1
|
Zhen Z, Sun X, Yuan S, Zhang J. Psychoactive substances for the treatment of neuropsychiatric disorders. Asian J Psychiatr 2024; 101:104193. [PMID: 39243659 DOI: 10.1016/j.ajp.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
In the contemporary landscape of psychiatric medicine, critical advancements have been noted in the utilization of psychoactive substances such as hallucinogens, 3,4-methylenedioxymethamphetamine (MDMA), and ketamine for the treatment of severe mental health disorders. This review provides a detailed evaluation of these substances, focusing on their mechanisms of action and the profound clinical outcomes observed in controlled environments. Hallucinogens like lysergic acid diethylamide and psilocybin primarily target the 5-HT2A receptor agonist-2 (5-HT2AR), inducing substantial perceptual and cognitive shifts that facilitate deep psychological introspection and significant therapeutic advances, particularly in patients suffering from depression and anxiety disorders. MDMA, influencing multiple neurotransmitter systems including 5-Hydroxytryptamine (5-HT), dopamine, and norepinephrine, has been demonstrated to effectively alleviate symptoms of post-traumatic stress disorder, enhancing patients' emotional engagement and resilience during psychotherapy. Meanwhile, ketamine, a glutamate receptor antagonist, rapidly alleviates depressive symptoms, offering a lifeline for individuals with treatment-resistant depression through its fast-acting antidepressant properties. The integration of these substances into psychiatric practice has shown promising results, fundamentally changing the therapeutic landscape for patients unresponsive to traditional treatment modalities. However, the potent effects of these agents also necessitate a cautious approach in clinical application, ensuring careful dosage control, monitoring, and risk management to prevent potential abuse and mitigate adverse effects.
Collapse
Affiliation(s)
- Zifan Zhen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xueqiang Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
2
|
de Moura LA, Pyterson MP, Pimentel AFN, Araújo F, de Souza LVXB, Mendes CHM, Costa BPD, de Siqueira-Silva DH, Lima-Maximino M, Maximino C. Roles of the 5-HT2C receptor on zebrafish sociality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110769. [PMID: 37068544 DOI: 10.1016/j.pnpbp.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Serotonin (5-HT) receptors have been implicated in social behavior in vertebrates. Zebrafish (Danio rerio) have been increasingly being used behavioral neuroscience to study the neurobiological correlates of behavior, including sociality. Nonetheless, the role of 5-HT2C receptors in different social functions were not yet studied in this species. Zebrafish were treated with the agonist MK-212 (2 mg/kg) or the antagonist RS-102221 (2 mg/kg) and tested in the social interaction and social novelty tests, conditional approach test, or mirror-induced aggressive displays. MK-212 increased preference for an unknown conspecific in the social investigation test, but also increased preference for the known conspecific in the social novelty test; RS-102221, on the other hand, decreased preference in the social investigation test but increased preference for the novel conspecific in the social novelty test. MK-212 also decreased predator inspection in the conditional approach test. While RS-102221 decreased time in the display zone in the mirror-induced aggressive display test, it increased display duration. Overall, these results demonstrate the complex role of 5-HT2C receptors in different social contexts in zebrafish, revealing a participation in social plasticity in vertebrates.
Collapse
Affiliation(s)
- Layana Aquino de Moura
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Maryana Pereira Pyterson
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Fernanda Araújo
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Loanne Valéria Xavier Bruce de Souza
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Henrique Moura Mendes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Grupo de Estudos da Reprodução de Peixes Amazônicos, Faculdade de Biologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil.
| |
Collapse
|
3
|
Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci 2022; 25:1407-1419. [PMID: 36280799 PMCID: PMC9641582 DOI: 10.1038/s41593-022-01177-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Psychedelics are serotonin 2A receptor agonists that can lead to profound changes in perception, cognition and mood. In this review, we focus on the basic neurobiology underlying the action of psychedelic drugs. We first discuss chemistry, highlighting the diversity of psychoactive molecules and the principles that govern their potency and pharmacokinetics. We describe the roles of serotonin receptors and their downstream molecular signaling pathways, emphasizing key elements for drug discovery. We consider the impact of psychedelics on neuronal spiking dynamics in several cortical and subcortical regions, along with transcriptional changes and sustained effects on structural plasticity. Finally, we summarize neuroimaging results that pinpoint effects on association cortices and thalamocortical functional connectivity, which inform current theories of psychedelic action. By synthesizing knowledge across the chemical, molecular, neuronal, and network levels, we hope to provide an integrative perspective on the neural mechanisms responsible for the acute and enduring effects of psychedelics on behavior.
Collapse
Affiliation(s)
- Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Correspondence: ; ; ;
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, CA, USA,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA,Center for Neuroscience, University of California, Davis, Davis, CA, USA,Correspondence: ; ; ;
| | - Katrin H. Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland.,Correspondence: ; ; ;
| | - Bryan L. Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.,Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Correspondence: ; ; ;
| |
Collapse
|
4
|
Re-evaluation of the discriminative stimulus effects of lysergic acid diethylamide with male and female Sprague-Dawley rats. Behav Pharmacol 2021; 31:776-786. [PMID: 32960851 DOI: 10.1097/fbp.0000000000000589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent discoveries from clinical trials with psychedelic-assisted therapy have led to a resurgence of interest in the psychopharmacology of lysergic acid diethylamide (LSD). Preclinical drug discrimination is an invaluable tool to investigate the neurochemical mechanisms underlying subjective drug effects. The current study extends previous drug discrimination research by including both sexes. Adult female (n = 8) and male (n = 8) Sprague-Dawley rats were trained to discriminate 0.08 mg/kg LSD from saline under a fixed ratio 20 schedule of food reinforcement. Substitution tests were conducted with several substances, including other serotonergic hallucinogens, psychostimulants, mixed psychedelic-stimulants and synthetic cathinones. Stimulus antagonist tests were conducted with selected serotonin and dopamine antagonists. LSD-substitution with serotonergic hallucinogens was comparable between sexes. Modest but intriguing differences were observed between male and female rats in the extent of partial substitution by 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine enantiomers and the synthetic cathinones, 3,4-methylenedioxypyrovalerone and 4-methylmethcathinone. Dopamine antagonists failed to block the LSD cue in both sexes and exerted stronger rate suppressant effects in male rats. The 5-hydroxytryptamine antagonist, (R)-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl) ethyl]-4-piperidinemethanol (MDL 100 907) blocked LSD discrimination in both sexes, although complete blockade was evident at lower doses in male rats. These results support previous findings regarding the prominent role of serotonergic activities underlying LSDs discriminative stimulus effects in male rats and generalize these findings to female rats. In consideration of the rising popularity in psychedelic-assisted psychotherapy, further research may be warranted to evaluate possible sex differences in the behavioral and subjective effects of LSD.
Collapse
|
5
|
Popik P, Krawczyk M, Kuziak A, Bugno R, Hogendorf A, Staroń J, Nikiforuk A. Serotonin type 5A receptor antagonists inhibit D-lysergic acid diethylamide discriminatory cue in rats. J Psychopharmacol 2019; 33:1447-1455. [PMID: 31452444 DOI: 10.1177/0269881119867603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Like other psychedelics, D-lysergic acid diethylamide (LSD) affects numerous serotonin receptors, and according to the current dogma, the 5-HT2A receptors are considered the main target for its hallucinogenic effects. LSD, however, also displays agonistic activity at the 5-HT5A receptors, which mediate some of LSD-induced behavioural effects. METHODS Using male Sprague Dawley rats, we examined the effects of 5-HT2A and 5-HT5A receptor antagonists on LSD-induced stimulus control in the two-lever drug discrimination test using a FR10 schedule of reinforcement. RESULTS In animals trained to discriminate 0.08 mg/kg LSD from vehicle 15 minutes after injection, LSD produced dose-related increases in response, with an ED50 (±95% confidence limits) of 0.0384 (± 0.025-0.051) mg/kg). LSD-like responses were observed when the training dose of LSD was given 5-30 but not 90 minutes before the test. Confirming earlier reports, the 5-HT antagonist ketanserin (2 mg/kg) attenuated the LSD response in 50% of rats, and due to pretreatment with 0.2 and 2 mg/kg MDL 100907, 63% and 67% of animals, respectively, failed to select the LSD lever. We then investigated the effects of two 5-HT5A receptor antagonists, and we found that 56% and 60% of rats pretreated with 3 and 10 mg/kg SB 699551, respectively, failed to select the LSD lever. Due to pretreatment with 0.01 mg/kg ASP 5736, 58% of rats did not select the LSD lever. This dose also reduced the response rate but not the number of rats failing to complete the test. CONCLUSIONS The present results suggest that antagonists of the 5-HT5A receptor may inhibit subjective effects of LSD in rats.
Collapse
Affiliation(s)
- Piotr Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Martyna Krawczyk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agata Kuziak
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Adam Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jakub Staroń
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Canal CE. Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action. Handb Exp Pharmacol 2019; 252:227-260. [PMID: 29532180 PMCID: PMC6136989 DOI: 10.1007/164_2018_107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits. Despite these advances and a plethora of preclinical and clinical observations supporting a central role for brain serotonin 5-HT2A receptors in producing serotonergic psychedelic effects, lingering and new questions about mechanisms abound. These chiefly pertain to molecular neuropharmacology. This chapter is devoted to illuminating and discussing such questions in the context of preclinical experimental approaches for studying mechanisms of action of serotonergic psychedelics, classic and new.
Collapse
Affiliation(s)
- Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Sakloth F, Leggett E, Moerke MJ, Townsend EA, Banks ML, Negus SS. Effects of acute and repeated treatment with serotonin 5-HT2A receptor agonist hallucinogens on intracranial self-stimulation in rats. Exp Clin Psychopharmacol 2019; 27:215-226. [PMID: 30628811 PMCID: PMC6690189 DOI: 10.1037/pha0000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prototype 5-HT2A receptor agonist hallucinogens LSD, mescaline, and psilocybin are classified as Schedule 1 drugs of abuse by the U.S. Drug Enforcement Administration. Accumulating clinical evidence has also suggested that acute or repeated "microdosing" with these drugs may have utility for treatment of some mental health disorders, including drug abuse and depression. The goal of the present study was to evaluate LSD, mescaline, and psilocybin effects on intracranial self-stimulation (ICSS), a procedure that has been used to evaluate abuse-related effects of other classes of abused drugs. Effects of repeated LSD were also examined to evaluate potential changes in its own effects on ICSS or changes in effects produced by the abused psychostimulant methamphetamine or the prodepressant kappa opioid receptor (KOR) agonist U69,593. Male Sprague-Dawley rats were implanted with microelectrodes targeting the medial forebrain bundle and trained to respond under a "frequency-rate" ICSS procedure, in which many drugs of abuse increase (or "facilitate") ICSS. In acute dose-effect and time-course studies, evidence for abuse-related ICSS facilitation was weak and inconsistent; the predominant effect of all 3 drugs was dose- and time-dependent ICSS depression. Repeated LSD treatment failed to alter either its own ICSS depressant effects or the abuse-related effects of methamphetamine; however, repeated LSD did attenuate ICSS depression by U69,593. These results extend those of previous preclinical studies to suggest weak expression of abuse-related effects by 5-HT2A agonist hallucinogens and provide supportive evidence for therapeutic effects of repeated LSD dosing to attenuate KOR-mediated depressant effects but not abuse potential of psychostimulants. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
8
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015; 277:99-120. [PMID: 25036425 PMCID: PMC4642895 DOI: 10.1016/j.bbr.2014.07.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
10
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
11
|
Swedberg MDB, Ellgren M, Raboisson P. mGluR5 Antagonist-Induced Psychoactive Properties: MTEP Drug Discrimination, a Pharmacologically Selective Non–NMDA Effect with Apparent Lack of Reinforcing Properties. J Pharmacol Exp Ther 2014; 349:155-64. [DOI: 10.1124/jpet.113.211185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Hanks JB, González-Maeso J. Animal models of serotonergic psychedelics. ACS Chem Neurosci 2013; 4:33-42. [PMID: 23336043 DOI: 10.1021/cn300138m] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022] Open
Abstract
The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.
Collapse
Affiliation(s)
- James B. Hanks
- Departments of Psychiatry and ‡Neurology, §Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, United States
| | - Javier González-Maeso
- Departments of Psychiatry and ‡Neurology, §Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, United States
| |
Collapse
|
13
|
Barry H, Appel JB. Early preclinical studies of discriminable sedative and hallucinogenic drug effects. Psychopharmacology (Berl) 2009; 203:193-201. [PMID: 18712362 DOI: 10.1007/s00213-008-1292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE One important technique in behavioral pharmacology is to train laboratory animals to discriminate between a psychoactive drug effect and a nondrug condition. Tests with different drugs have identified several categories of drugs that have different discriminable effects. OBJECTIVES The two authors describe and discuss the early research on discriminable effects of sedative and hallucinogenic drugs and their acquaintance with each other at Yale University prior to their early and frequent publications on discriminable drug effects. Herb Barry studied sedative drugs primarily and Jim Appel studied hallucinogenic drugs. RESULTS Sedative drugs include ethyl alcohol, barbiturates, and benzodiazepines. Their discriminable effects are largely attributable to the activation of an inhibitory neurotransmitter, gamma-amino butyric acid. Alcohol has the most pervasive effect in accordance with the high dose required to alter behavior. Hallucinogenic drugs include lysergic acid diethylamide and mescaline. They increase the activity of the neurotransmitter 5-hydroxytryptamine and, perhaps, dopamine in the central nervous system (CNS). In spite of their relatively low concentrations in the brain, both of these neurotransmitters have many important behavioral effects. CONCLUSIONS Various sedative drugs cause a discriminable decrease in the function of the CNS. Different types of sedatives can be discriminated from each other. Indole and phenylethylamine hallucinogens have potent discriminative stimulus properties, which are related to the actions of biogenic amine neurotransmitters in the CNS.
Collapse
|
14
|
Marona-Lewicka D, Nichols DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 2007; 87:453-61. [PMID: 17618679 DOI: 10.1016/j.pbb.2007.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/03/2007] [Accepted: 06/04/2007] [Indexed: 11/16/2022]
Abstract
Activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic effects of LSD. Nevertheless, in a previous report we provided evidence that a delayed temporal phase of the behavioral pharmacology of LSD is mediated by D(2)-like dopamine receptor stimulation. In this study rats were trained to discriminate LSD with either a 30 min preinjection time (LSD-30, N=12) or a 90 min preinjection time (LSD-90, N=13) from saline, using a two-lever, food-reinforced operant conditioning task. We then tested a large number of agonists and antagonists belonging to distinct pharmacological classes in these animals. As anticipated, classical hallucinogens such as psilocin and mescaline substituted only in LSD-30 rats, and not in LSD-90 rats. The dopamine receptor agonists ABT-724, aripiprazole, dihydrexidine, WAY 100635, and SKF 38393, fully or partially mimicked LSD-90, but not LSD-30. The results reported here support and extend our previous conclusion that the delayed temporal effects of LSD are mediated by activation of a dopaminergic system.
Collapse
Affiliation(s)
- Danuta Marona-Lewicka
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, RHPH, 575 Stadium Mall Dr. Purdue University, West Lafayette, IN 47907-2091, United States
| | | |
Collapse
|
15
|
Gresch PJ, Smith RL, Barrett RJ, Sanders-Bush E. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex. Neuropsychopharmacology 2005; 30:1693-702. [PMID: 15756304 DOI: 10.1038/sj.npp.1300711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance to the discriminative stimulus effects of LSD.
Collapse
Affiliation(s)
- Paul J Gresch
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
16
|
Benneyworth MA, Smith RL, Barrett RJ, Sanders-Bush E. Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology (Berl) 2005; 179:854-62. [PMID: 15645221 DOI: 10.1007/s00213-004-2108-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE The drug discrimination procedure is the most frequently used in vivo model of hallucinogen activity. Historically, most drug discrimination studies have been conducted in the rat. With the development of genetically modified mice, a powerful new tool has become available for investigating the mechanisms of drug-induced behavior. The current paper is part of an ongoing effort to determine the utility of the drug discrimination technique for evaluating hallucinogenic drugs in mice. OBJECTIVE To establish the training procedures and characterize the stimulus properties of (+)lysergic acid diethylamide (LSD) in mice. METHODS Using a two-lever drug discrimination procedure, C57Bl/6J mice were trained to discriminate 0.45 mg/kg LSD vs saline on a VI30 sec schedule of reinforcement, with vanilla-flavored Ensure serving as the reinforcer. RESULTS As in rats, acquisition was orderly, but the training dose was nearly five-fold higher for mice than rats. LSD lever selection was dose-dependent. Time-course studies revealed a rapid loss of the LSD stimulus effects. The 5-HT(2A/2C) receptor agonist, 2,5-dimethoxy-4-bromoamphetamine [(-)DOB] (1.0 mg/kg), substituted fully for LSD and the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) (1.6 mg/kg), substituted partially for LSD. Pretreatment with the 5-HT(2A) receptor-selective antagonist, MDL 100907, or the 5-HT(1A)-selective antagonist WAY 100635, showed that each antagonist only partially blocked LSD discrimination. Substitution of 1.0 mg/kg (-)DOB for LSD was fully blocked by pretreatment with MDL 100907 but unaltered by WAY 100635 pretreatment. CONCLUSIONS These data suggest that in mice the stimulus effects of LSD have both a 5-HT(2A) receptor and a 5-HT(1A) receptor component.
Collapse
Affiliation(s)
- Michael A Benneyworth
- Department of Pharmacology, Vanderbilt University School of Medicine, 8148 MRB III, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|