1
|
Gaba A. Nutrition and Huntington's Disease- A Review of Current Practice and Theory. Curr Nutr Rep 2025; 14:18. [PMID: 39821731 PMCID: PMC11739192 DOI: 10.1007/s13668-025-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Nutition has long been of importance in the care of Huntington's disease (HD). The purpose of this review is to summarize recent research relevant to HD nutrition, and to describe some emerging theoretical approaches to research in this area. RECENT FINDINGS Clinical studies have identified swallowing problems and fear of choking as major impediments to maintaining nutritional status with HD. Tube feeding is associated with co-morbidities, and provides limited benefits. Non-human models of HD have been utilized to study diets and supplements. Application of findings from these models to humans has not been shown to be of comparable benefit. While studies of nutritional factors in non-human models of HD have shown some promising results, trials in humans have found little efficacy for diets or supplements. The complexity of human metabolic pathways may require a more sophisticated omics approach to identify and study more beneficial interventions.
Collapse
Affiliation(s)
- Ann Gaba
- City University of New York Graduate School of Public Health and Health Policy, 55 West 125th Street, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Martins AC, Pinheiro JDS, Szinwelski L, Cidade ER, Santin DF, Proença LD, Araújo BA, Saraiva-Pereira ML, Jardim LB. Caffeine Consumption and Interaction with ADORA2A, CYP1A2 and NOS1 Variants Do Not Influence Age at Onset of Machado-Joseph Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2217-2225. [PMID: 38969840 DOI: 10.1007/s12311-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The age at onset (AO) of Machado-Joseph disease (SCA3/MJD), a disorder due to an expanded CAG repeat (CAGexp) in ATXN3, is quite variable and the role of environmental factors is still unknown. Caffeine was associated with protective effects against other neurodegenerative diseases, and against SCA3/MJD in transgenic mouse models. We aimed to evaluate whether caffeine consumption and its interaction with variants of caffeine signaling/metabolization genes impact the AO of this disease. METHODS a questionnaire on caffeine consumption was applied to adult patients and unrelated controls living in Rio Grande do Sul, Brazil. AO and CAGexp were previously determined. SNPs rs5751876 (ADORA2A), rs2298383 (ADORA2A), rs762551 (CYP1A2) and rs478597 (NOS1) were genotyped. AO of subgroups were compared, adjusting the CAGexp to 75 repeats (p < 0.05). RESULTS 171/179 cases and 98/100 controls consumed caffeine. Cases with high and low caffeine consumption (more or less than 314.5 mg of caffeine/day) had mean (SD) AO of 35.05 (11.44) and 35.43 (10.08) years (p = 0.40). The mean (SD) AO of the subgroups produced by the presence or absence of caffeine-enhancing alleles in ADORA2A (T allele at rs5751876 and rs2298383), CYP1A2 (C allele) and NOS1 (C allele) were all similar (p between 0.069 and 0.516). DISCUSSION Caffeine consumption was not related to changes in the AO of SCA3/MJD, either alone or in interaction with protective genotypes at ADORA2A, CYP1A2 and NOS1.
Collapse
Affiliation(s)
- Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
| | - Jordânia Dos Santos Pinheiro
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, Brazil
| | - Luciana Szinwelski
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, Brazil
| | - Eduardo Rockenbach Cidade
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil
| | - Danilo Fernando Santin
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil
| | - Laura Damke Proença
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Instituto de Biociências , Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Bruna Almeida Araújo
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Curso de Biomedicina, Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Porto Alegre, 90035-003, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Porto Alegre, 90035-003, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil.
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil.
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil.
- DMI FAMED UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.
| |
Collapse
|
3
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Adrissi J, Brooker S, Mcbride A, Larson D, Gausche E, Bega D. Caffeine Use in Huntington's Disease: A Single Center Survey. Tremor Other Hyperkinet Mov (N Y) 2024; 14:52. [PMID: 39430810 PMCID: PMC11488189 DOI: 10.5334/tohm.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anecdotal evidence suggests paradoxical caffeine overuse in individuals with Huntington's disease (HD). A small retrospective study associated caffeine intake over 190 grams daily to earlier onset of HD symptoms. However, specific data on consumption habits is limited. This study aims to gather pilot data on caffeine use in people with HD, exploring motivations and consequences. Methods Thirty adults with HD completed a survey on daily caffeine intake, its impact on symptoms, and consumption motivations through multiple-choice and open-ended questions. Descriptive statistics were used to analyze findings and compare them to general population data. Results Caffeine intake ranged from 0 to 1400.4 mg/day, with a median of 273.2 mg/day and a mean of 382.5 mg/day. Seventy percent of participants with HD consumed more caffeine than the average for their age group in the general population. Additionally, 20% of participants and 38% of family members believed caffeine influenced HD symptoms, primarily anxiety. Discussion People with HD typically consume more caffeine than the general U.S. population. Contrary to the hypothesis, higher caffeine intake was not associated with significant subjective worsening of HD symptoms. Further research with objective measures and multiple HD centers is necessary to guide screening and counseling on caffeine use in this population. Highlights Participants with Huntington's disease (HD) had increased caffeine intake compared to the general population, supporting previous anecdotal observations. Anxiety was the most affected HD symptom. Further research using objective measures of symptom burden and including multiple HD centers can help inform screening and counseling regarding caffeine use in this population.
Collapse
Affiliation(s)
- Jennifer Adrissi
- University of California Los Angeles David Geffen School of Medicine, US
| | - Sarah Brooker
- Northwestern University Feinberg School of Medicine, US
| | | | | | - Eric Gausche
- Northwestern University Feinberg School of Medicine, US
| | - Danny Bega
- Northwestern University Feinberg School of Medicine, US
| |
Collapse
|
5
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
6
|
Huin V, Blum D, Delforge V, Cailliau E, Djeziri S, Dujardin K, Genet A, Viard R, Attarian S, Bruneteau G, Cassereau J, Genestet S, Kaminsky AL, Soriani MH, Lefilliatre M, Couratier P, Pittion-Vouyovitch S, Esselin F, De La Cruz E, Guy N, Kolev I, Corcia P, Cintas P, Desnuelle C, Buée L, Danel-Brunaud V, Devos D, Rolland AS. Caffeine consumption outcomes on amyotrophic lateral sclerosis disease progression and cognition. Neurobiol Dis 2024; 199:106603. [PMID: 39002811 DOI: 10.1016/j.nbd.2024.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Caffeine consumption outcomes on Amyotrophic Lateral Sclerosis (ALS) including progression, survival and cognition remain poorly defined and may depend on its metabolization influenced by genetic variants. 378 ALS patients with a precise evaluation of their regular caffeine consumption were monitored as part of a prospective multicenter study. Demographic, clinical characteristics, functional disability as measured with revised ALS Functional Rating Scale (ALSFRS-R), cognitive deficits measured using Edinburgh Cognitive and Behavioural ALS Screen (ECAS), survival and riluzole treatment were recorded. 282 patients were genotyped for six single nucleotide polymorphisms tagging different genes involved in caffeine intake and/or metabolism: CYP1A1 (rs2472297), CYP1A2 (rs762551), AHR (rs4410790), POR (rs17685), XDH (rs206860) and ADORA2A (rs5751876) genes. Association between caffeine consumption and ALSFRS-R, ALSFRS-R rate, ECAS and survival were statistically analyzed to determine the outcome of regular caffeine consumption on ALS disease progression and cognition. No association was observed between caffeine consumption and survival (p = 0.25), functional disability (ALSFRS-R; p = 0.27) or progression of ALS (p = 0.076). However, a significant association was found with higher caffeine consumption and better cognitive performance on ECAS scores in patients carrying the C/T and T/T genotypes at rs2472297 (p-het = 0.004). Our results support the safety of regular caffeine consumption on ALS disease progression and survival and also show its beneficial impact on cognitive performance in patients carrying the minor allele T of rs2472297, considered as fast metabolizers, that would set the ground for a new pharmacogenetic therapeutic strategy.
Collapse
Affiliation(s)
- Vincent Huin
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France; Univ. Lille, Inserm, CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, F-59000 Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France.
| | - Violette Delforge
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | | | - Sofia Djeziri
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
| | - Kathy Dujardin
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
| | - Alexandre Genet
- Univ. Lille, Inserm, CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, F-59000 Lille, France
| | - Romain Viard
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41- UAR 2014 - PLBS, F-59000 Lille, France
| | - Shahram Attarian
- APHM, Timone University Hospital Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Gaelle Bruneteau
- Neurology Department, Paris ALS expert center, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Julien Cassereau
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Steeve Genestet
- Department of Neurology, Breton Competence Center of Rare Neuromuscular Diseases and Neuropathies With Cutaneous-Mucosal Symptoms, CHU Brest, Brest, France
| | - Anne-Laure Kaminsky
- Service de Neurologie, Centre Référent des Maladies Neuromusculaires Rares, CHU de Saint Etienne, Saint-Etienne, France
| | | | | | | | | | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Nathalie Guy
- CRC SLA et maladie du neurone moteur, U1107-neurodol-UCA, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Ivan Kolev
- Hospital Centre Saint Brieuc, Saint Brieuc, Bretagne, France
| | - Philippe Corcia
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Pascal Cintas
- Service de Neurologie, CHU de Toulouse Purpan, Place du Docteur Baylac TSA 40031; Centre de Référence des Maladies Neuromusculaires AOC, 31059, Toulouse Cedex 9, France
| | | | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Véronique Danel-Brunaud
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Department of Neurology, CHU de Lille, University of Lille, ACT4-ALS-MND Network, Lille, France
| | - David Devos
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Department of Neurology, CHU de Lille, University of Lille, ACT4-ALS-MND Network, Lille, France; Department of Medical Pharmacology, CHU de Lille, Lille, France
| | - Anne-Sophie Rolland
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France; Department of Medical Pharmacology, CHU de Lille, Lille, France.
| |
Collapse
|
7
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
9
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
10
|
Jacobson KA, Gao ZG, Matricon P, Eddy MT, Carlsson J. Adenosine A 2A receptor antagonists: from caffeine to selective non-xanthines. Br J Pharmacol 2022; 179:3496-3511. [PMID: 32424811 PMCID: PMC9251831 DOI: 10.1111/bph.15103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
A long evolution of knowledge of the psychostimulant caffeine led in the 1960s to another purine natural product, adenosine and its A2A receptor. Adenosine is a short-lived autocrine/paracrine mediator that acts pharmacologically at four different adenosine receptors in a manner opposite to the pan-antagonist caffeine and serves as an endogenous allostatic regulator. Although detrimental in the developing brain, caffeine appears to be cerebroprotective in aging. Moderate caffeine consumption in adults, except in pregnancy, may also provide benefit in pain, diabetes, and kidney and liver disorders. Inhibition of A2A receptors is one of caffeine's principal effects and we now understand this interaction at the atomic level. The A2A receptor has become a prototypical example of utilizing high-resolution structures of GPCRs for the rational design of chemically diverse drug molecules. The previous focus on discovery of selective A2A receptor antagonists for neurodegenerative diseases has expanded to include immunotherapy for cancer, and clinical trials have ensued. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre Matricon
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jens Carlsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Achenbach J, Matusch A, Elmenhorst D, Bauer A, Saft C. Divergent Effects of the Nonselective Adenosine Receptor Antagonist Caffeine in Pre-Manifest and Motor-Manifest Huntington's Disease. Biomedicines 2022; 10:biomedicines10061258. [PMID: 35740281 PMCID: PMC9219784 DOI: 10.3390/biomedicines10061258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
There is a controversy about potentially positive or negative effects of caffeine consumption on onset and disease progression of neurodegenerative diseases such as Huntington’s Disease (HD). On the molecular level, the psychoactive drug caffeine targets in particular adenosine receptors (AR) as a nonselective antagonist. The aim of this study was to evaluate clinical effects of caffeine consumption in patients suffering from premanifest and motor-manifest HD. Data of the global observational study ENROLL-HD were used, in order to analyze the course of HD regarding symptoms onset, motor, functional, cognitive and psychiatric parameters, using cross-sectional and longitudinal data of up to three years. We split premanifest and manifest participants into two subgroups: consumers of >3 cups of caffeine (coffee, cola or black tea) per day (>375 mL) vs. subjects without caffeine consumption. Data were analyzed using ANCOVA-analyses for cross-sectional and repeated measures analysis of variance for longitudinal parameters in IBM SPSS Statistics V.28. Within n = 21,045 participants, we identified n = 1901 premanifest and n = 4072 manifest HD patients consuming >3 cups of caffeine/day vs. n = 841 premanifest and n = 2243 manifest subjects without consumption. Manifest HD patients consuming >3 cups exhibited a significantly better performance in a series of neuropsychological tests. They also showed at the median a later onset of symptoms (all p < 0.001), and, during follow-up, less motor, functional and cognitive impairments in the majority of tests (all p < 0.050). In contrast, there were no beneficial caffeine-related effects on neuropsychological performance in premanifest HD mutation carriers. They showed even worse cognitive performances in stroop color naming (SCNT) and stroop color reading (SWRT) tests (all p < 0.050) and revealed more anxiety, depression and irritability subscores in comparison to premanifest participants without caffeine consumption. Similarly, higher self-reported anxiety and irritability were observed in genotype negative/control group high dose caffeine drinkers, associated with a slightly better performance in some cognitive tasks (all p < 0.050). The analysis of the impact of caffeine consumption in the largest real-world cohort of HD mutation carriers revealed beneficial effects on neuropsychological performance as well as manifestation and course of disease in manifest HD patients while premanifest HD mutation carrier showed no neuropsychological improvements, but worse cognitive performances in some tasks and exhibited more severe signs of psychiatric impairment. Our data point to state-related psychomotor-stimulant effects of caffeine in HD that might be related to regulatory effects at cerebral adenosine receptors. Further studies are required to validate findings, exclude potential other unknown biasing factors such as physical activity, pharmacological interventions, gender differences or chronic habitual influences and test for dosage related effects.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
- Correspondence:
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
| |
Collapse
|
12
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
13
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
14
|
Wang M, Cornelis MC, Zhang Z, Liu D, Lian X. Mendelian randomization study of coffee consumption and age at onset of Huntington's disease. Clin Nutr 2021; 40:5615-5618. [PMID: 34656958 PMCID: PMC10547005 DOI: 10.1016/j.clnu.2021.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIM The association between habitual coffee or caffeine consumption and age at onset (AAO) of Huntington's disease (HD) is unclear. We employed Mendelian randomization to investigate the causal relationship between coffee consumption and AAO of HD. METHODS The instrumental variable including 14 independent genetic variants associated with coffee consumption was selected from a genome-wide association study (GWAS) meta-analysis of 375,833 individuals of European ancestry. Genetic association estimates for AAO of HD were obtained from the Genetic Modifiers of Huntington's Disease Consortium GWAS meta-analysis including 9064 HD patients of European ancestry. The inverse variance weighted method was used to evaluate the causal estimate and a comprehensive set of analyses tested the robustness of our results. RESULTS Genetically predicted higher coffee consumption was associated with an earlier AAO of HD (β = -1.84 years, 95% confidence interval = -3.47 to -0.22, P = 0.026). Results were robust to potential pleiotropy and weak instrument bias. CONCLUSIONS This genetic study suggests high coffee consumption is associated with an earlier AAO of HD. Coffee is widely consumed and thus our findings, if confirmed, offers a potential way to delay the onset of this debilitating autosomal dominant disease.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dandan Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuegan Lian
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
15
|
Rodak K, Kokot I, Kratz EM. Caffeine as a Factor Influencing the Functioning of the Human Body-Friend or Foe? Nutrients 2021; 13:3088. [PMID: 34578966 PMCID: PMC8467199 DOI: 10.3390/nu13093088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Nowadays, caffeine is one of the most commonly consumed substances, which presents in many plants and products. It has both positive and negative effects on the human body, and its activity concerns a variety of systems including the central nervous system, immune system, digestive system, respiratory system, urinary tract, etc. These effects are dependent on quantity, the type of product in which caffeine is contained, and also on the individual differences among people (sex, age, diet etc.). The main aim of this review was to collect, present, and analyze the available information including the latest discoveries on the impact of caffeine on human health and the functioning of human body systems, taking into account the role of caffeine in individual disease entities. We present both the positive and negative sides of caffeine consumption and the healing properties of this purine alkaloid in diseases such as asthma, Parkinson's disease, and others, not forgetting about the negative effects of excess caffeine (e.g., in people with hypertension, children, adolescents, and the elderly). In summary, we can conclude, however, that caffeine has a multi-directional influence on various organs of the human body, and because of its anti-oxidative properties, it was, and still is, an interesting topic for research studies including those aimed at developing new therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Rodak
- Student Research Club, “Biomarkers in Medical Diagnostics”, Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
16
|
Wiprich MT, Bonan CD. Purinergic Signaling in the Pathophysiology and Treatment of Huntington's Disease. Front Neurosci 2021; 15:657338. [PMID: 34276284 PMCID: PMC8281137 DOI: 10.3389/fnins.2021.657338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a devastating, progressive, and fatal neurodegenerative disorder inherited in an autosomal dominant manner. This condition is characterized by motor dysfunction (chorea in the early stage, followed by bradykinesia, dystonia, and motor incoordination in the late stage), psychiatric disturbance, and cognitive decline. The neuropathological hallmark of HD is the pronounced neuronal loss in the striatum (caudate nucleus and putamen). The striatum is related to the movement control, flexibility, motivation, and learning and the purinergic signaling has an important role in the control of these events. Purinergic signaling involves the actions of purine nucleotides and nucleosides through the activation of P2 and P1 receptors, respectively. Extracellular nucleotide and nucleoside-metabolizing enzymes control the levels of these messengers, modulating the purinergic signaling. The striatum has a high expression of adenosine A2A receptors, which are involved in the neurodegeneration observed in HD. The P2X7 and P2Y2 receptors may also play a role in the pathophysiology of HD. Interestingly, nucleotide and nucleoside levels may be altered in HD animal models and humans with HD. This review presents several studies describing the relationship between purinergic signaling and HD, as well as the use of purinoceptors as pharmacological targets and biomarkers for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, Brazil
| |
Collapse
|
17
|
Carneiro SM, Oliveira MBP, Alves RC. Neuroprotective properties of coffee: An update. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Potential of Caffeine in Alzheimer's Disease-A Review of Experimental Studies. Nutrients 2021; 13:nu13020537. [PMID: 33562156 PMCID: PMC7915779 DOI: 10.3390/nu13020537] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia leading to progressive memory loss and cognitive impairment. Considering that pharmacological treatment options for AD are few and not satisfactory, increasing attention is being paid to dietary components that may affect the development of the disease. Such a dietary component may be caffeine contained in coffee, tea or energy drinks. Although epidemiological data suggest that caffeine intake may counteract the development of cognitive impairment, results of those studies are not conclusive. The aim of the present study is to review the existing experimental studies on the efficacy of caffeine against AD and AD-related cognitive impairment, focusing on the proposed protective mechanisms of action. In conclusion, the reports of studies on experimental AD models generally supported the notion that caffeine may exert some beneficial effects in AD. However, further studies are necessary to elucidate the role of caffeine in the effects of its sources on cognition and possibly AD risk.
Collapse
|
20
|
Griffin BA, Booth MS, Busse M, Wild EJ, Setodji C, Warner JH, Sampaio C, Mohan A. Estimating the causal effects of modifiable, non-genetic factors on Huntington disease progression using propensity score weighting. Parkinsonism Relat Disord 2021; 83:56-62. [PMID: 33476879 PMCID: PMC7949328 DOI: 10.1016/j.parkreldis.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Despite being genetically inherited, it is unclear how non-genetic factors (e.g., substance use, employment) might contribute to the progression and severity of Huntington's disease (HD). METHODS We used propensity score (PS) weighting in a large (n = 2914) longitudinal dataset (Enroll-HD) to examine the impact of education, employment status, and use of tobacco, alcohol, and recreational and therapeutic drugs on HD progression. Each factor was investigated in isolation while controlling for 19 other factors to ensure that groups were balanced at baseline on potential confounders using PS weights. Outcomes were compared several years later using doubly robust models. RESULTS Our results highlighted cases where modifiable (non-genetic) factors - namely light and moderate alcohol use and employment - would have been associated with HD progression in models that did not use PS weights to control for baseline imbalances. These associations did not hold once we applied PS weights to balance baseline groups. We also found potential evidence of a protective effect of substance use (primarily marijuana use), and that those who needed antidepressant treatment were likely to progress faster than non-users. CONCLUSIONS Our study is the first to examine the effect of non-genetic factors on HD using a novel application of PS weighting. We show that previously-reported associated factors - including light and moderate alcohol use - are reduced and no longer significantly linked to HD progression after PS weighting. This indicates the potential value of PS weighting in examining non-genetic factors contributing to HD as well as in addressing the known biases that occur with observational data.
Collapse
Affiliation(s)
- Beth Ann Griffin
- RAND Center for Causal Inference, RAND Corporation, 1200, South Hayes Street, Arlington, VA, USA.
| | | | - Monica Busse
- Centre for Trials Research, Cardiff University, Neuadd Merionydd, Heath Park, CF14 4XN, Cardiff, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Claude Setodji
- RAND Center for Causal Inference, RAND Corporation, 4570, Fifth Ave #600, Pittsburgh, PA, USA
| | - John H Warner
- CHDI Management/CHDI Foundation, 155 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, 155 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Amrita Mohan
- CHDI Management/CHDI Foundation, 155 Village Boulevard, Suite 200, Princeton, NJ, USA
| |
Collapse
|
21
|
Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington's Disease: A Review. Nutrients 2020; 12:nu12102946. [PMID: 32992896 PMCID: PMC7601299 DOI: 10.3390/nu12102946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Decades of research and experimental studies have investigated Huntington’s disease (HD), a rare neurodegenerative disease. Similarly, several studies have investigated whether high/moderate adherence to the Mediterranean Diet and specific macro and micronutrients can decrease cognitive loss and provide a neuroprotective function to neurons. This review systematically identifies and examines studies that have investigated Mediterranean Diet adherence, micro- and macronutrients, supplementation and caloric intake in people with HD, in order to identify if dietary exposures resulted in improvement of disease symptoms, a delay in age of onset or if they contributed to an earlier age of onset in people with HD. A systematic search of PubMed, Directory of open access journal and HubMed was performed independently by two reviewers using specific search terms criteria for studies. The identified abstracts were screened and the studies were included in the review if they satisfied predetermined inclusion criteria. Reference screening of included studies was also performed. A total of 18 studies were included in the review. A few studies found that patients who had high/moderate adherence to Mediterranean Diet showed a slight improvement in their Unified Huntington’s Disease Rating Scale and Total Functional Capacity. In addition, people with HD who had high Mediterranean Diet adherence showed an improvement in both cognitive and motor scores and had a better quality of life compared to patients who had low Mediterranean Diet adherence. Furthermore, a few studies showed that supplementation with specific nutrients, such as triheaptanoin, L-acetyl-carnitine and creatine, had no beneficial effect on the patients’ Unified Huntington’s Disease Rating Scale score. A few studies suggest that the Mediterranean Diet may confer a motor and cognitive benefit to people with HD. Unfortunately, there was little consistency among study findings. It is important for more research to be conducted to have a better understanding of which dietary exposures are beneficial and may result delaying age of onset or disease progression in people with HD.
Collapse
|
22
|
Parast L, Griffin BA. Quantifying the bias due to observed individual confounders in causal treatment effect estimates. Stat Med 2020; 39:2447-2476. [PMID: 32388870 DOI: 10.1002/sim.8549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/10/2022]
Abstract
It is often of interest to use observational data to estimate the causal effect of a target exposure or treatment on an outcome. When estimating the treatment effect, it is essential to appropriately adjust for selection bias due to observed confounders using, for example, propensity score weighting. Selection bias due to confounders occurs when individuals who are treated are substantially different from those who are untreated with respect to covariates that are also associated with the outcome. A comparison of the unadjusted, naive treatment effect estimate with the propensity score adjusted treatment effect estimate provides an estimate of the selection bias due to these observed confounders. In this article, we propose methods to identify the observed covariate that explains the largest proportion of the estimated selection bias. Identification of the most influential observed covariate or covariates is important in resource-sensitive settings where the number of covariates obtained from individuals needs to be minimized due to cost and/or patient burden and in settings where this covariate can provide actionable information to healthcare agencies, providers, and stakeholders. We propose straightforward parametric and nonparametric procedures to examine the role of observed covariates and quantify the proportion of the observed selection bias explained by each covariate. We demonstrate good finite sample performance of our proposed estimates using a simulation study and use our procedures to identify the most influential covariates that explain the observed selection bias in estimating the causal effect of alcohol use on progression of Huntington's disease, a rare neurological disease.
Collapse
Affiliation(s)
- Layla Parast
- Statistics Group, RAND Corporation, Santa Monica, California, USA
| | - Beth Ann Griffin
- Statistics Group, RAND Corporation, Santa Monica, California, USA
| |
Collapse
|
23
|
Cruickshank T, Bartlett D, Govus A, Hannan A, Teo WP, Mason S, Lo J, Ziman M. The relationship between lifestyle and serum neurofilament light protein in Huntington's disease. Brain Behav 2020; 10:e01578. [PMID: 32181593 PMCID: PMC7218250 DOI: 10.1002/brb3.1578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Serum neurofilament light protein (NfL) is a promising marker of disease onset and progression in Huntington's disease (HD). This study investigated associations between lifestyle factors and NfL levels in HD mutation carriers compared to healthy age- and sex-matched controls. MATERIALS AND METHODS Participants included 29 HD mutation carriers and 15 healthy controls. Associations between serum NfL concentrations and lifestyle factors, including cardiorespiratory fitness, social network size and diversity, physical activity, cognitive reserve, smoking status, and alcohol consumption, were examined using a stepwise multivariable linear regression model. RESULTS Higher NfL levels were associated with lower cognitive reserve, social network size and diversity and cardiorespiratory fitness in HD mutation carriers. Group × lifestyle factor effects were observed between lower serum NfL levels and a greater social network diversity. CONCLUSION These findings highlight a relationship between lifestyle factors and NfL levels in HD mutations carriers; however, longitudinal studies are required to confirm if these observed relationships persist over time.
Collapse
Affiliation(s)
- Travis Cruickshank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Danielle Bartlett
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Andrew Govus
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, VIC, Australia
| | - Anthony Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia.,Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, Nanyang, Singapore
| | - Sarah Mason
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Johnny Lo
- School of Science, Edith Cowan University, Perth, WA, Australia
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,School of Pathology and Laboratory Medicine, University Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Huin V, Dhaenens CM, Homa M, Carvalho K, Buée L, Sablonnière B. Neurogenetics of the Human Adenosine Receptor Genes: Genetic Structures and Involvement in Brain Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vincent Huin
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Claire-Marie Dhaenens
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Mégane Homa
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Kévin Carvalho
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Luc Buée
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Bernard Sablonnière
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| |
Collapse
|
25
|
Guitart X, Chern Y, Ferré S. Targeting the equilibrative nucleoside transporter ENT1 in Huntington disease. Oncotarget 2019; 8:12550-12551. [PMID: 28179589 PMCID: PMC5355032 DOI: 10.18632/oncotarget.15111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yijuang Chern
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
26
|
Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res 2019; 97:1455-1468. [DOI: 10.1002/jnr.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
27
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
28
|
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr 2019; 60:760-779. [PMID: 30614247 DOI: 10.1080/10408398.2018.1550384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
30
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
31
|
Use of an Online Extraction Technique Coupled to Liquid Chromatography for Determination of Caffeine in Coffee, Tea, and Cocoa. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1247-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Garcia TP, Marder K, Wang Y. Statistical modeling of Huntington disease onset. HANDBOOK OF CLINICAL NEUROLOGY 2018; 144:47-61. [PMID: 28947125 DOI: 10.1016/b978-0-12-801893-4.00004-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Huntington disease (HD) is caused by a CAG trinucleotide expansion in the huntingtin gene. We now have the power to predict age-at-onset from subject-specific features like motor and neuroimaging measures. In clinical trials, properly modeling onset age is important, because it improves power calculations and directs clinicians to recruit subjects with certain features. The history of modeling onset, from simple linear and logistic regression to advanced survival models, is discussed. We highlight their advantages and disadvantages, emphasizing the methodological challenges when genetic mutation status is unavailable. We also discuss the potential bias and higher variability incurred from the uncertainty associated with subjective definitions for onset. Methods to adjust for the uncertainty in survival models are still in their infancy, but would be beneficial for HD and neurodegenerative diseases with long prodromal periods like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Tanya P Garcia
- Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, College Station, TX, United States.
| | - Karen Marder
- Departments of Neurology and Psychiatry, Sergievsky Center and Taub Institute, Columbia University Medical Center, New York, NY, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
34
|
Tanner C, Marder K, Eberly S, Biglan K, Oakes D, Shoulson I. Selected health and lifestyle factors, cytosine-adenine-guanine status, and phenoconversion in Huntington's disease. Mov Disord 2018; 33:472-478. [PMID: 29297592 DOI: 10.1002/mds.27239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND In Huntington's disease, 60% of the variance in onset age is not explained by the huntingtin gene mutation. Huntington's disease onset was earlier in caffeine users. OBJECTIVE The objective of this study was to assess the relationship of lifestyle factors with motor phenoconversion among persons at risk for Huntington's disease. METHODS The associations of motor phenoconversion and exposure to selected lifestyle and health factors were examined using Cox proportional hazards analyses adjusted for age, gender, and repeat length. RESULTS Of 247 participants, 36 (14.6%) phenoconverted. Mean follow-up was 4.2 years. Greater caffeinated soda use was associated with an increased hazard of phenoconversion: moderate use hazard ratio 2.26 (95% confidence interval 0.59-8.71), high use hazard ratio 4.05 (95% confidence interval 1.18-13.96). CONCLUSIONS Huntington's disease onset was earlier among consumers of caffeinated soda, but not other caffeinated beverages. This finding may be spurious or not related to caffeine. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Caroline Tanner
- Parkinson's Disease Research, Education and Clinical Center, Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Neurology, University of California-San Francisco, San Francisco, California, USA
| | - Karen Marder
- Departments of Neurology and Psychiatry, Taub Institute for Research on the Aging Brain, Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology, University of Rochester, New York, New York, USA
| | - Kevin Biglan
- Eli Lilly and Company, Indianapolis, Indiana, USA.,Department of Neurology, University of Rochester, New York, New York, USA
| | - David Oakes
- Department of Biostatistics and Computational Biology, University of Rochester, New York, New York, USA
| | - Ira Shoulson
- Department of Neurology, Georgetown University, Washington, D.C., USA
| | | |
Collapse
|
35
|
Cui SS, Ren RJ, Wang Y, Wang G, Chen SD. Tics as an initial manifestation of juvenile Huntington's disease: case report and literature review. BMC Neurol 2017; 17:152. [PMID: 28789621 PMCID: PMC5549341 DOI: 10.1186/s12883-017-0923-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disorder, typically characterized by chorea due to a trinucleotide repeat expansion in the HTT gene, although the clinical manifestations of patients with juvenile HD (JHD) are atypical. CASE PRESENTATION A 17-year-old boy with initial presentation of tics attended our clinic and his DNA analysis demonstrated mutation in the HTT gene (49 CAG repeats). After treatment, his symptoms improved. Furthermore, we performed literature review through searching the databases and summarized clinical features in 33 JHD patients. CONCLUSION The most prevalent symptoms are ataxia, and two cases reported that tics as initial and prominent manifestation in JHD. Among them, 88% patients carried CAG repeats beyond 60 and most of them have family history. This case here illustrates the variable range of clinical symptoms of JHD and the necessity of testing for the HD mutation in young patients with tics with symptoms unable to be explained by Tourette's syndrome (TS).
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
36
|
Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 2017; 23:272-290. [PMID: 28317317 PMCID: PMC6492672 DOI: 10.1111/cns.12684] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A2A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored.
Collapse
Affiliation(s)
- Mahshad Kolahdouzan
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| |
Collapse
|
37
|
Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res 2017; 61. [PMID: 28074613 DOI: 10.1002/mnfr.201600670] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/24/2023]
Abstract
Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs.
Collapse
Affiliation(s)
| | - Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
38
|
Guitart X, Bonaventura J, Rea W, Orrú M, Cellai L, Dettori I, Pedata F, Brugarolas M, Cortés A, Casadó V, Chang CP, Narayanan M, Chern Y, Ferré S. Equilibrative nucleoside transporter ENT1 as a biomarker of Huntington disease. Neurobiol Dis 2016; 96:47-53. [PMID: 27567601 DOI: 10.1016/j.nbd.2016.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 02/03/2023] Open
Abstract
The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease.
Collapse
Affiliation(s)
- Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Marco Orrú
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Lucrezia Cellai
- Department NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Ilaria Dettori
- Department NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Felicita Pedata
- Department NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Marc Brugarolas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Center for Biomedical Research in Neurodegenerative Diseases Network and Institute of Biomedicine, 08028 Barcelona, Spain
| | - Antonio Cortés
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Center for Biomedical Research in Neurodegenerative Diseases Network and Institute of Biomedicine, 08028 Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Center for Biomedical Research in Neurodegenerative Diseases Network and Institute of Biomedicine, 08028 Barcelona, Spain
| | - Ching-Pang Chang
- Division of Neuroscience Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan
| | - Manikandan Narayanan
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yijuang Chern
- Division of Neuroscience Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
39
|
Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016; 21:molecules21080974. [PMID: 27472311 PMCID: PMC6273298 DOI: 10.3390/molecules21080974] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 12/05/2022] Open
Abstract
Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.
Collapse
|
40
|
From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease? Biochem Soc Trans 2015; 42:587-92. [PMID: 24646282 DOI: 10.1042/bst20130229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AD (Alzheimer's disease) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. A third pathological component is inflammation. AD results from multiple genetic and environmental risk factors. Among other factors, epidemiological studies report beneficial effects of caffeine, a non-selective antagonist of adenosine receptors. In the present review, we discuss the impact of caffeine and the adenosinergic system in AD pathology as well as consequences in terms of pathology and therapeutics.
Collapse
|
41
|
Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: Insights from gene–environment interactions in Huntington's disease. Neurosci Biobehav Rev 2015; 52:178-92. [DOI: 10.1016/j.neubiorev.2015.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
|
42
|
Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiol Dis 2015; 79:70-80. [PMID: 25892655 DOI: 10.1016/j.nbd.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Joana Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Yu-Mei Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Marie-Pierce Payen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Christa E Muller
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
43
|
Progress in Huntington’s disease: the search for markers of disease onset and progression. J Neurol 2015; 262:1990-5. [DOI: 10.1007/s00415-015-7700-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022]
|
44
|
Lee DH, Heidecke H, Schröder A, Paul F, Wachter R, Hoffmann R, Ellrichmann G, Dragun D, Waschbisch A, Stegbauer J, Klotz P, Gold R, Dechend R, Müller DN, Saft C, Linker RA. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease. Mol Neurodegener 2014; 9:49. [PMID: 25398321 PMCID: PMC4246494 DOI: 10.1186/1750-1326-9-49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background In the recent years, a role of the immune system in Huntington’s disease (HD) is increasingly recognized. Here we investigate the presence of T cell activating auto-antibodies against angiotensin II type 1 receptors (AT1R) in all stages of the disease as compared to healthy controls and patients suffering from multiple sclerosis (MS) as a prototype neurologic autoimmune disease. Results As compared to controls, MS patients show higher titers of anti-AT1R antibodies, especially in individuals with active disease. In HD, anti-AT1R antibodies are more frequent than in healthy controls or even MS and occur in 37.9% of patients with relevant titers ≥ 20 U/ml. In a correlation analysis with clinical parameters, the presence of AT1R antibodies in the sera of HD individuals inversely correlated with the age of onset and positively with the disease burden score as well as with smoking and infection. Conclusions These data suggest a dysfunction of the adaptive immune system in HD which may be triggered by different stimuli including autoimmune responses, infection and possibly also smoking.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carsten Saft
- Department of Neurology, Friedrich Alexander University Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.
| | | |
Collapse
|
45
|
Panegyres PK, Shu CC, Chen HY, Paulsen JS. Factors influencing the clinical expression of intermediate CAG repeat length mutations of the Huntington's disease gene. J Neurol 2014; 262:277-84. [PMID: 25380582 DOI: 10.1007/s00415-014-7559-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Our aim is to elucidate the clinical variables associated with the development of manifest HD in patients with intermediate CAG repeat lengths. 2,167 participants were seen throughout 44 research sites in the United States, Canada or Australia over a five-year natural history observational study (2006-2011) (Trial # NCT00313495). The Chi-square test and a generalised linear model were used to examine the differences in demographics and cognitive tests among three groups of CAG repeat length. The mixed model was then used to examine the time effect on cognitive assessments by CAG groups. No patient with CAG repeat length 27-35 developed manifest HD, whereas three patients with 36-39 did. Total motor score, maximal chorea score and maximal dystonia score were significantly different at baseline (p < 0.001) for each measure between those patients with a repeat length 27-35 versus those 36-39; as were total functional assessment, independence scale and total functional capacity (p < 0.001). Being aged 65 years or more (OR 5.81, 95 % CI 0.37-90.58, p = 0.02) and smoking (OR 13.99, 95 % CI 2.03-96.44, p = 0.007) were related to manifest HD in patients with CAG 36-39; those with an associated university degree or higher education were less frequently diagnosed as manifest HD (OR 0.10, 95 % CI 0.02-0.54, p = 0.007). Age, smoking and lower education achievement were found to be significantly associated with higher odds of manifest HD in patients with intermediate CAG repeat length mutations.
Collapse
Affiliation(s)
- Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, 6005, West Perth, WA, Australia,
| | | | | | | |
Collapse
|
46
|
Mo C, Renoir T, Hannan AJ. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice. Behav Brain Res 2014; 274:118-27. [DOI: 10.1016/j.bbr.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 01/05/2023]
|
47
|
Mo C, Pang TY, Ransome MI, Hill RA, Renoir T, Hannan AJ. High stress hormone levels accelerate the onset of memory deficits in male Huntington's disease mice. Neurobiol Dis 2014; 69:248-62. [DOI: 10.1016/j.nbd.2014.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/24/2014] [Accepted: 05/04/2014] [Indexed: 12/18/2022] Open
|
48
|
Mo C, Renoir T, Hannan AJ. Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice. Neurobiol Dis 2014; 71:81-94. [PMID: 25088714 DOI: 10.1016/j.nbd.2014.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a tandem repeat mutation encoding an expanded polyglutamine tract. Our previous work showed that memory deficits in HD transgenic mice could be accelerated by increased levels of stress hormone, while memory in WT mice remained unaffected. HD patients experience higher levels of stress compared to the general population and symptoms of HD also include motor, cognitive, psychiatric, sexual and olfactory abnormalities, and an associated decline in activities of daily living. Therefore we investigated the impact of a robust stressor (i.e. restraint) on the onset and progression of a range of behavioral phenotypes in R6/1 transgenic HD mice. Restraint was administered for 1h daily from 6weeks of age and continued until R6/1 mice were clearly motor symptomatic at 14weeks of age. Serum corticosterone levels in both R6/1 and WT littermates were elevated immediately after the last restraint session and weight gain was suppressed in restrained animals throughout the treatment period. Motor coordination and locomotor activity were enhanced by chronic restraint in males, regardless of genotype. However, there was no effect of restraint on motor performances in female animals. At 8weeks of age, olfactory sensitivity was impaired by restraint in R6/1 HD female mice, but not in WT mice. In male R6/1 mice, the olfactory deficit was exacerbated by restraint and olfaction was also impaired in male WT mice. The development of deficits in saccharin preference, Y-maze memory, nest-building and sexually-motivated vocalizations was unaffected by chronic restraint in R6/1 and had little impact on such behavioral performances in WT animals. We provide evidence that chronic stress can negatively modulate specific endophenotypes in HD mice, while the same functions were affected to a lesser extent in WT mice. This vulnerability in HD animals seems to be sex-specific depending on the stress paradigm used. It is hoped that our work will stimulate clinical investigations into the effects of stress on both pre-symptomatic and symptomatic gene-positive members of HD families, and inform the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Christina Mo
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia.
| | - Thibault Renoir
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Australia.
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| |
Collapse
|
49
|
Matusch A, Saft C, Elmenhorst D, Kraus PH, Gold R, Hartung HP, Bauer A. Cross sectional PET study of cerebral adenosine A₁ receptors in premanifest and manifest Huntington's disease. Eur J Nucl Med Mol Imaging 2014; 41:1210-20. [PMID: 24566949 DOI: 10.1007/s00259-014-2724-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington's disease (HD). METHODS We quantified the cerebral binding potential (BP ND) of the A₁AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [(18) F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36). RESULTS Cerebral A₁AR values of preHD-A subjects were generally higher than those of controls (by up to 31%, p < .01, in the thalamus on average). Across stages a successive reduction of A₁AR BPND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25%, p < .01, in the caudatus and amygdala. There was a strong correlation between A₁AR BP ND and years to onset. Before onset of HD, the assumed annual rates of change of A₁AR density were -1.2% in the caudatus, -1.7% in the thalamus and -3.4% in the amygdala, while the corresponding volume losses amounted to 0.6%, 0.1% and 0.2%, respectively. CONCLUSIONS Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism.
Collapse
Affiliation(s)
- Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52425, Jülich, Germany,
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee CF, Chern Y. Adenosine receptors and Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:195-232. [PMID: 25175968 DOI: 10.1016/b978-0-12-801022-8.00010-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Adenosine regulates important pathophysiological functions via four distinct adenosine receptor subtypes (A1, A2A, A2B, and A3). The A1 and A2A adenosine receptors (A1R and A2AR) are major targets of caffeine and have been extensively investigated. Huntington's disease (HD) is a dominant neurodegenerative disease caused by an abnormal CAG expansion in the Huntingtin gene. Since the first genetic HD model was created almost two decades ago, tremendous progress regarding the function of the adenosine receptors in HD has been made. Chronic intake of caffeine was recently shown to be positively associated with the disease onset of HD. Moreover, genetic polymorphism of A2AR is believed to impact the age of onset. Given the importance of adenosine receptors as drug targets for human diseases, this review highlights the recent findings that delineate the roles of adenosine receptors in HD and discusses their potential for serving as drug targets and/or biomarkers for HD. Adenosine is a purine nucleoside that regulates important physiological functions via four different adenosine receptors (A1, A2A, A2B, and A3). These adenosine receptors have seven transmembrane domains and belong to the G protein-coupled receptor family. The functions of the A1 adenosine receptor (A1R) and A2A adenosine receptor (A2AR) have been investigated relative to HD. In this review, we summarize the recent findings regarding the role of adenosine receptors in HD and discuss the potential application of adenosine receptors as drug targets and biomarkers for HD.
Collapse
Affiliation(s)
- Chien-fei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|