1
|
Rogova A, Kalyanova A, Rogova Y, Fedina M, Siniugina A, Ishmukhametov A, Karganova G. An Integrative Approach to the Study of Cognitive Abilities in a Non-Human Primate Model in a Virology Laboratory Environment. Brain Sci 2024; 14:635. [PMID: 39061377 PMCID: PMC11274874 DOI: 10.3390/brainsci14070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Non-human primates, due to their similarities in immune response to humans, are the preferred model for studying infectious processes and any associated cognitive impairments. Behavioral tests are indispensable for investigating pathogenesis in neuroinfections, especially those that do not manifest with noticeable clinical symptoms, as well as in the transition to a chronic form of the disease. Modeling viral infection requires specialized experimental conditions. Our work describes techniques for investigating mnemonic functions, tiredness, attentional focus, quick-wittedness, and basic behavioral responses in primates under the assumed conditions for infections with viruses that do not have an airborne route of transmission. It also outlines approaches to the training and selection of primates for virological research, as well as analyzing gender differences in learning abilities, the impact of housing conditions on the results, and the correlation between training success and behavioral test scores. These methods will allow a more detailed study of non-human primates as a model for researching cognitive and behavioral impairments under infectious and immune stress, as well as the design of less energy-intensive experiments for evaluating the efficacy and safety of therapeutic and prophylactic strategies at early stages of infection.
Collapse
Affiliation(s)
- Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
| | - Maria Fedina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
| | - Aydar Ishmukhametov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia; (A.R.); (A.K.); (Y.R.); (M.F.); (A.S.); (A.I.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
2
|
Cornelssen C, Payne A, Parker DL, Alexander M, Merrill R, Senthilkumar S, Christensen J, Wilcox KS, Odéen H, Rolston JD. Development of an MR-Guided Focused Ultrasound (MRgFUS) Lesioning Approach for the Fornix in the Rat Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:920-926. [PMID: 38521695 DOI: 10.1016/j.ultrasmedbio.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. METHODS The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n = 7 lesions) was compared to a craniectomy approach (n = 22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using histologic methods from a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. RESULTS Comparing a motorized adjustment system (∼1 mm precision, n = 17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n = 14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. CONCLUSIONS The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA.
| | - Allison Payne
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew Alexander
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Robb Merrill
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Sharayu Senthilkumar
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jacob Christensen
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen S Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John D Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zierath DK, Davidson S, Manoukian J, Knox KM, White HS, Meeker S, Ericsson A, Barker-Haliski M. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler's virus infection-induced acute seizures. Epilepsia 2024; 65:1777-1790. [PMID: 38491947 DOI: 10.1111/epi.17946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can induce acquired epileptogenesis. Diet alters acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet formulation and sterilization on acute seizure presentation, gut microbiome composition, and epilepsy-related chronic behavioral comorbidities. METHODS Baseline fecal samples were collected from male C57BL/6J mice (4- to 5-weeks-old; Jackson Labs) upon facility arrival. Mice were randomized to either autoclaved (AC) or irradiated diet (IR) (Prolab RMH 3000) or IR (Picolab 5053). Three days later, mice underwent intracerebral TMEV or phosphate-buffered saline (PBS) injection. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. RESULTS TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28 of 57 IR Picolab 5053 (49.1%), 30 of 41 IR Prolab RMH 3000 (73.2%), and 47 of 77 AC Prolab RMH 3000 (61%) mice displayed seizures. The number of observed seizures differed significantly by diet: IR Picolab 5053 diet-fed mice had 2.2 ± 2.8 seizures (mean ± standard deviation), IR Prolab RMH 3000 diet-fed mice had 3.5 ± 2.9 seizures, and AC Prolab RMH 3000 diet-fed mice had 4.4 ± 3.8 seizures during the 7-day monitoring period. Gut microbiome composition differed significantly in TMEV-infected mice fed the AC Prolab RMH 3000 diet, with measured differences in gram-positive bacteria. These mice also displayed worsened long-term working memory deficits. SIGNIFICANCE Diet-induced differences in intestinal dysbiosis in the TMEV model are associated with marked changes in acute seizure presentation, symptomatic recovery, and onset of chronic behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying impact of dietary manipulation on intestinal bacterial species after TMEV-induced acute seizures.
Collapse
Affiliation(s)
- Dannielle K Zierath
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Stephanie Davidson
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Jonathan Manoukian
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Kevin M Knox
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Stacey Meeker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Wallis GJ, Bell LA, Wagner JN, Buxton L, Balachandar L, Wilcox KS. Reactive microglia fail to respond to environmental damage signals in a viral-induced mouse model of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583768. [PMID: 38558969 PMCID: PMC10979929 DOI: 10.1101/2024.03.06.583768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.
Collapse
Affiliation(s)
- Glenna J Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Laura A Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| | - John N Wagner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lauren Buxton
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lakshmini Balachandar
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| |
Collapse
|
6
|
Zierath DK, Davidson S, Manoukian J, White HS, Meeker S, Ericsson A, Barker-Haliski M. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler's virus infection-induced acute seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562694. [PMID: 37905123 PMCID: PMC10614857 DOI: 10.1101/2023.10.17.562694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective Central nervous system infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can model acquired epileptogenesis. Diet alters the acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet sterilization in a specific pathogen-free vivarium on acute seizure presentation, the composition of the gut microbiome, and chronic behavioral comorbidities of epilepsy. Methods Baseline fecal samples were collected from male C57BL/6J mice (4-5 weeks-old; Jackson Labs) upon arrival. Mice were randomized to either autoclaved (AC) or irradiated (IR) diet (Prolab RMH 3000 - UU diets) or IR (Picolab 5053 - UW IR diet). Mice then underwent intracerebral TMEV or PBS injection three days later. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. Results TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28/57 UW IR (49.1%), 30/41 UU IR (73.2%), and 47/77 UU AC (61%) mice displayed seizures. The number of observed seizures significantly differed: UW IR mice had 2.2±2.8 seizures (mean±standard deviation), UU IR mice had 3.5±2.9 seizures, and UU AC mice had 4.4±3.8 seizures during the 7-day monitoring period. The composition of the gut microbiome significantly differed in TMEV-infected mice fed the UU AC diet, with most measured differences occurring in Gram-positive bacteria. TMEV-infected mice fed the UU AC diet displayed worsened chronic working memory. Significance Intestinal dysbiosis evokes stark differences in acute seizure presentation in the TMEV model and vastly influences the trajectory of post-TMEV infection-induced behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying contribution of intestinal bacterial species after TMEV-induced acute seizures.
Collapse
Affiliation(s)
- Dannielle K. Zierath
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stephanie Davidson
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Jonathan Manoukian
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stacey Meeker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
7
|
Cornelssen C, Payne A, Parker D, Alexander M, Merrill R, Senthilkumar S, Christensen J, Wilcox KS, Odéen H, Rolston JD. Development of an MR-guided focused ultrasound (MRgFUS) lesioning approach for small and deep structures in the rat brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561930. [PMID: 37905085 PMCID: PMC10614739 DOI: 10.1101/2023.10.11.561930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapy to lesion brain tissue, used clinically in patients and preclinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. Methods The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n=7 lesions) was compared to a craniectomy approach (n=22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. Results Comparing a motorized adjustment system (∼1 mm precision, n=17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n=14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.
Collapse
|
8
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Barker-Haliski M, Nishi T, White HS. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor, modifies acute seizure burden and chronic epilepsy-related behavioral deficits following Theiler's virus infection in mice. Neuropharmacology 2023; 222:109310. [PMID: 36341806 DOI: 10.1016/j.neuropharm.2022.109310] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Temporal lobe epilepsy is the most common form of acquired epilepsy and can arise due to multiple inciting events, including central nervous system (CNS) infection. CNS infection with the Theiler's murine encephalomyelitis virus (TMEV) in male C57Bl/6J mice leads to acute, drug-resistant handling-induced seizures. Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that converts cholesterol into 24S-hydroxycholesterol; the primary mechanism of cholesterol catabolism in the brain. The novel CH24H inhibitor, soticlestat (SOT; or TAK-935), demonstrates the potential to restore excitatory/inhibitory balance in multiple preclinical models of hyperexcitability. This study thus sought to characterize the anticonvulsant potential of SOT in the TMEV model. Treatment with SOT (30 mg/kg, p.o.; n = 30) 0-7 days post-infection (DPI) reduced overall seizure burden and severity. SOT administration significantly delayed onset of infection-induced Racine stage 5 seizures, from 8.6 ± 0.6 (VEH-treated) to 10.8 ± 0.8 (SOT-treated) observation sessions. Infected mice were then allowed 36 days treatment-free recovery before assessing impact of earlier drug administration on epilepsy-related cognitive and behavioral comorbidities, including a non-habituated open field (OF) task. Total OF distance traveled was significantly less in SOT-treated mice compared to VEH-treated mice, suggesting attenuated TMEV-induced spatial memory deficits, or reduced chronic hyperexcitability. Mice with history of SOT treatment also spent significantly more time and traveled farther in the OF center, indicative of reduced epilepsy-induced anxiety-like behavior. These studies suggest that SOT is a mechanistically novel agent for symptomatic seizure control. Moreover, acute SOT administration during an epileptogenic insult may attenuate the resulting long-term behavioral comorbidities of epilepsy.
Collapse
Affiliation(s)
| | - Toshiya Nishi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Japan; Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA.
| | - H Steve White
- University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
10
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
11
|
Patel DC, Thompson EG, Sontheimer H. Brain-Derived Neurotrophic Factor Inhibits the Function of Cation-Chloride Cotransporter in a Mouse Model of Viral Infection-Induced Epilepsy. Front Cell Dev Biol 2022; 10:961292. [PMID: 35874836 PMCID: PMC9304572 DOI: 10.3389/fcell.2022.961292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl− concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler’s murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B–phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.
Collapse
Affiliation(s)
- Dipan C. Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Emily G. Thompson
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Harald Sontheimer,
| |
Collapse
|
12
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
An aqueous extract of Khaya senegalensis (Desv.) A. Juss. (Meliaceae) prevents seizures and reduces anxiety in kainate-treated rats: modulation of GABA neurotransmission, oxidative stress, and neuronal loss in the hippocampus. Heliyon 2022; 8:e09549. [PMID: 35663738 PMCID: PMC9160348 DOI: 10.1016/j.heliyon.2022.e09549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Ethnopharmacological relevance Temporal lobe epilepsy is the most common form of drug-resistant epilepsy. Therefore, medicinal plants provide an alternative source for the discovery of new antiepileptic drugs. Aim of the study This study was aimed at investigating the antiepileptic- and anxiolytic-like effects of an aqueous extract of Khaya senegalensis (K. senegalensis) in kainate-treated rats. Methods Seventy-two rats received a single dose of kainate (12 mg/kg) intraperitoneally. Those that exhibited two hours of status epilepticus were selected and monitored for the first spontaneous seizure. Then, animals that developed seizures were divided into 6 groups of 8 rats each and treated twice daily for 14 days as follows: negative control group received per os (p.o.) distilled water (10 ml/kg); two positive control groups received either sodium valproate (300 mg/kg, p.o.) or phenobarbital (20 mg/kg, p.o.); and three test groups received different doses of the extract (50, 100, and 200 mg/kg, p.o.). In addition, a group of 8 normal rats (normal control group) received distilled water (10 ml/kg, p.o.). During the treatment period, the animals were video-monitored 12 h/day for behavioral seizures. At the end of the treatment period, animals were subjected to elevated plus-maze and open field tests. Thereafter, rats were euthanized for the analysis of γ-aminobutyric acid (GABA) concentration, oxidative stress status, and neuronal loss in the hippocampus. Results The aqueous extract of K. senegalensis significantly reduced spontaneous recurrent seizures (generalized tonic-clonic seizures) and anxiety-like behavior compared to the negative control group. These effects were more marked than those of sodium valproate or phenobarbital. Furthermore, the extract significantly increased GABA concentration, alleviated oxidative stress, and mitigated neuronal loss in the dentate gyrus of the hippocampus. Conclusion These findings suggest that the aqueous extract of K. senegalensis possesses antiepileptic- and anxiolytic-like effects. These effects were greater than those of sodium valproate or phenobarbital, standard antiepileptic drugs. Furthermore, these effects are accompanied by neuromodulatory and antioxidant activities that may be related to their behavioral effects. These data justify further studies to identify the bioactive molecules present in the extract for possible future therapeutic development and to unravel their mechanisms of action.
Collapse
|
14
|
C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep 2021; 11:23819. [PMID: 34893671 PMCID: PMC8664856 DOI: 10.1038/s41598-021-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR−/− mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.
Collapse
|
15
|
Metcalf CS, Vanegas F, Underwood T, Johnson K, West PJ, Smith MD, Wilcox KS. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler's murine encephalomyelitis virus model of epilepsy. Epilepsia Open 2021; 7:46-58. [PMID: 34668659 PMCID: PMC8886069 DOI: 10.1002/epi4.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well. METHODS Male C57Bl/6J mice were inoculated with TMEV (day 0) followed by daily administrations of test compounds (day 3-7) and subsequent handling sessions (day 3-7). Doses of ASMs, comprising several mechanistic classes, were selected based on previously published data demonstrating the effect of these compounds in reducing seizures in the 6 Hz model of pharmacoresistant seizures. Doses of anti-inflammatory compounds, comprising several mechanistic classes, were selected based on published evidence of reduction of inflammation or inflammation-related endpoints. RESULTS Several prototype ASMs reduced acute seizures following TMEV infection: lacosamide, phenytoin, ezogabine, phenobarbital, tiagabine, gabapentin, levetiracetam, topiramate, and sodium valproate. Of these, phenobarbital and sodium valproate had the greatest effect (>95% seizure burden reduction). Prototype anti-inflammatory drugs celecoxib, dexamethasone, and prednisone also moderately reduced seizure burden. SIGNIFICANCE The TMEV model is utilized by the Epilepsy Therapy Screening Program (ETSP) as a tool for evaluation of novel compounds. Compounds reducing seizures in the TMEV comprise distinct mechanistic classes, some with mechanisms of action that extend beyond traditional ASMs.
Collapse
Affiliation(s)
- Cameron S Metcalf
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Fabiola Vanegas
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Tristan Underwood
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Kristina Johnson
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Peter J West
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Misty D Smith
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.,School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Karen S Wilcox
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Pavasutthipaisit S, Stoff M, Ebbecke T, Ciurkiewicz M, Mayer-Lambertz S, Störk T, Pavelko KD, Lepenies B, Beineke A. CARD9 Deficiency Increases Hippocampal Injury Following Acute Neurotropic Picornavirus Infection but Does Not Affect Pathogen Elimination. Int J Mol Sci 2021; 22:ijms22136982. [PMID: 34209576 PMCID: PMC8268812 DOI: 10.3390/ijms22136982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. Caspase recruitment domain containing family member 9 (CARD9) controls protective immunity in a variety of infectious disorders. To investigate the effect of CARD9 in neurotropic virus infection, CARD9−/− and corresponding C57BL/6 wild-type control mice were infected with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue was analyzed by histology, immunohistochemistry and molecular analyses, and spleens by flow cytometry. To determine the impact of CARD9 deficiency on T cell responses in vitro, antigen presentation assays were utilized. Genetic ablation of CARD9 enhanced early pro-inflammatory cytokine responses and accelerated infiltration of T and B cells in the brain, together with a transient increase in TMEV-infected cells in the hippocampus. CARD9−/− mice showed an increased loss of neuronal nuclear protein+ mature neurons and doublecortin+ neuronal precursor cells and an increase in β-amyloid precursor protein+ damaged axons in the hippocampus. No effect of CARD9 deficiency was found on the initiation of CD8+ T cell responses by flow cytometry and co-culture experiments using virus-exposed dendritic cells or microglia-enriched glial cell mixtures, respectively. The present study indicates that CARD9 is dispensable for the initiation of early antiviral responses and TMEV elimination but may contribute to the modulation of neuroinflammation, thereby reducing hippocampal injury following neurotropic virus infection.
Collapse
Affiliation(s)
- Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Tim Ebbecke
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Sabine Mayer-Lambertz
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bernd Lepenies
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.P.); (M.S.); (M.C.); (T.S.)
- Center for Systems Neuroscience, 30559 Hannover, Germany; (T.E.); (B.L.)
- Correspondence: ; Tel.: +49-51-195-38640
| |
Collapse
|
18
|
Zhang R, Mu J, Chi J, Jiang W, Chi X. The role of picornavirus infection in epileptogenesis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPicornaviridae are a family of small positive-strand RNA viruses, and transmitted via the respiratory or fecal-oral route. The neurotropic picornaviruses can induce acute or late recurrent seizures following central nervous system infection, by infecting the peripheral nerve, crossing the blood-brain barrier and migrating in the Trojan-horse method. Theiler’s murine encephalomyelitis virus (TMEV), as a member of Picornaviridae family, can cause encephalitis, leading to chronic spontaneous seizures. TMEV-infected C57BL/6 mice have been used as an animal model for exploring the mechanism of epileptogenesis and assessing new antiepileptic drugs. Astrogliosis, neuronal death and microglial recruitment have been detected in the hippocampus following the picornaviruse-induced encephalitis. The macrophages, monocytes, neutrophils, as well as IL-6 and TNF-α released by them, play an important role in the epileptogenesis. In this review, we summarize the clinical characteristics of picornavirus infection, and the immunopathology involved in the TMEV-induced epilepsy.
Collapse
|
19
|
Kavaye Kandeda A, Okomolo Moto FC, Omam Omam JP, Mbomo Ayissi RE, Ojong L, Ngo Bum E. Pergularia daemia alters epileptogenesis and attenuates cognitive impairment in kainate-treated mice: Insight into anti-inflammatory mechanisms. Epilepsy Behav 2021; 115:107707. [PMID: 33429138 DOI: 10.1016/j.yebeh.2020.107707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND About 60% of temporal lobe epilepsies are drug resistant. Thus, medicinal plants are sources of new antiepileptic drugs. Pergularia daemia is used in Cameroon to treat pain, fever, arthritis, infections, and temporal lobe epilepsy. However, there are no scientific reports on the anti-inflammatory activity of P. daemia during epileptogenesis. OBJECTIVE This study aimed at determining the involvement of the anti-inflammatory activity of P. daemia during epileptogenesis in kainate-treated mice. METHODS Status epilepticus was induced in mice with kainate (15 mg/kg; i.p.). Those developing status epilepticus for 2 h were divided and treated once daily, for two weeks, with distilled water (10 ml/kg; p.o.), P. daemia extract (4.9, 12.3, 24.5, and 49 mg/kg; p.o.), and sodium valproate (300 mg/kg; i.p.) or aspirin (20 mg/kg; i.p.). One hour following the last treatment, the susceptibility of mice to seizures was assessed during epileptogenesis with pentylenetetrazole (40 mg/kg; i.p.). Then, mice were subjected to morris water maze, object recognition, and open-field tests. After completion of behavioral analysis, hippocampi and blood were collected for pro-inflammatory markers or histological analysis. RESULTS The extract of P. daemia at all doses significantly reduced the latency and duration of seizures and increased seizure score. P. daemia (24.5 and 49 mg/kg) also prevented SE-induced cognitive impairment. Furthermore, the extract (24.5 and 49 mg/kg) markedly decreased tumor necrosis factor-α, interleukins-1β, and -6 levels in hippocampi or serum. Histological analysis revealed that P. daemia attenuated neuronal loss in CA1 and CA3 areas of the hippocampus. CONCLUSIONS These findings suggest that anti-inflammatory mechanisms are involved in the antiepileptogenic effect of P. daemia extract. This justifies therefore its use to treat epilepsy and inflammation in Cameroon traditional folk medicine.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Fleur Clarisse Okomolo Moto
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Jean Pierre Omam Omam
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Rigobert Espoir Mbomo Ayissi
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Lucie Ojong
- Center of Medical Research, Institute of Medical Research and Medicinal Plant Studies, P.O. Box 6163, Yaoundé, Cameroon.
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 52, Maroua, Cameroon.
| |
Collapse
|
20
|
Wilcox KS, West PJ, Metcalf CS. The current approach of the Epilepsy Therapy Screening Program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology 2020; 166:107811. [PMID: 31790717 PMCID: PMC7054975 DOI: 10.1016/j.neuropharm.2019.107811] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
The Epilepsy Therapy Screening Program (ETSP), formerly known as the Anticonvulsant Screening Program (ASP), has played an important role in the preclinical evaluation of many of the antiseizure drugs (ASDs) that have been approved by the FDA and thus made available for the treatment of seizures. Recent changes to the animal models used at the contract site of the ETSP at the University of Utah have been implemented in an attempt to better model the unmet clinical needs of people with pharmacoresistant epilepsy and thus identify improved therapies. In this review, we describe the changes that have occurred over the last several years in the screening approach used at the contract site and, in particular, detail the pharmacology associated with several of the animal models and assays that are either new to the program or have been recently characterized in more depth. There is optimism that the refined approach used by the ETSP contract site, wherein etiologically relevant models that include those with spontaneous seizures are used, will identify novel, potentially disease modifying therapies for people with pharmacoresistant epilepsy and those at risk for developing epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Karen S Wilcox
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| | - Peter J West
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| | - Cameron S Metcalf
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| |
Collapse
|
21
|
Abstract
Psychiatric and cognitive disturbances are the most common comorbidities of epileptic disorders in children. The successful treatment of these comorbidities faces many challenges including their etiologically heterogonous nature. Translational neurobehavioral research in age-tailored and clinically relevant rodent seizure models offers a controlled setting to investigate emotional and cognitive behavioral disturbances, their causative factors, and potentially novel treatment interventions. In this review, we propose a conceptual framework that provides a nonsubjective approach to rodent emotional behavioral testing with a focus on the clinically relevant outcome of behavioral response adaptability. We also describe the battery of neurobehavioral tests that we tailored to seizure models with prominent amygdalo-hippocampal involvement, including testing panels for anxiety-like, exploratory, and hyperactive behaviors (the open-field and light-dark box tests), depressive-like behaviors (the forced swim test), and visuospatial navigation (Morris water maze). The review also discusses the modifications we introduced to active avoidance testing in order to simultaneously test auditory and hippocampal-dependent emotionally relevant learning and memory. When interpreting the significance and clinical relevance of the behavioral responses obtained from a given testing panel, it is important to avoid a holistic disease-based approach as a specific panel may not necessarily mirror a disease entity. The analysis of measurable behavioral responses has to be performed in the context of outcomes obtained from multiple related and complementary neurobehavioral testing panels. Behavioral testing is also complemented by mechanistic electrophysiological and molecular investigations.
Collapse
|
22
|
Tannich F, Barhoumi K, Rejeb A, Aouichri M, Souilem O. Ketamine, at low dose, decrease behavioural alterations in epileptic diseases induced by pilocarpine in mice. Int J Neurosci 2020; 130:1118-1124. [PMID: 32075467 DOI: 10.1080/00207454.2020.1730363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: The objective of the present study was to evaluate the effect of low-dose of ketamine, in short-term, on behavioral impairment and acute neuronal death in the cerebral cortex during the acute phase in a model of epileptic mouse induced by pilocarpine.Methods:Ketamine was administrated (10 mg/kg) intraperitoneally, 30 min before pilocarpine injection (100 mg/kg) in the first group. The second group received the same dose of ketamine 30 min after pilocarpine injection. The effect of ketamine on behavioral disorders and cerebral neuronal integrity in epileptic mice was evaluated.Results:Clinical observations and behavioural tests relate a reduction in behavioural dysfunctions in mice treated with ketamine. Interestingly, treatment of mice with low dose of ketamine decreased the clinical symptoms (movements of the vibrios, nods of the head, and movements of the whiskers), especially when administered before epilepsy induction. Furthermore, the administration of ketamine limits oedema in the hippocampus, neuronal degeneration and gliosis in the different cortical layers. These results could be explained by NMDA receptors inhibition by ketamine.Conclusion:Therefore, it appears that ketamine is endowed with a potential neuroprotective effect and can reduce the severity of neurodegeneration, especially when administrated before Status Epilepticus (SE) installation.
Collapse
Affiliation(s)
- Fatma Tannich
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, Sidi Thabet, University of Manouba, Tunisia.,Neurophysiology Laboratory and Functional Pathology, Department of Biological Sciences, Sciences Faculty of Tunis, University Campus El-Manar, Tunis, Tunisia
| | - Kamel Barhoumi
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, Sidi Thabet, University of Manouba, Tunisia
| | - Ahmed Rejeb
- Laboratory of Anatomic Pathology, National School of Veterinary Medicine, Sidi Thabet, University of Manouba, Tunisia
| | - Mohamed Aouichri
- Higher Institute of Nursing Sciences, Tunis, University Campus El-Manar, Tunis, Tunisia
| | - Ouajdi Souilem
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
23
|
Patel DC, Wallis G, Fujinami RS, Wilcox KS, Smith MD. Cannabidiol reduces seizures following CNS infection with Theiler's murine encephalomyelitis virus. Epilepsia Open 2019; 4:431-442. [PMID: 31440724 PMCID: PMC6698680 DOI: 10.1002/epi4.12351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE C57BL/6J mice infected with Theiler's murine encephalomyelitis virus (TMEV) develop acute behavioral seizures in the first week of infection and later develop chronic epilepsy. The TMEV model provides a useful platform to test novel antiseizure therapeutics. The present study was designed to test the efficacy of cannabidiol (CBD) in reducing acute seizures induced by viral infection. METHODS C57BL/6J mice were infected intracortically with 2 × 105 plaque-forming units of TMEV. Mice were divided into two treatment groups-1) CBD-treated mice and 2) vehicle-treated mice. Frequency and severity of acute seizures were evaluated by video-monitoring the mice four times daily by the experimenter blinded to the treatment group. RESULTS Cannabidiol (180 mg/kg; 360 mg/kg/day) decreased both the frequency and severity of acute behavioral seizures following TMEV infection, but 150 mg/kg of CBD did not improve overall seizure outcome. The time to peak effect (TPE) of CBD in the 6 Hz 32 mA psychomotor seizure test using C57BL/6J mice was observed at 2 hours post-CBD treatment. Interestingly, CBD (150 mg/kg) significantly reduced frequency and severity of TMEV-induced acute seizures at 2 hours post-CBD treatment. These results suggest that CBD could be effective in decreasing TMEV-induced acute seizures when the seizure test is conducted at the TPE of CBD. SIGNIFICANCE Cannabinoids are increasingly studied for their potential antiseizure effects. Several preclinical and clinical studies provide evidence that CBD could be an effective therapy for intractable epilepsies. The present study corroborates those previous findings and provides an opportunity to investigate pharmacokinetics, pharmacodynamics, and mechanism(s) of antiseizure effects of CBD in the TMEV model, which may help to design future clinical studies more effectively.
Collapse
Affiliation(s)
- Dipan C. Patel
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUtah
| | - Glenna Wallis
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUtah
| | | | - Karen S. Wilcox
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUtah
- Anticonvulsant Drug Development ProgramUniversity of UtahSalt Lake CityUtah
| | - Misty D. Smith
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUtah
- Anticonvulsant Drug Development ProgramUniversity of UtahSalt Lake CityUtah
- School of DentistryUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
24
|
Cognitive and behavioral effects of brief seizures in mice. Epilepsy Behav 2019; 98:249-257. [PMID: 31398689 DOI: 10.1016/j.yebeh.2019.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Comorbidities associated with epilepsy greatly reduce patients' quality of life. Since antiepilepsy drugs show limited success in ameliorating cognitive and behavioral symptoms, there is a need to better understand the mechanisms underlying epilepsy-related cognitive and behavioral impairments. Most prior research addressing this problem has focused on chronic epilepsy, wherein many factors can simultaneously impact cognition and behavior. The purpose of the present study was to develop a testing paradigm using mice that can provide new insight into how short-term biological changes underlying acute seizures impact cognition and behavior. In Experiment 1, naïve C57BL/6J mice were subjected to either three brief, generalized electroconvulsive seizure (ECS) or three sham treatments equally spaced over the course of 30 min. Over the next 2 h, mice were tested in a novel object recognition paradigm. Follow-up studies examined locomotor activity immediately before and after (Experiment 2), immediately after (Experiment 3), and 45 min after (Experiment 4) a set of three ECS or sham treatments. Whereas results demonstrated that there was no statistically significant difference in recognition memory acquisition between ECS and sham-treated mice, measures of anxiety-like behavior were increased and novel object interest was decreased in ECS-treated mice compared with that in sham. Interestingly, ECS also produced a delayed inhibitory effect on locomotion, decreasing open-field activity 45-min posttreatment compared to sham. We conclude that a small cluster of brief seizures can have acute, behaviorally relevant effects in mice, and that greater emphasis should be placed on events that take place before chronic epilepsy is established in order to better understand epilepsy-related cognitive and behavioral impairments. Future research would benefit from using the paradigms defined above to study the effects of individual seizures on mouse cognition and behavior.
Collapse
|
25
|
Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, Wilcox KS. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol 2019; 318:50-60. [PMID: 31022385 DOI: 10.1016/j.expneurol.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
The contribution of glial transporters to glutamate movement across the membrane has been identified as a potential target for anti-seizure therapies. Two such glutamate transporters, GLT-1 and system xc-, are expressed on glial cells, and modulation of their expression and function have been identified as a means by which seizures, neuronal injury, and gliosis can be reduced in models of brain injury. While GLT-1 is responsible for the majority of glutamate uptake in the brain, system xc- releases glutamate in the extracellular cleft in exchange for cystine and represents as such the major source of hippocampal extracellular glutamate. Using the Theiler's Murine Encephalomyelitis Virus (TMEV) model of viral-induced epilepsy, we have taken two well-studied approaches, one pharmacological, one genetic, to investigate the potential role(s) of GLT-1 and system xc- in TMEV-induced pathology. Our findings suggest that the methods we utilized to modulate these glial transporters, while effective in other models, are not sufficient to reduce the number or severity of behavioral seizures in TMEV-infected mice. However, genetic knockout of xCT, the specific subunit of system xc-, may have cellular effects, as we observed a slight decrease in neuronal injury caused by TMEV and an increase in astrogliosis in the CA1 region of the hippocampus. Furthermore, xCT knockout caused an increase in GLT-1 expression selectively in the cortex. These findings have significant implications for both the characterization of the TMEV model as well as for future efforts to discover novel and effective anti-seizure drugs.
Collapse
Affiliation(s)
- Jaycie L Loewen
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah, USA
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Japan
| | - Ilse J Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, C4N, Vrije Universiteit Brussel, Belgium
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA.
| |
Collapse
|
26
|
Bijalwan M, Young CR, Tingling J, Zhou XJ, Rimmelin AR, Leibowitz JL, Welsh CJ. Characterization of Plaque-Sized Variants of Daniel's (DA) Strain in Theiler's Virus-Induced Epilepsy. Sci Rep 2019; 9:3444. [PMID: 30837498 PMCID: PMC6401140 DOI: 10.1038/s41598-019-38967-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a complex neurological disease characterized by recurrent seizures. Patients with viral encephalitis have a 16-fold increased risk of developing epilepsy, and this risk can persist for about 15 years after the occurrence of initial viral infection. Theiler's murine encephalomyelitis virus (TMEV) infection induces a well-characterized experimental model of epilepsy in C57BL/6 mice. In response to intracerebral (I.C.) injection of Daniel's (DA) strain of TMEV, there is vigorous immune response, which is detrimental to neurons and contributes to acute seizures, rendering mice susceptible to epilepsy. A comparative in vivo challenge study with either one of the two variants of the DA strain, small (DA-DS) or large (DA-CL) plaque forming variants, revealed differences in the diseases they induced in C57BL/6 mice. Compared to DA-CL-, DA-DS-infected mice exhibited significantly more seizures, higher clinical scores, neuroinflammation, and neuronal damage (mainly in the CA1-CA2 regions of hippocampus). Moreover, the brains of DA-DS infected mice contained approximately five-fold higher virus than those of DA-CL infected mice. A sequence comparison of the DA-CL and DA-DS genome sequences showed mutations in the leader (L) and L* proteins of DA-CL variant, which may be the cause of attenuating phenotype of DA-CL variant in the C57BL/6 mouse model of epilepsy.
Collapse
Affiliation(s)
- M Bijalwan
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - C R Young
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J Tingling
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
| | - X J Zhou
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- College Station High School, Texas A&M Health Science Center, College Station, Texas, USA
| | - A R Rimmelin
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J L Leibowitz
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - C J Welsh
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA.
- Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, Texas, USA.
| |
Collapse
|
27
|
Juda MB, Brooks AK, Towers AE, Freund GG, McCusker RH, Steelman AJ. Indoleamine 2,3-dioxygenase 1 deletion promotes Theiler's virus-induced seizures in C57BL/6J mice. Epilepsia 2019; 60:626-635. [PMID: 30770561 DOI: 10.1111/epi.14675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Viral encephalitis increases the risk for developing seizures and epilepsy. Indoleamine 2,3-dioxygenase 1 (Ido1) is induced by inflammatory cytokines and functions to metabolize tryptophan to kynurenine. Kynurenine can be further metabolized to produce kynurenic acid and the N-methyl-d-aspartate receptor agonist quinolinic acid (QuinA). In the present study, we sought to determine the role of Ido1 in promoting seizures in an animal model of viral encephalitis. METHODS C57BL/6J and Ido1 knockout mice (Ido1-KO) were infected with Theiler's murine encephalomyelitis virus (TMEV). Quantitative real-time polymerase chain reaction was used to evaluate hippocampal expression of proinflammatory cytokines, Ido1, and viral RNA. Body weights and seizure scores were recorded daily. Elevated zero maze was used to assess differences in behavior, and hippocampal pathology was determined by immunohistochemistry. RESULTS Infected C57BL/6J mice up-regulated proinflammatory cytokines, Ido1, and genes encoding the enzymatic cascade responsible for QuinA production in the kynurenine pathway prior to the onset of seizures. Seizure incidence was elevated in Ido1-KO compared to C57BL/6J mice. Infection increased locomotor activity in Ido1-KO compared to C57BL/6J mice. Furthermore, the occurrence of seizures was associated with hyperexcitability. Neither expression of proinflammatory cytokines nor viral RNA was altered as a result of genotype. Immunohistochemical analysis revealed increased hippocampal pathology in Ido1-KO mice. SIGNIFICANCE Our findings suggest that Ido1 deletion promotes seizures and neuropathogenesis during acute TMEV encephalitis.
Collapse
Affiliation(s)
- Michal B Juda
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois
| | - Alexandra K Brooks
- Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Albert E Towers
- Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Gregory G Freund
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Robert H McCusker
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
28
|
Gerhauser I, Hansmann F, Ciurkiewicz M, Löscher W, Beineke A. Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. Int J Mol Sci 2019; 20:ijms20020448. [PMID: 30669615 PMCID: PMC6358740 DOI: 10.3390/ijms20020448] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 mice cause acute polioencephalitis initiating a process of epileptogenesis that results in spontaneous recurrent epileptic seizures in approximately 50% of affected mice. Moreover, C3H mice develop cardiac lesions after an intraperitoneal high-dose application of TMEV. Consequently, TMEV-induced diseases are widely used as animal models for multiple sclerosis, epilepsy, and myocarditis. The present review summarizes morphological lesions and pathogenic mechanisms triggered by TMEV with a special focus on the development of hippocampal degeneration and seizures in C57BL/6 mice as well as demyelination in the spinal cord in SJL mice. Furthermore, a detailed description of innate and adaptive immune responses is given. TMEV studies provide novel insights into the complexity of organ- and mouse strain-specific immunopathology and help to identify factors critical for virus persistence.
Collapse
Affiliation(s)
- Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Löscher
- Center for System Neuroscience, 30559 Hannover, Germany.
- Department of Pharmacology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
29
|
Anjum SMM, Käufer C, Hopfengärtner R, Waltl I, Bröer S, Löscher W. Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy Behav 2018; 88:189-204. [PMID: 30292054 DOI: 10.1016/j.yebeh.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus (TMEV) replicates many features of viral encephalitis-induced epilepsy in humans, including neuroinflammation, early (insult-associated) and late (spontaneous) seizures, neurodegeneration in the hippocampus, and cognitive and behavioral alterations. Thus, this model may be ideally suited to study mechanisms involved in encephalitis-induced epilepsy as potential targets for epilepsy prevention. However, spontaneous recurrent seizures (SRS) occur too infrequently to be useful as a biomarker of epilepsy, e.g., for drug studies. This prompted us to evaluate whether epileptiform spikes or spike clusters in the cortical electroencephalogram (EEG) may be a useful surrogate of epilepsy in this model. For this purpose, we developed an algorithm that allows efficient and large-scale EEG analysis of early and late seizures, spikes, and spike clusters in the EEG. While 77% of the infected mice exhibited early seizures, late seizures were only observed in 33% of the animals. The clinical characteristics of early and late seizures did not differ except that late generalized convulsive (stage 5) seizures were significantly longer than early stage 5 seizures. Furthermore, the frequency of SRS was much lower than the frequency of early seizures. Continuous (24/7) video-EEG monitoring over several months following infection indicated that the latent period to onset of SRS was 61 (range 16-91) days. Spike and spike clusters were significantly more frequent in infected mice with late seizures than in infected mice without seizures or in mock-infected sham controls. Based on the results of this study, increases in EEG spikes and spike clusters in groups of infected mice may be used as a new readout for studies on antiepileptogenic or disease-modifying drug effects in this model, because the significant increase in average spike counts in mice with late seizures obviously indicates a proepileptogenic alteration.
Collapse
Affiliation(s)
- Syed Muhammad Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
30
|
Hanak TJ, Libbey JE, Doty DJ, Sim JT, DePaula-Silva AB, Fujinami RS. Positive modulation of mGluR5 attenuates seizures and reduces TNF-α + macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy. Exp Neurol 2018; 311:194-204. [PMID: 30316834 DOI: 10.1016/j.expneurol.2018.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Viral encephalitis markedly increases the risk for the development of epilepsy. The Theiler's murine encephalomyelitis virus (TMEV)-induced model of seizures/epilepsy is a murine model of both viral-induced seizures/epilepsy and human Temporal Lobe Epilepsy. The inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α have been shown to play a role in seizure development in the TMEV-induced model of seizures/epilepsy, and infiltrating macrophages along with microglia have been shown to be major producers of these cytokines. The metabotropic glutamate receptor 5 (mGluR5) is a G-protein coupled receptor that has been shown to reduce IL-6 and TNF-α and to provide neuroprotection in other disease models. Therefore, we hypothesized that stimulation of mGluR5 would not only reduce seizures but attenuate IL-6 and TNF-α production in microglia and macrophages in the TMEV model. We found that pharmacological stimulation of mGluR5 with the selective positive allosteric modulator VU0360172 not only reduced acute seizure outcomes, but also reduced the percent of microglia and macrophages producing TNF-α 3 days post infection. Furthermore, treatment with VU0360172 did not alter the level of viral antigen, compared to controls, showing that this treatment does not compromise viral clearance. These results establish that mGluR5 may represent a therapeutic target in the TMEV-induced model of seizures/epilepsy.
Collapse
Affiliation(s)
- Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA; Interdepartmental Program in Neuroscience, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jordan T Sim
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
31
|
Bartolini L, Libbey JE, Ravizza T, Fujinami RS, Jacobson S, Gaillard WD. Viral Triggers and Inflammatory Mechanisms in Pediatric Epilepsy. Mol Neurobiol 2018; 56:1897-1907. [PMID: 29978423 DOI: 10.1007/s12035-018-1215-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Experimental and clinical findings suggest a crucial role for inflammation in the onset of pediatric seizures; this mechanism is not targeted by conventional antiepileptic drugs and may contribute to refractory epilepsy. Several triggers, including infection with neurotropic viruses such as human herpesvirus 6 (HHV-6), other herpesviruses, and picornaviruses, appear to induce activation of the innate and adaptive immune systems, which results in several neuroinflammatory responses, leading to enhanced neuronal excitability, and ultimately contributing to epileptogenesis. This review discusses the proposed mechanisms by which infection with herpesviruses, and particularly with HHV-6, and ensuing inflammation may lead to seizure generation, and later development of epilepsy. We also examine the evidence that links herpesvirus and picornavirus infections with acute seizures and chronic forms of epilepsy. Understanding the mechanisms by which specific viruses may trigger a cascade of alterations in the CNS ultimately leading to epilepsy appears critical for the development of therapeutic agents that may target the virus or inflammatory mechanisms early and prevent progression of epileptogenesis.
Collapse
Affiliation(s)
- Luca Bartolini
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, NIH, Building 10, room 7-5680, 10 Center Drive, Bethesda, MD, 20814, USA. .,Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Bethesda, MD, 20892, USA. .,Center for Neuroscience, Children's National Medical Center, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Teresa Ravizza
- Neuroscience Department, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| |
Collapse
|
32
|
Uhde AK, Ciurkiewicz M, Herder V, Khan MA, Hensel N, Claus P, Beckstette M, Teich R, Floess S, Baumgärtner W, Jung K, Huehn J, Beineke A. Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Sci Rep 2018; 8:6106. [PMID: 29666403 PMCID: PMC5904160 DOI: 10.1038/s41598-018-24378-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/27/2018] [Indexed: 12/24/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV) infection represents an experimental mouse model to study hippocampal damage induced by neurotropic viruses. IL-10 is a pleiotropic cytokine with profound anti-inflammatory properties, which critically controls immune homeostasis. In order to analyze IL-10R signaling following virus-induced polioencephalitis, SJL mice were intracerebrally infected with TMEV. RNA-based next generation sequencing revealed an up-regulation of Il10, Il10rα and further genes involved in IL-10 downstream signaling, including Jak1, Socs3 and Stat3 in the brain upon infection. Subsequent antibody-mediated blockade of IL-10R signaling led to enhanced hippocampal damage with neuronal loss and increased recruitment of CD3+ T cells, CD45R+ B cells and an up-regulation of Il1α mRNA. Increased expression of Tgfβ and Foxp3 as well as accumulation of Foxp3+ regulatory T cells and arginase-1+ macrophages/microglia was detected in the hippocampus, representing a potential compensatory mechanism following disturbed IL-10R signaling. Additionally, an increased peripheral Chi3l3 expression was found in spleens of infected mice, which may embody reactive regulatory mechanisms for prevention of excessive immunopathology. The present study highlights the importance of IL-10R signaling for immune regulation and its neuroprotective properties in the context of an acute neurotropic virus infection.
Collapse
Affiliation(s)
- Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany.,Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - René Teich
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
33
|
Scharfman HE, Kanner AM, Friedman A, Blümcke I, Crocker CE, Cendes F, Diaz-Arrastia R, Förstl H, Fenton AA, Grace AA, Palop J, Morrison J, Nehlig A, Prasad A, Wilcox KS, Jette N, Pohlmann-Eden B. Epilepsy as a Network Disorder (2): What can we learn from other network disorders such as dementia and schizophrenia, and what are the implications for translational research? Epilepsy Behav 2018; 78:302-312. [PMID: 29097123 PMCID: PMC5756681 DOI: 10.1016/j.yebeh.2017.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
There is common agreement that many disorders of the central nervous system are 'complex', that is, there are many potential factors that influence the development of the disease, underlying mechanisms, and successful treatment. Most of these disorders, unfortunately, have no cure at the present time, and therapeutic strategies often have debilitating side effects. Interestingly, some of the 'complexities' of one disorder are found in another, and the similarities are often network defects. It seems likely that more discussions of these commonalities could advance our understanding and, therefore, have clinical implications or translational impact. With this in mind, the Fourth International Halifax Epilepsy Conference and Retreat was held as described in the prior paper, and this companion paper focuses on the second half of the meeting. Leaders in various subspecialties of epilepsy research were asked to address aging and dementia or psychosis in people with epilepsy (PWE). Commonalities between autism, depression, aging and dementia, psychosis, and epilepsy were the focus of the presentations and discussion. In the last session, additional experts commented on new conceptualization of translational epilepsy research efforts. Here, the presentations are reviewed, and salient points are highlighted.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Psychiatry, Neurosciences and Physiology, and the Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Andres M Kanner
- University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ingmar Blümcke
- Neuropathological Institute, University Hospitals Erlangen, Germany
| | - Candice E Crocker
- Nova Scotia Early Psychosis Program, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando Cendes
- Department of Neurology, University of Campinas, 13083-888 Campinas, Sao Paulo, Brazil
| | - Ramon Diaz-Arrastia
- Centre for Neuroscience & Regenerative Medicine, Uniformed Services University of the Health Sciences, 12725 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Hans Förstl
- Department of Psychiatry, University of Munich, Klinikum rechts der Isar, Ismaninger Strabe 22, D-81675 Munich, Germany
| | - André A Fenton
- Centre for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA
| | - Anthony A Grace
- University of Pittsburgh, 456 Langley Hall, 4200 Fifth Avenue, Pittsburgh, PA 15269, USA
| | - Jorge Palop
- Department of Neurology, Gladstone Institute, 1650 Owens Street, San Francisco, CA 94158-2261, USA
| | - Jason Morrison
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Astrid Nehlig
- INSERM U 1129, Hôpital Necker, Paris, Faculty of Medicine, Strasbourg, France
| | - Asuri Prasad
- Department of Pediatrics, Children's Hospital of Western Ontario, London, ON, Canada
| | - Karen S Wilcox
- Department of Pharmacology & Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, NS B3H4R2, Canada.
| |
Collapse
|
34
|
Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 2017; 14:238. [PMID: 29202854 PMCID: PMC5715496 DOI: 10.1186/s12974-017-1015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler’s murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. Methods Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. Results Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. Conclusions We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.
Collapse
Affiliation(s)
- Charles L Howe
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA. .,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA. .,Department of Neurology, Mayo Clinic, Rochester, USA. .,Department of Neuroscience, Mayo Clinic, Rochester, USA. .,Department of Immunology, Mayo Clinic, Rochester, USA. .,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA. .,Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA.
| | - Reghann G LaFrance-Corey
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Emma N Goddery
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Immunology, Mayo Clinic, Rochester, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA
| | - Renee K Johnson
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Kanish Mirchia
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| |
Collapse
|
35
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
36
|
Shen H, Wang J, Jiang D, Xu P, Zhu X, Zhang Y, Yu X, Won MH, Su PQ, Yan BC. Topiramate Improves Neuroblast Differentiation of Hippocampal Dentate Gyrus in the D-Galactose-Induced Aging Mice via Its Antioxidant Effects. Cell Mol Neurobiol 2017; 37:869-877. [PMID: 27734244 DOI: 10.1007/s10571-016-0424-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/01/2016] [Indexed: 12/30/2022]
Abstract
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the D-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, D-galactose-treated group, 25 and 50 mg/kg TPM-treated plus D-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67+ cells and DCX immunoreactivity, and improved neuroblast injury induced by D-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by D-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the D-galactose mice.
Collapse
Affiliation(s)
- Hui Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Pei Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Yuanyuan Zhang
- Department of Neurology, Yangzhou No. 1 People's Hospital, 45 Taizhou Road, Yangzhou, 225001, People's Republic of China
| | - Xing Yu
- Department of Pharmacy, Yangzhou Maternal and Child Care Service Center, Yangzhou, 225002, People's Republic of China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Pei Qing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China.
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China.
- Department of Neurology, Yangzhou No. 1 People's Hospital, 45 Taizhou Road, Yangzhou, 225001, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
37
|
Kehne JH, Klein BD, Raeissi S, Sharma S. The National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP). Neurochem Res 2017; 42:1894-1903. [PMID: 28462454 PMCID: PMC5504134 DOI: 10.1007/s11064-017-2275-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/10/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023]
Abstract
For over 40 years, the National Institute of Neurological Disorders and Stroke/National Institutes of Health-funded Anticonvulsant Screening Program has provided a preclinical screening service for participants world-wide that helped identify/characterize new antiseizure compounds, a number of which advanced to the market for the treatment of epilepsy. The newly-renamed Epilepsy Therapy Screening Program (ETSP) has a refocused mission to identify novel agents which will help address the considerable remaining unmet medical needs in epilepsy. These include identifying antiseizure agents for treatment-resistant epilepsy, as well as anti-epileptogenic agents that will prevent the development of epilepsy or disease-modifying agents that will ameliorate or even cure established epilepsy and its comorbidities. This manuscript provides an overview of the ETSP's efforts aimed at identifying the next generation of therapeutic agents to further reduce the suffering from and burden of epilepsy.
Collapse
Affiliation(s)
- John H Kehne
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, 20852, USA.
| | - Brian D Klein
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, 20852, USA
| | - Shamsi Raeissi
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, 20852, USA
| | - Shalini Sharma
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, 20852, USA
| |
Collapse
|
38
|
Barker-Haliski ML, Löscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia 2017; 58 Suppl 3:39-47. [PMID: 28675559 PMCID: PMC5604891 DOI: 10.1111/epi.13785] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
Abstract
Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms.
Collapse
Affiliation(s)
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Bronx NY USA
| |
Collapse
|
39
|
Ciurkiewicz M, Herder V, Khan MA, Uhde AK, Teich R, Floess S, Baumgärtner W, Huehn J, Beineke A. Cytotoxic CD8 + T cell ablation enhances the capacity of regulatory T cells to delay viral elimination in Theiler's murine encephalomyelitis. Brain Pathol 2017; 28:349-368. [PMID: 28452087 DOI: 10.1111/bpa.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Theiler's murine encephalomyelitis (TME) of susceptible mouse strains is a commonly used infectious animal model for multiple sclerosis. The study aim was to test the hypothesis whether cytotoxic T cell responses account for the limited impact of regulatory T cells on antiviral immunity in TME virus-induced demyelinating disease (TMEV-IDD) resistant C57BL/6 mice. TME virus-infected C57BL/6 mice were treated with (i) interleukin-2/-anti-interleukin-2-antibody-complexes to expand regulatory T cells ("Treg-expansion"), (ii) anti-CD8-antibodies to deplete cytotoxic T cells ("CD8-depletion") or (iii) with a combination of Treg-expansion and CD8-depletion ("combined treatment") prior to infection. Results showed that "combined treatment", but neither sole "Treg-expansion" nor "CD8-depletion," leads to sustained hippocampal infection and virus spread to the spinal cord in C57BL/6 mice. Prolonged infection reduces myelin basic protein expression in the spinal cord together with increased accumulation of β-amyloid precursor protein in axons, characteristic of myelin loss and axonal damage, respectively. Chronic spinal cord infection upon "combined treatment" was also associated with increased T and B cell recruitment, accumulation of CD107b+ microglia/macrophages and enhanced mRNA expression of interleukin (IL)-1α, IL-10 and tumor necrosis factor α. In conclusion, data revealed that the suppressive capacity of Treg on viral elimination is efficiently boosted by CD8-depletion, which renders C57BL/6 mice susceptible to develop chronic neuroinfection and TMEV-IDD.
Collapse
Affiliation(s)
- Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - René Teich
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
40
|
Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy. eNeuro 2017; 4:eN-NWR-0105-17. [PMID: 28497109 PMCID: PMC5422919 DOI: 10.1523/eneuro.0105-17.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023] Open
Abstract
Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2-/- mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.
Collapse
|
41
|
Barker-Haliski ML, Heck TD, Dahle EJ, Vanegas F, Pruess TH, Wilcox KS, White HS. Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler's virus model of temporal lobe epilepsy. Epilepsia 2016; 57:1958-1967. [PMID: 27739576 PMCID: PMC5154893 DOI: 10.1111/epi.13577] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice induces acute seizures and development of spontaneous recurrent seizures and behavioral comorbidities weeks later. The present studies sought to determine whether acute therapeutic intervention with an anti-inflammatory-based approach could prevent or modify development of TMEV-induced long-term behavioral comorbidities. Valproic acid (VPA), in addition to its prototypical anticonvulsant properties, inhibits histone deacetylase (HDAC) activity, which may alter expression of the inflammasome. Minocycline (MIN) has previously demonstrated an antiseizure effect in the TMEV model via direct anti-inflammatory mechanisms, but the long-term effect of MIN treatment on the development of chronic behavioral comorbidities is unknown. METHODS Mice infected with TMEV were acutely administered MIN (50 mg/kg, b.i.d. and q.d.) or VPA (100 mg/kg, q.d.) during the 7-day viral infection period. Animals were evaluated for acute seizure severity and subsequent development of chronic behavioral comorbidities and seizure threshold. RESULTS Administration of VPA reduced the proportion of mice with seizures, delayed onset of symptomatic seizures, and reduced seizure burden during the acute infection. This was in contrast to the effects of administration of once-daily MIN, which did not affect the proportion of mice with seizures or delay onset of acute symptomatic seizures. However, VPA-treated mice were no different from vehicle (VEH)-treated mice in long-term behavioral outcomes, including open field activity and seizure threshold. Once-daily MIN treatment, despite no effect on the maximum observed Racine stage seizure severity, was associated with improved long-term behavioral outcomes and normalized seizure threshold. SIGNIFICANCE Acute seizure control alone is insufficient to modify chronic disease comorbidities in the TMEV model. This work further supports the role of an inflammatory response in the development of chronic behavioral comorbidities and further highlights the utility of this platform for the development of mechanistically novel pharmacotherapies for epilepsy.
Collapse
Affiliation(s)
- Melissa L. Barker-Haliski
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
- Department of Pharmacy, School of Pharmacy, University of Washington, Box 357630, H375 Health Sciences Building, Seattle, WA 98195-7630
| | - Taylor D. Heck
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - E. Jill Dahle
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Fabiola Vanegas
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Timothy H. Pruess
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Karen S. Wilcox
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - H. Steve White
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
- Department of Pharmacy, School of Pharmacy, University of Washington, Box 357630, H375 Health Sciences Building, Seattle, WA 98195-7630
| |
Collapse
|
42
|
Dose-dependent effects of levetiracetam after hypoxia and hypothermia in the neonatal mouse brain. Brain Res 2016; 1646:116-124. [PMID: 27216570 DOI: 10.1016/j.brainres.2016.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Perinatal asphyxia to the developing brain remains a major cause of morbidity. Hypothermia is currently the only established neuroprotective treatment available for term born infants with hypoxic-ischemic encephalopathy, saving one in seven to eight infants from developing severe neurological deficits. Therefore, additional treatments with clinically applicable drugs are indispensable. This study investigates a potential additive neuroprotective effect of levetiracetam combined with hypothermia after hypoxia-induced brain injury in neonatal mice. 9-day-old C57BL/6-mice (P9) were subjected either to acute hypoxia or room-air. After 90min of systemic hypoxia (6% O2), pups were randomized into six groups: 1) vehicle, 2) low-dose levetiracetam (LEV), 3) high-dose LEV, 4) hypothermia (HT), 5) HT combined with low-dose LEV and 6) HT combined with high-dose LEV. Pro-apoptotic factors, neuronal structures, and myelination were analysed by histology and on protein level at appropriate time points. On P28 to P37 long-term outcome was assessed by neurobehavioral testing. Hypothermia confers acute and long-term neuroprotection by reducing apoptosis and preservation of myelinating oligodendrocytes and neurons in a model of acute hypoxia in the neonatal mouse brain. Low-dose LEV caused no adverse effects after neonatal hypoxic brain damage treated with hypothermia whereas administration of high-dose LEV alone or in combination with hypothermia increased neuronal apoptosis after hypoxic brain injury. LEV in low- dosage had no additive neuroprotective effect following acute hypoxic brain injury.
Collapse
|
43
|
Dlugos D, Worrell G, Davis K, Stacey W, Szaflarski J, Kanner A, Sunderam S, Rogawski M, Jackson-Ayotunde P, Loddenkemper T, Diehl B, Fureman B, Dingledine R. 2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Curr 2016; 16:192-7. [PMID: 27330452 PMCID: PMC4913858 DOI: 10.5698/1535-7511-16.3.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dennis Dlugos
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Greg Worrell
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kathryn Davis
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - William Stacey
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
| | - Jerzy Szaflarski
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
| | - Andres Kanner
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
| | - Sridhar Sunderam
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
| | - Mike Rogawski
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
| | - Patrice Jackson-Ayotunde
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
| | - Tobias Loddenkemper
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
| | - Beate Diehl
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Brandy Fureman
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ray Dingledine
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| | - for the Epilepsy Benchmark Stewards
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| |
Collapse
|
44
|
Loewen JL, Barker-Haliski ML, Dahle EJ, White HS, Wilcox KS. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 2016; 75:366-78. [PMID: 26945036 DOI: 10.1093/jnen/nlw008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is estimated that 30%-40% of epilepsy patients are refractory to therapy and animal models are useful for the identification of more efficacious therapeutic agents. Various well-characterized syndrome-specific models are needed to assess their relevance to human seizure disorders and their validity for testing potential therapies. The corneal kindled mouse model of temporal lobe epilepsy (TLE) allows for the rapid screening of investigational compounds, but there is a lack of information as to the specific inflammatory pathology in this model. Similarly, the Theiler murine encephalomyelitis virus (TMEV) model of TLE may prove to be useful for screening, but quantitative assessment of hippocampal pathology is also lacking. We used immunohistochemistry to characterize and quantitate acute neuronal injury and inflammatory features in dorsal CA1 and dentate gyrus regions and in the directly overlying posterior parietal cortex at 2 time points in each of these TLE models. Corneal kindled mice were observed to have astrogliosis, but not microgliosis or neuron cell death. In contrast, TMEV-injected mice had astrogliosis, microgliosis, neuron death, and astrocyte and microglial proliferation. Our results suggest that these 2 animal models might be appropriate for evaluation of distinct therapies for TLE.
Collapse
Affiliation(s)
- Jaycie L Loewen
- From the Interdepartmental Program in Neuroscience (JLL, HSW, KSW); HHMI Med into Grad Program (JLL); Department of Pharmacology and Toxicology (JLL, MLB-H, EJD, HSW, KSW); and Anticonvulsant Drug Development Program (MLB-H, EJD, HSW, KSW), University of Utah, Salt Lake City, Utah, USA
| | - Melissa L Barker-Haliski
- From the Interdepartmental Program in Neuroscience (JLL, HSW, KSW); HHMI Med into Grad Program (JLL); Department of Pharmacology and Toxicology (JLL, MLB-H, EJD, HSW, KSW); and Anticonvulsant Drug Development Program (MLB-H, EJD, HSW, KSW), University of Utah, Salt Lake City, Utah, USA
| | - E Jill Dahle
- From the Interdepartmental Program in Neuroscience (JLL, HSW, KSW); HHMI Med into Grad Program (JLL); Department of Pharmacology and Toxicology (JLL, MLB-H, EJD, HSW, KSW); and Anticonvulsant Drug Development Program (MLB-H, EJD, HSW, KSW), University of Utah, Salt Lake City, Utah, USA
| | - H Steve White
- From the Interdepartmental Program in Neuroscience (JLL, HSW, KSW); HHMI Med into Grad Program (JLL); Department of Pharmacology and Toxicology (JLL, MLB-H, EJD, HSW, KSW); and Anticonvulsant Drug Development Program (MLB-H, EJD, HSW, KSW), University of Utah, Salt Lake City, Utah, USA
| | - Karen S Wilcox
- From the Interdepartmental Program in Neuroscience (JLL, HSW, KSW); HHMI Med into Grad Program (JLL); Department of Pharmacology and Toxicology (JLL, MLB-H, EJD, HSW, KSW); and Anticonvulsant Drug Development Program (MLB-H, EJD, HSW, KSW), University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Umpierre AD, Bennett IV, Nebeker LD, Newell TG, Tian BB, Thomson KE, White HS, White JA, Wilcox KS. Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures. Exp Neurol 2016; 279:116-126. [PMID: 26896834 DOI: 10.1016/j.expneurol.2016.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
More efficient or translationally relevant approaches are needed to model acquired temporal lobe epilepsy (TLE) in genetically tractable mice. The high costs associated with breeding and maintaining transgenic, knock-in, or knock-out lines place a high value on the efficiency of induction and animal survivability. Herein, we describe our approaches to model acquired epilepsy in C57BL/6J mice using repeated, low-dose kainate (KA) administration paradigms. Four paradigms (i.p.) were tested for their ability to induce status epilepticus (SE), temporal lobe pathology, and the development of epilepsy. All four paradigms reliably induce behavioral and/or electrographic SE without mortality over a 7d period. Two of the four paradigms investigated produce features indicative of TLE pathology, including hippocampal cell death, widespread astrogliosis, and astrocyte expression of mGluR5, a feature commonly reported in TLE models. Three of the investigated paradigms were able to produce aberrant electrographic features, such as interictal spiking in cortex. However, only one paradigm, previously published by others, produces spontaneous recurrent seizures over an eight week period. Presentation of spontaneous seizures is rare (N=2/14), with epilepsy preferentially developing in animals having a high number of seizures during SE. Overall, repeated, low-dose KA administration improves the efficiency and pathological relevance of a systemic KA insult, but does not produce a robust epilepsy phenotype under the experimental paradigms described herein.
Collapse
Affiliation(s)
- Anthony D Umpierre
- Interdepartmental Program in Neuroscience, University of Utah, 401 MREB, 20N. 1900E, Salt Lake City, UT 84132, United States.
| | - Isaiah V Bennett
- Dept. of Pharmacology & Toxicology, University of Utah, College of Pharmacy, 30N. 1900E, Salt Lake City, UT 84112, United States.
| | - Lismore D Nebeker
- Dept. of Pharmacology & Toxicology, University of Utah, College of Pharmacy, 30N. 1900E, Salt Lake City, UT 84112, United States.
| | - Thomas G Newell
- Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, United States; Dept. of Bioengineering, University of Utah, 36S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112, United States.
| | - Bruce B Tian
- Dept. of Pharmacology & Toxicology, University of Utah, College of Pharmacy, 30N. 1900E, Salt Lake City, UT 84112, United States.
| | - Kyle E Thomson
- Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, United States; Dept. of Bioengineering, University of Utah, 36S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112, United States.
| | - H Steve White
- Dept. of Pharmacology & Toxicology, University of Utah, College of Pharmacy, 30N. 1900E, Salt Lake City, UT 84112, United States; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, United States; Department of Pharmacy, University of Washington, Box 357630, H375 Health Science Building, Seattle, WA 98195, United States.
| | - John A White
- Dept. of Biomedical Engineering, Boston University, 44 Cummington Mall, Rm. 403, Boston, MA 02215, United States.
| | - Karen S Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, 401 MREB, 20N. 1900E, Salt Lake City, UT 84132, United States; Dept. of Pharmacology & Toxicology, University of Utah, College of Pharmacy, 30N. 1900E, Salt Lake City, UT 84112, United States; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, United States.
| |
Collapse
|
46
|
Bröer S, Käufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgärtner W, Löscher W. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol 2016; 279:57-74. [PMID: 26892877 DOI: 10.1016/j.expneurol.2016.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 01/20/2023]
Abstract
Infections, particularly those caused by viruses, are among the main causes of acquired epilepsy, but the mechanisms causing epileptogenesis are only poorly understood. As a consequence, no treatment exists for preventing epilepsy in patients at risk. Animal models are useful to study epileptogenesis after virus-induced encephalitis and how to interfere with this process, but most viruses that cause encephalitis in rodents are associated with high mortality, so that the processes leading to epilepsy cannot be investigated. Recently, intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 (B6) mice was reported to induce early seizures and epilepsy and it was proposed that the TMEV mouse model represents the first virus infection-driven animal model of epilepsy. In the present study, we characterized this model in two B6 substrains and seizure-resistant SJL/J mice by using three TMEV (sub)strains (BeAn-1, BeAn-2, DA). The idea behind this approach was to study what is and what is not necessary for development of acute and late seizures after brain infection in mice. Receiver operating characteristic (ROC) curve analysis was used to determine which virus-induced brain alterations are associated with seizure development. In B6 mice infected with different TMEV virus (sub)strains, the severity of hippocampal neurodegeneration, amount of MAC3-positive microglia/macrophages, and expression of the interferon-inducible antiviral effector ISG15 were almost perfect at discriminating seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. However, intense microglia/macrophage activation and some hippocampal damage were also observed in SJL/J mice. Overall, the TMEV model provides a unique platform to study virus and host factors in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Verena Haist
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Lin Li
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
47
|
Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W. Infections, inflammation and epilepsy. Acta Neuropathol 2016; 131:211-234. [PMID: 26423537 DOI: 10.1007/s00401-015-1481-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 12/15/2022]
Abstract
Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled "epilepsy." Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology, University of Utah, Salt Lake City, UT, USA
| | - Pierre-Marie Preux
- INSERM UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, University of Limoges, Limoges, France
- Center of Epidemiology, Biostatistics, and Research Methodology, CHU Limoges, Limoges, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, WC1N £BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
48
|
Libbey JE, Doty DJ, Sim JT, Cusick MF, Round JL, Fujinami RS. The effects of diet on the severity of central nervous system disease: One part of lab-to-lab variability. Nutrition 2016; 32:877-83. [PMID: 27133811 DOI: 10.1016/j.nut.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/04/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Many things can impact the reproducibility of results from laboratory to laboratory. For example, food from various sources can vary markedly in composition. We examined the effects of two different food sources, the Teklad Global Soy Protein-Free Extruded Rodent Diet (irradiated diet) and the Teklad Sterilizable Rodent Diet (autoclaved diet), on central nervous system disease. METHODS Three preclinical models for human disease: Two different experimental autoimmune encephalomyelitis models (multiple sclerosis) and the Theiler's murine encephalomyelitis virus-induced seizure model (epilepsy), were examined for the effects of two different food sources on disease. RESULTS We found that mice fed the irradiated diet had more severe clinical disease and enhanced seizures compared with animals provided the autoclaved diet in both experimental autoimmune encephalomyelitis models examined and in the Theiler's murine encephalomyelitis virus-induced seizure model, respectively. CONCLUSIONS Therefore, just altering the source of food (lab chow) can have marked effects on disease severity and outcome.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jordan T Sim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Matthew F Cusick
- Division of Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - June L Round
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Bhuyan P, Patel DC, Wilcox KS, Patel M. Oxidative stress in murine Theiler's virus-induced temporal lobe epilepsy. Exp Neurol 2015; 271:329-34. [PMID: 26079647 DOI: 10.1016/j.expneurol.2015.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of acquired epilepsy that can be caused by several inciting events including viral infections. However, one-third of TLE patients are pharmacoresistant to current antiepileptic drugs and therefore, there is an urgent need to develop antiepileptogenic therapies that prevent the development of the disease. Oxidative stress and redox alterations have recently been recognized as important etiological factors contributing to seizure-induced neuronal damage. The goal of this study was to determine if oxidative stress occurs in the TMEV (Theiler's murine encephalomyelitis virus) model of temporal lobe epilepsy (TLE). C57Bl/6 mice were injected with TMEV or with PBS intracortically and observed for acute seizures. At various time points after TMEV injection, hippocampi were analyzed for levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and 3-nitrotyrosine (3 NT). Mice infected with TMEV displayed behavioral seizures between days 3 and 7 days post-infection (dpi). The intensity of seizures increased over time with most of the seizures being a stage 4 or 5 on the Racine scale at 6 days p.i. Mice exhibiting at least one seizure during the observation period were utilized for the biochemical analyses. The levels of GSH were significantly depleted in TMEV infected mice at 3, 4 and 14 days p.i. with a concomitant increase in GSSH levels as well as an impairment of the redox status. Additionally, there was a substantial increase in 3 NT levels in TMEV infected mice at these time points. These redox changes correlated with the occurrence of acute seizures in this model. Interestingly, we did not see changes in any of the indices in the cerebellum of TMEV-infected mice at 3 dpi indicating that these alterations are localized to the hippocampus and perhaps other limbic regions. This is the first study to demonstrate the occurrence of oxidative stress in the TMEV model of infection-induced TLE. The redox alterations were observed at time points coinciding with the appearance of acute behavioral seizures suggesting that these changes might be a consequence of seizure activity. Our results support the hypothesis that redox changes correlate with seizure activity in acquired epilepsies, regardless of the inciting insults, and suggest oxidative stress as a potential therapeutic target for their treatment.
Collapse
Affiliation(s)
- Pallavi Bhuyan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Dipan C Patel
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|