608874 PMCID: PMC2716965 DOI: 10.2353/ajpath.2009.081126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
Abstract
Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection.
Collapse
Affiliation(s)
- Eric J Buenz
- Department of Neurology, Mayo Clinic College of Medicine, Guggenheim 442-D, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Viral persistence and chronic immunopathology in the adult central nervous system following Coxsackievirus infection during the neonatal period. J Virol 2009; 83:9356-69. [PMID: 19570873 DOI: 10.1128/jvi.02382-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coxsackieviruses are significant human pathogens, and the neonatal central nervous system (CNS) is a major target for infection. Despite the extreme susceptibility of newborn infants to coxsackievirus infection and viral tropism for the CNS, few studies have been aimed at determining the long-term consequences of infection on the developing CNS. We previously described a neonatal mouse model of coxsackievirus B3 (CVB3) infection and determined that proliferating stem cells in the CNS were preferentially targeted. Here, we describe later stages of infection, the ensuing inflammatory response, and subsequent lesions which remain in the adult CNS of surviving animals. High levels of type I interferons and chemokines (in particular MCP-5, IP10, and RANTES) were upregulated following infection and remained at high levels up to day 10 postinfection (p.i). Chronic inflammation and lesions were observed in the hippocampus and cortex of surviving mice for up to 9 months p.i. CVB3 RNA was detected in the CNS up to 3 months p.i at high abundance ( approximately 10(6) genomes/mouse brain), and viral genomic material remained detectable in culture after two rounds of in vitro passage. These data suggest that CVB3 may persist in the CNS as a low-level, noncytolytic infection, causing ongoing inflammatory lesions. Thus, the effects of a relatively common infection during the neonatal period may be long lasting, and the prognosis for newborn infants recovering from acute infection should be reexplored.
Collapse
|
43
|
Pedras-Vasconcelos JA, Puig M, Sauder C, Wolbert C, Ovanesov M, Goucher D, Verthelyi D. Immunotherapy with CpG oligonucleotides and antibodies to TNF-alpha rescues neonatal mice from lethal arenavirus-induced meningoencephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:8231-40. [PMID: 18523289 DOI: 10.4049/jimmunol.180.12.8231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viral encephalitides are life-threatening diseases in neonates partly due to the irreversible damage inflammation causes to the CNS. This study explored the role of proinflammatory cytokines in the balance between controlling viral replication and eliciting pathologic immune responses in nonlytic viral encephalitis. We show that neonatal mice challenged with arenavirus Tacaribe (TCRV) develop a meningoencephalitis characterized by high IFN-gamma and TNF-alpha levels and mild T cell infiltration. Neutralization of the TNF-alpha using mAb was associated with lower chemokine expression, reduced T cell infiltration, and lower levels of IFN-gamma, and TNF-alpha in the CNS and led to 100% survival. Moreover, treatment with Abs to TNF-alpha improved mobility and increased survival even after the mice developed bilateral hind limb paralysis. Of note, animals treated with anti-TNF-alpha Abs alone did not clear the virus despite generating Abs to TCRV. Direct activation of the innate immune response using CpG oligodeoxynucleotides in combination with anti-TNF-alpha Abs resulted in 100% survival and complete viral clearance. To our knowledge, this is the first demonstration of the use of innate immune modulators plus Abs to TNF-alpha as therapeutics for a lethal neurotropic viral infection.
Collapse
Affiliation(s)
- João A Pedras-Vasconcelos
- Laboratory of Immunology, Division of Therapeutic Proteins, Office of Biotechnology, Center for Drug Evaluation and Review, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Deb C, Howe CL. NKG2D contributes to efficient clearance of picornavirus from the acutely infected murine brain. J Neurovirol 2008; 14:261-6. [PMID: 18569460 PMCID: PMC3181148 DOI: 10.1080/13550280802105002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activated murine cytotoxic T cells express the NKG2D natural cytotoxicity receptor. This receptor recognizes major histocompatibility complex (MHC) class I-like molecules expressed on the surface of infected cells and serves to augment T cell-mediated cytotoxicity. The role of NKG2D-mediated augmentation in the clearance of central nervous system viral infections has not been explored. Using the Theiler’s murine encephalomyelitis virus model, the authors found that NKG2D-positive CD8+ cytotoxic T cells enter the brain, that NKG2D ligands are expressed in the brain during acute infection, and that interruption of NKG2D ligand recognition via treatment with a function-blocking antibody attenuates the efficacy of viral clearance from the central nervous system.
Collapse
Affiliation(s)
- Chandra Deb
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
45
|
Rodriguez M, Zoecklein L, Papke L, Gamez J, Denic A, Macura S, Howe C. Tumor necrosis factor alpha is reparative via TNFR2 [corrected] in the hippocampus and via TNFR1 [corrected] in the striatum after virus-induced encephalitis. Brain Pathol 2008; 19:12-26. [PMID: 18422761 DOI: 10.1111/j.1750-3639.2008.00151.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Differentiating between injurious and reparative factors facilitates appropriate therapeutic intervention. We evaluated the role of tumor necrosis factor alpha (TNFalpha) in parenchymal brain pathology resolution following virus-induced encephalitis from a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). We infected the following animals with TMEV for 7 to 270 days: B6/129 TNF(-/-) mice (without TNFalpha expression), B6/129 TNFR1(-/-) mice (without TNFalpha receptor 1 expression), and B6/129 TNFR2(-/-) mice (without TNFalpha receptor 2 expression). Normal TNFalpha-expressing controls were TMEV-infected B6, 129/J, B6/129F1 and B6/129F2 mice. Whereas all strains developed inflammation and neuronal injury in the hippocampus and striatum 7 to 21 days postinfection (dpi), the control mice resolved the pathology by 45 to 90 dpi. However, parenchymal hippocampal and striatal injury persisted in B6/129 TNF(-/-) mice following infection. Treating virus-infected mice with active recombinant mouse TNFalpha resulted in less hippocampal and striatal pathology, whereas TNFalpha-neutralizing treatment worsened pathology. T1 "black holes" appeared on MRI during early infection in the hippocampus and striatum in all mice but persisted only in TNF(-/-) mice. TNFR2 [corrected] mediated hippocampal pathology resolution whereas TNFR1 [corrected] mediated striatal healing. These findings indicate the role of TNFalpha in resolution of sublethal hippocampal and striatal injury.
Collapse
Affiliation(s)
- Moses Rodriguez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Apoptosis plays a role in many disease states, and the evaluation of novel therapeutics that alters the apoptotic cascade is an area of intense investigation. However, many generally available methods to evaluate cell death are either time consuming, imprecise, or both. We report a system that permits simultaneous evaluation of three apoptotic markers (cell membrane integrity, mitochondrial membrane potential, and cell cycle progression) with minimal technical manipulation. This system is particularly well-suited for toxicologic evaluation of novel compounds and profiling of new apoptosis-inducing agents.
Collapse
Affiliation(s)
- Eric J Buenz
- Complementary and Integrative Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | |
Collapse
|
47
|
Buenz EJ, Howe CL. Beta-methylamino-alanine (BMAA) injures hippocampal neurons in vivo. Neurotoxicology 2007; 28:702-4. [PMID: 17379313 DOI: 10.1016/j.neuro.2007.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/19/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
The unusually high incidence of amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC) among the Chamorro people of Guam has fueled an intense search for the etiologic agent responsible for this neurodegenerative disease. Recently, a biomagnification hypothesis was proposed to account for the role of dietary consumption of beta-methylamino-alanine (BMAA) in patients with ALS/PDC. However, this hypothesis is hotly debated and a direct association between BMAA and neuronal injury in vivo has been lacking. We provide evidence that introduction of BMAA into the CNS of mice leads to sporadic death of hippocampal neurons, supporting a direct causal link between BMAA and neuronal injury.
Collapse
|