1
|
Xue J, Zhang J, Zhu J. Unraveling molecular signatures and prognostic biomarkers in glioblastoma: a comprehensive study on treatment resistance and personalized strategies. Discov Oncol 2024; 15:743. [PMID: 39630160 PMCID: PMC11618281 DOI: 10.1007/s12672-024-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited treatment success and poor prognosis. Despite surgical resection and adjuvant therapies, GBM often recurs, and resistance to radiotherapy and temozolomide presents significant challenges. This study aimed to elucidate molecular signatures associated with treatment responses, identify potential biomarkers, and enhance personalized treatment strategies for GBM. METHODS We conducted a comprehensive analysis using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The GEO dataset (GSE206225) was used to identify differentially expressed genes (DEGs) between radiation-sensitive/resistant and temozolomide-sensitive/resistant GBM samples. TCGA data were utilized for subsequent analyses, including Lasso-Cox regression, risk score model construction, Kaplan-Meier survival analysis, and gene set enrichment analysis (GSEA). Hub genes were identified through survival analysis, and a gene prognostic nomogram was developed. Additionally, validation of the three-gene risk signature through multiple external cohorts and validation of protein expression levels were performed. RESULTS DEG analysis identified 111 genes associated with chemoradiotherapy resistance, providing insights into the complex landscape of GBM treatment response. The risk score model effectively stratified patients, showing significant differences in overall survival and progression-free survival. GSEA offered a deeper understanding of pathway activities, emphasizing the intricate molecular mechanisms involved. NNAT, IGFBP6, and CYGB were identified as hub genes, and a gene prognostic nomogram demonstrated predictive accuracy. CONCLUSION This study sheds light on the molecular intricacies governing GBM treatment response. The identified hub genes and the gene prognostic nomogram offer valuable tools for predicting patient outcomes and guiding personalized treatment strategies. These findings contribute to advancing our understanding of GBM biology and may pave the way for improved clinical management.
Collapse
Affiliation(s)
- Jinmin Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Baum TB, Bodnya C, Costanzo J, Gama V. Patient mutations in DRP1 perturb synaptic maturation of cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609462. [PMID: 39229012 PMCID: PMC11370610 DOI: 10.1101/2024.08.23.609462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the advent of exome sequencing, a growing number of children are being identified with de novo loss of function mutations in the dynamin 1 like (DNM1L) gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development in vitro. High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
Collapse
Affiliation(s)
- T B Baum
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - C Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - J Costanzo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - V Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| |
Collapse
|
3
|
Choi KM, Ko CY, An SM, Cho SH, Rowland DJ, Kim JH, Fasoli A, Chaudhari AJ, Bers DM, Yoon JC. Regulation of beige adipocyte thermogenesis by the cold-repressed ER protein NNAT. Mol Metab 2023; 69:101679. [PMID: 36708951 PMCID: PMC9932177 DOI: 10.1016/j.molmet.2023.101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Cold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue. METHODS We investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT. RESULTS Cold exposure or treatment with a β3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or β3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity. CONCLUSIONS Our study implicates NNAT in the regulation of adipocyte thermogenesis.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA; Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Christopher Y Ko
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jung Hak Kim
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Anna Fasoli
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis School of Medicine, Sacramento, CA 95825, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Pieper W, Ignatov A, Kalinski T, Haybaeck J, Czapiewski P, Nass N. The predictive potential of Neuronatin for neoadjuvant chemotherapy of breast cancer. Cancer Biomark 2021; 32:161-173. [PMID: 34092612 DOI: 10.3233/cbm-203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuronatin (NNAT) determined by immunohistochemistry is a negative prognostic biomarker for breast cancer, independent of the major clinicopathological markers. OBJECTIVE Here, we investigated whether NNAT is also a predictive biomarker for pathological remission after neoadjuvant chemotherapy. METHODS One hundred and four breast cancer patients, treated with systemic neoadjuvant chemotherapy were included in this retrospective study. NNAT was detected in formaldehyde fixed, paraffin embedded primary cancer tissue by immunohistochemistry and an immuno-reactive score (IRS) determined. Pathological remission was scored according to Sinn and by evaluation of cytopathic effects. NNAT-IRS was correlated with clinicopathological parameters as well as relapse free and overall survival and for pathological remission after neoadjuvant therapy. RESULTS NNAT IRS was an independent prognostic marker for relapse free and overall survival and the time from diagnosis to the "tumor-free" state. NNAT IRS was associated with Luminal-A tumors and correlated slightly negative with age and lymph-node metastasis. There was no significant correlation of NNAT-IRS with Sinn's remission score, but with cytopathic effects of chemotherapy. CONCLUSIONS We confirmed the prognostic impact of NNAT-IRS in an independent cohort of neoadjuvantly treated patients. Additionally, a correlation with a score for pathological remission under systemic neoadjuvant chemotherapy for breast cancer was found.
Collapse
Affiliation(s)
- Willi Pieper
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Atanas Ignatov
- Department of Obstetrics and Gynecology, Otto von Guericke University, Magdeburg, Germany.,Department of Gynecology and Obstetrics, University Medical Center, Regensburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Department of Gynecology and Obstetrics, University Medical Center, Regensburg, Germany.,Department of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Department of Pathology, Dessau Medical Center, Dessau, Germany.,Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Department for Internal Medicine I, Dessau Medical Center, Dessau, Germany.,Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
6
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
7
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Kanno N, Fujiwara K, Yoshida S, Kato T, Kato Y. Dynamic Changes in the Localization of Neuronatin-Positive Cells during Neurogenesis in the Embryonic Rat Brain. Cells Tissues Organs 2019; 207:127-137. [DOI: 10.1159/000504359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022] Open
Abstract
Neuronatin (NNAT) was first identified as a gene selectively and abundantly expressed in the cytoplasm of the newborn mouse brain, and involved in neonatal neurogenesis. However, the particular roles of NNAT in the developing prenatal brain have not been identified, especially in mid to late stages. In this study, we performed immunohistochemical analyses of NNAT and SOX2 proteins, a nuclear transcription factor and neural stem/progenitor marker, in the rat brain on embryonic days 13.5, E16.5, and E20.5. NNAT signals were broadly observed across the developing brain on E13.5 and gradually more localized in later stages, eventually concentrated in the alar and basal parts of the terminal hypothalamus, the alar plate of prosomere 2 of the thalamus, and the choroid plexus in the lateral and fourth ventricles on E20.5. In particular, the mammillary body in the basal part of the terminal hypothalamus, a region with a high number of SOX2-positive cells, evidenced intense NNAT signals on E20.5. The intracellular localization of NNAT showed diverse profiles, suggesting that NNAT was involved in various cellular functions, such as cell differentiation and functional maintenance, during prenatal neurogenesis in the rat brain. Thus, the present observations suggested diverse and active roles of the NNAT protein in neurogenesis. Determining the function of this molecule may assist in the elucidation of the mechanisms involved in brain development.
Collapse
|
9
|
Kanno N, Yoshida S, Kato T, Kato Y. Characteristic Localization of Neuronatin in Rat Testis, Hair Follicle, Tongue, and Pancreas. J Histochem Cytochem 2019; 67:495-509. [PMID: 30869556 DOI: 10.1369/0022155419836433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronatin (Nnat) is expressed in the pituitary, pancreas, and other tissues; however, the function of NNAT is still unclear. Recent studies have demonstrated that NNAT is localized in the sex-determining region Y-box 2-positive stem/progenitor cells in the developing rat pituitary primordium and is downregulated during differentiation into mature hormone-producing cells. Moreover, NNAT is widely localized in subcellular organelles, excluding the Golgi. Here, we further evaluated NNAT-positive cells and intracellular localization in embryonic and postnatal rat tissues such as the pancreas, tongue, whisker hair follicle, and testis. Immunohistochemistry revealed that NNAT was localized in undifferentiated cells (i.e., epithelial basal cells and basement cells in the papillae of the tongue and round and elongated spermatids of the testis) as well as in differentiated cells (insulin-positive cells and exocrine cells of the pancreas, taste receptor cells of the fungiform papilla, the inner root sheath of whisker hair follicles, and spermatozoa). In addition, NNAT exhibited novel intracellular localization in acrosomes in the spermatozoa. Because the endoplasmic reticulum (ER) is excluded from spermatozoa and sarco/ER Ca2+-ATPase isoform 2 (SERCA2) is absent from the inner root sheath, these findings suggested that NNAT localization in the ER and its interaction with SERCA2 are cell- or tissue-specific properties.
Collapse
Affiliation(s)
- Naoko Kanno
- Division of Life Science, Meiji University, Kanagawa, Japan
| | - Saishu Yoshida
- Institute of Endocrinology, Meiji University, Kanagawa, Japan
| | - Takako Kato
- Institute of Endocrinology, Meiji University, Kanagawa, Japan
| | - Yukio Kato
- Division of Life Science, Meiji University, Kanagawa, Japan.,Graduate School of Agriculture, Meiji University, Kanagawa, Japan.,Institute of Endocrinology, Meiji University, Kanagawa, Japan
| |
Collapse
|
10
|
Vatsa N, Kumar V, Singh BK, Kumar SS, Sharma A, Jana NR. Down-Regulation of miRNA-708 Promotes Aberrant Calcium Signaling by Targeting Neuronatin in a Mouse Model of Angelman Syndrome. Front Mol Neurosci 2019; 12:35. [PMID: 30814928 PMCID: PMC6381399 DOI: 10.3389/fnmol.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
The expression of ubiquitin ligase UBE3A is paternally imprinted in neurons and loss of function of maternally inherited UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe intellectual disability and motor disturbances. Over activation of UBE3A is also linked with autism. Mice deficient for maternal Ube3a (AS mice) exhibit various behavioral features of AS including cognitive and motor deficits although the underlying molecular mechanism is poorly understood. Here, we investigated possible involvement of miRNA in AS pathogenesis and identified miR-708 as one of the down-regulated miRNA in the brain of AS mice. This miR-708 targets endoplasmic reticulum resident protein neuronatin (a developmentally regulated protein in the brain) leading to decrease in intracellular Ca2+. Suppression of miR-708 or ectopic expression of neuronatin increased the level of intracellular Ca2+ and phosphorylation of CaMKIIα at Thr286. Neuronatin level was significantly increased in various brain regions of AS mice during embryonic and early postnatal days as well as in parvalbumin-positive GABAergic neurons during adulthood with respect to age-matched wild type controls. Differentiated cultured primary cortical neurons obtained from AS mice brain also exhibited higher expression of neuronatin, increased intracellular basal Ca2+ along with augmented phosphorylation of CaMKIIα at Thr286. These results indicate that miR-708/neuronatin mediated aberrant calcium signaling might be implicated in AS pathogenesis.
Collapse
Affiliation(s)
- Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Shashi Shekhar Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, India.,School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
11
|
Augé E, Pelegrí C, Manich G, Cabezón I, Guinovart JJ, Duran J, Vilaplana J. Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 2018; 66:2094-2107. [PMID: 30152044 DOI: 10.1002/glia.23463] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTGOE ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.
Collapse
Affiliation(s)
- Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gemma Manich
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Itsaso Cabezón
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
12
|
|
13
|
Chambers JK, Thongtharb A, Shiga T, Azakami D, Saito M, Sato M, Morozumi M, Nakayama H, Uchida K. Accumulation of Laforin and Other Related Proteins in Canine Lafora Disease With EPM2B Repeat Expansion. Vet Pathol 2018; 55:543-551. [DOI: 10.1177/0300985818758471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Canine Lafora disease (LD) is an autosomal recessive genetic disorder causing nonfatal structural epilepsy, mainly affecting miniature wirehaired dachshunds. Repeat expansion in the EPM2B gene causes a functional impairment of the ubiquitin ligase malin which regulates glycogen metabolism. Abnormally structured glycogen accumulates and develop polyglucosan bodies predominantly in the central nervous system. The authors performed a comprehensive clinical, genetic, and pathological study of 4 LD cases affecting miniature wirehaired dachshund dogs with EPM2B repeat expansions, with systemic distribution of polyglucosan bodies and accumulation of laforin and other functionally associated proteins in the polyglucosan bodies. Myoclonic seizures first appeared at 7–9 years of age, and the dogs died at 14–16 years of age. Immunohistochemistry for calbindin revealed that the polyglucosan bodies were located in the cell bodies and dendritic processes of Purkinje cells. Polyglucosan bodies were also positive for laforin, hsp70, α/β-synuclein, ubiquitin, LC3, and p62. Laforin-positive polyglucosan bodies were located in neurofilament-positive neurons but not in GFAP-positive astrocytes. In nonneural tissues, periodic acid-Schiff (PAS)-positive polyglucosan bodies were observed in the heart, skeletal muscle, liver, apocrine sweat gland, and smooth muscle layer of the urinary bladder. In the skeletal muscle, polyglucosan bodies were observed only in type 1 fibers and not in type 2 fibers. The results indicate that although the repeat expansion of the EPM2B gene is specific to dogs, the immunohistochemical properties of polyglucosan body in canine LD are comparable to human LD. However, important phenotypic variations exist between the 2 species including the affected skeletal muscle fiber type.
Collapse
Affiliation(s)
- James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Atigan Thongtharb
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Nursing, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Miyoko Saito
- Laboratory of Veterinary Surgery II, Azabu University, Chuo Ward, Sagamihara, Kanagawa Prefecture, Japan
| | - Masumi Sato
- National Institute of Animal Health, Tsukuba, Ibaraki Prefecture, Japan
| | | | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.
Collapse
|
15
|
Lu P, Chen X, Feng Y, Zeng Q, Jiang C, Zhu X, Fan G, Xue Z. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation. SCIENCE CHINA. LIFE SCIENCES 2016; 59:1093-1105. [PMID: 27730449 DOI: 10.1007/s11427-016-0194-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS) patients carry the expansion of over 200 CGG repeats at the promoter of fragile X mental retardation 1 (FMR1), leading to decreased or absent expression of its encoded fragile X mental retardation protein (FMRP). However, the global transcriptional alteration by FMRP deficiency has not been well characterized at single nucleotide resolution, i.e., RNA-seq. Here, we performed in-vitro neuronal differentiation of human induced pluripotent stem (iPS) cells that were derived from fibroblasts of a FXS patient (FXS-iPSC). We then performed RNA-seq and examined the transcriptional misregulation at each intermediate stage during in-vitro differentiation of FXS-iPSC into neurons. After thoroughly analyzing the transcriptomic data and integrating them with those from other platforms, we found up-regulation of many genes encoding TFs for neuronal differentiation (WNT1, BMP4, POU3F4, TFAP2C, and PAX3), down-regulation of potassium channels (KCNA1, KCNC3, KCNG2, KCNIP4, KCNJ3, KCNK9, and KCNT1) and altered temporal regulation of SHANK1 and NNAT in FXS-iPSC derived neurons, indicating impaired neuronal differentiation and function in FXS patients. In conclusion, we demonstrated that the FMRP deficiency in FXS patients has significant impact on the gene expression patterns during development, which will help to discover potential targeting candidates for the cure of FXS symptoms.
Collapse
Affiliation(s)
- Ping Lu
- Tongji Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiaolong Chen
- Tongji University, School of Life Sciences and Technology, Shanghai, 200092, China
| | - Yun Feng
- Tongji Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiao Zeng
- Tongji Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Cizhong Jiang
- Tongji University, School of Life Sciences and Technology, Shanghai, 200092, China
| | - Xianmin Zhu
- Tongji University, School of Life Sciences and Technology, Shanghai, 200092, China.
| | - Guoping Fan
- Tongji University, School of Life Sciences and Technology, Shanghai, 200092, China.
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhigang Xue
- Tongji Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China.
- Tongji University Suzhou Institute, Suzhou, 215101, China.
| |
Collapse
|
16
|
Biophysical characterization of laforin–carbohydrate interaction. Biochem J 2016; 473:335-45. [DOI: 10.1042/bj20141555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Laforin, a key regulator of glycogen metabolism, is a low-affinity glycan binder. In the present work, we thoroughly biophysically characterized its glycan interaction.
Collapse
|
17
|
Duran J, Guinovart JJ. Brain glycogen in health and disease. Mol Aspects Med 2015; 46:70-7. [PMID: 26344371 DOI: 10.1016/j.mam.2015.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation.
Collapse
Affiliation(s)
- Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Roach PJ. Glycogen phosphorylation and Lafora disease. Mol Aspects Med 2015; 46:78-84. [PMID: 26278984 DOI: 10.1016/j.mam.2015.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/04/2015] [Indexed: 01/21/2023]
Abstract
Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease.
Collapse
Affiliation(s)
- Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, IN 46202, USA.
| |
Collapse
|
19
|
Pederson BA, Turnbull J, Epp JR, Weaver SA, Zhao X, Pencea N, Roach PJ, Frankland PW, Ackerley CA, Minassian BA. Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann Neurol 2014; 74:297-300. [PMID: 23913475 DOI: 10.1002/ana.23899] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/10/2022]
Abstract
Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.
Collapse
|
20
|
Garyali P, Segvich DM, DePaoli-Roach AA, Roach PJ. Protein degradation and quality control in cells from laforin and malin knockout mice. J Biol Chem 2014; 289:20606-14. [PMID: 24914213 PMCID: PMC4110273 DOI: 10.1074/jbc.m114.580167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A or EPM2B genes that encode a glycogen phosphatase, laforin, and an E3 ubiquitin ligase, malin, respectively. Lafora disease is characterized by accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle, heart, and liver. The laforinmalin complex has been proposed to play a role in the regulation of glycogen metabolism and protein quality control. We evaluated three arms of the protein degradation/ quality control process (the autophago-lysosomal pathway, the ubiquitin-proteasomal pathway, and the endoplasmic reticulum (ER) stress response) in mouse embryonic fibroblasts from Epm2a(-/-), Epm2b(-/-), and Epm2a(-/-) Epm2b(-/-) mice. The levels of LC3-II, a marker of autophagy, were decreased in all knock-out cells as compared with wild type even though they still showed a slight response to starvation and rapamycin. Furthermore, ribosomal protein S6 kinase and S6 phosphorylation were increased. Under basal conditions there was no effect on the levels of ubiquitinated proteins in the knock-out cells, but ubiquitinated protein degradation was decreased during starvation or stress. Lack of malin (Epm2b(-/-) and Epm2a(-/-) Epm2b(-/-) cells) but not laforin (Epm2a(-/-) cells) decreased LAMP1, a lysosomal marker. CHOP expression was similar in wild type and knock-out cells under basal conditions or with ER stress-inducing agents. In conclusion, both laforin and malin knock-out cells display mTOR-dependent autophagy defects and reduced proteasomal activity but no defects in the ER stress response. We speculate that these defects may be secondary to glycogen overaccumulation. This study also suggests a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal.
Collapse
Affiliation(s)
- Punitee Garyali
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dyann M. Segvich
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anna A. DePaoli-Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Peter J. Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
21
|
Nilsson J, Schoser B, Laforet P, Kalev O, Lindberg C, Romero NB, Dávila López M, Akman HO, Wahbi K, Iglseder S, Eggers C, Engel AG, Dimauro S, Oldfors A. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol 2014; 74:914-9. [PMID: 23798481 DOI: 10.1002/ana.23963] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/20/2013] [Accepted: 06/07/2013] [Indexed: 12/25/2022]
Abstract
Glycogen storage diseases are important causes of myopathy and cardiomyopathy. We describe 10 patients from 8 families with childhood or juvenile onset of myopathy, 8 of whom also had rapidly progressive cardiomyopathy, requiring heart transplant in 4. The patients were homozygous or compound heterozygous for missense or truncating mutations in RBCK1, which encodes for a ubiquitin ligase, and had extensive polyglucosan accumulation in skeletal muscle and in the heart in cases of cardiomyopathy. We conclude that RBCK1 deficiency is a frequent cause of polyglucosan storage myopathy associated with progressive muscle weakness and cardiomyopathy.
Collapse
Affiliation(s)
- Johanna Nilsson
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Turnbull J, Epp JR, Goldsmith D, Zhao X, Pencea N, Wang P, Frankland PW, Ackerley CA, Minassian BA. PTG protein depletion rescues malin-deficient Lafora disease in mouse. Ann Neurol 2014; 75:442-6. [PMID: 24419970 DOI: 10.1002/ana.24104] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 11/11/2022]
Abstract
Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.
Collapse
Affiliation(s)
- Julie Turnbull
- Program in Genetics and Genome Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dugu L, Nakahara T, Wu Z, Uchi H, Liu M, Hirano K, Yokomizo T, Furue M. Neuronatin is related to keratinocyte differentiation by up-regulating involucrin. J Dermatol Sci 2014; 73:225-31. [DOI: 10.1016/j.jdermsci.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
|
24
|
Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss. Genomics 2013; 103:183-8. [PMID: 24345642 DOI: 10.1016/j.ygeno.2013.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/13/2023]
Abstract
Neuronatin (NNAT) is a ubiquitous and highly conserved mammalian gene involved in brain development. Its mRNA isoforms, chromosomal location, genomic DNA structure and regulation have been characterized. More recently there has been rapid progress in the understanding of its function in physiology and human disease. In particular there is fairly direct evidence implicating neuronatin in the causation of Lafora disease and diabetes. Neuronatin protein has a strong predisposition to misfold and form cellular aggregates that cause cell death by apoptosis. Aggregation of Neuronatin within cortical neurons and resulting cell death is the hallmark of Lafora disease, a progressive and fatal neurodegenerative disease. Under high glucose conditions simulating diabetes, neuronatin protein also accumulates and destroys pancreatic beta cells. The neuronatin gene is imprinted and only the paternal allele is normally expressed in the adult. However, changes in DNA methylation may cause the maternal allele to lose imprinting and trigger cell proliferation and metastasis. Neuronatin has also been shown to be translated peripherally within the dendrites of neurons, a finding of relevance in synaptic plasticity. The current understanding of the function of neuronatin raises the possibility that this gene may participate in the common downstream mechanisms associated with aberrant neuronal growth and death. A better understanding of these mechanisms may open new therapeutic targets to help modify the progression of devastating neurodegenerative conditions such as Alzheimer's and anterior horn cell disease.
Collapse
|
25
|
Glycogenic activity of R6, a protein phosphatase 1 regulatory subunit, is modulated by the laforin-malin complex. Int J Biochem Cell Biol 2013; 45:1479-88. [PMID: 23624058 DOI: 10.1016/j.biocel.2013.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/17/2023]
Abstract
Protein phosphatase type 1 (PP1) plays a major role in the regulation of glycogen biosynthesis. PP1 is recruited to sites of glycogen formation by its binding to specific targeting subunits. There, it dephosphorylates different enzymes involved in glycogen homeostasis leading to an activation of glycogen biosynthesis. Regulation of these targeting subunits is crucial, as excess of them leads to an enhancement of the action of PP1, which results in glycogen accumulation. In this work we present evidence that PPP1R3D (R6), one of the PP1 glycogenic targeting subunits, interacts physically with laforin, a glucan phosphatase involved in Lafora disease, a fatal type of progressive myoclonus epilepsy. Binding of R6 to laforin allows the ubiquitination of R6 by the E3-ubiquitin ligase malin, what targets R6 for autophagic degradation. As a result of the action of the laforin-malin complex on R6, its glycogenic activity is downregulated. Since R6 is expressed in brain, our results suggest that the laforin-malin complex downregulates the glycogenic activity of R6 present in neuron cells to prevent glycogen accumulation.
Collapse
|
26
|
Gburcik V, Cleasby ME, Timmons JA. Loss of neuronatin promotes "browning" of primary mouse adipocytes while reducing Glut1-mediated glucose disposal. Am J Physiol Endocrinol Metab 2013; 304:E885-94. [PMID: 23482445 PMCID: PMC3625784 DOI: 10.1152/ajpendo.00463.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Failure of white adipose tissue to appropriately store excess metabolic substrate seems to underpin obesity-associated type 2 diabetes. Encouraging "browning" of white adipose has been suggested as a therapeutic strategy to help dispose of excess stored lipid and ameliorate the resulting insulin resistance. Genetic variation at the DNA locus encoding the novel proteolipid neuronatin has been associated with obesity, and we recently observed that neuronatin expression is reduced in subcutaneous adipose tissue from obese humans. Thus, to explore the function of neuronatin further, we used RNAi to silence its expression in murine primary adipocyte cultures and examined the effects on adipocyte phenotype. We found that primary adipocytes express only the longer isoform of neuronatin. Loss of neuronatin led to increased mitochondrial biogenesis, indicated by greater intensity of MitoTracker Green staining. This was accompanied by increased expression of UCP1 and the key genes in mitochondrial oxidative phosphorylation, PGC-1α, Cox8b, and Cox4 in primary subcutaneous white adipocytes, indicative of a "browning" effect. In addition, phosphorylation of AMPK and ACC was increased, suggestive of increased fatty acid utilization. Similar, but less pronounced, effects of neuronatin silencing were also noted in primary brown adipocytes. In contrast, loss of neuronatin caused a reduction in both basal and insulin-stimulated glucose uptake and glycogen synthesis, likely mediated by a reduction in Glut1 protein upon silencing of neuronatin. In contrast, loss of neuronatin had no effect on insulin signaling. In conclusion, neuronatin appears to be a novel regulator of browning and metabolic substrate disposal in white adipocytes.
Collapse
Affiliation(s)
- Valentina Gburcik
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | | | | |
Collapse
|
27
|
Sharma J, Mukherjee D, Rao SNR, Iyengar S, Shankar SK, Satishchandra P, Jana NR. Neuronatin-mediated aberrant calcium signaling and endoplasmic reticulum stress underlie neuropathology in Lafora disease. J Biol Chem 2013; 288:9482-90. [PMID: 23408434 DOI: 10.1074/jbc.m112.416180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lafora disease (LD) is a teenage-onset inherited progressive myoclonus epilepsy characterized by the accumulations of intracellular inclusions called Lafora bodies and caused by mutations in protein phosphatase laforin or ubiquitin ligase malin. But how the loss of function of either laforin or malin causes disease pathogenesis is poorly understood. Recently, neuronatin was identified as a novel substrate of malin that regulates glycogen synthesis. Here we demonstrate that the level of neuronatin is significantly up-regulated in the skin biopsy sample of LD patients having mutations in both malin and laforin. Neuronatin is highly expressed in human fetal brain with gradual decrease in expression in developing and adult brain. However, in adult brain, neuronatin is predominantly expressed in parvalbumin-positive GABAergic interneurons and localized in their processes. The level of neuronatin is increased and accumulated as insoluble aggregates in the cortical area of LD brain biopsy samples, and there is also a dramatic loss of parvalbumin-positive GABAergic interneurons. Ectopic expression of neuronatin in cultured neuronal cells results in increased intracellular Ca(2+), endoplasmic reticulum stress, proteasomal dysfunction, and cell death that can be partially rescued by malin. These findings suggest that the neuronatin-induced aberrant Ca(2+) signaling and endoplasmic reticulum stress might underlie LD pathogenesis.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Romá-Mateo C, Sanz P, Gentry MS. Deciphering the role of malin in the lafora progressive myoclonus epilepsy. IUBMB Life 2012; 64:801-8. [PMID: 22815132 DOI: 10.1002/iub.1072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
Lafora disease (LD) is a fatal, autosomal recessive neurodegenerative disorder that results in progressive myoclonus epilepsy. A hallmark of LD is the accumulation of insoluble, aberrant glycogen-like structures called Lafora bodies. LD is caused by mutations in the gene encoding the E3 ubiquitin ligase malin or the glucan phosphatase laforin. Although LD was first described in 1911, its symptoms are still lacking a consistent molecular explanation and, consequently, a cure is far from being achieved. Some data suggest that malin forms a functional complex with laforin. This complex promotes the ubiquitination of proteins involved in glycogen metabolism and misregulation of pathways involved in this process results in Lafora body formation. In addition, recent results obtained from both cell culture and LD mouse models have highlighted a role of the laforin-malin complex in the regulation of endoplasmic reticulum-stress and protein clearance pathways. These results suggest that LD should be considered as a novel member of the group of protein clearance diseases such as Parkinson's, Huntington's, or Alzheimer's, in addition to being a glycogen metabolism disease. Herein, we review the latest results concerning the role of malin in LD and attempt to decipher its function. © 2012 IUBMB IUBMB Life, 64(10): 801-808, 2012.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | | |
Collapse
|
29
|
Phenotype variations in Lafora progressive myoclonus epilepsy: possible involvement of genetic modifiers? J Hum Genet 2012; 57:283-5. [PMID: 22456482 DOI: 10.1038/jhg.2012.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lafora progressive myoclonus epilepsy, also known as Lafora disease (LD), is the most severe and fatal form of progressive myoclonus epilepsy with its typical onset during the late childhood or early adolescence. LD is characterized by recurrent epileptic seizures and progressive decline in intellectual function. LD can be caused by defects in any of the two known genes and the clinical features of these two genetic groups are almost identical. The past one decade has witnessed considerable success in identifying the LD genes, their mutations, the cellular functions of gene products and on molecular basis of LD. Here, we briefly review the current literature on the phenotype variations, on possible presence of genetic modifiers, and candidate modifiers as targets for therapeutic interventions in LD.
Collapse
|
30
|
Gentry MS, Romá-Mateo C, Sanz P. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J 2012; 280:525-37. [PMID: 22364389 DOI: 10.1111/j.1742-4658.2012.08549.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is related to the activity of two proteins, the dual-specificity phosphatase laforin and the E3-ubiquitin ligase malin, which form a functional complex. Laforin is unique in humans, as it is composed of a carbohydrate-binding module attached to a cysteine-based catalytic dual-specificity phosphatase domain. Laforin directly dephosphorylates glycogen, but other proteinaceous substrates, if they exist, have remained elusive. Recently, an emerging set of laforin-binding partners apart from malin have been described, suggestive of laforin roles unrelated to its catalytic activity. Further investigations based on different transgenic mouse models have shown that the laforin-malin complex is also involved in other cellular processes, such as response to endoplasmic reticulum stress and misfolded protein clearance by the lysosomal pathway. However, controversial data and some missing links still make it difficult to assess the concrete relationship between glycogen deregulation and neuronal damage leading to the fatal symptoms observed in LD patients, such as myoclonic seizures and epilepsy. Consequently, clinical treatments are far from being achieved. In the present review, we focus on the knowledge of laforin biology, not only as a glucan phosphatase, but also as an adaptor protein involved in several physiological pathways.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
31
|
Sharma J, Mulherkar S, Mukherjee D, Jana NR. Malin regulates Wnt signaling pathway through degradation of dishevelled2. J Biol Chem 2012; 287:6830-9. [PMID: 22223637 DOI: 10.1074/jbc.m111.315135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using yeast-two hybrid screening followed by co-immunoprecipitation assay, we have found that the Lafora disease ubiquitin ligase malin interacts with dishevelled2, a key mediator of Wnt signaling pathway. Overexpression of malin enhances the degradation of dishevelled2 and inhibits Wnt signaling, which is evident from the down-regulation of β-catenin target genes and the decrease in β-catenin-mediated transcriptional activity. Partial knockdown of malin significantly increases the level of dishevelled2 and up-regulates Wnt signaling. Several malin mutants are found to be ineffective in degrading dishevelled2 and regulating the Wnt pathway. We have also found that malin enhances K48- and K63-linked ubiquitination of dishevelled2 that could lead to its degradation through both proteasome and autophagy. Altogether, our results indicate that malin regulates Wnt signaling pathway through the degradation of dishevelled2 and suggest possible deregulation of Wnt signaling in Lafora disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | | | | | | |
Collapse
|