1
|
Donlon J, Kumari P, Varghese SP, Bai M, Florentin OD, Frost ED, Banks J, Vadlapatla N, Kam O, Shad MU, Rahman S, Abulseoud OA, Stone TW, Koola MM. Integrative Pharmacology in the Treatment of Substance Use Disorders. J Dual Diagn 2024; 20:132-177. [PMID: 38117676 DOI: 10.1080/15504263.2023.2293854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Collapse
Affiliation(s)
- Jack Donlon
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Pooja Kumari
- Community Living Trent Highlands, Peterborough, Canada
| | - Sajoy P Varghese
- Addiction Recovery Treatment Services, Veterans Affairs Northern California Health Care System, University of California, Davis, Sacramento, California, USA
| | - Michael Bai
- Columbia University, New York, New York, USA
| | - Ori David Florentin
- Department of Psychiatry, Westchester Medical Center, Valhalla, New York, USA
| | - Emma D Frost
- Department of Neurology, Cooper University Health Care, Camden, New Jersey, USA
| | - John Banks
- Talkiatry Mental Health Clinic, New York, New York, USA
| | - Niyathi Vadlapatla
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Olivia Kam
- Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Mujeeb U Shad
- Department of Psychiatry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Alix School of Medicine at Mayo Clinic, Phoenix, Arizona, USA
| | - Trevor W Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
2
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022; 13:235-242. [PMID: 36590097 PMCID: PMC9795316 DOI: 10.1016/j.ibneur.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years scientific research has established that the nervous and immune systems have shared molecular signaling components. Proteins native to immune cells, which are also found in the brain, have neuronal functions in the nervous system where they affect synaptic plasticity, axonal regeneration, neurogenesis, and neurotransmission. Certain native immune molecules like major histocompatibility complex I (MHC-I), paired immunoglobulin receptor B (PirB), toll-like receptor (TLR), cluster of differentiation-3 zeta (CD3ζ), CD4 co-receptor, and T-cell receptor beta (TCR-β) expression in neurons have been extensively documented. In this review, we provide our opinion and discussed the possible roles of T-cell receptor beta subunits in modulating the function of neurons in the central nervous system. Based on the previous findings of Syken and Shatz., 2003; Nishiyori et al., 2004; Rodriguez et., 1993 and Komal et., 2014; we discuss whether restrictive expression of TCR-β subunits in selected brain regions could be involved in the pathology of neurological disorders and whether their aberrant enhancement in expression may be considered as a suitable biomarker for aging or neurodegenerative diseases like Huntington's disease (HD).
Collapse
|
4
|
Zhang W, Ross PJ, Ellis J, Salter MW. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl Psychiatry 2022; 12:243. [PMID: 35680847 PMCID: PMC9184461 DOI: 10.1038/s41398-022-02010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.
Collapse
Affiliation(s)
- Wenbo Zhang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Joel Ross
- Biology Department, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Meneghini S, Modena D, Colombo G, Coatti A, Milani N, Madaschi L, Amadeo A, Becchetti A. The β2V287L nicotinic subunit linked to sleep-related epilepsy differently affects fast-spiking and regular spiking somatostatin-expressing neurons in murine prefrontal cortex. Prog Neurobiol 2022; 214:102279. [DOI: 10.1016/j.pneurobio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
|
6
|
Mercado-Ayón E, Warren N, Halawani S, Rodden LN, Ngaba L, Dong YN, Chang JC, Fonck C, Mavilio F, Lynch DR, Lin H. Cerebellar Pathology in an Inducible Mouse Model of Friedreich Ataxia. Front Neurosci 2022; 16:819569. [PMID: 35401081 PMCID: PMC8987918 DOI: 10.3389/fnins.2022.819569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah Halawani
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Layne N. Rodden
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lucie Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Carlos Fonck
- Audentes Therapeutics, San Francisco, CA, United States
| | - Fulvio Mavilio
- Audentes Therapeutics, San Francisco, CA, United States
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - David R. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hong Lin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Namgung U, Kim KJ, Jo BG, Park JM. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J Neuroinflammation 2022; 19:33. [PMID: 35109857 PMCID: PMC8812005 DOI: 10.1186/s12974-022-02396-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have shown that vagus nerve stimulation (VNS) can attenuate inflammatory responses in peripheral tissues and also improve some neurological disorders and cognitive function in the brain. However, it is not clear how VNS is involved in neuropathological processes in brain tissues. Here, we investigated the regulatory effects of VNS on the production of proinflammatory cytokines in the hippocampus of an animal model of continuous stress (CS). Methods CS was induced by placing rats in cages immersed with water, and acute or chronic electrical stimulation was applied to the cervical vagus nerve of CS animals. Protein levels in the gastric and hippocampal tissues were measured by western blotting and protein signals analyzed by immunofluorescence staining. von Frey test and forced swimming test were performed to assess pain sensitivity and depressive-like behavior in rats, respectively. Results Levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues were significantly increased in CS animals compared to the untreated control and downregulated by acute VNS (aVNS). Iba-1-labeled microglial cells in the hippocampus of CS animals revealed morphological features of activated inflammatory cells and then changed to a normal shape by VNS. VNS elevated hippocampal expression of α7 nicotinic acetylcholine receptors (α7 nAChR) in CS animals, and pharmacological blockade of α7 nAChR increased the production of TNF-α, IL-1β, and IL-6, thus suppressing cholinergic anti-inflammatory activity that was mediated by VNS. Chronic VNS (cVNS) down-regulated the hippocampal production of active form of caspase 3 and 5-HT1A receptors and also decreased levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues of CS animals. Pain sensitivity and depressive-like behavior, which were increased by CS, were improved by cVNS. Conclusions Our data suggest that VNS may be involved in modulating pathophysiological processes caused by CS in the brain.
Collapse
Affiliation(s)
- Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea.
| | - Ki-Joong Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Byung-Gon Jo
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Jong Min Park
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| |
Collapse
|
8
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021; 70:1484-1505. [PMID: 34582594 DOI: 10.1002/glia.24099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.
Collapse
Affiliation(s)
- Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
11
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
12
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
13
|
Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep 2021; 11:8205. [PMID: 33859248 PMCID: PMC8050278 DOI: 10.1038/s41598-021-87667-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are widely expressed in the central nervous system. However, their presence and function at extraneuronal sites is less well characterized. In the present study, we examined the expression of NMDA receptor subunit mRNA and protein in human pulmonary artery (HPA) by quantitative polymerase chain reaction (PCR), immunohistochemistry and immunoblotting. We demonstrate that both GluN1 and GluN2 subunit mRNAs are expressed in HPA. In addition, GluN1 and GluN2 (A–D) subunit proteins are expressed by human pulmonary artery smooth muscle cells (HPASMCs) in vitro and in vivo. These subunits localize on the surface of HPASMCs and form functional ion channels as evidenced by whole-cell patch-clamp electrophysiology and reduced phenylephrine-induced contractile responsiveness of human pulmonary artery by the NMDA receptor antagonist MK801 under hypoxic condition. HPASMCs also express high levels of serine racemase and vesicular glutamate transporter 1, suggesting a potential source of endogenous agonists for NMDA receptor activation. Our findings show HPASMCs express functional NMDA receptors in line with their effect on pulmonary vasoconstriction, and thereby suggest a novel therapeutic target for pharmacological modulations in settings associated with pulmonary vascular dysfunction.
Collapse
|
14
|
Cheng YJ, Lin CH, Lane HY. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:2283. [PMID: 33668976 PMCID: PMC7956475 DOI: 10.3390/ijms22052283] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. The number of AD cases has been rapidly growing worldwide. Several the related etiological hypotheses include atypical amyloid β (Aβ) deposition, neurofibrillary tangles of tau proteins inside neurons, disturbed neurotransmission, inflammation, and oxidative stress. During AD progression, aberrations in neurotransmission cause cognitive decline-the main symptom of AD. Here, we review the aberrant neurotransmission systems, including cholinergic, adrenergic, and glutamatergic network, and the interactions among these systems as they pertain to AD. We also discuss the key role of N-methyl-d-aspartate receptor (NMDAR) dysfunction in AD-associated cognitive impairment. Furthermore, we summarize the results of recent studies indicating that increasing glutamatergic neurotransmission through the alteration of NMDARs shows potential for treating cognitive decline in mild cognitive impairment or early stage AD. Future studies on the long-term efficiency of NMDA-enhancing strategies in the treatment of AD are warranted.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan;
- Department of Rehabilitation, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
15
|
Al-Absi AR, Qvist P, Glerup S, Sanchez C, Nyengaard JR. Df(h15q13)/+ Mouse Model Reveals Loss of Astrocytes and Synaptic-Related Changes of the Excitatory and Inhibitory Circuits in the Medial Prefrontal Cortex. Cereb Cortex 2021; 31:1609-1621. [PMID: 33123721 DOI: 10.1093/cercor/bhaa313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 11/13/2022] Open
Abstract
The 15q13.3 deletion is associated with multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism. The Df(h15q13)/+ mouse model was recently generated that recapitulates several phenotypic features of the human 15q13.3 deletion syndrome (DS). However, the biological substrates underlying these phenotypes in Df(h15q13)/+ mice have not yet been fully characterized. RNA sequencing followed by real-time quantitative PCR, western blotting, liquid chromatography-mass spectrometry, and stereological analysis were employed to dissect the molecular, structural, and neurochemical phenotypes of the medial prefrontal cortex (mPFC) circuits in Df(h15q13)/+ mouse model. Transcriptomic profiling revealed enrichment for astrocyte-specific genes among differentially expressed genes, translated by a decrease in the number of glial fibrillary acidic protein positive cells in mPFC of Df(h15q13)/+ mice compared with wild-type mice. mPFC in Df(h15q13)/+ mice also showed a deficit of the inhibitory presynaptic marker GAD65, in addition to a reduction in dendritic arborization and spine density of pyramidal neurons from layers II/III. mPFC levels of GABA and glutamate neurotransmitters were not different between genotypes. Our results suggest that the 15q13.3 deletion modulates nonneuronal circuits in mPFC and confers molecular and morphometric alterations in the inhibitory and excitatory neurocircuits, respectively. These alterations potentially contribute to the phenotypes accompanied with the 15q13.3DS.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark.,Center for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
16
|
Koola MM. Alpha7 nicotinic-N-methyl-D-aspartate hypothesis in the treatment of schizophrenia and beyond. Hum Psychopharmacol 2021; 36:1-16. [PMID: 32965756 DOI: 10.1002/hup.2758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Development of novel treatments for positive, cognitive, and negative symptoms continue to be a high-priority area of schizophrenia research and a major unmet clinical need. Given that all randomized controlled trials (RCTs) conducted to date failed with one add-on medication/mechanism of action, future RCTs with the same approach are not warranted. Even if the field develops a medication for cognition, others are still needed to treat negative and positive symptoms. Therefore, fixing one domain does not completely solve the problem. Also, targeting the cholinergic system, glutamatergic system, and cholinergic plus alpha7 nicotinic and N-methyl-D-aspartate (NMDA) receptors failed independently. Hence, targeting other less important pathophysiological mechanisms/targets is unlikely to be successful. Meta-analyses of RCTs targeting major pathophysiological mechanisms have found some efficacy signal in schizophrenia; thus, combination treatments with different mechanisms of action may enhance the efficacy signal. The objective of this article is to highlight the importance of conducting RCTs with novel combination treatments in schizophrenia to develop antischizophrenia treatments. Positive RCTs with novel combination treatments that target the alpha7 nicotinic and NMDA receptors simultaneously may lead to a disease-modifying therapeutic armamentarium in schizophrenia. Novel combination treatments that concurrently improve the three domains of psychopathology and several prognostic and theranostic biomarkers may facilitate therapeutic discovery in schizophrenia.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
17
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
18
|
Galantamine-Memantine combination in the treatment of Alzheimer's disease and beyond. Psychiatry Res 2020; 293:113409. [PMID: 32829072 DOI: 10.1016/j.psychres.2020.113409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population worldwide. Despite the major unmet clinical need, no new medications for the treatment of AD have been approved since 2003. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is an N-methyl-d-aspartate receptor modulator/agonist. Both galantamine and memantine are FDA-approved medications for the treatment of AD. The objective of this review is to highlight the potential of the galantamine-memantine combination to conduct randomized controlled trials (RCTs) in AD. Several studies have shown the combination to be effective. Neurodegenerative diseases involve multiple pathologies; therefore, combination treatment appears to be a rational approach. Although underutilized, the galantamine-memantine combination is the standard of care in the treatment of AD. Positive RCTs with the combination with concurrent improvement in symptoms and biomarkers may lead to FDA approval, which may lead to greater utilization of this combination in clinical practice.
Collapse
|
19
|
Molecular, physiological and behavioral characterization of the heterozygous Df[h15q13]/+ mouse model associated with the human 15q13.3 microdeletion syndrome. Brain Res 2020; 1746:147024. [PMID: 32712126 DOI: 10.1016/j.brainres.2020.147024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Collapse
|
20
|
Activation of alpha7 nicotinic and NMDA receptors is necessary for performance in a working memory task. Psychopharmacology (Berl) 2020; 237:1723-1735. [PMID: 32162104 PMCID: PMC7313359 DOI: 10.1007/s00213-020-05495-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Working memory deficits are present in schizophrenia (SZ) but remain insufficiently resolved by medications. Similar cognitive dysfunctions can be produced acutely in animals by elevating brain levels of kynurenic acid (KYNA). KYNA's effects may reflect interference with the function of both the α7 nicotinic acetylcholine receptor (α7nAChR) and the glycineB site of the NMDA receptor. OBJECTIVES The aim of the present study was to examine, using pharmacological tools, the respective roles of these two receptor sites on performance in a delayed non-match-to-position working memory (WM) task (DNMTP). METHODS DNMTP consisted of 120 trials/session (5, 10, and 15 s delays). Rats received two doses (25 or 100 mg/kg, i.p.) of L-kynurenine (KYN; bioprecursor of KYNA) or L-4-chlorokynurenine (4-Cl-KYN; bioprecursor of the selective glycineB site antagonist 7-Cl-kynurenic acid). Attenuation of KYN- or 4-Cl-KYN-induced deficits was assessed by co-administration of galantamine (GAL, 3 mg/kg) or PAM-2 (1 mg/kg), two positive modulators of α7nAChR function. Reversal of 4-Cl-KYN-induced deficits was examined using D-cycloserine (DCS; 30 mg/kg), a partial agonist at the glycineB site. RESULTS Both KYN and 4-Cl-KYN administration produced dose-related deficits in DNMTP accuracy that were more severe at the longer delays. In KYN-treated rats, these deficits were reversed to control levels by GAL or PAM-2 but not by DCS. In contrast, DCS eliminated performance deficits in 4-Cl-KYN-treated animals. CONCLUSIONS These experiments reveal that both α7nAChR and NMDAR activity are necessary for normal WM accuracy. They provide substantive new support for the therapeutic potential of positive modulators at these two receptor sites in SZ and other major brain diseases.
Collapse
|
21
|
Zhang X, Lao K, Qiu Z, Rahman MS, Zhang Y, Gou X. Potential Astrocytic Receptors and Transporters in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2020; 67:1109-1122. [PMID: 30741675 DOI: 10.3233/jad-181084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the progressive loss of memory and cognition in the aging population. However, the etiology of and therapies for AD remain far from understood. Astrocytes, the most abundant neuroglia in the brain, have recently aroused substantial concern due to their involvement in synaptotoxicity, amyloidosis, neuroinflammation, and oxidative stress. In this review, we summarize the candidate molecules of astrocytes, especially receptors and transporters, that may be involved in AD pathogenesis. These molecules include excitatory amino acid transporters (EAATs), metabotropic glutamate receptor 5 (mGluR5), the adenosine 2A receptor (A2AR), the α7-nicotinic acetylcholine receptor (α7-nAChR), the calcium-sensing receptor (CaSR), S100β, and cannabinoid receptors. We describe the characteristics of these molecules and the neurological and pharmacological underpinnings of these molecules in AD. Among these molecules, EAATs, A2AR, and mGluR5 are strongly related to glutamate-mediated synaptotoxicity and are involved in glutamate transmission or the clearance of extrasynaptic glutamate in the AD brain. The α7-nAChR, CaSR, and mGluR5 are receptors of Aβ and can induce a plethora of toxic effects, such as the production of excess Aβ, synaptotoxicity, and NO production triggered by changes in intracellular calcium signaling. Antagonists or positive allosteric modulators of these receptors can repair cognitive ability and modify neurobiological changes. Moreover, blocking S100β or activating cannabinoid receptors reduces neuroinflammation, oxidative stress, and reactive astrogliosis. Thus, targeting these molecules might provide alternative approaches for treating AD.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Kejing Lao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Zhongying Qiu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Md Saidur Rahman
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China.,Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| |
Collapse
|
22
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
23
|
Abstract
Cerebral organoids are an emerging cutting-edge technology to model human brain
development and neurodevelopmental disorders, for which mouse models exhibit significant
limitations. In the human brain, synaptic connections define neural circuits, and synaptic
deficits account for various neurodevelopmental disorders. Thus, harnessing the full power
of cerebral organoids for human brain modeling requires the ability to visualize and
analyze synapses in cerebral organoids. Previously, we devised an optimized method to
generate human cerebral organoids, and showed that optimal organoids express mature-neuron
markers, including synaptic proteins and neurotransmitter receptors and transporters.
Here, we give evidence for synaptogenesis in cerebral organoids, via microscopical
visualization of synapses. We also describe multiple approaches to quantitatively analyze
synapses in cerebral organoids. Collectively, our work provides sufficient evidence for
the possibility of modeling synaptogenesis and synaptic disorders in cerebral organoids,
and may help advance the use of cerebral organoids in molecular neuroscience and studies
of neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Sadek
- Department of Pharmaceutical Biotechnology, University of Illinois College of Pharmacy, Chicago, IL, USA.,Department of Research and Development, Akorn Pharmaceuticals, Vernon Hills, IL, USA
| |
Collapse
|
24
|
Felix RA, Chavez VA, Novicio DM, Morley BJ, Portfors CV. Nicotinic acetylcholine receptor subunit α 7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol 2019; 122:451-465. [PMID: 31116647 DOI: 10.1152/jn.00170.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CHRNA7 gene that encodes the α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR) has been associated with some autism spectrum disorders and other neurodevelopmental conditions characterized, in part, by auditory and language impairment. These conditions may include auditory processing disorders that represent impaired timing of neural activity, often accompanied by problems understanding speech. Here, we measure timing properties of sound-evoked activity via the auditory brainstem response (ABR) of α7-nAChR knockout mice of both sexes and wild-type colony controls. We find a significant timing delay in evoked ABR signals that represents midbrain activity in knockouts. We also examine spike-timing properties of neurons in the inferior colliculus, a midbrain nucleus that exhibits high levels of α7-nAChR during development. We find delays of evoked responses along with degraded spiking precision in knockout animals. We find similar timing deficits in responses of neurons in the superior paraolivary nucleus and ventral nucleus of the lateral lemniscus, which are brainstem nuclei thought to shape temporal precision in the midbrain. In addition, we find that other measures of temporal acuity including forward masking and gap detection are impaired for knockout animals. We conclude that altered temporal processing at the level of the brainstem in α7-nAChR-deficient mice may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. Our findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders and we identify potential neural targets for intervention.NEW & NOTEWORTHY Disrupted signaling via the α7-nicotinic acetylcholine receptor (α7-nAChR) is associated with neurodevelopmental disorders that include impaired auditory processing. The underlying causes of dysfunction are not known but a common feature is abnormal timing of neural activity. We examined temporal processing of α7-nAChR knockout mice and wild-type controls. We found degraded spike timing of neurons in knockout animals, which manifests at the level of the auditory brainstem and midbrain.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Vicente A Chavez
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Dyana M Novicio
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | | | - Christine V Portfors
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| |
Collapse
|
25
|
Neuronal serine racemase associates with Disrupted-In-Schizophrenia-1 and DISC1 agglomerates: Implications for schizophrenia. Neurosci Lett 2018; 692:107-114. [PMID: 30391323 DOI: 10.1016/j.neulet.2018.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
D-Serine, an endogenous coagonist of N-methyl-d-aspartate receptors (NMDARs) at the glycine binding site, is synthesized by serine racemase (SR) through conversion of l-Serine. Dysregulation of SR/D-Serine and Disrupted-In-Schizophrenia-1 (DISC1) contributes to the pathogenesis of schizophrenia at converging pathways, as perturbation of SR-DISC1 binding in astrocytes elicits schizophrenia-like behaviors in mice. However, an association of neuronal SR with DISC1 remains elusive. Here we report that SR associates with DISC1 and its agglomerates in cortical neurons, which can be modulated by NMDAR activity. Endogenous SR colocalizes with DISC1 large agglomerates in the soma and with smaller puncta in the nucleus and dendrites of cortical neurons. Co-immunoprecipitation assays demonstrate SR interaction with DISC1 in cortical neuronal lysates, suggesting the physiological presence of functional SR-DISC1 complexes in neurons. Moreover, exogenous d-Serine application significantly increases the interaction of SR with DISC1, the number of DISC1-SR large agglomerates and the levels of DISC1 agglomerated form along with SR in the triton-insoluble pellet fraction, whereas application of glycine with a glycine transporter inhibitor fails to increase their interactions, abundance of DISC1-SR large agglomerates and levels of DISC1 agglomerated form. This increase by d-Serine application is blocked by 7-chlorokynurenic acid, a specific antagonist at the glycine site of NMDARs, suggesting mediation through NMDARs. Our findings thus demonstrate neuronal SR association with DISC1 and its agglomerates, which can be modulated by d-Serine, thereby validating a novel neuronal SR-DISC1 complex responsive to NMDAR activation and providing a molecular mechanism by which pathways implicated in schizophrenia converge.
Collapse
|
26
|
Colville AM, Iancu OD, Lockwood DR, Darakjian P, McWeeney SK, Searles R, Zheng C, Hitzemann R. Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders. Front Genet 2018; 9:300. [PMID: 30210525 PMCID: PMC6120986 DOI: 10.3389/fgene.2018.00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with selective breeding, can be used to detect new pathways and mechanisms associated with ethanol preference and excessive ethanol consumption. We predicted that these pathways would provide new targets for therapeutic manipulation. Previously (Colville et al., 2017), we observed that preference selection strongly affected the accumbens shell (SH) genes associated with synaptic function and in particular genes associated with synaptic tethering. Here we expand our analyses to include substantially larger sample sizes and samples from two additional components of the “addiction circuit,” the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of differential expression (DE), the majority of affected genes are region-specific; only in the CeA did the DE genes show a significant enrichment in GO annotation categories, e.g., neuron part. In all three brain regions the differentially variable genes were significantly enriched in a single network module characterized by genes associated with cell-to-cell signaling. The data point to glutamate plasticity as being a key feature of selection for ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93 appears to have a key role. It was also observed that the expression of the clustered protocadherins was strongly associated with preference selection.
Collapse
Affiliation(s)
- Alexandre M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Shannon K McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR, United States
| | - Christina Zheng
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
27
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
28
|
Réus GZ, Becker IRT, Scaini G, Petronilho F, Oses JP, Kaddurah-Daouk R, Ceretta LB, Zugno AI, Dal-Pizzol F, Quevedo J, Barichello T. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:55-63. [PMID: 29030243 DOI: 10.1016/j.pnpbp.2017.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Evidence has shown that the kynurenine pathway (KP) plays a role in the onset of oxidative stress and also in the pathophysiology of schizophrenia. The aim of this study was to use a pharmacological animal model of schizophrenia induced by ketamine to investigate if KP inhibitors could protect the brains of Wistar rats against oxidative stress and behavioral changes. Ketamine, injected at the dose of 25mg/kg, increased spontaneous locomotor activity. However, the inhibitors of tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) were able to reverse these changes. In addition, the IDO inhibitor prevented lipid peroxidation, and decreased the levels of protein carbonyl in the prefrontal cortex (PFC), hippocampus and striatum. It also increased the activity of superoxide dismutase (SOD) in the hippocampus, as well as increasing the levels of catalase activity in the PFC and hippocampus. The TDO inhibitor prevented lipid damage in the striatum and reduced the levels of protein carbonyl in the hippocampus and striatum. Also, the TDO inhibitor increased the levels of SOD activity in the striatum and CAT activity in the hippocampus of ketamine-induced pro-oxidant effects. Lipid damage was not reversed by the KMO inhibitor. The KMO inhibitor increased the levels of SOD activity in the hippocampus, and reduced the levels of protein carbonyl while elevating the levels of CAT activity in the striatum of rats that had been injected with ketamine. Our findings revealed that the KP pathway could be a potential mechanism by which a schizophrenia animal model induced by ketamine could cause interference by producing behavioral disturbance and inducing oxidative stress in the brain, suggesting that the inhibition of the KP pathway could be a potential target in treating schizophrenia.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Indianara R T Becker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA; Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luciane B Ceretta
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Alexandra I Zugno
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
29
|
Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L, Woodbury-Smith M, Ho KS, Harward E, Murtaza N, Dave B, Pellecchia G, D’Abate L, Nalpathamkalam T, Lamoureux S, Wei J, Speevak M, Stavropoulos J, Hope KJ, Doble BW, Nielsen J, Wassman ER, Scherer SW, Singh KK. OTUD7A Regulates Neurodevelopmental Phenotypes in the 15q13.3 Microdeletion Syndrome. Am J Hum Genet 2018; 102:278-295. [PMID: 29395074 PMCID: PMC5985537 DOI: 10.1016/j.ajhg.2018.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.
Collapse
|
30
|
Mei YY, Wu DC, Zhou N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front Psychiatry 2018; 9:544. [PMID: 30459650 PMCID: PMC6232167 DOI: 10.3389/fpsyt.2018.00544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
According to the glutamate hypothesis of schizophrenia, the abnormality of glutamate transmission induced by hypofunction of NMDA receptors (NMDARs) is causally associated with the positive and negative symptoms of schizophrenia. However, the underlying mechanisms responsible for the changes in glutamate transmission in schizophrenia are not fully understood. Astrocytes, the major regulatory glia in the brain, modulate not only glutamate metabolism but also glutamate transmission. Here we review the recent progress in understanding the role of astrocytes in schizophrenia. We focus on the astrocytic mechanisms of (i) glutamate synthesis via the glutamate-glutamine cycle, (ii) glutamate clearance by excitatory amino acid transporters (EAATs), (iii) D-serine release to activate NMDARs, and (iv) glutamatergic target engagement biomarkers. Abnormality in these processes is highly correlated with schizophrenia phenotypes. These findings will shed light upon further investigation of pathogenesis as well as improvement of biomarkers and therapies for schizophrenia.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Dong Chuan Wu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ning Zhou
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Lin H, Magrane J, Clark EM, Halawani SM, Warren N, Rattelle A, Lynch DR. Early VGLUT1-specific parallel fiber synaptic deficits and dysregulated cerebellar circuit in the KIKO mouse model of Friedreich ataxia. Dis Model Mech 2017; 10:1529-1538. [PMID: 29259026 PMCID: PMC5769605 DOI: 10.1242/dmm.030049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model.
Collapse
Affiliation(s)
- Hong Lin
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jordi Magrane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisia M Clark
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah M Halawani
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Warren
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amy Rattelle
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Zhou X, Zong Y, Zhang R, Zhang X, Zhang S, Wu J, Sun X. Differential Modulation of GABA A and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma. Front Mol Neurosci 2017; 10:422. [PMID: 29326549 PMCID: PMC5741651 DOI: 10.3389/fnmol.2017.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023] Open
Abstract
Presynaptic modulation of γ-aminobutyric acid (GABA) release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR) agonist promotes retinal ganglion cell (RGC) survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA) receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR) by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA). The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs) were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP) elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.
Collapse
Affiliation(s)
- Xujiao Zhou
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Yuan Zong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuejin Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Erhardt S, Pocivavsek A, Repici M, Liu XC, Imbeault S, Maddison DC, Thomas MAR, Smalley JL, Larsson MK, Muchowski PJ, Giorgini F, Schwarcz R. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders. Biol Psychiatry 2017; 82:756-765. [PMID: 28187857 PMCID: PMC5812460 DOI: 10.1016/j.biopsych.2016.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. METHODS In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo-/-) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. RESULTS Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo-/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo-/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo-/- mice showed potentiated horizontal activity in the open field paradigm. CONCLUSIONS Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sophie Erhardt
- Dept of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Pocivavsek
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mariaelena Repici
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Xi-Cong Liu
- Dept of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Imbeault
- Dept of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Maddison
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Marian AR Thomas
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua L Smalley
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Markus K Larsson
- Dept of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
34
|
Lin H, Magrane J, Rattelle A, Stepanova A, Galkin A, Clark EM, Dong YN, Halawani SM, Lynch DR. Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis Model Mech 2017; 10:1343-1352. [PMID: 29125827 PMCID: PMC5719255 DOI: 10.1242/dmm.030502] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.
Collapse
Affiliation(s)
- Hong Lin
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jordi Magrane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amy Rattelle
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna Stepanova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisia M Clark
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Na Dong
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah M Halawani
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Fabbri C, Serretti A. Role of 108 schizophrenia-associated loci in modulating psychopathological dimensions in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2017; 174:757-764. [PMID: 28786528 DOI: 10.1002/ajmg.b.32577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
The Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC) identified 108 loci associated with schizophrenia, but their role in modulating specific psychopathological dimensions of the disease is unknown. This study investigated which symptom dimensions may be affected by these loci in schizophrenia, and bipolar disorder. Positive, negative and depressive symptoms, suicidal ideation, cognition, violent behaviors, quality of life, and early onset were investigated in schizophrenia and bipolar disorder using the clinical antipsychotic trials of intervention effectiveness (CATIE) and systematic treatment enhancement program for bipolar disorder (STEP-BD) studies. Individual loci were investigated, then genes within 50 Kbp from polymorphisms with p < 0.10 were included in an enrichment analysis (Cytoscape GeneMania plugin) and used to estimate polygenic risk scores (PRS). Covariates were center, age, gender, ancestry-informative population, principal components, and for cognition, also years of education were considered. Eighty-nine polymorphisms were available, 479 and 810 white subjects were included from CATIE and STEP-BD, respectively. rs75059851 (IGSF9B gene) was associated with negative symptoms in CATIE (p = 0.00048). Genes within 50 Kbp from variants contributing to negative symptoms and suicide were enriched with GO terms involved in acetylcholine neurotransmission, cognition showed enrichment with GO terms involved in vitamin B6 and fucose metabolism while early onset with GO terms related to extracellular matrix structure. PRS showed nominal associations with violent behaviors and depressive symptoms. This study provided preliminary evidence that a schizophrenia-associated variant (rs75059851) may modulate negative symptoms. Multi-locus models may provide interesting insights about the biological mechanisms that mediate psychopathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Corsi-Zuelli FMDG, Brognara F, Quirino GFDS, Hiroki CH, Fais RS, Del-Ben CM, Ulloa L, Salgado HC, Kanashiro A, Loureiro CM. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:618. [PMID: 28620379 PMCID: PMC5449450 DOI: 10.3389/fimmu.2017.00618] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia.
Collapse
Affiliation(s)
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Hiroji Hiroki
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Sobrano Fais
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Camila Marcelino Loureiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017; 94:840-854.e7. [PMID: 28479102 PMCID: PMC5484087 DOI: 10.1016/j.neuron.2017.04.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active) phase that dissipates to sub-saturating levels during the light (sleep) phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically tested α7nAChR agonist successfully enhances NMDAR activation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas Papouin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jaclyn M Dunphy
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
38
|
Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100987. [PMID: 27782041 PMCID: PMC5086726 DOI: 10.3390/ijerph13100987] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023]
Abstract
Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children's health. Here we examined the effects of longterm (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold) between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.
Collapse
|
39
|
Pershing ML, Phenis D, Valentini V, Pocivavsek A, Lindquist DH, Schwarcz R, Bruno JP. Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology (Berl) 2016; 233:3725-3735. [PMID: 27527585 PMCID: PMC5808405 DOI: 10.1007/s00213-016-4404-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Levels of kynurenic acid (KYNA), an endogenous negative modulator of alpha 7 nicotinic acetylcholine receptors (α7nAChRs) and antagonist at glutamatergic N-methyl-D-aspartate receptors (NMDARs), are elevated in the brain of patients with schizophrenia (SZ). In rats, dietary exposure to KYNA's immediate precursor kynurenine during the last week of gestation produces neurochemical and cognitive deficits in adulthood that resemble those seen in patients with SZ. OBJECTIVES The present experiments examined whether prenatal kynurenine exposure results in age-dependent changes in the kynurenine pathway (KP), expression of selected receptors, and cognitive function. METHODS Pregnant dams were fed unadulterated mash (progeny = ECON) or mash containing kynurenine (100 mg/day; progeny = EKYN) from embryonic day (ED) 15 to 22. Male offspring were assessed as juveniles, i.e., prior to puberty (postnatal day [PD] 32), or as adults (PD70) for brain KYNA levels, α7nAChR and NMDAR gene expression, and performance on a trace fear conditioning (TFC) task. RESULTS KYNA levels were comparable between juvenile ECON and EKYN rats, whereas EKYN adults exhibited a ~3-fold increase in brain KYNA relative to ECONs. NR2A expression was persistently reduced (30-40 %) in EKYN rats at both ages. Compared to ECON adults, there was a 50 % reduction in NR1, and a trend toward decreased α7nAChR expression, in adult EKYN rats. Surprisingly, juvenile EKYN rats performed significantly better in the TFC paradigm than controls, whereas adult EKYN animals showed the predicted deficits. CONCLUSIONS Collectively, our results provide evidence that KP changes in the fetal brain alter neuronal development and cause age-dependent effects on neurochemistry and cognitive performance.
Collapse
Affiliation(s)
| | - David Phenis
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derick H. Lindquist
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John P. Bruno
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016; 73:2511-30. [PMID: 26979166 PMCID: PMC4894934 DOI: 10.1007/s00018-016-2175-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland.
- , Gänsbühlgartenweg 7, 4132, Muttenz, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland
| |
Collapse
|
41
|
Ju P, Cui D. The involvement of N-methyl-D-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia. Acta Biochim Biophys Sin (Shanghai) 2016; 48:209-19. [PMID: 26837414 DOI: 10.1093/abbs/gmv135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world population. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. The NR1 subunit is often considered indispensable for functional NMDAR assemblies, abnormal modulation of which is found in patients with schizophrenia. In this review, we discuss how disrupted function of NR1 subunits in NMDAR leads to the progression and development of symptoms of schizophrenia-like behaviors in a variety of genetically modified mouse models. We also discuss some of the susceptible genes and shared signaling pathways among the schizophrenia, and how their mutations lead to NR1 subunits hypofunction. Finally, we suggest that the subunit-selective modulators of NR1 subunits in NMDA receptors may be promising tools for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| |
Collapse
|
42
|
Lin H, Jacobi AA, Anderson SA, Lynch DR. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Front Cell Neurosci 2016; 10:34. [PMID: 26941605 PMCID: PMC4766304 DOI: 10.3389/fncel.2016.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/31/2016] [Indexed: 12/20/2022] Open
Abstract
D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR) are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1), in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) and 7-chlorokynurenic acid (7-CK), a specific antagonist at the glycine site of NMDARs, demonstrating that D-serine effects are mediated through postsynaptic NMDARs. Conversely, exogenous application of glycine has no such effects, suggesting D-serine, rather than glycine, modulates postsynaptic events. Taken together, our findings demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development, implicating D-serine/SR as regulators of cortical synaptic and circuit development.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics and Neurology, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Ariel A Jacobi
- Department of Pediatrics and Neurology, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania School of Arts and SciencesPhiladelphia, PA, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
43
|
The α7 nicotinic acetylcholine receptor: A mediator of pathogenesis and therapeutic target in autism spectrum disorders and Down syndrome. Biochem Pharmacol 2015; 97:363-377. [DOI: 10.1016/j.bcp.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
|
44
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
45
|
Wallace TL, Bertrand D. Neuronal α7 Nicotinic Receptors as a Target for the Treatment of Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:79-111. [PMID: 26472526 DOI: 10.1016/bs.irn.2015.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Schizophrenia is a lifelong disease, the burden of which is often underestimated. Characterized by positive (e.g., hallucinations) and negative (e.g., avolition, amotivation) symptoms, schizophrenia is also accompanied with profound impairments in cognitive function that progress throughout the development of the disease. Although treatment with antipsychotic medications can effectively dampen some of the positive symptoms, these medications largely fail to reverse cognitive deficits or to mitigate negative symptoms. With a worldwide prevalence of approximately 1%, schizophrenia remains a large unmet medical need that stands to benefit greatly from (1) continued research to better understand the biological underpinnings of the disease and (2) the targeted development of novel therapeutics to improve the lives of those affected individuals. Improvements in our understanding of the neuronal networks associated with schizophrenia as well as progress in identifying genetic risk factors and environmental conditions that may predispose individuals to developing the disease are advancing new strategies to study and treat it. Herein, we review the evidence that supports the role of α7 nicotinic acetylcholine receptors in the central nervous system and why these receptors constitute a promising target to treat some of the prominent symptoms of schizophrenia.
Collapse
|
46
|
Featherstone RE, Siegel SJ. The Role of Nicotine in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:23-78. [PMID: 26472525 DOI: 10.1016/bs.irn.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with by severe disruptions in thought, cognition, emotion, and behavior. Patients show a marked increase in rates of smoking and nicotine dependence relative to nonaffected individuals, a finding commonly ascribed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Indeed, many studies have demonstrated improvement in patients following the administration of nicotine. Such findings have led to an increased emphasis on the development of therapeutic agents to target the nicotinic system as well as increasing the impetus to understand the genetic basis for nicotinic dysfunction in schizophrenia. The goal of this review article is to provide a critical summary of evidence for the role of the nicotinic system in schizophrenia. The first part will review the role of nicotine in normalization of primary dysfunctions and endophenotypical changes found in schizophrenia. The second part will provide a summary of genetic evidence linking polymorphisms in nicotinic receptor genes to smoking and schizophrenia. The third part will summarize attempts to treat schizophrenia using agents specifically targeting nicotinic and nicotinic receptor subtypes. Although currently available antipsychotic treatments are generally able to manage some aspects of schizophrenia (e.g., positive symptoms) they fail to address several other critically effected aspects of the disease. As such, the search for novel mechanisms to treat this disease is necessary.
Collapse
Affiliation(s)
- Robert E Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Steven J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 2015; 172:17-31. [PMID: 25553496 PMCID: PMC4501403 DOI: 10.1176/appi.ajp.2014.13121691] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensory processing deficits, first investigated by Kraepelin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being recharacterized in the context of our current understanding of the molecular and neurobiological brain mechanisms involved. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia, such as hallucinations. The prepulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slight deviations in patterns of sensory stimulation eliciting the cortical mismatch negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and are in turn affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of schizophrenia and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients' sensory perception of the surrounding world, even during treatment sessions, may differ considerably from others' perceptions. A person's ability to understand and interact effectively with the surrounding world ultimately depends on an underlying sensory experience of it.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/Columbia University Medical Center, New York, NY 10032, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F546, Aurora, CO, 80045, USA
| |
Collapse
|
48
|
Molas S, Gener T, Güell J, Martín M, Ballesteros-Yáñez I, Sanchez-Vives MV, Dierssen M. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathol Commun 2014; 2:147. [PMID: 25384568 PMCID: PMC4236452 DOI: 10.1186/s40478-014-0147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.
Collapse
|
49
|
Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol Cell Neurosci 2014; 61:163-75. [PMID: 24983521 DOI: 10.1016/j.mcn.2014.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA7 (α7 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, glutamic acid decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fu-Chun Hsu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Bailey H Baumann
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Douglas A Coulter
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Stewart A Anderson
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Child Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David R Lynch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
50
|
Martineau M, Parpura V, Mothet JP. Cell-type specific mechanisms of D-serine uptake and release in the brain. Front Synaptic Neurosci 2014; 6:12. [PMID: 24910611 PMCID: PMC4039169 DOI: 10.3389/fnsyn.2014.00012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e., Alzheimer disease, epilepsy, stroke) and psychiatric (i.e., schizophrenia) disorders, and are associated with addictive behavior (i.e., cocaine addiction). Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.
Collapse
Affiliation(s)
- Magalie Martineau
- Department of Cellular Biophysics, Institute for Medical Physics and Biophysics, University of Muenster Muenster, Germany
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|