1
|
Ghose A, Nuzelu V, Gupta D, Kimoto H, Takashima S, Harlin EW, Ss S, Ueda H, Koketsu M, Rangan L, Mitra S. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121857. [PMID: 39029166 DOI: 10.1016/j.jenvman.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroki Kimoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eka Wahyuni Harlin
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Sonu Ss
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroshi Ueda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
2
|
Schmiemann D, Bicks F, Bartels I, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic degradability of diclofenac ozonation products: A mechanistic analysis. CHEMOSPHERE 2024; 358:142112. [PMID: 38677613 DOI: 10.1016/j.chemosphere.2024.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Florian Bicks
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19c, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
3
|
Xu Y, Anker Y, Talawar MP. Degradation of tetracycline, oxytetracycline & ampicillin by purified multiple copper oxidase like laccase from Stentrophomonas sp. YBX1. Braz J Microbiol 2024; 55:1529-1543. [PMID: 38340257 PMCID: PMC11153415 DOI: 10.1007/s42770-024-01247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple copper oxidase (MCO) like laccase is widely distributed in higher plant, fungi and bacteria. This study identified MCO like laccase producing bacterium isolated from a wastewater treatment plant based on 16S rRNA sequence analysis, and they were further confirmed by phylogenetic reconstruction. Biochemical and gene characterization of MCO like laccase from Stenotrophomonas sp. YBX1 is presented. Purification of MCO like laccase was carried out by ion exchange HQ Trap column and followed by gel filtration spheracryl S-100 column. The purified MCO like laccase from Stenotrophomonas sp. YBX1 shows a total activity of 1252 units and specific activity 391.2 U/mg and protein concentration 0.32 mg/mL. In SDS PAGE, the approximate molecular mass was found at 66 kDa and further confirmed from an MS spectrum of MALDI-TOF. The purified MCO like laccase is capable of degradation of antibiotics such as tetracycline completely, whereas oxytetracycline (78%) and ampicillin (62%) degraded within 96 min without any redox mediators at pH 5 and 30 ºC. Its degradation pathway was based on identification of metabolites by LC-MS spectrum. The enzymatic degradation may be used in advanced treatment of antibiotics containing wastewater.
Collapse
Affiliation(s)
- Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaakov Anker
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel
| | - Manjunatha P Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel.
- Department of Life Science, Garden City University, Bangalore, 580049, India.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510 006, China.
| |
Collapse
|
4
|
Nikolenko O, Pujades E, Teixidó M, Sáez C, Jurado A. Contaminants of emerging concern in the urban aquifers of Barcelona: Do they hamper the use of groundwater? CHEMOSPHERE 2023; 341:140023. [PMID: 37657697 DOI: 10.1016/j.chemosphere.2023.140023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Urban aquifers are an alternative to obtain freshwater, but they are frequently polluted by contaminants of emerging concern (CECs). Therefore, there is a need to ascertain whether CECs are a water management challenge as they might limit the use of groundwater as safe drinking water even at ng L-1 concentration levels. To answer this question, it is required to evaluate human health-risk effects of measured CECs in the groundwater and to understand their behaviour at a field-scale. This study compiles data about the presence of CECs in the aquifers of Barcelona and its metropolitan area, evaluates health risk effects of measured CECs in the groundwater and presents approaches implemented to identify and quantify the coupled hydro-thermo-chemical processes that govern their fate in the subsurface. Some CECs might be harmful to humans, such as 5-methyl-1H-benzotriazole and the pharmaceuticals azithromycin valsartan, valsartan acid, lamotrigine, gabapentin, venlafaxine and lidocaine, which show very high to intermediate health risk effects. The number of harmful CECs and the level of their hazard increase from the groups of adults and 14-18 years old teens to the groups of 4-8 years old and 1-2 years old children. Thus, some CECs can limit the use of groundwater in Barcelona as potential drinking water source. Finally, knowledge gaps in understanding the integration of these processes into urban water resources management plans are identified, which will help to define groundwater potential uses and to assure the adequate protection of the human health and the environment.
Collapse
Affiliation(s)
- Olha Nikolenko
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Estanislao Pujades
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Marc Teixidó
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carmen Sáez
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Anna Jurado
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Wang D, Zhu R, Lou J, Baek N, Fan X. Plasticizer phthalate esters degradation with a laccase from Trametes versicolor: effects of TEMPO used as a mediator and estrogenic activity removal. Biodegradation 2023; 34:431-444. [PMID: 37017762 DOI: 10.1007/s10532-023-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Phthalate esters (PAEs) are toxic and persistent chemicals that are ubiquitous in the environment and have attracted worldwide attention due to their threats to the environment and human health. Dimethyl phthalate (DMP) is a relatively simple structure and one of the most observed PAEs in the environment. This study investigated the degradation of the DMP using Trametes versicolor laccase and its laccase-mediator systems. The degradation effect of laccase alone on DMP was poor, while the laccase-mediator systems can effectively enhance the degradation efficiency. Within 24 h, 45% of DMP (25 mg/L) was degraded in the presence of 0.8 U/mL laccase and 0.053 mM 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO). A certain concentration (1 mM) of metal ions Al3+, Cu2+ or Ca2+ can positively promote DMP degradation with the laccase-TEMPO system. Moreover, the structure of PAEs also had a great influence on the degradation efficiency. Higher degradation efficiencies were observed when incubating PAEs with short alkyl side chains by the laccase-TEMPO system compared to that with long alkyl side chains. Additionally, the branched-chain PAEs had a better degradation effect than the straight-chain. The estrogenic activity of the DMP solution after reaction was much smaller than that of the original solution. Finally, transformation products ortho-hydroxylated DMP and phthalic acid were identified by GC-MS and the possible degradation pathway was proposed. This study verifies the feasibility of the laccase-TEMPO system to degrade PAEs and provides a reference for exploring more potential value of laccase.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ruofei Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nawon Baek
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Ghose A, Gupta D, Nuzelu V, Rangan L, Mitra S. Optimization of laccase enzyme extraction from spent mushroom waste of Pleurotus florida through ANN-PSO modeling: An ecofriendly and economical approach. ENVIRONMENTAL RESEARCH 2023; 222:115345. [PMID: 36706899 DOI: 10.1016/j.envres.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The cardinal focus of this study is to optimize the best reaction conditions for maximizing laccase activity from spent mushroom waste (SMW) of Pleurotus florida. Optimization process parameters were studied by the modeling techniques, artificial neural networking (ANN) embedded in particle swarm optimization (PSO), and response surface model (RSM). The best topology of ANN-PSO architecture was obtained on 4-10-1. The R2, IOA, MSE, and MAE values of the ANN model were obtained as 0.98785, 0.9939, 0.0023, and 0.0251 while, that of the RSM model were obtained as 0.74290, 0.9210, 0.0244, and 0.1110 respectively. The higher values of R2, IOA, and lower values of MSE and MAE of the ANN-PSO model depict that ANN-PSO outperformed compared to RSM and also verified the effectiveness of the ANN-PSO model. The ANN-PSO model performance demonstrates the robustness of the technique in optimizing laccase activity in SMW of P. florida. The optimization results revealed that pH 4.5, time 3 h, solid: solution ratio 1:5, and ABTS concentration of 1 mM was optimal for achieving maximum laccase activity at temperature 30 °C. The enzymatic activity of crude laccase enzyme was obtained as 1.185 U ml-1 without loss of enzyme activity. Additionally, crude laccase enzyme was 1.74 fold partially purified, and 83.54% of the enzyme was yielded. Out of all the independent process variables, ABTS and pH had an influence on laccase activity. Therefore, we anticipate that the findings of this investigation will reduce the ambiguity in maximizing laccase activity and ease the screening process. This study also highlights the comparative cost evaluation of crude laccase enzyme extracted from P. florida and commercial enzymes. There is a great potential for the utilization of the laccase enzyme extracted from SMW and using it for the degradation of recalcitrant micropollutants. Thus, SMW promises a cost-effective and sustainable approach leading towards circular economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
7
|
Schmiemann D, Hohenschon L, Bartels I, Hermsen A, Bachmann F, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic post-treatment of ozonation: laccase-mediated removal of the by-products of acetaminophen ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53128-53139. [PMID: 36853537 PMCID: PMC10119220 DOI: 10.1007/s11356-023-25913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Lisa Hohenschon
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Wfk-Cleaning Technology-Institute e.V., Campus Fichtenhain 11, 47807, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Andrea Hermsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Theoretical Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Felix Bachmann
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
8
|
Pujades E, Jurado A, Scheiber L, Teixidó M, Criollo Manjarrez RA, Vázquez-Suñé E, Vilarrasa V. Potential of low-enthalpy geothermal energy to degrade organic contaminants of emerging concern in urban groundwater. Sci Rep 2023; 13:2642. [PMID: 36788298 PMCID: PMC9929318 DOI: 10.1038/s41598-023-29701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Low-enthalpy geothermal energy (LEGE) is a carbon-free and renewable source to provide cooling and heating to infrastructures (e.g. buildings) by exchanging their temperature with that of the ground. The exchange of temperature modifies the groundwater temperature around LEGE installations, which may contribute to enhancing the capacity of aquifers to degrade organic contaminants of emerging concern (OCECs), whose presence is significantly increasing in urban aquifers. Here, we investigate the impact of LEGE on OCECs and their bioremediation potential through numerical modelling of synthetic and real-based cases. Simulation results demonstrate that: (i) LEGE facilities have the potential to noticeably modify the concentrations of OCECs; and (ii) the final impact depends on the design of the facility. This study suggests that optimized LEGE facility designs could contribute to the degradation of OCECs present in urban aquifers, thus improving groundwater quality and increasing its availability in urban areas.
Collapse
Affiliation(s)
- Estanislao Pujades
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Anna Jurado
- grid.420247.70000 0004 1762 9198Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Laura Scheiber
- grid.420247.70000 0004 1762 9198Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Marc Teixidó
- grid.420247.70000 0004 1762 9198Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Rotman A. Criollo Manjarrez
- grid.466857.e0000 0000 8518 7126Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Miquel Marqués 21, 07190 Esporles, Spain
| | - Enric Vázquez-Suñé
- grid.420247.70000 0004 1762 9198Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Victor Vilarrasa
- grid.466857.e0000 0000 8518 7126Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Miquel Marqués 21, 07190 Esporles, Spain
| |
Collapse
|
9
|
Huang Y, Yang J. Kinetics and mechanisms for sulfamethoxazole transformation in the phenolic acid-laccase (Trametes versicolor) system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62941-62951. [PMID: 35445921 DOI: 10.1007/s11356-022-20281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Oxidation of phenolic acids (PCs) by laccase could produce various kinds of reactive oxygen species (ROS), which is expected to have substantial impact on the transformation of antibiotics like sulfamethoxazole (SMX) in soil and aquatic environments. In this study, the formation of semiquinones radical (SQ●-), superoxide anion radical (O2●-), hydrogen peroxide (H2O2), hydroxyl radical (●OH), and singlet oxygen (1O2) in a laccase-gallic acid (GA) reaction system was confirmed. Meanwhile, GA would be transformed to its monomeric quinone and quinones of di- and tri-polymers. Transformation of SMX by laccase alone is negligible, while which was greatly enhanced in the presence of GA at the optimal pH of 5.5. The dissolved O2 was the requisite for transformation of SMX due to its fundamental role in the formation of SQ●-, the key species initializing the chain reactions for the generation of other ROS. The quenching experiments indicated O2●- and 1O2 were the main ROS responsible for SMX transformation. A total of thirteen products were proposed for the SMX transformation, with the pathways including the breaking of S-N bond, the cleavage of oxazole ring, electrophilic substitution, Michael addition, and condensation reactions. Moreover, the existence of electron-withdrawing substitution group on the benzene ring of PCs and less stability of SQ●- was believed to be favorable for the transformation of SMX. The results above expand our understanding on the role of oxidation of PCs by laccase in the SMX transformation in environments and are of significance in relation to use of laccase in dealing with SMX pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Resources & Environmental Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiewen Yang
- College of Resources & Environmental Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
10
|
Bankole PO, Omoni VT, Tennison-Omovoh CA, Adebajo SO, Mulla SI, Adekunle AA, Semple KT. Novel laccase from Xylaria polymorpha and its efficiency in the biotransformation of pharmaceuticals: Optimization of operational conditions, comparative effect of redox-mediators and toxicity studies. Colloids Surf B Biointerfaces 2022; 217:112675. [PMID: 35792528 DOI: 10.1016/j.colsurfb.2022.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 12/07/2022]
Abstract
The promising potentials of biocatalytic treatment processes in the removal of micropollutants whilst eliminating health and environmental hazards have attracted great attention in recent years. This current work investigated the biotransformation efficiency of a novel laccase from Xylaria polymorpha (XPL) in comparison with commercial laccases from Trametes versicolor (TVL) and Aspergillus sp. (ASL). XPL exhibited better oxidation performance (95.7%) on AMX than TVL (92.8%) and ASL (90.5%). Optimization of operational conditions revealed that AMX was best oxidized at pH 5, temperature (30 °C), and concentration (1.0 mg L-1). The investigation carried out to determine the effect of redox mediators revealed violuric acid (VLA) as the best redox mediator. The laccase stability experiments elucidated that the oxidation of AMX is time and mediator concentration dependent with ABTS exhibiting highest deactivation of XPL active sites. Two metabolic products; amoxicillin penilloic acid and 5-hydroxy-6-(4-hydroxyphenyl)- 3-(1,3-thiazolidin-2-yl)piperazin-2-one of AMX were obtained through Liquid Chromatography-Mass Spectrometry (LC-MS) analyses. The toxicity assessments carried out after oxidation of AMX by XPL showed 94% and 97% reduced toxicity on Artemia salina and Aliivibrio fischeri respectively. The study further underscored the efficiency of biocatalytic-mediator technology in the transformation of complex micropollutants into less toxic substances in an eco-friendly way.
Collapse
Affiliation(s)
- Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture P.M.B., 2240 Abeokuta, Ogun State, Nigeria; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | | | - Chidinma Angela Tennison-Omovoh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Nigeria
| | - Seun Owolabi Adebajo
- Department of Microbiology, College of Biosciences, Federal University of Agriculture P.M.B., 2240 Abeokuta, Ogun State, Nigeria
| | - Sikandar Imamsab Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore-560064, Karnataka, India
| | | | - Kirk Taylor Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
11
|
Athanasakoglou A, Fenner K. Toward Characterizing the Genetic Basis of Trace Organic Contaminant Biotransformation in Activated Sludge: The Role of Multicopper Oxidases as a Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:313-324. [PMID: 34932304 DOI: 10.1021/acs.est.1c05803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Mo Y, Lao HI, Au SW, Li IC, Hu J, Yuen HM, Cheong WM, Lo OLI, Seak LCU. Expression, secretion and functional characterization of three laccases in E. coli. Synth Syst Biotechnol 2021; 7:474-480. [PMID: 34938906 PMCID: PMC8665402 DOI: 10.1016/j.synbio.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/09/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) are a group of molecules that can influence hormonal balance, causing disturbance of the reproductive system and other health problems. Despite the efforts to eliminate EDC in the environment, all current approaches are inefficient and expensive. In previous research, studies revealed that laccase-producing microorganisms may be a potential candidate for EDC degradation, as laccases have been found to be able to degrade many kinds of EDCs effectively and steadily. Here, we created two recombinant laccases, each fused with secretion peptide, Novel Signal Peptide 4 (NSP4), and expressed them in Escherichia coli (E. coli, BL21), together with one laccase without secretion peptide. We first optimized the culture condition of expressing these laccases. Then, we test the activity of the recombinant laccases of decolorizing of a synthetic dye, indigo carmine. Finally, we confirmed the secreted can degrade one of the EDCs, β-estradiol, showing the potential of using the laccase secretion system to degrade toxic compounds.
Collapse
Affiliation(s)
- Yating Mo
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Hou Ip Lao
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Sau Wa Au
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Ieng Chon Li
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Jeremy Hu
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Hoi Man Yuen
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Wai Man Cheong
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China
| | - Owen Lok In Lo
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China.,The Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Leo Chi U Seak
- Pui Ching Middle School (Macau), Edificio Pui Ching, 7A Av. de Horta e Costa, Macau SAR, China.,Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| |
Collapse
|
13
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Caraene ID, Gruchlik Y, Busetti F, Linge KL, Joll CA. Degradation of selected pharmaceuticals detected in wastewater systems using an enzyme-mediator system and identification of resulting transformation products. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2003344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ionut Daniel Caraene
- Curtin Water Quality Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Yolanta Gruchlik
- Curtin Water Quality Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | | | - Kathryn L. Linge
- Curtin Water Quality Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- ChemCentre, Perth, Australia
| | - Cynthia A. Joll
- Curtin Water Quality Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
15
|
Ardila-Leal LD, Monterey-Gutiérrez PA, Poutou-Piñales RA, Quevedo-Hidalgo BE, Galindo JF, Pedroza-Rodríguez AM. Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC Biotechnol 2021; 21:37. [PMID: 34088291 PMCID: PMC8178886 DOI: 10.1186/s12896-021-00698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol− 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00698-3.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| | - Pedro A Monterey-Gutiérrez
- Vicerrectoría Académica. Universidad Antonio Nariño, Programa de Maestría y Doctorado en Educación Matemática, Bogotá, D.C, Colombia
| | - Raúl A Poutou-Piñales
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Balkys E Quevedo-Hidalgo
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ), Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Johan F Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| | - Aura M Pedroza-Rodríguez
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| |
Collapse
|
16
|
Design of Polymer-Embedded Heterogeneous Fenton Catalysts for the Conversion of Organic Trace Compounds. Processes (Basel) 2021. [DOI: 10.3390/pr9060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advanced oxidation processes are the main way to remove persistent organic trace compounds from water. For these processes, heterogeneous Fenton catalysts with low iron leaching and high catalytic activity are required. Here, the preparation of such catalysts consisting of silica-supported iron oxide (Fe2O3/SiOx) embedded in thermoplastic polymers is presented. The iron oxide catalysts are prepared by a facile sol–gel procedure followed by thermal annealing (calcination). These materials are mixed in a melt compounding process with modified polypropylenes to stabilize the Fe2O3 catalytic centers and to further reduce the iron leaching. The catalytic activity of the composites is analyzed by means of the Reactive Black 5 (RB5) assay, as well as by the conversion of phenol which is used as an example of an organic trace compound. It is demonstrated that embedding of silica-supported iron oxide in modified polypropylene turns the reaction order from pseudo-first order (found for Fe2O3/SiOx catalysts), which represents a mainly homogeneous Fenton reaction, to pseudo-zeroth order in the polymer composites, indicating a mainly heterogeneous, surface-diffusion-controlled process.
Collapse
|
17
|
Kang BR, Kim SY, Kang M, Lee TK. Removal of pharmaceuticals and personal care products using native fungal enzymes extracted during the ligninolytic process. ENVIRONMENTAL RESEARCH 2021; 195:110878. [PMID: 33592227 DOI: 10.1016/j.envres.2021.110878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Significant concentrations of pharmaceuticals and personal care products (PPCPs) have been detected in aquatic environment. Fungal enzymatic processes can oxidize these persistent PPCPs; thus, these processes have attracted considerable attention from the scientific community. Here, we evaluated the efficacy of the removal of PPCPs using native fungal enzymes derived from Bjerkandera spp. TBB-03 under various conditions. Among the eight lignocellulosic substrates, ash, which showed the highest laccase production, was selected as the sole enzyme inducer. TBB-03 laccase was found to exhibit remarkable stability under varied pH and temperature conditions. Acetaminophen and bisphenol A were effectively removed by TBB-03 laccase under various conditions, except at pH 8. Although TBB-03 laccase could not efficiently remove single-state sulfamethoxazole directly, a 22% of improvement in sulfamethoxazole removal was observed in the presence of acetaminophen. Overall, our proposed approach showed that Bjerkandera adusta TBB-03 can be potentially applied for further research regarding PPCP remediation.
Collapse
Affiliation(s)
- Bo Ram Kang
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Seo Young Kim
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minwoo Kang
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
18
|
Barkow IS, Oswald SE, Lensing HJ, Munz M. Seasonal dynamics modifies fate of oxygen, nitrate, and organic micropollutants during bank filtration - temperature-dependent reactive transport modeling of field data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9682-9700. [PMID: 33151490 PMCID: PMC7884598 DOI: 10.1007/s11356-020-11002-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/25/2020] [Indexed: 05/25/2023]
Abstract
Bank filtration is considered to improve water quality through microbially mediated degradation of pollutants and is suitable for waterworks to increase their production. In particular, aquifer temperatures and oxygen supply have a great impact on many microbial processes. To investigate the temporal and spatial behavior of selected organic micropollutants during bank filtration in dependence of relevant biogeochemical conditions, we have set up a 2D reactive transport model using MODFLOW and PHT3D under the user interface ORTI3D. The considered 160-m-long transect ranges from the surface water to a groundwater extraction well of the adjacent waterworks. For this purpose, water levels, temperatures, and chemical parameters were regularly measured in the surface water and groundwater observation wells over one and a half years. To simulate the effect of seasonal temperature variations on microbial mediated degradation, we applied an empirical temperature factor, which yields a strong reduction of the degradation rate at groundwater temperatures below 11 °C. Except for acesulfame, the considered organic micropollutants are substantially degraded along their subsurface flow paths with maximum degradation rates in the range of 10-6 mol L-1 s-1. Preferential biodegradation of phenazone, diclofenac, and valsartan was found under oxic conditions, whereas carbamazepine and sulfamethoxazole were degraded under anoxic conditions. This study highlights the influence of seasonal variations in oxygen supply and temperature on the fate of organic micropollutants in surface water infiltrating into an aquifer.
Collapse
Affiliation(s)
- Isolde S Barkow
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Sascha E Oswald
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Hermann-Josef Lensing
- Department of Geotechnical Engineering, Federal Waterways Engineering and Research Institute (BAW), Kussmaulstraße 17, 76187, Karlsruhe, Germany
| | - Matthias Munz
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
19
|
Mathur P, Sanyal D, Dey P. Optimization of growth conditions for enhancing the production of microbial laccase and its application in treating antibiotic contamination in wastewater. 3 Biotech 2021; 11:81. [PMID: 33505836 DOI: 10.1007/s13205-020-02627-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
In this work, seven indigenous macrofungal isolates were selected to screen for their laccase production capability. Among them, isolates viz., Pleurotus eryngii, Pleurotus florida, Pleurotus sajor caju and Gandoderma lucidum were found to exhibit high laccase activity in the preliminary studies and were thus selected for the optimization studies with an aim to enhance laccase production. The pH optimization studies were carried out between pH range of 4-6. The laccase activity and biomass were found to be optimum at pH 4, 4.5, 4.5 and 5 for P. eryngii, P. florida, P. sajor caju and G. lucidum, respectively. Optimization studies with chemical inducers namely, tannic acid, 2,6 dimethoxyphenol and copper sulphate at three different concentration levels were conducted and tannic acid at 2 mM concentration was found to increase the laccase activity to about 45% followed by 2,6 dimethoxyphenol (2 mM) with an increase of about 43% and copper sulphate (0.1 mM) showing 21% increase in the yield. Biodegradation studies utilizing laccase isolated from P. eryngii, P. florida and P. sajor caju was carried out for a commonly detected fluoroquinolone antibiotic, levofloxacin, in water and pharmaceutical wastewater. The results indicated that the degradation efficiency of levofloxacin using laccase isolated from P. eryngii (88.9%) was comparable to commercial laccase (89%). When the cost economics of using crude laccase was evaluated against commercial laccase it was evident that the total cost of the treatment could be reduced by 71.7% if commercial grade laccase was replaced by crude enzyme extracted from indigenous macrofungi such Pleurotus eryngii, Pleurotus florida, and Pleurotus sajor caju indicating a promising and cost-effective alternative for wastewater treatment.
Collapse
Affiliation(s)
- Purvi Mathur
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
- School of Life and Environmental Sciences, Deakin University, Burwood Campus, 221 Burwood Highway, Burwood, Melbourne, VIC 3125 Australia
| | - Doyeli Sanyal
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| | - Pannalal Dey
- Centre for Mycorrhiza Research, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
20
|
Svendsen SB, El-Taliawy H, Carvalho PN, Bester K. Concentration dependent degradation of pharmaceuticals in WWTP effluent by biofilm reactors. WATER RESEARCH 2020; 186:116389. [PMID: 32916616 DOI: 10.1016/j.watres.2020.116389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/25/2023]
Abstract
Conventional wastewater treatment lacks the ability to remove many pharmaceuticals. This is leading to emissions to the natural aquatic environment, where these compounds pose a risk to the aquatic organisms. An advanced wastewater treatment technique that has shown promising results is Moving Bed Biofilm Reactors (MBBR). Initial degradation velocity and degradation rate constants of the pharmaceuticals are important parameters for designing an optimal MBBR system; however, the degradation efficiency varies across studies and one of the most plausible causes might be initial concentration. Thus, to verify the effect of initial concentration, the degradation of a mixture of 18 pharmaceuticals at different initial concentrations was studied. For this study MBBR's with very low BOD loading were used as they were conditioned with effluent water. The experiment was set up as a MBBR batch incubation, using effluent wastewater as medium, spiked with the 18 pharmaceuticals in seven different concentration levels (approximately 0-300 µg L-1). The degradation of 14 out of 18 pharmaceuticals was concentration-dependent. The initial degradation velocity of the pharmaceuticals was either proportional to the initial concentration or was following a typical Michaelis-Menten kinetic. The degradation velocity of one compound, i.e., sulfamethizole might have been inhibited at high concentrations. The degradation rate constants from single first-order fittings (KSFO) for some compounds deviated from the expected behavior at low concentrations (below 10 µg L-1). This is suggested to be caused by simplicity of the Michaelis-Menten model, not taking possible occurrence of co-metabolism and mass-transfer limitations into account at low concentrations. This study underlines the fact that K values cannot be interpreted without paying attention to the tested concentration level. Furthermore, it shows that the used MBBRs was able to handle high concentrations of pharmaceuticals, and that the most efficient removal occurs at concentrations above 100 µg L-1.
Collapse
Affiliation(s)
- Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Haitham El-Taliawy
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
21
|
Asif MB, Hou J, Price WE, Chen V, Hai FI. Removal of trace organic contaminants by enzymatic membrane bioreactors: Role of membrane retention and biodegradation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118345] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl Microbiol Biotechnol 2019; 104:23-31. [DOI: 10.1007/s00253-019-10229-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
23
|
Zdarta J, Jankowska K, Wyszowska M, Kijeńska-Gawrońska E, Zgoła-Grześkowiak A, Pinelo M, Meyer AS, Moszyński D, Jesionowski T. Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109789. [DOI: 10.1016/j.msec.2019.109789] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 01/27/2023]
|
24
|
Unveiling of Concealed Processes for the Degradation of Pharmaceutical Compounds by Neopestalotiopsis sp. Microorganisms 2019; 7:microorganisms7080264. [PMID: 31426384 PMCID: PMC6722755 DOI: 10.3390/microorganisms7080264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among fungi, but their ability to biodegrade pharmaceuticals has not been studied as much as that of white rot fungi of the Basidiomycota phylum. Herein, we evaluated the capacity of the soft rot fungus Neopestalotiopsis sp. B2B to degrade pharmaceuticals under treatment of woody and nonwoody lignocellulosic biomasses. Nonwoody rice straw induced laccase activity fivefold compared with that in YSM medium containing polysaccharide. But B2B preferentially degraded polysaccharide over lignin regions in woody sources, leading to high concentrations of sugar. Hence, intermediate products from saccharification may inhibit laccase activity and thereby halt the biodegradation of pharmaceutical compounds. These results provide fundamental insights into the unique characteristics of pharmaceutical degradation by soft rot fungus Neopestalotiopsis sp. in the presence of preferred substrates during delignification.
Collapse
|
25
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
26
|
Abstract
It has been proposed that Trametes versicolor laccase can be used to detoxify wastewaters that are contaminated with phenolic pollutants. However, the oxidation of phenols at low concentrations may be impacted if other substrates tend to interfere with or enhance the oxidation of the target substrate. To test this, experiments were conducted to evaluate effects arising from the simultaneous presence of mixed substrates including phenol (P), estradiol (E2), cumylphenol (CP), and triclosan (TCL), each of which are characterized by different rates of oxidation and tendencies to inactivate laccase. Slower and faster substrates were found to have only minor negative impacts upon the rate of conversion of targeted substrates, except where they tended to cause inactivation. No enhancements in substrate oxidation were observed. A multi-substrate kinetic model was shown to be able to accurately predict the time course of reactions of mixed substrates over extended periods at micromolar and sub-micromolar concentrations, except when estradiol and triclosan were simultaneously present. In this case, more enzyme inactivation was observed than would be expected from the oxidation of individual substrates alone. The utility of the model for providing insights into the reaction phenomenon and for evaluating the feasibility of oxidizing targeted substrates in the presence of other substrates is demonstrated.
Collapse
|
27
|
Alharbi SK, Nghiem LD, van de Merwe JP, Leusch FDL, Asif MB, Hai FI, Price WE. Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: Transformation products and toxicity of treated effluent. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1580268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Sultan K. Alharbi
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW, Australian
- Department of Chemistry, Taibah University, Madinah, Saudi Arabia
| | - Long D. Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, Australia
| | - Jason P. van de Merwe
- Australian Rivers Institute and School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Frederic D. L. Leusch
- Australian Rivers Institute and School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Muhammad B. Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
| | - Faisal I. Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
| | - William E. Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW, Australian
| |
Collapse
|
28
|
Haugland JO, Kinney KA, Johnson WH, Camino MMA, Whitman CP, Lawler DF. Laccase removal of 2-chlorophenol and sulfamethoxazole in municipal wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:281-291. [PMID: 30802358 DOI: 10.1002/wer.1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Laccases were studied for their ability to remove two compounds, 2-chlorophenol and sulfamethoxazole, in batch studies, both in buffered solutions and in wastewater samples from different points in a municipal water resource recovery facility. Two enzymes with and without a mediator (acetosyringone) were investigated: a commercial product derived from Myceliphthora thermophile and a laboratory-generated enzyme mix derived from Tramates versicolor. The chlorophenol was removed rapidly by the commercial enzyme in the presence of acetosyringone, but the primary products were coupling complexes of the reactants. Excellent removal was achieved without acetosyringone by the natural enzyme mix. Sulfamethoxazole was poorly removed in all laboratory-generated chemically buffered solutions, but was very well removed, without the addition of mediators, in secondary effluent suspensions from a municipal water resource recovery facility. Mechanistic studies are still required, but the results suggest that treatment via direct addition of enzymes is feasible to remove recalcitrant compounds in municipal wastewater.
Collapse
Affiliation(s)
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas
| | | | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas
| | - Desmond F Lawler
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas
| |
Collapse
|
29
|
Echavarri-Bravo V, Tinzl M, Kew W, Cruickshank F, Logan Mackay C, Clarke DJ, Horsfall LE. High resolution fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin. N Biotechnol 2019; 52:1-8. [PMID: 30922999 DOI: 10.1016/j.nbt.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Lignin and lignin components of woody biomass have been identified as an attractive alternative to fossil fuels. However, the complex composition of this plant polymer is one of the drawbacks that limits its exploitation. Biocatalysis of lignin to produce platform chemicals has been receiving great attention as it presents a sustainable approach for lignin valorisation. Aligned with this area of research, in the present study we have applied ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify the preferred lignin substrates of a ligninolytic enzyme, a laccase produced by the terrestrial fungus Trametes versicolor. A commercial lignin was incubated with the laccase and acetosyringone (a laccase mediator) for up to 168 h and direct infusion electrospray FT-ICR MS enabled the identification of thousands of molecular species present in the complex lignin sample at different incubation time points. Significant changes in the chemical composition of lignin were detected upon laccase treatment, which resulted in a decrease in the molecular mass distribution of assigned species, consistent with laccase lytic activity. This reduction was predominantly in species classified as lignin-like (based on elemental ratios) and polymeric in nature (>400 Da). Of particular note was a fall in the number of species assigned containing sulfur. Changes in the chemical composition/structure of the lignin polymer were supported by FT-IR spectroscopy. We propose the use of FT-ICR MS as a rapid and efficient technique to support the biotechnological valorisation of lignin as well as the development and optimization of laccase-mediator systems for treating complex mixtures.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Matthias Tinzl
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Will Kew
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Faye Cruickshank
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - David J Clarke
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Louise E Horsfall
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
30
|
Parra Guardado AL, Belleville MP, Rostro Alanis MDJ, Parra Saldivar R, Sanchez-Marcano J. Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Apriceno A, Astolfi ML, Girelli AM, Scuto FR. A new laccase-mediator system facing the biodegradation challenge: Insight into the NSAIDs removal. CHEMOSPHERE 2019; 215:535-542. [PMID: 30340161 DOI: 10.1016/j.chemosphere.2018.10.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely found pollutants in the aquatic environment and the currently available treatments for their removal are usually associated with some drawbacks. The aim of this research was to apply a laccase-mediator system for the degradation of some commonly used NSAIDs, namely diclofenac (DCF), naproxen (NAP) and ketoprofen (KP). The biocatalyst was obtained by direct immobilization on chitosan beads of a periodate-oxided laccase from Trametes versicolor. A preliminary study aimed to optimize DCF degradation in the presence of 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt (ABTS) as mediator. It turned out that pH 3 and a 1:1 M ratio for ABTS:drug were the best experimental conditions under which DCF was degraded at 90% after 3 h. In addition, an efficient reuse of the biocatalyst for up to 5 cycles emerged. DCF was further mixed with naproxen and ketoprofen to test whether laccase was still able to eliminate DCF and eventually act on the other compounds. At just 0.02 U of laccase activity, diclofenac was completely degraded within 3 h, while an almost complete removal for naproxen (∼90%) and a partial removal for ketoprofen (30%) occurred in 7 d when drugs were added at high concentrations (78.5 μM, 98 μM and 108 μM, respectively). After 7 d of degradation, transformation products of diclofenac, identified as hydroxylated compounds, disappeared. Naproxen products were, instead, reduced to very small amounts.
Collapse
Affiliation(s)
- Azzurra Apriceno
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | | |
Collapse
|
32
|
Asif MB, Hai FI, Dhar BR, Ngo HH, Guo W, Jegatheesan V, Price WE, Nghiem LD, Yamamoto K. Impact of simultaneous retention of micropollutants and laccase on micropollutant degradation in enzymatic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 267:473-480. [PMID: 30036848 DOI: 10.1016/j.biortech.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
This study systematically compares the performance of ultrafiltration (UF) and nanofiltration (NF) based enzymatic membrane bioreactors (EMBRs) for the degradation of five micropollutants, namely atrazine, carbamazepine, sulfamethoxazole, diclofenac and oxybenzone to elucidate the impact of effective membrane retention of micropollutants on their degradation. Based on the permeate quality, NF-EMBR achieved 92-99.9% micropollutant removal (i.e., biodegradation + membrane retention), while the removal of these micropollutants by UF-EMBR varied from 20 to 85%. Mass balance analysis revealed that micropollutant degradation was improved by 15-30% in NF-EMBR as compared to UF-EMBR, which could be attributed to the prolonged contact time between laccase and micropollutants following their effective retention by the NF membrane. A small decline in permeate flux was observed during EMBR operation. However, the flux could be recovered by flushing the membrane with permeate.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Bipro R Dhar
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Huu H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kazuo Yamamoto
- Environmental Science Centre, Department of Urban Engineering, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Stadlmair LF, Letzel T, Drewes JE, Grassmann J. Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection. CHEMOSPHERE 2018; 205:649-661. [PMID: 29723723 DOI: 10.1016/j.chemosphere.2018.04.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
At present, the removal of trace organic chemicals such as pharmaceuticals in wastewater treatment plants is often incomplete resulting in a continuous discharge into the aqueous environment. To overcome this issue, bioremediation approaches gained significant importance in recent times, since they might have a lower carbon footprint than chemical or physical treatment methods. In this context, enzyme-based technologies represent a promising alternative since they are able to specifically target certain chemicals. For this purpose, versatile monitoring of enzymatic reactions is of great importance in order to understand underlying transformation mechanisms and estimate the suitability of various enzymes exhibiting different specificities for bioremediation purposes. This study provides a comprehensive review, summarizing research on enzymatic transformation of pharmaceuticals in water treatment applications using traditional and state-of-the-art enzyme screening approaches with a special focus on mass spectrometry (MS)-based and high-throughput tools. MS-based enzyme screening represents an approach that allows a comprehensive mechanistic understanding of enzymatic reactions and, in particular, the identification of transformation products. A critical discussion of these approaches for implementation in wastewater treatment processes is also presented. So far, there are still major gaps between laboratory- and field-scale research that need to be overcome in order to assess the viability for real applications.
Collapse
Affiliation(s)
- Lara F Stadlmair
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany
| | - Johanna Grassmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748, Garching, Germany.
| |
Collapse
|
34
|
|
35
|
Huber D, Bleymaier K, Pellis A, Vielnascher R, Daxbacher A, Greimel KJ, Guebitz GM. Laccase catalyzed elimination of morphine from aqueous systems. N Biotechnol 2018; 42:19-25. [DOI: 10.1016/j.nbt.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/29/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
|
36
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:190-213. [PMID: 29175684 DOI: 10.1016/j.envpol.2017.11.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/26/2023]
Abstract
Due to recalcitrance of some pharmaceutically active compounds (PhACs), conventional wastewater treatment is not able to remove them effectively. Therefore, their occurrence in surface water and potential environmental impact has raised serious global concern. Biological transformation of these contaminants using white-rot fungi (WRF) and their oxidoreductase enzymes has been proposed as a low cost and environmentally friendly solution for water treatment. The removal performance of PhACs by a fungal culture is dependent on several factors, such as fungal species, the secreted enzymes, molecular structure of target compounds, culture medium composition, etc. In recent 20 years, numerous researchers tried to elucidate the removal mechanisms and the effects of important operational parameters such as temperature and pH on the enzymatic treatment of PhACs. This review summarizes and analyzes the studies performed on PhACs removal from spiked pure water and real wastewaters using oxidoreductase enzymes and the data related to degradation efficiencies of the most studied compounds. The review also offers an insight into enzymes immobilization, fungal reactors, mediators, degradation mechanisms and transformation products (TPs) of PhACs. In brief, higher hydrophobicity and having electron-donating groups, such as amine and hydroxyl in molecular structure leads to more effective degradation of PhACs by fungal cultures. For recalcitrant compounds, using redox mediators, such as syringaldehyde increases the degradation efficiency, however they may cause toxicity in the effluent and deactivate the enzyme. Immobilization of enzymes on supports can enhance the performance of enzyme in terms of reusability and stability. However, the immobilization strategy should be carefully selected to reduce the cost and enable regeneration. Still, further studies are needed to elucidate the mechanisms involved in enzymatic degradation and the toxicity levels of TPs and also to optimize the whole treatment strategy to have economical and technical competitiveness.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, B3J 1Z1, Nova Scotia, Canada
| | - Mausam Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R Y Surampalli
- Global Institute for Energy, Environment and Sustainability, P.O. Box 14354, Lenexa, KS 66285, USA
| |
Collapse
|
37
|
Dou RN, Wang JH, Chen YC, Hu YY. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:88-95. [PMID: 29172042 DOI: 10.1016/j.envpol.2017.10.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
This study systematically explored the effect of humic acid (HA) (as model of natural organic matter) on the kinetics, products and transformation pathway of triclosan (TCS) by laccase-catalyzed oxidation. It was found that TCS could be effectively transformed by laccase-catalysis, with the apparent second-order rate constant being 0.056 U-1 mL min-1. HA inhibited the removal rate of TCS. HA-induced inhibition was negatively correlated with HA concentration in the range of 0-10 mg L-1 and pH-dependent from 3.5 to 9.5. FT-IR and 13C NMR spectra showed a decrease of aromatic hydroxyl (phenolic) groups and an increase of aromatic ether groups, indicating the cross-linking of HA via C-O-C and C-N-C bonds during enzyme-catalyzed oxidation. Ten principle oxidative products, including two quinone-like products (2-chlorohydroquinone, 2-chloro-5-(2,4-dichlodichlorophenoxy)-(1,4)benzoquinone), one chlorinated phenol (2,4-dichlorophenol (2,4-DCP)), three dimers, two trimmers and two tetramers, were detected by gas chromatograghy/mass spectrometry (GC-MS) and high performance liquid chromatography/quadrupole time-of-flight/mass spectrometry (HPLC/Q-TOF/MS). The presence of HA induced significantly lesser generation of self-polymers and enhanced cross-coupling between HA and self-polymers via C-O-C, C-N-C and C-C coupling pathways. A plausible transformation pathway was proposed as follows: TCS was initially oxidized to form reactive phenoxyl radicals, which self-coupled to each other subsequently by C-C and C-O pathway, yielding self-polymers. In addition, the scission of ether bond was also observed. The presence of HA can promote scission of ether bond and further oxidation of phenoxyl radicals, forming hydroxylated or quinone-like TCS. This study shed light on the behavior of TCS in natural environment and engineered processes, as well provided a perspective for the water/wastewater treatment using enzyme-catalyzed oxidation techniques.
Collapse
Affiliation(s)
- Rong-Ni Dou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing-Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuan-Cai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, South China University of Technology, Guangzhou 510006, China.
| | - Yong-You Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Hahn V, Meister M, Hussy S, Cordes A, Enderle G, Saningong A, Schauer F. Enhanced laccase-mediated transformation of diclofenac and flufenamic acid in the presence of bisphenol A and testing of an enzymatic membrane reactor. AMB Express 2018; 8:28. [PMID: 29478084 PMCID: PMC6890904 DOI: 10.1186/s13568-018-0546-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.
Collapse
Affiliation(s)
- Veronika Hahn
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mareike Meister
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Stephan Hussy
- Atec Automatisierungstechnik GmbH, Emmi-Noether-Str. 6, 89231 Neu-Ulm, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19 C, 38302 Wolfenbüttel, Germany
| | - Günther Enderle
- Atec Automatisierungstechnik GmbH, Emmi-Noether-Str. 6, 89231 Neu-Ulm, Germany
| | | | - Frieder Schauer
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| |
Collapse
|
39
|
Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects, Regulations and Removal by Wastewater Treatment Technologies. WATER 2018. [DOI: 10.3390/w10020107] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HMN, Kannan S, Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1516-1531. [PMID: 28915546 DOI: 10.1016/j.scitotenv.2017.09.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 02/05/2023]
Abstract
Herein, an effort has been made to highlight the trends of the state-of-the-art of laccase-assisted degradation of emerging contaminants at large and endocrine disruptors in particular. Since first described in the 19th century, laccase has received particular interest for inter- and multidisciplinary investigations due to its uniqueness and remarkable biotechnological applicability. There has always been a paramount concern over the widespread occurrences of various pollutant types, around the globe. Therefore, pollution free processes are gaining ground all over the world. With ever increasing scientific knowledge, socioeconomic awareness, human health-related issues and ecological apprehensions, people are more concerned about the widespread environmental pollutants. In this context, the occurrences of newly identified pollutants so-called "emerging contaminants - ECs" in our main water bodies is of continued and burning concern worldwide. Undoubtedly, various efforts have already been made to tackle this challenging ECs concern though using different approaches including physical and chemical, however, each has considerable limitations. In this review, we present information on how laccase-assisted approach can change this limited tendency of physical and chemical based approaches. A special focus has been given to the laccase-assisted systems including pristine laccase, laccase-mediator catalyzed system and immobilized-laccase catalyzed system that promotes the endocrine disruptors removal. Towards the end, a list of outstanding questions and research gaps are given that can pave the way for future studies.
Collapse
Affiliation(s)
- Carlos Barrios-Estrada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Blanca Delia Muñoz-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine laboratory, Department of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
41
|
Forootanfar H, Arjmand S, Behzadi M, Faramarzi MA. Laccase-Mediated Treatment of Pharmaceutical Wastes. RESEARCH ADVANCEMENTS IN PHARMACEUTICAL, NUTRITIONAL, AND INDUSTRIAL ENZYMOLOGY 2018. [DOI: 10.4018/978-1-5225-5237-6.ch010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Laccases are versatile multi-copper enzymes belonging to the superfamily of oxidase enzymes, which have been known since the nineteenth century. Recent discoveries have refined investigators' views of the potential of laccase as a magic tool for remarkable biotechnological purposes. A literature review of the capabilities of laccases, their assorted substrates, and their molecular mechanism of action now indicates the emergence of a new direction for laccase application as part of an arsenal in the fight against the contamination of water supplies by a number of frequently prescribed medications. This chapter provides a critical review of the literature and reveals the pivotal role of laccases in the elimination and detoxification of pharmaceutical contaminants in aquatic environments and wastewaters.
Collapse
|
42
|
Asif MB, Hai FI, Kang J, van de Merwe JP, Leusch FDL, Price WE, Nghiem LD. Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor. BIORESOURCE TECHNOLOGY 2018; 247:528-536. [PMID: 28972906 DOI: 10.1016/j.biortech.2017.09.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Laccase-catalyzed degradation of a broad spectrum of trace organic contaminants (TrOCs) by a membrane distillation (MD)-enzymatic membrane bioreactor (EMBR) was investigated. The MD component effectively retained TrOCs (94-99%) in the EMBR, facilitating their continuous biocatalytic degradation. Notably, the extent of TrOC degradation was strongly influenced by their molecular properties. A significant degradation (above 90%) of TrOCs containing strong electron donating functional groups (e.g., hydroxyl and amine groups) was achieved, while a moderate removal was observed for TrOCs containing electron withdrawing functional groups (e.g., amide and halogen groups). Separate addition of two redox-mediators, namely syringaldehyde and violuric acid, further improved TrOC degradation by laccase. However, a mixture of both showed a reduced performance for a few pharmaceuticals such as primidone, carbamazepine and ibuprofen. Mediator addition increased the toxicity of the media in the enzymatic bioreactor, but the membrane permeate (i.e., final effluent) was non-toxic, suggesting an added advantage of coupling MD with EMBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Jinguo Kang
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute and Griffith School of Environment, Griffith University, QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute and Griffith School of Environment, Griffith University, QLD 4222, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
43
|
Conceição AA, Cunha JRB, Vieira VO, Pelaéz RDR, Mendonça S, Almeida JRM, Dias ES, de Almeida EG, de Siqueira FG. Bioconversion and Biotransformation Efficiencies of Wild Macrofungi. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Singh J, Saharan V, Kumar S, Gulati P, Kapoor RK. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology. Crit Rev Biotechnol 2017; 38:883-901. [DOI: 10.1080/07388551.2017.1417234] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jagdeep Singh
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vicky Saharan
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Gulati
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
45
|
Degradation of Trace Organic Contaminants by a Membrane Distillation—Enzymatic Bioreactor. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
47
|
Kadam AA, Jang J, Lee DS. Supermagnetically Tuned Halloysite Nanotubes Functionalized with Aminosilane for Covalent Laccase Immobilization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15492-15501. [PMID: 28418639 DOI: 10.1021/acsami.7b02531] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halloysite nanotubes (HNTs) were tuned with supermagnetic Fe3O4 (M-HNTs) and functionalized with γ-aminopropyltriethoxysilane (APTES) (A-M-HNTs). Gluteraldehyde (GTA) was linked to A-M-HNTs (A-M-HNTs-GTA) and explored for covalent laccase immobilization. The structural characterization of M-HNTs, A-M-HNTs, and A-M-HNTs-GTA-immobilized laccase (A-M-HNTs-GTA-Lac) was determined by X-ray photoelectron spectroscopy, field-emission high-resolution transmission electron microscopy, a magnetic property measurement system, and thermogavimetric analyses. A-M-HNTs-GTA-Lac gave 90.20% activity recovery and a loading capability of 84.26 mg/g, with highly improved temperature and storage stabilities. Repeated usage of A-M-HNTs-GTA-Lac revealed a remarkably consistent relative activity of 80.49% until the ninth cycle. The A-M-HNTs-GTA-Lac gave consistent redox-mediated sulfamethoxazole (SMX) degradation up to the eighth cycle. In the presence of guaiacol, A-M-HNTs-GTA-Lac gave elevated SMX degradation compared with 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and syrinialdehyde. Therefore, the A-M-HNTs can serve as supermagnetic amino-functionalized nanoreactors for biomacromolecule immobilization. The obtained A-M-HNTs-GTA-Lac is an environmentally friendly biocatalyst for effective degradation of micropollutants, such as SMX, and can be easily retrieved from an aqueous solution by a magnet after decontamination of pollutants in water and wastewater.
Collapse
Affiliation(s)
- Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University , Biomedi Campus, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| |
Collapse
|
48
|
Stadlmair LF, Letzel T, Drewes JE, Graßmann J. Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. CHEMOSPHERE 2017; 174:466-477. [PMID: 28189026 DOI: 10.1016/j.chemosphere.2017.01.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
The ubiquitous presence of trace organic chemicals in wastewater and surface water leads to a growing demand for novel removal technologies. The use of isolated enzymes has been shown to possess the capability for a targeted application but requires a clearer mechanistic understanding. In this study, the potential of peroxidase from horseradish (HRP) and laccase from Pleurotus ostreatus (LccPO) to transform selected trace organic chemicals was studied using mass spectrometry (MS)-based in vitro enzyme assays. Conversion by HRP appeared to be more efficient compared to LccPO. Diclofenac (DCF) and sotalol (STL) were completely transformed by HRP after 4 h and immediate conversion was observed for acetaminophen (APAP). During treatment with LccPO, 60% of DCF was still detectable after 24 h and no conversion was found for STL. APAP was completely transformed after 20 min. Sulfamethoxazole (SMX), carbamazepine (CBZ), ibuprofen (IBP) and naproxen (NAP) were insusceptible to enzymatic conversion. In pharmaceutical mixtures, HRP exhibited a preference for DCF and APAP and the generally less efficient conversion of STL was enhanced in presence of APAP. Transformation product pattern after treatment with HRP revealed polymerization products for DCF while STL showed cleavage reactions. DCF product formation shifted towards a proposed dimeric iminoquinone product in presence of APAP whereas a generally less pronounced product formation in mixtures was observed for STL. In conclusion, the enzymatic treatment approach worked selectively and efficiently for a few pharmaceuticals. However, for application the investigation and possibly immobilization of multiplex enzymes being able to transform diverse chemical structures is recommended.
Collapse
Affiliation(s)
- Lara F Stadlmair
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany.
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
| | - Johanna Graßmann
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany.
| |
Collapse
|
49
|
Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.043] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Becker D, Rodriguez-Mozaz S, Insa S, Schoevaart R, Barceló D, de Cazes M, Belleville MP, Sanchez-Marcano J, Misovic A, Oehlmann J, Wagner M. Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00361] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dennis Becker
- Biological
Sciences Division, Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Sara Rodriguez-Mozaz
- Catalan
Institute for Water Research (ICRA), ParcCientíficiTecnològic de la Universitat de Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Sara Insa
- Catalan
Institute for Water Research (ICRA), ParcCientíficiTecnològic de la Universitat de Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Rob Schoevaart
- Chiralvision BV, J. H. Oortweg 21, 2333CH Leiden, Netherlands
| | - Damià Barceló
- Catalan
Institute for Water Research (ICRA), ParcCientíficiTecnològic de la Universitat de Girona, Emili Grahit 101, 17003 Girona, Spain
- Water
and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08911 Barcelona, Spain
| | - Matthias de Cazes
- Institut
Européen des Membranes, ENSCM, UM2, CNRS−Université de Montpellier, CC 047, Place Eugène Bataillon, 34095 Montpellier, France
| | - Marie-Pierre Belleville
- Institut
Européen des Membranes, ENSCM, UM2, CNRS−Université de Montpellier, CC 047, Place Eugène Bataillon, 34095 Montpellier, France
| | - José Sanchez-Marcano
- Institut
Européen des Membranes, ENSCM, UM2, CNRS−Université de Montpellier, CC 047, Place Eugène Bataillon, 34095 Montpellier, France
| | - Andrea Misovic
- Biological
Sciences Division, Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Jörg Oehlmann
- Biological
Sciences Division, Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Martin Wagner
- Biological
Sciences Division, Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| |
Collapse
|