1
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
3
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
4
|
Nongthombam PD, Haobam R. Targeting phosphodiesterase 4 as a potential therapy for Parkinson's disease: a review. Mol Biol Rep 2024; 51:510. [PMID: 38622307 DOI: 10.1007/s11033-024-09484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.
Collapse
Affiliation(s)
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, India.
| |
Collapse
|
5
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
6
|
Liang XS, Sun ZW, Thomas AM, Li S. Mesenchymal Stem Cell Therapy for Huntington Disease: A Meta-Analysis. Stem Cells Int 2023; 2023:1109967. [PMID: 37168444 PMCID: PMC10164866 DOI: 10.1155/2023/1109967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Objective Mesenchymal stem cell (MSC) therapy has been explored in Huntington disease (HD) as a potential therapeutic approach; however, a complete synthesis of these results is lacking. We conducted a meta-analysis to evaluate the effects of MSCs on HD. Method Eligible studies published before November 2022 were screened from Embase, PubMed, Web of Science, Medline, and Cochrane in accordance with PRISMA guidelines. ClinicalTrial.gov and the World Health Organization International Clinical Trials Registry Platform were also searched for registered clinical trials. The outcomes in rodent studies evaluated included morphological changes (striatal volume and ventricular volume), motor function (rotarod test, wire hang test, grip strength test, limb-clasping test, apomorphine-induced rotation test, and neuromuscular electromyography activity), cognition (Morris water maze test), and body weight. Result The initial search returned 362 records, of which 15 studies incorporating 346 HD rodents were eligible for meta-analysis. Larger striatal and smaller ventricular volumes were observed in MSC-treated animals compared to controls. MSCs transplanted before the occurrence of motor dysfunction rescued the motor incoordination of HD. Among different MSC sources, bone marrow mesenchymal stem cells were the most investigated cells and were effective in improving motor coordination. MSC therapy improved muscle strength, neuromuscular electromyography activity, cortex-related motor function, and striatum-related motor function, while cognition was not changed. The body weight of male HD rodents increased after MSC transplantation, while that of females was not affected. Conclusion Meta-analysis showed a positive effect of MSCs on HD rodents overall, as reflected in morphological changes, motor coordination, muscle strength, neuromuscular electromyography activity, cortex-related motor function, and striatum-related motor function, while cognition was not changed by MSC therapy.
Collapse
Affiliation(s)
- Xue-Song Liang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zheng-Wu Sun
- Department of Clinical Pharmacy, Dalian Municipal Central Hospital, Dalian, China
| | - Aline M. Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Merino M, Sequedo MD, Sánchez-Sánchez AV, Clares MP, García-España E, Vázquez-Manrique RP, Mullor JL. Mn(II) Quinoline Complex (4QMn) Restores Proteostasis and Reduces Toxicity in Experimental Models of Huntington's Disease. Int J Mol Sci 2022; 23:8936. [PMID: 36012207 PMCID: PMC9409211 DOI: 10.3390/ijms23168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we propose 4QMn as a potential drug to develop a therapy to treat HD.
Collapse
Affiliation(s)
- Marián Merino
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain
| | - María Dolores Sequedo
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | | | - Mª Paz Clares
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain
| | - Enrique García-España
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - José L. Mullor
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|
8
|
Paldino E, Fusco FR. Emerging Role of NLRP3 Inflammasome/Pyroptosis in Huntington's Disease. Int J Mol Sci 2022; 23:8363. [PMID: 35955494 PMCID: PMC9368941 DOI: 10.3390/ijms23158363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by several symptoms encompassing movement, cognition, and behavior. The mutation of the IT15 gene encoding for the huntingtin protein is the cause of HD. Mutant huntingtin interacts with and impairs the function of several transcription factors involved in neuronal survival. Although many mechanisms determining neuronal death have been described over the years, the significant role of inflammation has gained momentum in the last decade. Drugs targeting the elements that orchestrate inflammation have been considered powerful tools to treat HD. In this review, we will describe the data supporting inflammasome and NLRP3 as a target of therapeutics to fight HD, deepening the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, IRRCS Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
| | - Francesca Romana Fusco
- Laboratory of Neuroanatomy, IRRCS Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
9
|
Inosine attenuates 3-nitropropionic acid-induced Huntington's disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 2022; 300:120569. [PMID: 35472453 DOI: 10.1016/j.lfs.2022.120569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by involuntary bizarre movements, psychiatric symptoms, dementia, and early death. Several studies suggested neuroprotective activities of inosine; however its role in HD is yet to be elucidated. The current study aimed to demonstrate the neuroprotective effect of inosine in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats while investigating possible underlying mechanisms. Rats were randomly divided into five groups; group 1 received i.p. injections of 1% DMSO, whereas groups 2, 3, 4, and 5 received 3-NP (10 mg/kg, i.p.) for 14 days, concomitantly with inosine (200 mg/kg., i.p.) in groups 3, 4, and 5, SCH58261, a selective adenosine 2A receptor (A2AR) antagonist, (0.05 mg/kg, i.p.) in group 4, and PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, (0.3 mg/kg, i.p.) in group 5. Treatment with inosine mitigated 3-NP-induced motor abnormalities and body weight loss. Moreover, inosine boosted the striatal brain-derived neurotrophic factor (BDNF) level, p-tropomyosin receptor kinase B (TrKB), p-ERK, and p-cAMP response element-binding protein (CREB) expression, which subsequently suppressed oxidative stress biomarkers (malondialdehyde and nitric oxide) and pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1β) and replenished the glutathione content. Similarly, histopathological analyses revealed decreased striatal injury score, the expression of the glial fibrillary acidic protein, and neuronal loss after inosine treatment. These effects were attenuated by the pre-administration of SCH58261 or PD98059. In conclusion, inosine attenuated 3-NP-induced HD-like symptoms in rats, at least in part, via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway.
Collapse
|
10
|
Aaronson J, Beaumont V, Blevins RA, Andreeva V, Murasheva I, Shneyderman A, Armah K, Gill R, Chen J, Rosinski J, Park LC, Coppola G, Munoz-Sanjuan I, Vogt TF. HDinHD: A Rich Data Portal for Huntington's Disease Research. J Huntingtons Dis 2021; 10:405-412. [PMID: 34397420 DOI: 10.3233/jhd-210491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
HDinHD (Huntington's Disease in High Definition; HDinHD.org) is an open online portal for the HD research community that presents a synthesized view of HD-related scientific data. Here, we present a broad overview of HDinHD and highlight the newly launched HDinHD Explorer tool that enables researchers to discover and explore a wide range of diverse yet interconnected HD-related data. We demonstrate the utility of HDinHD Explorer through data mining of a single collection of newly released in vivo therapeutic intervention study reports alongside previously published reports.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rob Gill
- Rancho Biosciences LLC, San Diego, CA, USA
| | - Jian Chen
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Jim Rosinski
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Larry C Park
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
11
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
12
|
Saroj P, Bansal Y, Singh R, Akhtar A, Sodhi RK, Bishnoi M, Sah SP, Kuhad A. Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington's disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology 2021; 29:499-511. [PMID: 33517508 DOI: 10.1007/s10787-020-00787-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative and hyperkinetic movement disorder. Decreased activity of cAMP-responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in HD. The present study has been designed to explore the possible role of roflumilast against qunilonic acid (QA) induced neurotoxicity in rats intending to investigate whether it inhibits the neuroinflammatory response through activation of the cAMP/CREB/BDNF signaling pathway. QA was microinjected (200 nmol/2 µl, bilaterally) through the intrastriatal route in the stereotaxic apparatus. Roflumilast (0.5, 1, and 2 mg/kg, orally) once-daily treatment for 21 days significantly improved locomotor activity in actophotometer, motor coordination in rotarod, and impaired gait performance in narrow beam walk test. Moreover, roflumilast treatment significantly attenuated oxidative and nitrosative stress (p < 0.05) through attenuating lipid peroxidation nitrite concentration and enhancing reduced glutathione, superoxide dismutase, and catalase levels. Furthermore, roflumilast also significantly decreased elevated pro-inflammatory cytokines like TNF-α (p < 0.01), IL-6 (p < 0.01), IFN-γ (p < 0.05), NF-κB (p < 0.05) and significantly increased BDNF(p < 0.05) in the striatum and cortex of rat brain. The results further demonstrated that roflumilast effectively increased the gene expression of cAMP(p < 0.05), CREB(p < 0.05) and decreased the gene expression of PDE4 (p < 0.05) in qRT-PCR. These results conclusively depicted that roflumilast could be a potential candidate as an effective therapeutic agent in the management of HD through the cAMP/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Priyanka Saroj
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Yashika Bansal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institue (NABI), Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
- Department of Physiology, University Institute of Pharmaceutical Science (UIPS), UGC Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
14
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
15
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
16
|
Bhat A, Tan V, Heng B, Lovejoy DB, Sakharkar MK, Essa MM, Chidambaram SB, Guillemin GJ. Roflumilast, a cAMP-Specific Phosphodiesterase-4 Inhibitor, Reduces Oxidative Stress and Improves Synapse Functions in Human Cortical Neurons Exposed to the Excitotoxin Quinolinic Acid. ACS Chem Neurosci 2020; 11:4405-4415. [PMID: 33261317 DOI: 10.1021/acschemneuro.0c00636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The overexpression of phosphodiesterase 4 (PDE4) enzymes is reported in several neurodegenerative diseases. PDE4 depletes cyclic 3'-5' adenosine monophosphate (cAMP) and, in turn, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), the key players in cognitive function. The present study was undertaken to investigate the mechanism behind the protective effects of roflumilast (ROF), a cAMP-specific PDE4 inhibitor, against quinolinic acid (QUIN)-induced neurotoxicity using human primary cortical neurons. Cytotoxicity was analyzed using an MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC-10 staining, respectively. Caspase 3/7 activity was measured using an ApoTox-Glo Triplex assay kit. cAMP was measured using an ELISA kit. The protein expression of CREB, BDNF, SAP-97, synaptophysin, synapsin-I, and PSD-95 was analyzed by the Western blotting technique. QUIN exposure down-regulated CREB, BDNF, and synaptic protein expression in neurons. Pretreatment with ROF increased the intracellular cAMP, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD+) content and decreased the ROS and caspase 3/7 levels in QUIN-exposed neurons. ROF up-regulated the expression of synapse proteins SAP-97, synaptophysin, synapsin-I, PSD-95, and CREB and BDNF, which indicates its potential role in memory. This study suggests for the first time that QUIN causes pre- and postsynaptic protein damage. We further demonstrate the restorative effects of ROF on the mitochondrial membrane potential and antiapoptotic properties in human neurons. These data encourage further investigations to reposition ROF in neurodegenerative diseases and their associated cognitive deficits.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David B. Lovejoy
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015, India
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
17
|
Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 2020; 26:52-70. [PMID: 33226552 DOI: 10.1007/s10495-020-01645-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.
Collapse
|
18
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
19
|
New Synthetic 3-Benzoyl-5-Hydroxy-2 H-Chromen-2-One (LM-031) Inhibits Polyglutamine Aggregation and Promotes Neurite Outgrowth through Enhancement of CREB, NRF2, and Reduction of AMPK α in SCA17 Cell Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3129497. [PMID: 32377295 PMCID: PMC7195640 DOI: 10.1155/2020/3129497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by a CAG/CAA expansion mutation encoding an expanded polyglutamine (polyQ) tract in TATA-box binding protein (TBP), a general transcription initiation factor. Suppression of cAMP-responsive element binding protein- (CREB-) dependent transcription, impaired nuclear factor erythroid 2-related factor 2 (NRF2) signaling, and interaction of AMP-activated protein kinase (AMPK) with increased oxidative stress have been implicated to be involved in pathogenic mechanisms of polyQ-mediated diseases. In this study, we demonstrated decreased pCREB and NRF2 and activated AMPK contributing to neurotoxicity in SCA17 SH-SY5Y cells. We also showed that licochalcone A and the related in-house derivative compound 3-benzoyl-5-hydroxy-2H-chromen-2-one (LM-031) exhibited antiaggregation, antioxidative, antiapoptosis, and neuroprotective effects in TBP/Q79-GFP-expressing cell models. LM-031 and licochalcone A exerted neuroprotective effects by upregulating pCREB and its downstream genes, BCL2 and GADD45B, and enhancing NRF2. Furthermore, LM-031, but not licochalcone A, reduced activated AMPKα. Knockdown of CREB and NRF2 and treatment of AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside), an AMPK activator, attenuated the aggregation-inhibiting and neurite outgrowth promoting effects of LM-031 on TBP/Q79 SH-SY5Y cells. The study results suggest the LM-031 as potential therapeutics for SCA17 and probable other polyQ diseases.
Collapse
|
20
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
21
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
22
|
Spatial memory in Huntington’s disease: A comparative review of human and animal data. Neurosci Biobehav Rev 2019; 98:194-207. [DOI: 10.1016/j.neubiorev.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
|
23
|
Takano A, Uz T, Garcia-Segovia J, Tsai M, Lahu G, Amini N, Nakao R, Jia Z, Halldin C. A Nonhuman Primate PET Study: Measurement of Brain PDE4 Occupancy by Roflumilast Using (R)-[ 11C]Rolipram. Mol Imaging Biol 2019; 20:615-622. [PMID: 29441434 DOI: 10.1007/s11307-018-1168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Phosphodiesterase 4 (PDE4) inhibition in the brain has been reported to improve cognitive function in animal models. Therefore, PDE4 inhibitors are one of key targets potential for drug development. Investigation of brain PDE4 occupancy would help to understand the effects of PDE4 inhibition to cognitive functions. Roflumilast is a selective phosphodiesterase type 4 (PDE4) inhibitor used clinically for severe chronic obstructive pulmonary disease, but the effects to the brain have not been well investigated. In this study, we aimed to investigate whether roflumilast entered the brain and occupied PDE4 in nonhuman primates. PROCEDURES Positron emission tomography (PET) measurements with (R)-[11C]rolipram were performed at baseline and after intravenous (i.v.) administration of roflumilast (3.6 to 200 μg/kg) in three female rhesus monkeys. Arterial blood samples were taken to obtain the input function. Protein binding was measured to obtain the free fraction (fp) of the radioligand. Total distribution volume (VT) and VT/fp were calculated as outcome measures from two tissue compartment model. Lassen plot approach was taken to estimate the target occupancy. RESULTS The brain uptake of (R)-[11C]rolipram decreased after roflumilast administration. PDE 4 occupancy by roflumilast showed dose- and plasma concentration-dependent increase, although PDE4 occupancy did not reach 50 % even after the administration of up to 200 μg/kg of roflumilast, regardless of outcome measures, VT or VT/fp. CONCLUSIONS This PET study showed that the brain PDE4 binding was blocked to a certain extent after i.v. administration of clinical relevant doses of roflumilast in nonhuman primates. Further clinical PET evaluation is needed to understand the relationship between PDE4 inhibition and potential improvement of cognitive function in human subjects.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden.
| | - Tolga Uz
- Takeda Development Center Americas, Inc., Deerfield, IL, 60015, USA
| | - Jesus Garcia-Segovia
- Takeda Development Center, London, UK.,Orchard Therapeuitcs, Birchin Lane, London, UK
| | - Max Tsai
- Takeda Development Center Americas, Inc., Deerfield, IL, 60015, USA.,Eli Lilly and Company, Indianapolis, IN, USA
| | - Gezim Lahu
- Takeda Development Center Americas, Inc., Deerfield, IL, 60015, USA
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Ryuji Nakao
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Namazi Sarvestani N, Saberi Firouzi S, Falak R, Karimi MY, Davoodzadeh Gholami M, Rangbar A, Hosseini A. Phosphodiesterase 4 and 7 inhibitors produce protective effects against high glucose-induced neurotoxicity in PC12 cells via modulation of the oxidative stress, apoptosis and inflammation pathways. Metab Brain Dis 2018; 33:1293-1306. [PMID: 29713919 DOI: 10.1007/s11011-018-0241-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic neuropathy (DN) is the most common diabetic complication. It is estimated diabetic population will increase to 592 million by the year 2035. This is while at least 50-60% of all diabetic patients will suffer from neuropathy in their lifetime. Oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial pathways in development and progression of DN. Since there is also no selective and effective therapeutic agent to prevent or treat high glucose (HG)-induced neuronal cell injury, it is crucial to explore tools by which one can reduce factors related to these pathways. Phosphodiesterase 4 and 7 (PDE 4 and 7) regulate oxidative damage, neurodegenaration, and inflammatory responses through modulation of cyclic adenosine monophosphate (cAMP) level, and thus can be as important drug targets for regulating DN. The aim of this study was to evaluate the protective effects of inhibitors of PDE 4 and 7, named rolipram and BRL5048, on HG-induced neurotoxicity in PC12 cells as an in vitro cellular model for DN and determine the possible mechanisms for theirs effects. We report that the PC12 cells pre-treatment with rolipram (2 μM) and/or BRL5048 (0.2 μM) for 60 min and then exposing the cells to HG (4.5 g/L for 72 h) or normal glucose (NG) (1 g/L for 72 h) condition show: (1) significant attenuation in ROS, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, MMP and ATP levels. All these data together led us to propose PDE 4 and 7 inhibitors, and specifically, rolipram and BRL5048, as potential drugs candidate to be further studied for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Nazanin Namazi Sarvestani
- Department of Animal Biology, School of Biology, Department of Science, University of Tehran, Tehran, Iran
| | - Saeedeh Saberi Firouzi
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Akram Rangbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Potkin KT, Potkin SG. New directions in therapeutics for Huntington disease. FUTURE NEUROLOGY 2018; 13:101-121. [PMID: 30800004 DOI: 10.2217/fnl-2017-0035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022]
Abstract
Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disease that affects motor, cognitive and psychiatric functions, and ultimately leads to death. The pathology of the disease is based on an expansion of CAG repeats in exon 1 of the huntingtin gene on chromosome 4, which produces a mutant huntingtin protein (mHtt). This protein is involved in neurotoxicity and brain atrophy, and can form β-sheets and abnormal mHtt aggregates. Currently, there are no approved effective treatments for HD, although tetrabenazine (Xenazine™) and deutetrabenazine (AUSTEDO™) have been approved for treatment of the motor symptom chorea in HD. This literature review aims to address the latest research on promising therapeutics based on influencing the hypothesized pathological mechanisms.
Collapse
Affiliation(s)
- Katya T Potkin
- Stony Brook School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA.,Stony Brook School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Steven G Potkin
- Professor Emeritus, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA.,Professor Emeritus, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
28
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
29
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
Paldino E, Cardinale A, D'Angelo V, Sauve I, Giampà C, Fusco FR. Selective Sparing of Striatal Interneurons after Poly (ADP-Ribose) Polymerase 1 Inhibition in the R6/2 Mouse Model of Huntington's Disease. Front Neuroanat 2017; 11:61. [PMID: 28824383 PMCID: PMC5539174 DOI: 10.3389/fnana.2017.00061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) are enzymes that catalyze ADP-ribose units transfer from NAD to their substrate proteins. It has been observed that PARP-1 is able to increase both post-ischemic and excitotoxic neuronal death. In fact, we have previously shown that, INO-1001, a PARP-1 inhibitor, displays a neuroprotective effect in the R6/2 model of Huntington’s disease (HD). In this study, we investigated the effects of PARP-1-inhibition on modulation of phosphorylated c-AMP response element binding protein (pCREB) and CREB-binding protein (CBP) localization in the different striatal neuronal subsets. Moreover, we studied the neurodegeneration of those interneurons that are particularly vulnerable to HD such as parvalbuminergic and calretininergic, and of other subclasses of interneurons that are known to be resistant, such as cholinergic and somatostatinergic interneurons. Transgenic mice were treated with INO-1001 (10 mg/Kg daily) starting from 4 weeks of age. Double-label immunofluorescence was performed to value the distribution of CBP in ubiquitinated Neuronal intranuclear inclusions (NIIs) in the striatum. INO-1001-treated and saline-treated brain sections were incubated with: goat anti-choline acetyl transferase; goat anti-nitric oxide synthase; mouse anti-parvalbumin and mouse anti-calretinin. Morphometric evaluation and cell counts were performed. Our study showed that the PARP inhibitor has a positive effect in sparing parvalbumin and calretinin-containing interneurons of the striatum, where CREB was upregulated. Moreover, INO-1001 promoted CBP localization into the nuclei of the R6/2 mouse. The sum of our data corroborates the previous observations indicating PARP inhibition as a possible therapeutic tool to fight HD.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Antonella Cardinale
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Vincenza D'Angelo
- Department of Neuroscience, University of Rome Tor VergataRome, Italy
| | - Ilaria Sauve
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| | - Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy.,Department of Anatomy and Cell Biology, Catholic UniversityRome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS HospitalRome, Italy
| |
Collapse
|
31
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
32
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
33
|
Rasti B, Schaduangrat N, Shahangian SS, Nantasenamat C. Exploring the origin of phosphodiesterase inhibition via proteochemometric modeling. RSC Adv 2017. [DOI: 10.1039/c7ra02332d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A proteochemometric study of a set of phosphodiesterase 4B and 4D inhibitors sheds light on the origin of their inhibition and selectivities.
Collapse
Affiliation(s)
- Behnam Rasti
- Department of Microbiology
- Faculty of Basic Sciences
- Lahijan Branch
- Islamic Azad University (IAU)
- Lahijan
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - S. Shirin Shahangian
- Department of Biology
- Faculty of Sciences
- University of Guilan
- Rasht 41938-33697
- Iran
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| |
Collapse
|
34
|
Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. ADVANCES IN NEUROBIOLOGY 2017; 17:15-43. [DOI: 10.1007/978-3-319-58811-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Fusco FR, Paldino E. Role of Phosphodiesterases in Huntington’s Disease. ADVANCES IN NEUROBIOLOGY 2017; 17:285-304. [DOI: 10.1007/978-3-319-58811-7_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
37
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
38
|
Heckman PRA, van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A, Prickaerts J. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. Int J Neuropsychopharmacol 2016; 19:pyw030. [PMID: 27037577 PMCID: PMC5091819 DOI: 10.1093/ijnp/pyw030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.
Collapse
|
39
|
Lundegaard PR, Anastasaki C, Grant NJ, Sillito RR, Zich J, Zeng Z, Paranthaman K, Larsen AP, Armstrong JD, Porteous DJ, Patton EE. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. ACTA ACUST UNITED AC 2015; 22:1335-46. [PMID: 26388333 PMCID: PMC4623357 DOI: 10.1016/j.chembiol.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP.
Collapse
Affiliation(s)
- Pia R Lundegaard
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Corina Anastasaki
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola J Grant
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rowland R Sillito
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK
| | - Judith Zich
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karthika Paranthaman
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anders Peter Larsen
- Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Douglas Armstrong
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK; School of Informatics, Institute for Adaptive and Neural Computation, Informatics Forum, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
40
|
Thomae D, Servaes S, Vazquez N, Wyffels L, Dedeurwaerdere S, Van der Veken P, Joossens J, Augustyns K, Stroobants S, Staelens S. Synthesis and preclinical evaluation of an 18F labeled PDE7 inhibitor for PET neuroimaging. Nucl Med Biol 2015; 42:975-81. [PMID: 26330158 DOI: 10.1016/j.nucmedbio.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Phosphodiesterase 7 (PDE7) hydrolyzes selectively cyclic adenosine monophosphate (cAMP) which is an intracellular second messenger. PDE7 is expressed by 2 genes which are both present in the brain. To date there is no radiotracer for PDE7 imaging described and detection of PDE7 has only been performed by ex vivo techniques. In this report we describe the radiosynthesis of a novel fluorine-18 labeled radiotracer for PDE7 as well as the in vivo evaluation in mice to verify whether it has potential for imaging of PDE7 in the brain. METHODS We have synthesized a potent fluorinated PDE7 inhibitor, [(18)F]MICA-003 (PDE7 IC(50)=17 nM) and the corresponding tosylate precursor for radiolabeling. [(18)F]MICA-003 was injected in C57BL/6J mice (n=5) and in vivo images were acquired by μPET imaging. Radiometabolite analysis in plasma and brain was performed to determine the stability of the radioligand. RESULTS [(18)F]MICA-003 was synthesized by direct fluorination of the tosylate and produced in high decay corrected radiochemical yield (40%), high radiochemical purity (>98%) and high specific activity (86-497 GBq/μmol). μPET imaging revealed that [(18)F]MICA-003 crosses the blood brain barrier and has a homogenous distribution over the brain which washes out after the initial peak uptake. [(18)F]MICA-003 was quickly metabolized in plasma with 8.9%±0.59% of intact [(18)F]MICA-003 remaining at 5m in post injection. We observed the formation of three distinct radiometabolites of which the main radiometabolite was also detected in the brain in a proportion of 25.7±2.57% at this same time point. CONCLUSION We have described the synthesis and in vivo evaluation of a novel radioligand for PDE7 imaging. Despite high uptake in the brain and favorable kinetics in vivo, the presence of a brain penetrant radiometabolite makes [(18)F]MICA-003 unfavorable for the accurate quantification of PDE7 and more stable spiroquinazolinones analogs are in development.
Collapse
Affiliation(s)
- David Thomae
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Stijn Servaes
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Naiara Vazquez
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium
| | | | | | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
41
|
Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet 2015; 24:4365-73. [PMID: 25954032 DOI: 10.1093/hmg/ddv170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/05/2015] [Indexed: 01/27/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) and pectus excavatum (PE) are common pediatric musculoskeletal disorders. Little is known about the tissue of origin for either condition, or about their genetic bases. Common variants near GPR126/ADGRG6 (encoding the adhesion G protein-coupled receptor 126/adhesion G protein-coupled receptor G6, hereafter referred to as GPR126) were recently shown to be associated with AIS in humans. Here, we provide genetic evidence that loss of Gpr126 in osteochondroprogenitor cells alters cartilage biology and spinal column development. Microtomographic and x-ray studies revealed several hallmarks of AIS, including postnatal onset of scoliosis without malformations of vertebral units. The mutants also displayed a dorsal-ward deflection of the sternum akin to human PE. At the cellular level, these defects were accompanied by failure of midline fusion within the developing annulus fibrosis of the intervertebral discs and increased apoptosis of chondrocytes in the ribs and vertebrae. Molecularly, we found that loss of Gpr126 upregulated the expression of Gal3st4, a gene implicated in human PE, encoding Galactose-3-O-sulfotransferase 4. Together, these data uncover Gpr126 as a genetic cause for the pathogenesis of AIS and PE in a mouse model.
Collapse
Affiliation(s)
| | - Fanxin Long
- Department of Orthopaedic Surgery, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
42
|
Rossignol J, Fink KD, Crane AT, Davis KK, Bombard MC, Clerc S, Bavar AM, Lowrance SA, Song C, Witte S, Lescaudron L, Dunbar GL. Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington's disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number. Stem Cell Res Ther 2015; 6:9. [PMID: 25971780 PMCID: PMC4429666 DOI: 10.1186/scrt545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat (greater than 38) on the short arm of chromosome 4, resulting in loss and dysfunction of neurons in the neostriatum and cortex, leading to cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Although an effective treatment for HD has remained elusive, current studies using transplants of bone-marrow-derived mesenchymal stem cells provides considerable promise. This study further investigates the efficacy of these transplants with a focus on comparing how passage number of these cells may affect subsequent efficacy following transplantation. Methods In this study, mesenchymal stem cells isolated from the bone-marrow of mice (BM MSCs), were labeled with Hoechst after low (3 to 8) or high (40 to 50) numbers of passages and then transplanted intrastriatally into 5-week-old R6/2 mice, which carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops symptoms analogous to the human form of the disease. Results It was observed that the transplanted cells survived and the R6/2 mice displayed significant behavioral and morphological sparing compared to untreated R6/2 mice, with R6/2 mice receiving high passage BM MSCs displaying fewer deficits than those receiving low-passage BM MSCs. These beneficial effects are likely due to trophic support, as an increase in brain derived neurotrophic factor mRNA expression was observed in the striatum following transplantation of BM MSCs. Conclusion The results from this study demonstrate that BM MSCs hold significant therapeutic value for HD, and that the amount of time the cells are exposed to in vitro culture conditions can alter their efficacy.
Collapse
Affiliation(s)
- Julien Rossignol
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA. .,College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Kyle D Fink
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA. .,Faculté des Science et des Techniques, Université de Nantes, 44300, Nantes, France. .,INSERM U1064, ITUN, 44093, Nantes, France.
| | - Andrew T Crane
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Kendra K Davis
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Matthew C Bombard
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Steven Clerc
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Angela M Bavar
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Steven A Lowrance
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Cheng Song
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Steven Witte
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA.
| | - Laurent Lescaudron
- Faculté des Science et des Techniques, Université de Nantes, 44300, Nantes, France. .,INSERM U791, Laboratoire d'Ingenierie Osteo-Articulaire et Dentaire (LIOAD), 44042, Nantes, France.
| | - Gary L Dunbar
- Field Neurosciences Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, 1280 East Campus Drive, HP Building Room 2336, Mount Pleasant, MI, 48859, USA. .,Field Neurosciences Institute, Saginaw, MI, 48604, USA.
| |
Collapse
|
43
|
Peixoto CA, Nunes AKS, Garcia-Osta A. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition. Mediators Inflamm 2015; 2015:940207. [PMID: 26770022 PMCID: PMC4681825 DOI: 10.1155/2015/940207] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a potential therapeutic strategy for neuroinflammatory, neurodegenerative, and memory loss diseases. Mechanistically, PDE5-Is produce an anti-inflammatory and neuroprotection effect by increasing expression of nitric oxide synthases and accumulation of cGMP and activating protein kinase G (PKG), the signaling pathway of which is thought to play an important role in the development of several neurodiseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The aim of this paper was to review present knowledge of the signaling pathways that underlie the use of PDE5-Is in neuroinflammation, neurogenesis, learning, and memory.
Collapse
Affiliation(s)
- Christina Alves Peixoto
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- *Christina Alves Peixoto:
| | - Ana Karolina Santana Nunes
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- 2Universidade Federal de Pernambuco, 50.670-901 Recife, PE, Brazil
| | - Ana Garcia-Osta
- 3Neurobiology of Alzheimer's disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
44
|
Gurney ME, D'Amato EC, Burgin AB. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer's disease. Neurotherapeutics 2015; 12:49-56. [PMID: 25371167 PMCID: PMC4322084 DOI: 10.1007/s13311-014-0309-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Between 20% and 25% of patients diagnosed with Alzheimer's disease (AD) do not have amyloid burden as assessed by positron emission tomography imaging. Thus, there is a need for nonamyloid-directed therapies for AD, especially for those patients with non-amyloid AD. The family of phosphodiesterase-4 (PDE4) enzymes are underexploited therapeutic targets for central nervous system indications. While the PDE4A, B, and D subtypes are expressed in brain, the strict amino acid sequence conservation of the active site across the four subtypes of PDE4 has made it difficult to discover subtype inhibitors. The recent elucidation of the structure of the PDE4 N- and C-terminal regulatory domains now makes it possible to design subtype-selective, negative allosteric modulators (PDE4-NAMs). These act through closing the N-terminal UCR2 or C-terminal CR3 regulatory domains, and thereby inhibit the enzyme by blocking access of cyclic adenosine monophosphate (cAMP) to the active site. PDE4B-NAMs have the potential to reduce neuroinflammation by dampening microglia cytokine production triggered by brain amyloid, while PDE4D-NAMs have potent cognitive benefit by augmenting signaling through the cAMP/protein kinase A/cAMP response element-binding protein (CREB) pathway for memory consolidation. The importance of PDE4D for human cognition is underscored by the recent discovery of PDE4D mutations in acrodysostosis (ACRDY2: MIM 600129), an ultra rare disorder associated with intellectual disability. Thus, the family of PDE4 enzymes provides rich opportunities for the development of mechanistically novel drugs to treat neuroinflammation or the cognitive deficits in AD.
Collapse
|
45
|
Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington's disease: what's in the pipeline? Mov Disord 2014; 29:1434-45. [PMID: 25155142 PMCID: PMC4265300 DOI: 10.1002/mds.26007] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.
Collapse
Affiliation(s)
- Edward J Wild
- Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & NeurosurgeryQueen Square, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & NeurosurgeryQueen Square, London, WC1N 3BG, UK
| |
Collapse
|
46
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
47
|
Efficacy of selective PDE4D negative allosteric modulators in the object retrieval task in female cynomolgus monkeys (Macaca fascicularis). PLoS One 2014; 9:e102449. [PMID: 25050979 PMCID: PMC4106781 DOI: 10.1371/journal.pone.0102449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The phosphodiesterase (PDE) type 4 inhibitor rolipram has shown significant pro-cognitive effects in neurological disease models, both in rodents and primates. However, competitive non-isoform selective PDE4 inhibitors have a low therapeutic index which has stalled their clinical development. Here, we demonstrate the pro-cognitive effects of selective negative allosteric modulators (NAMs) of PDE4D, D159687 and D159797 in female Cynomolgous macaques, in the object retrieval detour task. The efficacy displayed by these NAMs in a primate cognitive task which engages the corticostriatal circuitry, together with their suitable pharmacokinetic properties and safety profiles, suggests that clinical development of these allosteric modulators should be considered for the treatment of a variety of brain disorders associated with cognitive decline.
Collapse
|
48
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
49
|
Valor LM. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective. Mol Neurobiol 2014; 51:406-23. [PMID: 24788684 PMCID: PMC4309905 DOI: 10.1007/s12035-014-8715-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation in Huntington’s disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain,
| |
Collapse
|
50
|
Rutter AR, Poffe A, Cavallini P, Davis TG, Schneck J, Negri M, Vicentini E, Montanari D, Arban R, Gray FA, Davies CH, Wren PB. GSK356278, a Potent, Selective, Brain-Penetrant Phosphodiesterase 4 Inhibitor That Demonstrates Anxiolytic and Cognition-Enhancing Effects without Inducing Side Effects in Preclinical Species. J Pharmacol Exp Ther 2014; 350:153-63. [DOI: 10.1124/jpet.114.214155] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|