1
|
Almutairi JA, Kidd EJ. Biological Sex Disparities in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39485650 DOI: 10.1007/7854_2024_545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Alzheimer's disease is a highly complex and multifactorial neurodegenerative disorder, with age being the most significant risk factor. The incidence of Alzheimer's disease doubles every 5 years after the age of 65. Consequently, one of the major challenges in Alzheimer's disease research is understanding how the brain changes with age. Gaining insights into these changes could help identify individuals who are more prone to developing Alzheimer's disease as they age. Over the past 25 years, studies on brain aging have examined thousands of human brains to explore the neuronal basis of age-related cognitive decline. However, most of these studies have focused on adults over 60, often neglecting the critical menopause transition period. During menopause, women experience a substantial decline in ovarian sex hormone production, with a decrease of about 90% in estrogen levels. Estrogen is known for its neuroprotective effects, and its significant loss during menopause affects various biological systems, including the brain. Importantly, despite known differences in dementia risk between sexes, the impact of biological sex and sex hormones on brain aging and the development of Alzheimer's disease remains underexplored.
Collapse
Affiliation(s)
- Jawza A Almutairi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Song Y, Dai CL, Shinohara M, Chyn Tung Y, Zhou S, Huang WC, Seffouh A, Luo Y, Willadsen M, Jiao Y, Morishima M, Saito Y, Koh SH, Ortega J, Gong CX, Lovell JF. A pentavalent peptide vaccine elicits Aβ and tau antibodies with prophylactic activity in an Alzheimer's disease mouse model. Brain Behav Immun 2024; 122:185-201. [PMID: 39142420 DOI: 10.1016/j.bbi.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aβ or tau. However, due to the complexity of both Aβ and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aβ peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactic dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aβ and tau epitopes warrant further study for treating early-stage AD.
Collapse
Affiliation(s)
- Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; POP Biotechnologies, Buffalo, NY 14228, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Yuan Luo
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | - Yang Jiao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
3
|
Carvalho D, Diaz-Amarilla P, Smith MR, Santi MD, Martinez-Busi M, Go YM, Jones DP, Duarte P, Savio E, Abin-Carriquiry JA, Arredondo F. Untargeted metabolomics of 3xTg-AD neurotoxic astrocytes. J Proteomics 2024; 310:105336. [PMID: 39448026 DOI: 10.1016/j.jprot.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting approximately 47 M people worldwide. Histological features and genetic risk factors, among other evidence, supported the amyloid hypothesis of the disease. This neuronocentric paradigm is currently undergoing a shift, considering evidence of the role of other cell types, such as microglia and astrocytes, in disease progression. Previously, we described a particular astrocyte subtype obtained from the 3xTg-AD murine model that displays neurotoxic properties in vitro. We continue here our exploratory analysis through the lens of metabolomics to identify potentially altered metabolites and biological pathways. Cell extracts from neurotoxic and control astrocytes were compared using high-resolution mass spectrometry-based metabolomics. Around 12 % of metabolic features demonstrated significant differences between neurotoxic and control astrocytes, including alterations in the key metabolite glutamate. Consistent with our previous transcriptomic study, the present results illustrate many homeostatic and regulatory functions of metabolites, suggesting that neurotoxic 3xTg-AD astrocytes exhibit alterations in the Krebs cycle as well as the prostaglandin pathway. This is the first metabolomic study performed in 3xTg-AD neurotoxic astrocytes. These results provide insight into metabolic alterations potentially associated with neurotoxicity and pathology progression in the 3xTg-AD mouse model and strengthen the therapeutic potential of astrocytes in AD. BIOLOGICAL SIGNIFICANCE: Our study is the first high-resolution metabolomic characterization of the novel neurotoxic 3xTg-AD astrocytes. We propose key metabolites and pathway alterations, as well as possible associations with gene expression alterations in the model. Our results are in line with recent hypotheses beyond the amyloid cascade, considering the involvement of several stress response cascades during the development of Alzheimer's disease. This work could inspire other researchers to initiate similar studies in related models. Furthermore, this work illustrates a powerful workflow for metabolite annotation and selection that can be implemented in other studies.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Mathew R Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA; Atlanta Veterans Affairs Healthcare System, Decatur, GA, USA
| | - María Daniela Santi
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
| | - Marcela Martinez-Busi
- Plataforma de Servicios Analíticos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Pablo Duarte
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Laboratorio de Biofármacos, Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
| |
Collapse
|
4
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
5
|
Pfitzer J, Pinky PD, Perman S, Redmon E, Cmelak L, Suppiramaniam V, Coric V, Qureshi IA, Gramlich MW, Reed MN. Troriluzole rescues glutamatergic deficits, amyloid and tau pathology, and synaptic and memory impairments in 3xTg-AD mice. J Neurochem 2024. [PMID: 39214859 DOI: 10.1111/jnc.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition in which clinical symptoms are highly correlated with the loss of glutamatergic synapses. While later stages of AD are associated with markedly decreased glutamate levels due to neuronal loss, in the early stages, pathological accumulation of glutamate and hyperactivity contribute to AD pathology and cognitive dysfunction. There is increasing awareness that presynaptic dysfunction, particularly synaptic vesicle (SV) alterations, play a key role in mediating this early-stage hyperactivity. In the current study, we sought to determine whether the 3xTg mouse model of AD that exhibits both beta-amyloid (Aβ) and tau-related pathology would exhibit similar presynaptic changes as previously observed in amyloid or tau models separately. Hippocampal cultures from 3xTg mice were used to determine whether presynaptic vesicular glutamate transporters (VGlut) and glutamate are increased at the synaptic level while controlling for postsynaptic activity. We observed that 3xTg hippocampal cultures exhibited increased VGlut1 associated with an increase in glutamate release, similar to prior observations in cultures from tau mouse models. However, the SV pool size was also increased in 3xTg cultures, an effect not previously observed in tau mouse models but observed in Aβ models, suggesting the changes in pool size may be due to Aβ and not tau. Second, we sought to determine whether treatment with troriluzole, a novel 3rd generation tripeptide prodrug of the glutamate modulator riluzole, could reduce VGlut1 and glutamate release to restore cognitive deficits in 8-month-old 3xTg mice. Treatment with troriluzole reduced VGlut1 expression, decreased basal and evoked glutamate release, and restored cognitive deficits in 3xTg mice. Together, these findings suggest presynaptic alterations are early events in AD that represent potential targets for therapeutic intervention, and these results support the promise of glutamate-modulating drugs such as troriluzole in Alzheimer's disease.
Collapse
Affiliation(s)
- Jeremiah Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Savannah Perman
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Emma Redmon
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, USA
| | - Vladimir Coric
- Biohaven Pharmaceuticals Inc., New Haven, Connecticut, USA
| | | | - Michael W Gramlich
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Physics, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Santoro B, Srinivas KV, Reyes I, Tian C, Masurkar AV. Cell type-specific impact of aging and Alzheimer disease on hippocampal CA1 perforant path input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609952. [PMID: 39253428 PMCID: PMC11383042 DOI: 10.1101/2024.08.27.609952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The perforant path (PP) carries direct inputs from entorhinal cortex to CA1 pyramidal neurons (PNs), with an impact dependent on PN position across transverse (CA1a-CA1c) and radial (superficial/deep) axes. It remains unclear how aging and Alzheimer disease (AD) affect PP input, despite its critical role in memory and early AD. Applying ex vivo recordings and two-photon microscopy in slices from mice up to 30 months old, we interrogated PP responses across PN subpopulations and compared them to Schaffer collateral and intrinsic excitability changes. We found that aging uniquely impacts PP excitatory responses, abolishing transverse and radial differences via a mechanism independent of presynaptic and membrane excitability change. This is amplified in aged 3xTg-AD mice, with further weakening of PP inputs to CA1a superficial PNs associated with distal dendritic spine loss. This demonstrates a unique feature of aging-related circuit dysfunction, with mechanistic implications related to memory impairment and synaptic vulnerability.
Collapse
|
7
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
8
|
Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev 2024; 162:105724. [PMID: 38762130 DOI: 10.1016/j.neubiorev.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Collapse
Affiliation(s)
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1111, Hungary
| | - Frédéric Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec-Laval University, Quebec G1V0A6, Canada; International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg D-35032, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany
| | - Jean-Christophe Delpech
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Jorine Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Emmy E Hoeksema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Sophie Layé
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, 1018, the Netherlands
| | - Christoph Rummel
- Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Luba Sominsky
- Barwon Health, Geelong, Victoria 3220, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3217, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
9
|
Barber AJ, Del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, sex and Alzheimer's disease: a longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. Alzheimers Res Ther 2024; 16:134. [PMID: 38909241 PMCID: PMC11193202 DOI: 10.1186/s13195-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women experience worse neuropathological burden and cognitive decline despite living longer with the disease. Similarly, male 3xTg-AD mice, developed to model Alzheimer's disease, no longer consistently exhibit standard Alzheimer's neuropathology yet experience higher rates of mortality - providing a unique opportunity to further elucidate this dichotomy. We hypothesized that sex differences in the biological aging process yield distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. METHODS We aged male and female, 3xTg-AD and B6129 control mice across their respective lifespans (n = 3-8 mice per sex, strain, and age group) and longitudinally assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, splenic mass and morphology, as well as plasma cytokine levels. We conducted RNA sequencing analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and B6129 samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank study in each sex. RESULTS 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and minimal Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females. Our clinical investigations revealed that individuals with Alzheimer's disease develop similar sex-specific alterations in neuronal and immune function. In diseased males of both species, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide was predicted as the top upstream regulator of DEGs. CONCLUSIONS Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, indicating that age-related changes in immune response contribute to sex differences in Alzheimer's disease trajectories. We provide evidence that aging and transgene-driven disease progression trigger a widespread inflammatory response in 3xTg-AD males, which mimics the impact of lipopolysaccharide stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Carmen L Del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
10
|
Findley CA, McFadden S.A, Hill T, Peck MR, Quinn K, Hascup KN, Hascup ER. Sexual Dimorphism, Altered Hippocampal Glutamatergic Neurotransmission and Cognitive Impairment in APP Knock-In Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570100. [PMID: 38106074 PMCID: PMC10723272 DOI: 10.1101/2023.12.05.570100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background It is well established that glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies indicate that glutamate dynamics shift with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. Objective In this study, we characterized hippocampal glutamatergic signaling with age and disease progression in a knock-in mouse model of AD (APPNL-F/NL-F). Methods At 2-4 and 18+ months old, male and female APPNL/NL, APPNL-F/NL-F, and C57BL/6 mice underwent cognitive assessment using Morris water maze (MWM) and Novel Object Recognition (NOR). Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-selective microelectrode in anesthetized mice. Results Glutamate recordings support elevated stimulus-evoked glutamate release in the DG and CA3 of young APPNL-F/NL-F male mice that declined with age compared to age-matched control mice. Young female APPNL-F/NL-F mice exhibited increased glutamate clearance in the CA1 that slowed with age compared to age-matched control mice. Male and female APPNL-F/NL-F mice exhibited decreased CA1 basal glutamate levels, while males also showed depletion in the CA3. Cognitive assessment demonstrated impaired spatial cognition in aged male and female APPNL-F/NL-F mice, but only aged females displayed recognition memory deficits compared to age-matched control mice. Conclusions: These findings confirm a sex-dependent hyper-to-hypoactivation glutamatergic paradigm in APPNL-F/NL-F mice. Further, data illustrate a sexually dimorphic biological aging process resulting in a more severe cognitive phenotype for female APPNL-F/NL-F mice than their male counterparts. Research outcomes mirror that of human AD pathology and provide further evidence of divergent AD pathogenesis between sexes.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel .A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Tiarra. Hill
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
11
|
Alveal-Mellado D, Giménez-Llort L. Use of Ordered Beta Regression Unveils Cognitive Flexibility Index and Longitudinal Cognitive Training Signatures in Normal and Alzheimer's Disease Pathological Aging. Brain Sci 2024; 14:501. [PMID: 38790478 PMCID: PMC11119991 DOI: 10.3390/brainsci14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues for analyzing continuous response data. Here, we applied this combined approach to investigate nuanced differences between the 3xTg-AD model of Alzheimer's disease (AD) and their C57BL/6 non-transgenic (NTg) counterparts with normal aging in a 5-day Morris Water Maze (MWM) test protocol. Our longitudinal study included 22 3xTg-AD mice and 15 NTg mice (both male and female) assessed at 12 and 16 months of age. By identifying and analyzing multiple swimming strategies during three different paradigms (cue, place task, and removal), we uncovered genotypic differences in all paradigms. Thus, the NTg group exhibited a higher percentage of direct search behaviors, while an association between circling episodes and 3xTg-AD animals was found. Furthermore, we also propose a novel metric-the "Cognitive Flexibility Index"-which proved sensitive in detecting sex-related differences. Overall, our integrated GLMMs-OBR approach provides a comprehensive insight into mouse behavior in the MWM test, shedding light on the effects of aging and AD pathology.
Collapse
Affiliation(s)
- Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
12
|
Santi MD, Carvalho D, Dapueto R, Bentura M, Zeni M, Martínez-González L, Martínez A, Peralta MA, Rey A, Giglio J, Ortega MG, Savio E, Abin-Carriquiry JA, Arredondo F. Prenylated Flavanone Isolated from Dalea Species as a Potential Multitarget-Neuroprotector in an In Vitro Alzheimer's Disease Mice Model. Neurotox Res 2024; 42:23. [PMID: 38578482 DOI: 10.1007/s12640-024-00703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3β-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3β. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.
Collapse
Affiliation(s)
- Maria D Santi
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
- Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rosina Dapueto
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Manuela Bentura
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Maia Zeni
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Mariana A Peralta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Giglio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Maria G Ortega
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Eduardo Savio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | | | - Florencia Arredondo
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay.
| |
Collapse
|
13
|
Medeiros D, McMurry K, Pfeiffer M, Newsome K, Testerman T, Graf J, Silver AC, Sacchetti P. Slowing Alzheimer's disease progression through probiotic supplementation. Front Neurosci 2024; 18:1309075. [PMID: 38510467 PMCID: PMC10950931 DOI: 10.3389/fnins.2024.1309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
The lack of affordable and effective therapeutics against cognitive impairment has promoted research toward alternative approaches to the treatment of neurodegeneration. In recent years, a bidirectional pathway that allows the gut to communicate with the central nervous system has been recognized as the gut-brain axis. Alterations in the gut microbiota, a dynamic population of trillions of microorganisms residing in the gastrointestinal tract, have been implicated in a variety of pathological states, including neurodegenerative disorders such as Alzheimer's disease (AD). However, probiotic treatment as an affordable and accessible adjuvant therapy for the correction of dysbiosis in AD has not been thoroughly explored. Here, we sought to correct the dysbiosis in an AD mouse model with probiotic supplementation, with the intent of exploring its effects on disease progression. Transgenic 3xTg-AD mice were fed a control or a probiotic diet (Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601) for 12 weeks, with the latter leading to a significant increase in the relative abundance of Bacteroidetes. Cognitive functions were evaluated via Barnes Maze trials and improvements in memory performance were detected in probiotic-fed AD mice. Neural tissue analysis of the entorhinal cortex and hippocampus of 10-month-old 3xTg-AD mice demonstrated that astrocytic and microglial densities were reduced in AD mice supplemented with a probiotic diet, with changes more pronounced in probiotic-fed female mice. In addition, elevated numbers of neurons in the hippocampus of probiotic-fed 3xTg-AD mice suggested neuroprotection induced by probiotic supplementation. Our results suggest that probiotic supplementation could be effective in delaying or mitigating early stages of neurodegeneration in the 3xTg-AD animal model. It is vital to explore new possibilities for palliative care for neurodegeneration, and probiotic supplementation could provide an inexpensive and easily implemented adjuvant clinical treatment for AD.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kristina McMurry
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Melissa Pfeiffer
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kayla Newsome
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Todd Testerman
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Joerg Graf
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Paola Sacchetti
- Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
14
|
Duggan MR, Steinberg Z, Peterson T, Francois TJ, Parikh V. Cognitive trajectories in longitudinally trained 3xTg-AD mice. Physiol Behav 2024; 275:114435. [PMID: 38103626 PMCID: PMC10872326 DOI: 10.1016/j.physbeh.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Preclinical studies in Alzheimer's disease (AD) often rely on cognitively naïve animal models in cross-sectional designs that can fail to reflect the cognitive exposures across the lifespan and heterogeneous neurobehavioral features observed in humans. To determine whether longitudinal cognitive training may affect cognitive capacities in a well-characterized AD mouse model, 3xTg and wild-type mice (n = 20) were exposed daily to a training variant of the Go-No-Go (GNG) operant task from 3 to 9 months old. At 3, 6, and 9 months, performance on a testing variant of the GNG task and anxiety-like behaviors were measured, while long-term recognition memory was also assessed at 9 months. In general, GNG training improved performance with increasing age across genotypes. At 3 months old, 3xTg mice showed slight deficits in inhibitory control that were accompanied by minor improvements in signal detection and decreased anxiety-like behavior, but these differences did not persist at 6 and 9 months old. At 9 months old, 3xTg mice displayed minor deficits in signal detection, and long-term recognition memory capacity was comparable with wild-type subjects. Our findings indicate that longitudinal cognitive training can render 3xTg mice with cognitive capacities that are on par with their wild-type counterparts, potentially reflecting functional compensation in subjects harboring AD genetic mutations.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Zoe Steinberg
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara Peterson
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara-Jade Francois
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
15
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
16
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
17
|
Barber AJ, del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, Sex and Alzheimer's disease: A longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573209. [PMID: 38187539 PMCID: PMC10769453 DOI: 10.1101/2023.12.23.573209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women are not only nearly twice as likely to develop Alzheimer's, but they also experience worse neuropathological burden and cognitive decline despite living longer with the disease. It remains unclear how and when sex differences in biological aging emerge and contribute to Alzheimer's disease pathogenesis. We hypothesized that these differences lead to distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. Methods We aged male and female, 3xTg-AD and B6129 (WT) control mice across their respective lifespans while longitudinally collecting brain, liver, spleen, and plasma samples (n=3-8 mice per sex, strain, and age group). We performed histological analyses on all tissues and assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, as well as splenic mass and morphology. Additionally, we measured concentrations of cytokines, chemokines, and growth factors in the plasma. We conducted RNA sequencing (RNA-Seq) analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and WT samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank (MSBB) study in each sex. Results 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and next to no Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females, further suggesting distinct inflammatory disease trajectories between the sexes. Clinical investigations revealed that 3xTg-AD brain aging phenotypes are not an artifact of the animal model, and individuals with Alzheimer's disease develop similar sex-specific alterations in canonical pathways related to neuronal signaling and immune function. Interestingly, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide (LPS) was predicted as the top upstream regulator of DEGs in diseased males of both species. Conclusions Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, revealing that age-related changes in immune response act as a primary driver of sex differences in Alzheimer's disease trajectories. We propose a model of disease pathogenesis in 3xTg-AD males in which aging and transgene-driven disease progression trigger an inflammatory response, mimicking the effects of LPS stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J. Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Carmen L. del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M. Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J. Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B. Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
18
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
19
|
Zhao J, Zhang Z, Lai KC, Lai L. Administration of recombinant FOXN1 protein attenuates Alzheimer's pathology in mice. Brain Behav Immun 2023; 113:341-352. [PMID: 37541395 PMCID: PMC10528256 DOI: 10.1016/j.bbi.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults and characterized by progressive loss of memory and cognitive functions that are associated with amyloid-beta (Aβ) plaques and neurofibrillary tangles. Immune cells play an important role in the clearance of Aβ deposits and neurofibrillary tangles. T cells are the major component of the immune system. The thymus is the primary organ for T cell generation. T cell development in the thymus depends on thymic epithelial cells (TECs). However, TECs undergo both qualitative and quantitative loss over time. We have previously reported that a recombinant (r) protein containing FOXN1 and a protein transduction domain can increase the number of TECs and subsequently increases the number of T cells in mice. In this study we determined the ability of rFOXN1 to affect cognitive performance and AD pathology in mice. METHODS Aged 3xTg-AD and APP/PS1 AD mice were injected with rFOXN1 or control protein. Cognitive performance, AD pathology, the thymic microenvironment and immune cells were then analyzed. RESULTS Administration of rFOXN1 into AD mice improves cognitive performance and reduces Aβ plaque load and phosphorylated tau in the brain. This is related to rejuvenating the aged thymic microenvironment, which results in enhanced T cell generation in the thymus, leading to increased number of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the brain, and the macrophage phagocytosis of Aβ are enhanced in rFOXN1-treated AD mice. CONCLUSIONS Our results suggest that rFOXN1 protein has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
20
|
Jiménez-Herrera R, Contreras A, Djebari S, Mulero-Franco J, Iborra-Lázaro G, Jeremic D, Navarro-López J, Jiménez-Díaz L. Systematic characterization of a non-transgenic Aβ 1-42 amyloidosis model: synaptic plasticity and memory deficits in female and male mice. Biol Sex Differ 2023; 14:59. [PMID: 37716988 PMCID: PMC10504764 DOI: 10.1186/s13293-023-00545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND The amyloid-β (Aβ) cascade is one of the most studied theories linked to AD. In multiple models, Aβ accumulation and dyshomeostasis have shown a key role in AD onset, leading to excitatory/inhibitory imbalance, the impairments of synaptic plasticity and oscillatory activity, and memory deficits. Despite the higher prevalence of Alzheimer's disease (AD) in women compared to men, the possible sex difference is scarcely explored and the information from amyloidosis transgenic mice models is contradictory. Thus, given the lack of data regarding the early stages of amyloidosis in female mice, the aim of this study was to systematically characterize the effect of an intracerebroventricular (icv.) injection of Aβ1-42 on hippocampal-dependent memory, and on associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse, in both male and female mice. METHODS To do so, we evaluated long term potentiation (LTP) with ex vivo electrophysiological recordings as well as encoding and retrieval of spatial (working, short- and long-term) and exploratory habituation memories using Barnes maze and object location, or open field habituation tasks, respectively. RESULTS Aβ1-42 administration impaired all forms of memory evaluated in this work, regardless of sex. This effect was displayed in a long-lasting manner (up to 17 days post-injection). LTP was inhibited at a postsynaptic level, both in males and females, and a long-term depression (LTD) was induced for the same prolonged period, which could underlie memory deficits. CONCLUSIONS In conclusion, our results provide further evidence on the shifting of LTP/LTD threshold due to a single icv. Aβ1-42 injection, which underly cognitive deficits in the early stages of AD. These long-lasting cognitive and functional alterations in males and females validate this model for the study of early amyloidosis in both sexes, thus offering a solid alternative to the inconsistence of amyloidosis transgenic mice models.
Collapse
Affiliation(s)
- Raquel Jiménez-Herrera
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ana Contreras
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Jaime Mulero-Franco
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Guillermo Iborra-Lázaro
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Danko Jeremic
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Juan Navarro-López
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
21
|
Rodriguez-Lopez A, Torres-Paniagua AM, Acero G, Díaz G, Gevorkian G. Increased TSPO expression, pyroglutamate-modified amyloid beta (AβN3(pE)) accumulation and transient clustering of microglia in the thalamus of Tg-SwDI mice. J Neuroimmunol 2023; 382:578150. [PMID: 37467699 DOI: 10.1016/j.jneuroim.2023.578150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aβ in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AβN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Alicia M Torres-Paniagua
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
22
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
23
|
Noel RL, Gorman SL, Batts AJ, Konofagou EE. Getting ahead of Alzheimer's disease: early intervention with focused ultrasound. Front Neurosci 2023; 17:1229683. [PMID: 37575309 PMCID: PMC10412991 DOI: 10.3389/fnins.2023.1229683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis implicates Aβ protein accumulation in Alzheimer's disease (AD) onset and progression. However, therapies targeting Aβ have proven insufficient in achieving disease reversal, prompting a shift to focus on early intervention and alternative therapeutic targets. Focused ultrasound (FUS) paired with systemically-introduced microbubbles (μB) is a non-invasive technique for targeted and transient blood-brain barrier opening (BBBO), which has demonstrated Aβ and tau reduction, as well as memory improvement in models of late-stage AD. However, similar to drug treatments for AD, this approach is not sufficient for complete reversal of advanced, symptomatic AD. Here we aim to determine whether early intervention with FUS-BBBO in asymptomatic AD could delay disease onset. Thus, the objective of this study is to measure the protective effects of FUS-BBBO on anxiety, memory and AD-associated protein levels in female and male triple transgenic (3xTg) AD mice treated at an early age and disease state. Here we show that early, repeated intervention with FUS-BBBO decreased anxiety-associated behaviors in the open field test by 463.02 and 37.42% in male and female cohorts, respectively. FUS-BBBO preserved female aptitude for learning in the active place avoidance paradigm, reducing the shock quadrant time by 30.03 and 31.01% in the final long-term and reversal learning trials, respectively. Finally, FUS-BBBO reduced hippocampal accumulation of Aβ40, Aβ42, and total tau in females by 12.54, 13.05, and 3.57%, respectively, and reduced total tau in males by 18.98%. This demonstration of both cognitive and pathological protection could offer a solution for carriers of AD-associated mutations as a safe, non-invasive technique to delay the onset of the cognitive and pathological effects of AD.
Collapse
Affiliation(s)
- Rebecca L. Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Samantha L. Gorman
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Alec J. Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Radiology, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Noel RL, Batts AJ, Ji R, Pouliopoulos AN, Bae S, Kline-Schoder AR, Konofagou EE. Natural aging and Alzheimer's disease pathology increase susceptibility to focused ultrasound-induced blood-brain barrier opening. Sci Rep 2023; 13:6757. [PMID: 37185578 PMCID: PMC10130033 DOI: 10.1038/s41598-023-30466-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
Focused Ultrasound (FUS) paired with systemically-injected microbubbles (μB) is capable of transiently opening the blood-brain barrier (BBBO) for noninvasive and targeted drug delivery to the brain. FUS-BBBO is also capable of modulating the neuroimmune system, further qualifying its therapeutic potential for neurodegenerative diseases like Alzheimer's disease (AD). Natural aging and AD impose significant strain on the brain and particularly the BBB, modifying its structure and subsequently, its functionality. The emerging focus on treating neurodegenerative diseases with FUS-BBBO necessitates an investigation into the extent that age and AD affect the BBB's response to FUS. FUS-BBBO was performed with a 1.5-MHz, geometrically focused transducer operated at 450 kPa and paired with a bolus microbubble injection of 8 × 108 μB/mL. Here we quantify the BBBO, BBB closing (BBBC) timeline, and BBB permeability (BBBP) following FUS-BBBO in male mice with and without AD pathology, aged 10 weeks, one year, or two years. The data presented herein indicates that natural aging and AD pathology may increase initial BBBO volume by up to 34.4% and 40.7% respectively, extend BBBC timeline by up to 1.3 and 1.5 days respectively, and increase BBBP as measured by average Ktrans values up to 80% and 86.1% respectively in male mice. This characterization of the BBB response to FUS-BBBO with age and AD further clarifies the nature and extent of the functional impact of these factors and may offer new considerations for planning FUS-BBBO interventions in aged and AD populations.
Collapse
Affiliation(s)
- R L Noel
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - A J Batts
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - R Ji
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - A N Pouliopoulos
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - S Bae
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - A R Kline-Schoder
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - E E Konofagou
- Department of Biological Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
- Department of Radiology, Columbia University, 622 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Rosenberg N, Reva M, Binda F, Restivo L, Depierre P, Puyal J, Briquet M, Bernardinelli Y, Rocher AB, Markram H, Chatton JY. Overexpression of UCP4 in astrocytic mitochondria prevents multilevel dysfunctions in a mouse model of Alzheimer's disease. Glia 2023; 71:957-973. [PMID: 36537556 DOI: 10.1002/glia.24317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.
Collapse
Affiliation(s)
- Nadia Rosenberg
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Maria Reva
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesca Binda
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Briquet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Bérengère Rocher
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Tousley AR, Yeh PWL, Yeh HH. Precocious emergence of cognitive and synaptic dysfunction in 3xTg-AD mice exposed prenatally to ethanol. Alcohol 2023; 107:56-72. [PMID: 36038084 PMCID: PMC10183974 DOI: 10.1016/j.alcohol.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 50 million people worldwide. Early life risk factors for AD, including prenatal exposures, remain underexplored. Exposure of the fetus to alcohol (ethanol) is not uncommon during pregnancy, and may result in physical, behavioral, and cognitive changes that are first detected during childhood but result in lifelong challenges. Whether or not prenatal ethanol exposure may contribute to Alzheimer's disease risk is not yet known. Here we exposed a mouse model of Alzheimer's disease (3xTg-AD), bearing three dementia-associated transgenes, presenilin1 (PS1M146V), human amyloid precursor protein (APPSwe), and human tau (TauP301S), to ethanol on gestational days 13.5-16.5 using an established binge-type maternal ethanol exposure paradigm. We sought to investigate whether prenatal ethanol exposure resulted in a precocious onset or increased severity of AD progression, or both. We found that a brief binge-type gestational exposure to ethanol during a period of peak neuronal migration to the developing cortex resulted in an earlier onset of spatial memory deficits and behavioral inflexibility in the progeny, as assessed by performance on the modified Barnes maze task. The observed cognitive changes coincided with alterations to both GABAergic and glutamatergic synaptic transmission in layer V/VI neurons, diminished GABAergic interneurons, and increased β-amyloid accumulation in the medial prefrontal cortex. These findings provide the first preclinical evidence for prenatal ethanol exposure as a potential factor for modifying the onset of AD-like behavioral dysfunction and set the groundwork for more comprehensive investigations into the underpinnings of AD-like cognitive changes in individuals with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Adelaide R Tousley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; MD-PhD Program, Geisel School of Medicine at Dartmouth; Integrative Neuroscience at Dartmouth Graduate Program, Hanover, NH, United States
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| |
Collapse
|
27
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
28
|
Baeta-Corral R, De la Fuente M, Giménez-Llort L. Sex-dependent worsening of NMDA-induced responses, anxiety, hypercortisolemia, and organometry of early peripheral immunoendocrine impairment in adult 3xTg-AD mice and their long-lasting ontogenic modulation by neonatal handling. Behav Brain Res 2023; 438:114189. [PMID: 36343697 DOI: 10.1016/j.bbr.2022.114189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The neuroimmunomodulation hypothesis for Alzheimer's disease (AD) postulates that alterations in the innate immune system triggered by damage signals result in adverse effects on neuronal functions. The peripheral immune system and neuroimmunoendocrine communication are also impaired. Here we provide further evidence using a longitudinal design that also studied the long-lasting effects of an early life sensorial intervention (neonatal handling, from postnatal day 1-21) in 6-month-old (early stages of the disease) male and female 3xTg-AD mice compared to age- and sex-matched non-transgenic (NTg) mice with normal aging. The behavioral patterns elicited by the direct exposure to an open field, and the motor depression response evoked by NMDA (25 mg/kg, i.p) were found correlated to the organometry of peripheral immune-endocrine organs (thymus involution, splenomegaly, and adrenal glands' hypertrophy) and increased corticosterone levels, suggesting their potential value for diagnostic and biomonitoring.The NMDA-induced immediate and depressant motor activity and endocrine (corticosterone) responses were sensitive to sex and AD-genotype, suggesting worse endogenous susceptibility/neuroprotective response to glutamatergic excitotoxicity in males and in the AD-genotype. 3xTg-AD females showed a reduced immediate response, whereas the NTg showed higher responsiveness to subsequent NMDA-induced depressant effect than their male counterparts. The long-lasting ontogenic modulation by handling was shown as a potentiation of NMDA-depressant effect in NTg males and females, while sex × treatment effects were found in 3xTg-AD mice. Finally, NMDA-induced corticosterone showed sex, genotype and interaction effects with sexual dimorphism enhanced in the AD-genotype, suggesting different endogenous vulnerability/neuroprotective capacities and modulation of the neuroimmunoendocrine system.
Collapse
Affiliation(s)
- R Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M De la Fuente
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain
| | - L Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
29
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
30
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
31
|
Hu YT, Chen XL, Zhang YN, McGurran H, Stormmesand J, Breeuwsma N, Sluiter A, Zhao J, Swaab D, Bao AM. Sex differences in hippocampal β-amyloid accumulation in the triple-transgenic mouse model of Alzheimer's disease and the potential role of local estrogens. Front Neurosci 2023; 17:1117584. [PMID: 36968493 PMCID: PMC10030503 DOI: 10.3389/fnins.2023.1117584] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Epidemiological studies show that women have a higher prevalence of Alzheimer's disease (AD) than men. Peripheral estrogen reduction during aging in women is proposed to play a key role in this sex-associated prevalence, however, the underlying mechanism remains elusive. We previously found that transcription factor early growth response-1 (EGR1) significantly regulates cholinergic function. EGR1 stimulates acetylcholinesterase (AChE) gene expression and is involved in AD pathogenesis. We aimed to investigate whether the triple-transgenic AD (3xTg-AD) mice harboring PS1 M146V , APP Swe , and Tau P301L show sex differences in β-amyloid (Aβ) and hyperphosphorylated tau (p-Tau), the two primary AD hallmarks, and how local 17β-estradiol (E2) may regulate the expression of EGR1 and AChE. Methods We first sacrificed male and female 3xTg-AD mice at 3-4, 7-8, and 11-12 months and measured the levels of Aβ, p-Tau, EGR1, and AChE in the hippocampal complex. Second, we infected SH-SY5Y cells with lentivirus containing the amyloid precursor protein construct C99, cultured with or without E2 administration we measured the levels of extracellular Aβ and intracellular EGR1 and AChE. Results Female 3xTg-AD mice had higher levels of Aβ compared to males, while no p-Tau was found in either group. In SH-SY5Y cells infected with lentivirus containing the amyloid precursor protein construct C99, we observed significantly increased extracellular Aβ and decreased expression of intracellular EGR1 and AChE. By adding E2 to the culture medium, extracellular Aβ(l-42) was significantly decreased while intracellular EGR1 and AChE expression were elevated. Discussion This data shows that the 3xTg-AD mouse model can be useful for studying the human sex differences of AD, but only in regards to Ap. Furthermore, in vitro data shows local E2 may be protective for EGR1 and cholinergic functions in AD while suppressing soluble Aβ(1-42) levels. Altogether, this study provides further in vivo and in vitro data supporting the human epidemiological data indicating a higher prevalence of AD in women is related to changes in brain estrogen levels.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Lu Chen
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ya-Nan Zhang
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hugo McGurran
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jochem Stormmesand
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Nicole Breeuwsma
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Arja Sluiter
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Juan Zhao
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Swaab
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- *Correspondence: Dick Swaab,
| | - Ai-Min Bao
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Ai-Min Bao,
| |
Collapse
|
32
|
Chaudry O, Ndukwe K, Xie L, Figueiredo-Pereira M, Serrano P, Rockwell P. Females exhibit higher GluA2 levels and outperform males in active place avoidance despite increased amyloid plaques in TgF344-Alzheimer's rats. Sci Rep 2022; 12:19129. [PMID: 36352024 PMCID: PMC9646806 DOI: 10.1038/s41598-022-23801-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is most prevalent in females. While estrogen provides neuroprotection in females, sex mediated differences in the development of AD pathology are not fully elucidated. Therefore, comparing events between sexes in early-stage AD pathology may reveal more effective therapeutic targets of intervention. To address sex differences, we analyzed early-stage 9-month male and female TgF344-AD (Tg-AD) rats, an AD model carrying the APPswe and Presenilin 1 (PS1ΔE9) mutations that develops progressive age-dependent AD pathology similar to humans. Tg-AD females significantly outperformed Tg-AD males in the active place avoidance (aPAT) test that assesses hippocampal-dependent spatial learning and memory. However, comparisons between Tg-AD male or female rats and their WT counterparts showed significant deficits for female but not male rats. Nevertheless, Tg-AD females experienced significantly less hippocampal neuronal loss with higher GluA2 subunit levels than Tg-AD males. Unexpectedly, Tg-AD females displayed higher levels of hippocampal amyloid plaques than Tg-AD males. Thus, we propose that GluA2 may provide a neuroprotective function for Tg-AD females in our rat model by mitigating cognitive impairment independently of amyloid plaques. Elucidating this protective mechanism in AD could lead to new targets for early intervention.
Collapse
Affiliation(s)
- Osama Chaudry
- Department of Biological Sciences, Hunter College CUNY, New York, NY, USA
| | - Kelechi Ndukwe
- Department of Biological Sciences, Hunter College CUNY, New York, NY, USA
- PhD Program in Neuroscience, The Graduate Center CUNY, New York, NY, USA
| | - Lei Xie
- Department of Computer Sciences, Hunter College CUNY, New York, NY, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College CUNY, New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College CUNY, New York, NY, USA.
| |
Collapse
|
33
|
Vande Vyver M, Barker‐Haliski M, Aourz N, Nagels G, Bjerke M, Engelborghs S, De Bundel D, Smolders I. Higher susceptibility to 6 Hz corneal kindling and lower responsiveness to antiseizure drugs in mouse models of Alzheimer's disease. Epilepsia 2022; 63:2703-2715. [PMID: 35775150 PMCID: PMC9804582 DOI: 10.1111/epi.17355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epileptic spikes and seizures seem present early in the disease process of Alzheimer's disease (AD). However, it is unclear how soluble and insoluble amyloid beta (Aβ) and tau proteins affect seizure development in vivo. We aim to contribute to this field by assessing the vulnerability to 6 Hz corneal kindling of young female mice from two well-characterized transgenic AD models and by testing their responsiveness to selected antiseizure drugs (ASDs). METHODS We used 7-week-old triple transgenic (3xTg) mice that have both amyloid and tau mutations, and amyloid precursor protein Swedish/presenillin 1 dE9 (APP/PS1) mice, bearing only amyloid-related mutations. We assessed the absence of plaques via immunohistochemistry and analyzed the concentrations of both soluble and insoluble forms of Aβ1-42 and total tau (t-tau) in brain hippocampal and prefrontal cortical tissue. Seven-week-old mice of the different genotypes were subjected to the 6 Hz corneal kindling model. After kindling acquisition, we tested the anticonvulsant effects of three marketed ASDs (levetiracetam, brivaracetam, and lamotrigine) in fully kindled mice. RESULTS No Aβ plaques were present in either genotype. Soluble Aβ1-42 levels were increased in both AD genotypes, whereas insoluble Aβ1-42 concentrations were only elevated in APP/PS1 mice compared with their respective controls. Soluble and insoluble forms of t-tau were increased in 3xTg mice only. 3xTg and APP/PS1 mice displayed more severe seizures induced by 6 Hz corneal kindling from the first stimulation onward and were more rapidly kindled compared with control mice. In fully kindled AD mice, ASDs had less-pronounced anticonvulsive effects compared with controls. SIGNIFICANCE Mutations increasing Aβ only or both Aβ and tau in the brain enhance susceptibility for seizures and kindling in mice. The effect of ASDs on seizures measured by the Racine scale is less pronounced in both investigated AD models and suggests that seizures of young AD mice are more difficult to treat.
Collapse
Affiliation(s)
- Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium,Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium,Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | | | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Guy Nagels
- Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Department of AI Supported Modelling in Clinical Sciences (AIMS)Vrije Universiteit BrusselBrusselsBelgium
| | - Maria Bjerke
- Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium,Department of NeurochemistryUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Sebastiaan Engelborghs
- Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium,Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
34
|
Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms231810816. [PMID: 36142737 PMCID: PMC9501136 DOI: 10.3390/ijms231810816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.
Collapse
|
35
|
Lu W, Tang S, Li A, Huang Q, Dou M, Zhang Y, Hu X, Chang RCC, Wong GTC, Huang C. The role of PKC/PKR in aging, Alzheimer's disease, and perioperative neurocognitive disorders. Front Aging Neurosci 2022; 14:973068. [PMID: 36172481 PMCID: PMC9510619 DOI: 10.3389/fnagi.2022.973068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background The incidence of perioperative neurocognitive disorders (PNDs) is reportedly higher in older patients. Mitochondrial and synaptic dysfunctions have consistently been demonstrated in models of aging and neurodegenerative diseases; nonetheless, their role in PND is not well understood. Methods The Morris water maze and elevated plus maze tests were used to assess the learning and memory abilities of both C57BL/6 and 3×Tg-AD mice of different ages (8 and 18 months). PND was induced by laparotomy in C57BL/6 mice and 3×Tg-AD mice (8 months old). Markers associated with neuroinflammation, mitochondrial function, synaptic function, and autophagy were assessed postoperatively. The roles of protein kinase C (PKC) and double-stranded RNA-dependent protein kinase (PKR) were further demonstrated by using PKC-sensitive inhibitor bisindolylmaleimide X (BIMX) or PKR−/− mice. Results Significant cognitive impairment was accompanied by mitochondrial dysfunction and autophagy inactivation in both aged C57BL/6 and 3×Tg-AD mice. Laparotomy induced a significant neuroinflammatory response and synaptic protein loss in the hippocampus. Cognitive and neuropathological changes induced by aging or laparotomy were further exacerbated in 3×Tg-AD mice. Deficits in postoperative cognition, hippocampal mitochondria, autophagy, and synapse were significantly attenuated after pharmacological inhibition of PKC or genetic deletion of PKR. Conclusions Our findings suggest similar pathogenic features in aging, Alzheimer's disease, and PND, including altered mitochondrial homeostasis and autophagy dysregulation. In addition, laparotomy may exacerbate cognitive deficits associated with distinct neuronal inflammation, mitochondrial dysfunction, and neuronal loss independent of genetic background. The dysregulation of PKC/PKR activity may participate in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenping Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Scientific Research and Experiment Center of the Second Affilliated Hospital of Anhui Medical University, Hefei, China
| | - Sailan Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Scientific Research and Experiment Center of the Second Affilliated Hospital of Anhui Medical University, Hefei, China
| | - Ao Li
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Qiuyue Huang
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Gordon Tin Chun Wong
| | - Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Chunxia Huang
| |
Collapse
|
36
|
Diaz-Amarilla P, Arredondo F, Dapueto R, Boix V, Carvalho D, Santi MD, Vasilskis E, Mesquita-Ribeiro R, Dajas-Bailador F, Abin-Carriquiry JA, Engler H, Savio E. Isolation and characterization of neurotoxic astrocytes derived from adult triple transgenic Alzheimer's disease mice. Neurochem Int 2022; 159:105403. [PMID: 35853553 DOI: 10.1016/j.neuint.2022.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 07/09/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease has been considered mostly as a neuronal pathology, although increasing evidence suggests that glial cells might play a key role in the disease onset and progression. In this sense, astrocytes, with their central role in neuronal metabolism and function, are of great interest for increasing our understanding of the disease. Thus, exploring the morphological and functional changes suffered by astrocytes along the course of this disorder has great therapeutic and diagnostic potential. In this work we isolated and cultivated astrocytes from symptomatic 9-10-months-old adult 3xTg-AD mice, with the aim of characterizing their phenotype and exploring their pathogenic potential. These "old" astrocytes occurring in the 3xTg-AD mouse model of Alzheimer's Disease presented high proliferation rate and differential expression of astrocytic markers compared with controls. They were neurotoxic to primary neuronal cultures both, in neuronal-astrocyte co-cultures and when their conditioned media (ACM) was added into neuronal cultures. ACM caused neuronal GSK3β activation, changes in cytochrome c pattern, and increased caspase 3 activity, suggesting intrinsic apoptotic pathway activation. Exposure of neurons to ACM caused different subcellular responses. ACM application to the somato-dendritic domain in compartmentalised microfluidic chambers caused degeneration both locally in soma/dendrites and distally in axons. However, exposure of axons to ACM did not affect somato-dendritic nor axonal integrity. We propose that this newly described old 3xTg-AD neurotoxic astrocytic population can contribute towards the mechanistic understanding of the disease and shed light on new therapeutical opportunities.
Collapse
Affiliation(s)
- Pablo Diaz-Amarilla
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Florencia Arredondo
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay; Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Rosina Dapueto
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Victoria Boix
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Elena Vasilskis
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Raquel Mesquita-Ribeiro
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH, Nottingham, UK
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH, Nottingham, UK
| | - Juan Andrés Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Henry Engler
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| | - Eduardo Savio
- Area I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
37
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer's disease and mixed dementia in a sex-dependent manner. J Neuroinflammation 2022; 19:110. [PMID: 35568928 PMCID: PMC9107741 DOI: 10.1186/s12974-022-02466-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Approximately 70% of Alzheimer's disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes. Unlike metabolically healthy women, diabetic women are more likely to develop VCID than diabetic men. Prediabetes is 3× more prevalent than diabetes and is linked to earlier onset of dementia in women, but not men. How prediabetes influences underlying pathology and cognitive outcomes across different dementia subtypes is unknown. To fill this gap in knowledge, we investigated the impact of diet-induced prediabetes and biological sex on cognitive function and neuropathology in mouse models of AD and MxD. METHODS Male and female 3xTg-AD mice received a sham (AD model) or unilateral common carotid artery occlusion surgery to induce chronic cerebral hypoperfusion (MxD model). Mice were fed a control or high fat (HF; 60% fat) diet from 3 to 7 months of age. In both sexes, HF diet elicited a prediabetic phenotype (impaired glucose tolerance) and weight gain. RESULTS In females, but not males, metabolic consequences of a HF diet were more severe in AD or MxD mice compared to WT. In both sexes, HF-fed AD or MxD mice displayed deficits in spatial memory in the Morris water maze (MWM). In females, but not males, HF-fed AD and MxD mice also displayed impaired spatial learning in the MWM. In females, but not males, AD or MxD caused deficits in activities of daily living, regardless of diet. Astrogliosis was more severe in AD and MxD females compared to males. Further, AD/MxD females had more amyloid beta plaques and hippocampal levels of insoluble amyloid beta 40 and 42 than AD/MxD males. In females, but not males, more severe glucose intolerance (prediabetes) was correlated with increased hippocampal microgliosis. CONCLUSIONS High-fat diet had a wider array of metabolic, cognitive, and neuropathological consequences in AD and MxD females compared to males. These findings shed light on potential underlying mechanisms by which prediabetes may lead to earlier dementia onset in women.
Collapse
Affiliation(s)
- Olivia J. Gannon
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Lisa S. Robison
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA ,grid.261241.20000 0001 2168 8324Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314 USA ,grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Abigail E. Salinero
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Charly Abi-Ghanem
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Febronia M. Mansour
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Richard D. Kelly
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Alvira Tyagi
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Rebekah R. Brawley
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Jordan D. Ogg
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Kristen L. Zuloaga
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| |
Collapse
|
39
|
Fagan SG, Bechet S, Dev KK. Fingolimod Rescues Memory and Improves Pathological Hallmarks in the 3xTg-AD Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:1882-1895. [PMID: 35031916 PMCID: PMC8882098 DOI: 10.1007/s12035-021-02613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 10/26/2022]
Abstract
Therapeutic strategies for Alzheimer's disease (AD) have largely focused on the regulation of amyloid pathology while those targeting tau pathology, and inflammatory mechanisms are less explored. In this regard, drugs with multimodal and concurrent targeting of Aβ, tau, and inflammatory processes may offer advantages. Here, we investigate one such candidate drug in the triple transgenic 3xTg-AD mouse model of AD, namely the disease-modifying oral neuroimmunomodulatory therapeutic used in patients with multiple sclerosis, called fingolimod. In this study, administration of fingolimod was initiated after behavioral symptoms are known to emerge, at 6 months of age. Treatment continued to 12 months when behavioral tests were performed and thereafter histological and biochemical analysis was conducted on postmortem tissue. The results demonstrate that fingolimod reverses deficits in spatial working memory at 8 and 12 months of age as measured by novel object location and Morris water maze tests. Inflammation in the brain is alleviated as demonstrated by reduced Iba1-positive and CD3-positive cell number, less ramified microglial morphology, and improved cytokine profile. Finally, treatment with fingolimod was shown to reduce phosphorylated tau and APP levels in the hippocampus and cortex. These results highlight the potential of fingolimod as a multimodal therapeutic for the treatment of AD.
Collapse
Affiliation(s)
- Steven G Fagan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sibylle Bechet
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
40
|
Creighton SD, Jardine KH, Desimone A, Zmetana M, Castellano S, Milite C, Sbardella G, Winters BD. Age-dependent attenuation of spatial memory deficits by the histone acetyltransferase p300/CBP-associated factor (PCAF) in 3xTG Alzheimer's disease mice. Learn Mem 2022; 29:71-76. [PMID: 35169045 PMCID: PMC8852226 DOI: 10.1101/lm.053536.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Histone acetylation, catalyzed by histone acetyltransferases, has emerged as a promising therapeutic strategy in Alzheimer's disease (AD). By longitudinally characterizing spatial memory at 3, 6, and 9 mo of age, we show that acute activation and inhibition of the histone acetyltransferase PCAF remediated memory impairments in 3xTG-AD mice in an age-related bidirectional manner. At 3 and 6 mo of age, PCAF activation ameliorated memory deficits. At 9 mo of age, PCAF activation had no effect on spatial memory, whereas PCAF inhibition improved memory deficits in females. This work reveals a complex potential therapeutic role for PCAF in AD, initially benefitting memory but becoming detrimental as the disease progresses.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Kristen H. Jardine
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alexa Desimone
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Megan Zmetana
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Boyer D. Winters
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
41
|
Park SS, Park HS, Kim CJ, Baek SS, Park SY, Anderson CP, Kim MK, Park IR, Kim TW. Combined effects of Aerobic exercise and 40Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3xTg mice. J Appl Physiol (1985) 2022; 132:1054-1068. [PMID: 35201933 DOI: 10.1152/japplphysiol.00751.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative brain disease and the primary cause of dementia. At an early stage, AD is generally characterized by short-term memory impairment, owing to dysfunctions of the cortex and hippocampus. We previously reported that a combination of exercise and 40 Hz light flickering can protect against AD-related neuroinflammation, gamma oscillations, reduction in Aβ, and cognitive decline. Therefore, we sought to extend our previous findings to the 5-month-old 3xTg-AD mouse model to examine whether the same favorable effects occur in earlier stages of cognitive dysfunction. We investigated the effects of 12 weeks of exercise combined with 40-Hz light flickering on cognitive function by analyzing neuroinflammation, mitochondrial function, and neuroplasticity in the hippocampus in a 3xTg-AD mouse model. 5-month-old 3xTg-AD mice performed 12 weeks of exercise with 40-Hz light flickering administered independently and in combination. Spatial learning and memory, long-term memory, hippocampal Aβ, tau, neuroinflammation, pro-inflammatory cytokine expression, mitochondrial function, and neuroplasticity, were analyzed. Aβ and tau proteins levels were significantly reduced in the early stage of AD, resulting in protection against cognitive decline by reducing neuroinflammation and pro-inflammatory cytokines. Furthermore, mitochondrial function improved, apoptosis was reduced, and synapse-related protein expression increased. Overall, exercise with 40-Hz light flickering was significantly more effective than exercise or 40-Hz light flickering alone, and the improvement was comparable to the levels in the non-transgenic aged-match control group. Our results indicate a synergistic effect of exercise and 40-Hz light flickering on pathological improvements in the hippocampus during early AD associated cognitive impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Seung-Soo Baek
- Department of Exercise and Health Science, Sangmyung University, Seoul, Republic of Korea
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Cody Philip Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Myung-Ki Kim
- Division of Global Sport Studies, Korea University, Sejong, Republic of Korea
| | - Ik-Ryeul Park
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Woon Kim
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
42
|
Ceyzériat K, Tournier BB, Millet P, Dipasquale G, Koutsouvelis N, Frisoni GB, Garibotto V, Zilli T. Low-Dose Radiation Therapy Reduces Amyloid Load in Young 3xTg-AD Mice. J Alzheimers Dis 2022; 86:641-653. [DOI: 10.3233/jad-215510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Low-dose radiation therapy (LD-RT) has been shown to decrease amyloidosis or inflammation in systemic diseases and has recently been proposed as possible treatment of Alzheimer’s disease (AD). A positive effect of LD-RT on tauopathy, the other marker of AD, has also been suggested. These effects have been shown in preclinical studies, but their mechanisms are still not well understood. Objective: This study aimed to evaluate if anti-amyloid and anti-inflammatory effects of LD-RT can be observed at an early stage of the disease. Its impact on tauopathy and behavioral alterations was also investigated. Methods: The whole brain of 12-month-old 3xTg-AD mice was irradiated with 10 Gy in 5 daily fractions of 2 Gy. Mice underwent behavioral tests before and 8 weeks post treatment. Amyloid load, tauopathy, and neuroinflammation were measured using histology and/or ELISA. Results: Compared with wild-type animals, 3xTg-AD mice showed a moderate amyloid and tau pathology restricted to the hippocampus, a glial reactivity restricted to the proximity of amyloid plaques. LD-RT significantly reduced Aβ 42 aggregated forms (–71%) in the hippocampus and tended to reduce other forms in the hippocampus and frontal cortex but did not affect tauopathy or cognitive performance. A trend for neuroinflammation markers reduction was also observed. Conclusion: When applied at an early stage, LD-RT reduced amyloid load and possibly neuroinflammation markers, with no impact on tauopathy. The long-term persistence of these beneficial effects of LD-RT should be evaluated in future studies.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B. Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanna Dipasquale
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Memory Center, Geneva University Hospitals, and LANVIE, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
43
|
Javonillo DI, Tran KM, Phan J, Hingco E, Kramár EA, da Cunha C, Forner S, Kawauchi S, Milinkeviciute G, Gomez-Arboledas A, Neumann J, Banh CE, Huynh M, Matheos DP, Rezaie N, Alcantara JA, Mortazavi A, Wood MA, Tenner AJ, MacGregor GR, Green KN, LaFerla FM. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front Neurosci 2022; 15:785276. [PMID: 35140584 PMCID: PMC8818877 DOI: 10.3389/fnins.2021.785276] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer’s disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aβ) plaque burden and neurofibrillary tau tangles, biochemical levels of Aβ and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.
Collapse
Affiliation(s)
- Dominic I. Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Kristine M. Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Edna Hingco
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Crystal E. Banh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Michelle Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Narges Rezaie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Andrea J. Tenner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Grant R. MacGregor
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Kim N. Green,
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Frank M. LaFerla,
| |
Collapse
|
44
|
Duncan M, Guerriero L, Kohler K, Beechem L, Gillis B, Salisbury F, Wessel C, Wang J, Sunderam S, Bachstetter A, O’Hara B, Murphy M. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Neuroscience 2022; 481:111-122. [PMID: 34856352 PMCID: PMC8941625 DOI: 10.1016/j.neuroscience.2021.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023]
Abstract
Fragmentation of the daily sleep-wake rhythm with increased nighttime awakenings and more daytime naps is correlated with the risk of development of Alzheimer's disease (AD). To explore whether a causal relationship underlies this correlation, the present study tested the hypothesis that chronic fragmentation of the daily sleep-wake rhythm stimulates brain amyloid-beta (Aβ) levels and neuroinflammation in the 3xTg-AD mouse model of AD. Female 3xTg-AD mice were allowed to sleep undisturbed or were subjected to chronic sleep fragmentation consisting of four daily sessions of enforced wakefulness (one hour each) evenly distributed during the light phase, five days a week for four weeks. Piezoelectric sleep recording revealed that sleep fragmentation altered the daily sleep-wake rhythm to resemble the pattern observed in AD. Levels of amyloid-beta (Aβ40 and Aβ42) determined by ELISA were higher in hippocampal tissue collected from sleep-fragmented mice than from undisturbed controls. In contrast, hippocampal levels of tau and phospho-tau differed minimally between sleep fragmented and undisturbed control mice. Sleep fragmentation also stimulated neuroinflammation as shown by increased expression of markers of microglial activation and proinflammatory cytokines measured by q-RT-PCR analysis of hippocampal samples. No significant effects of sleep fragmentation on Aβ, tau, or neuroinflammation were observed in the cerebral cortex. These studies support the concept that improving sleep consolidation in individuals at risk for AD may be beneficial for slowing the onset or progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- M.J. Duncan
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| | - L.E. Guerriero
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - K. Kohler
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - L.E. Beechem
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536
| | - B.D. Gillis
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536
| | - F. Salisbury
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - C. Wessel
- Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - J. Wang
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - S. Sunderam
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - A.D. Bachstetter
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536
| | - B.F. O’Hara
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - M.P. Murphy
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| |
Collapse
|
45
|
Liu J, Baum L, Yu S, Lin Y, Xiong G, Chang RCC, So KF, Chiu K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer's Disease Model Mouse Retina by Lycium Barbarum Extracts. Front Aging Neurosci 2022; 13:788798. [PMID: 35095474 PMCID: PMC8792986 DOI: 10.3389/fnagi.2021.788798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid β deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Larry Baum
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shasha Yu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Eye Hospital, Nankai University Eye Hospital, Tianjin Eye Institute, Tianjin Medical University, Tianjin, China
| | - Youhong Lin
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Guoying Xiong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Fai So
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Kwok Fai So
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Kin Chiu
| |
Collapse
|
46
|
Xu B, He Y, Liu L, Ye G, Chen L, Wang Q, Chen M, Chen Y, Long D. The Effects of Physical Running on Dendritic Spines and Amyloid-beta Pathology in 3xTg-AD Male Mice. Aging Dis 2022; 13:1293-1310. [PMID: 35855335 PMCID: PMC9286906 DOI: 10.14336/ad.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 11/01/2022] Open
Abstract
Memory loss is the key symptom of Alzheimer's disease (AD). As successful drug treatments have not yet been identified, non-pharmaceutical interventions such as physical exercise and training have been employed to improve the memory function of people with dementia. We investigated the effect of prolonged physical running on hippocampal-dependent spatial memory and its underlying mechanisms using a well-established rodent model of AD. 3xTg-AD transgenic mice and non-transgenic mice were subjected to voluntary wheel running for 5 months (1 hour per day, 5 days per week), followed by spatial memory testing. After the behavioral testing, dendritic spines, synapses, and synaptic proteins as well as amyloid-beta (Aβ) pathology were analyzed in the dorsal hippocampi. Running improved hippocampal-dependent spatial memory in 3xTg-AD mice. This running strategy prevented both thin and mushroom-type spines on CA1 pyramidal cells in 3xTg-AD mice, whereas the effects of running in non-transgenic mice were limited to thin spines. The enormous effects of running on spines were accompanied by an increased number of synapses and upregulated expression of synaptic proteins. Notably, running downregulated the processing of amyloid precursor protein, decreasing intracellular APP expression and extracellular Aβ accumulation, and spatial memory performance correlated with levels of Aβ peptides Aβ1-40 and Aβ1-42. These data suggest that prolonged running may improve memory in preclinical AD via slowing down the amyloid pathology and preventing the loss of synaptic contacts.
Collapse
Affiliation(s)
- Benke Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Yun He
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Lian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Guosheng Ye
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lulu Chen
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Qingning Wang
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Michael Chen
- University of California, Los Angeles, CA 90095, USA.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA 92697, USA.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| |
Collapse
|
47
|
Han J, Hyun J, Park J, Jung S, Oh Y, Kim Y, Ryu SH, Kim SH, Jeong EI, Jo DG, Park SH, Jung YK. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer's disease. Cell Rep 2021; 37:110102. [PMID: 34879266 DOI: 10.1016/j.celrep.2021.110102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
Abstract
Toxic amyloid beta (Aβ) species cause synaptic dysfunction and neurotoxicity in Alzheimer's disease (AD). As of yet, however, there are no reported regulators for gamma-secretase, which links a risky environment to amyloid accumulation in AD. Here, we report that pyruvate kinase M2 (PKM2) is a positive regulator of gamma-secretase under hypoxia. From a genome-wide functional screen, we identify PKM2 as a gamma-secretase activator that is highly expressed in the brains of both patients and murine models with AD. PKM2 regulates Aβ production and the amount of active gamma-secretase complex by changing the gene expression of aph-1 homolog. Hypoxia induces PKM2 expression, thereby promoting gamma-secretase activity. Moreover, transgenic expression of PKM2 in 3xTg AD model mice enhances hippocampal production of Aβ and exacerbates the impairment of spatial and recognition memory. Taken together, these findings indicate that PKM2 is an important gamma-secretase regulator that promotes Aβ production and memory impairment under hypoxia.
Collapse
Affiliation(s)
- Jonghee Han
- School of Biological Science, Seoul National University, Seoul 08826, Korea; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junho Hyun
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Sunmin Jung
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Korea
| | - Shin-Hyeon Ryu
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Eun Il Jeong
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Gyunggi-do 16419, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong-Keun Jung
- School of Biological Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Liu H, Zhao J, Lin Y, Su M, Lai L. Administration of anti-ERMAP antibody ameliorates Alzheimer's disease in mice. J Neuroinflammation 2021; 18:268. [PMID: 34774090 PMCID: PMC8590358 DOI: 10.1186/s12974-021-02320-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating age-related neurodegenerative disorder and characterized by progressive loss of memory and cognitive functions, which are associated with amyloid-beta (Aβ) plaques. Immune cells play an important role in the clearance of Aβ deposits. Immune responses are regulated by immune regulators in which the B7 family members play a crucial role. We have recently identified erythroid membrane-associated protein (ERMAP) as a novel B7 family-related immune regulator and shown that ERMAP protein affects T cell and macrophage functions. METHODS We produced a monoclonal antibody (mAb) against ERMAP protein and then determined the ability of the mAb to affect cognitive performance and AD pathology in mice. RESULTS We have shown that the anti-ERMAP mAb neutralizes the T cell inhibitory activity of ERMAP and enhances macrophages to phagocytose Aβ in vitro. Administration of the mAb into AD mice improves cognitive performance and reduces Aβ plaque load in the brain. This is related to increased proportion of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the macrophage phagocytosis of Aβ are enhanced in the anti-ERMAP mAb-treated AD mice. CONCLUSIONS Our results suggest that manipulating the ERMAP pathway has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Haiyan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
- Department of Human Histology and Embryology, Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA.
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
49
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
50
|
van der Velpen V, Rosenberg N, Maillard V, Teav T, Chatton J, Gallart‐Ayala H, Ivanisevic J. Sex-specific alterations in NAD+ metabolism in 3xTg Alzheimer's disease mouse brain assessed by quantitative targeted LC-MS. J Neurochem 2021; 159:378-388. [PMID: 33829502 PMCID: PMC8596789 DOI: 10.1111/jnc.15362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Levels of nicotinamide adenine dinucleotide (NAD+) are known to decline with age and have been associated with impaired mitochondrial function leading to neurodegeneration, a key facet of Alzheimer's disease (AD). NAD+synthesis is sustained via tryptophan-kynurenine (Trp-Kyn) pathway as de novo synthesis route, and salvage pathways dependent on the availability of nicotinic acid and nicotinamide. While being currently investigated as a multifactorial disease with a strong metabolic component, AD remains without curative treatment and important sex differences were reported in relation to disease onset and progression. The aim of this study was to reveal the potential deregulation of NAD+metabolism in AD with the direct analysis of NAD+precursors in the mouse brain tissue (wild type (WT) versus triple transgenic (3xTg) AD), using a sex-balanced design. To this end, we developed a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which allowed for the measurement of the full spectrum of NAD+precursors and intermediates in all three pathways. In brain tissue of mice with developed AD symptoms, a decrease in kynurenine (Kyn) versus increase in kynurenic acid (KA) levels were observed in both sexes with a significantly higher increment of KA in males. These alterations in Trp-Kyn pathway might be a consequence of neuroinflammation and a compensatory production of neuroprotective kynurenic acid. In the NAD+ salvage pathway, significantly lower levels of nicotinamide mononucleotide (NMN) were measured in the AD brain of males and females. Depletion of NMN implies the deregulation of salvage pathway critical for maintaining optimal NAD+ levels and mitochondrial and neuronal function.
Collapse
Affiliation(s)
- Vera van der Velpen
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Present address:
Clinical Pharmacology and ToxicologyDepartment of General Internal Medicine, InselspitalBern University HospitalBernSwitzerland
| | - Nadia Rosenberg
- Department of Fundamental NeurosciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Vanille Maillard
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Tony Teav
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Jean‐Yves Chatton
- Department of Fundamental NeurosciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Hector Gallart‐Ayala
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|