1
|
Daviu N, Molina P, Nadal R, Belda X, Serrano S, Armario A. Influence of footshock number and intensity on the behavioral and endocrine response to fear conditioning and cognitive fear generalization in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111112. [PMID: 39094926 DOI: 10.1016/j.pnpbp.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Foot-shock paradigms have provided valuable insights into the neurobiology of stress and fear conditioning. An extensive body of literature indicates that shock exposure can elicit both conditioned and unconditioned effects, although delineating between the two is a challenging task. This distinction holds crucial implications not only for the theoretical interpretation of fear conditioning, but also for properly evaluating putative preclinical models of post-traumatic stress disorder (PTSD) involving shock exposure. The characteristics of shocks (intensity and number) affect the strength of learning, but how these characteristics interact to influence conditioned and unconditioned consequences of shocks are poorly known. In this study, we aimed to investigate in adult male rats the impact of varying shock number and intensity on the endocrine and behavioral response to contextual fear conditioning and fear generalization to a novel environment markedly distinct from the shock context (i.e., fear generalization). Classical biological markers of stress (i.e., ACTH, corticosterone, and prolactin) were sensitive to manipulations of shock parameters, whereas these parameters had a limited effect on contextual fear conditioning (evaluated by freezing and distance traveled). In contrast, behavior in different novel contexts (fear generalization) was specifically sensitive to shock intensity. Notably, altered behavior in novel contexts markedly improved, but not completely normalized after fear extinction, hypoactivity apparently being the result of both conditioned and unconditioned effects of foot-shock exposure. The present results will contribute to a better understanding of shock exposure as a putative animal model of PTSD.
Collapse
Affiliation(s)
- Nuria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
2
|
Khalid S, Kearney M, McReynolds DE. Can social adversity alter the epigenome, trigger oral disease, and affect future generations? Ir J Med Sci 2024; 193:2597-2606. [PMID: 38740675 PMCID: PMC11450135 DOI: 10.1007/s11845-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The nature versus nurture debate has intrigued scientific circles for decades. Although extensive research has established a clear relationship between genetics and disease development, recent evidence has highlighted the insufficiency of attributing adverse health outcomes to genetic factors alone. In fact, it has been suggested that environmental influences, such as socioeconomic position (SEP), may play a much larger role in the development of disease than previously thought, with extensive research suggesting that low SEP is associated with adverse health conditions. In relation to oral health, a higher prevalence of caries (tooth decay) exists among those of low SEP. Although little is known about the biological mechanisms underlying this relationship, epigenetic modifications resulting from environmental influences have been suggested to play an important role. This review explores the intersection of health inequalities and epigenetics, the role of early-life social adversity and its long-term epigenetic impacts, and how those living within the lower hierarchies of the socioeconomic pyramid are indeed at higher risk of developing diseases, particularly in relation to oral health. A deeper understanding of these mechanisms could lead to the development of targeted interventions for individuals of low SEP to improve oral health or identify those who are at higher risk of developing oral disease.
Collapse
Affiliation(s)
- Sakr Khalid
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Michaela Kearney
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - David E McReynolds
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
O'Donnell MG, Stumpp L, Gallaher MJ, Powers RW. Pre-pregnancy stress induces maternal vascular dysfunction during pregnancy and postpartum. Reprod Sci 2023; 30:3197-3211. [PMID: 37219786 PMCID: PMC10204668 DOI: 10.1007/s43032-023-01248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
An estimated 20% of women suffer from a stress-related mood disorder including depression and anxiety during and after pregnancy, making these disorders among the most common complications of pregnancy. These stress-related disorders are associated with adverse pregnancy outcomes including gestational hypertension and preeclampsia, which are associated with poor cardiometabolic health postpartum. Despite these associations, the direct impact of stress and related disorders on maternal vascular health, and contributing mechanisms, remain understudied. The aim of this study was to investigate the effect of pre-pregnancy stress on maternal vascular outcomes in a BALB/c mouse model of chronic unpredictable stress. Maternal blood pressure and ex-vivo vascular function were investigated during pregnancy and postpartum. Offspring characteristics were assessed at the end of pregnancy and postpartum. Main findings show that pre-pregnancy stress exposure increased blood pressure during mid and late pregnancy and impaired ex vivo vascular function at the end of pregnancy. These effects persisted into the postpartum period, suggesting a long-term effect of stress on maternal vascular health, which appear to be partially attributable to disruptions in nitric oxide (NO) pathway signaling. These data suggest exposure to stress and related disorders, even prior to pregnancy, can contribute to vascular complications during pregnancy and postpartum.
Collapse
Affiliation(s)
- Mary Gemmel O'Donnell
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Biology, Thiel College, Greenville, PA, 16125, USA.
| | - Lauren Stumpp
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | | | - Robert W Powers
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Molina P, Andero R, Armario A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci Biobehav Rev 2023; 151:105224. [PMID: 37156310 DOI: 10.1016/j.neubiorev.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Restriction of free movement has historically been used as a model for inducing acute and chronic stress in laboratory animals. This paradigm is one of the most widely employed experimental procedures for basic research studies of stress-related disorders. It is easy to implement, and it rarely involves any physical harm to the animal. Many different restraint methods have been developed with variations in the apparatuses used and the degree of limitation of movement. Unfortunately, very few studies directly compare the differential impact of the distinct protocols. Additionally, restraint and immobilization terms are not differentiated and are sometimes used interchangeably in the literature. This review offers evidence of great physiological differences in the impact of distinct restraint procedures in rats and mice and emphasizes the need for a standardized language on this topic. Moreover, it illustrates the necessity of additional systematic studies that compare the effects of the distinct restraint methodologies, which would help to decide better which procedure should be used depending on the objectives of each particular study.
Collapse
Affiliation(s)
- Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; ICREA, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
7
|
Sanchís-Ollé M, Belda X, Gagliano H, Visa J, Nadal R, Armario A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J Psychiatr Res 2023; 160:195-203. [PMID: 36842332 DOI: 10.1016/j.jpsychires.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.
Collapse
Affiliation(s)
- María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Roser Nadal
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Antonio Armario
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
8
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
9
|
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress. Psychopharmacology (Berl) 2023; 240:1049-1061. [PMID: 36879072 DOI: 10.1007/s00213-023-06342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
Collapse
|
10
|
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Popoli M, Musazzi L. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry 2023; 13:62. [PMID: 36806044 PMCID: PMC9938874 DOI: 10.1038/s41398-023-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Facchinetti
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Nathalie Sala
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulia Frumento
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Elona Ndoj
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Valenza
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Caterina Paoli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.5602.10000 0000 9745 6549Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Ieraci
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy ,grid.449889.00000 0004 5945 6678Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Carola Torazza
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Michele Guerinoni
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Nadeem Muhammad
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Isabella Russo
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy ,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Scuderi
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Alessandro Barbon
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Steardo
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Giambattista Bonanno
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
11
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
12
|
Rupprecht R, Wetzel CH, Dorostkar M, Herms J, Albert NL, Schwarzbach J, Schumacher M, Neumann ID. Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders? Mol Psychiatry 2022; 27:2918-2926. [PMID: 35444254 DOI: 10.1038/s41380-022-01561-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Efficient treatment of stress-related disorders, such as depression, is still a major challenge. The onset of antidepressant drug action is generally quite slow, while the anxiolytic action of benzodiazepines is considerably faster. However, their long-term use is impaired by tolerance development, abuse liability and cognitive impairment. Benzodiazepines act as positive allosteric modulators of ɣ-aminobutyric acid type A (GABAA) receptors. 3α-reduced neurosteroids such as allopregnanolone also are positive allosteric GABAA receptor modulators, however, through a site different from that targeted by benzodiazepines. Recently, the administration of neurosteroids such as brexanolone or zuranolone has been shown to rapidly ameliorate symptoms in post-partum depression or major depressive disorder. An attractive alternative to the administration of exogenous neurosteroids is promoting endogenous neurosteroidogenesis via the translocator protein 18k Da (TSPO). TSPO is a transmembrane protein located primarily in mitochondria, which mediates numerous biological functions, e.g., steroidogenesis and mitochondrial bioenergetics. TSPO ligands have been used in positron emission tomography (PET) studies as putative markers of microglia activation and neuroinflammation in stress-related disorders. Moreover, TSPO ligands have been shown to modulate neuroplasticity and to elicit antidepressant and anxiolytic therapeutic effects in animals and humans. As such, TSPO may open new avenues for understanding the pathophysiology of stress-related disorders and for the development of novel treatment options.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University Munich, 81377, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University Munich, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, 81377, Munich, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Michael Schumacher
- Research Unit 1195, INSERM and University Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
| | - Inga D Neumann
- Department of Neurobiology and Animal Physiology, University Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
13
|
Ney LJ, Crombie KM, Mayo LM, Felmingham KL, Bowser T, Matthews A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci Biobehav Rev 2021; 132:76-91. [PMID: 34838529 DOI: 10.1016/j.neubiorev.2021.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system is known to be involved in mechanisms relevant to PTSD aetiology and maintenance, though this understanding is mostly based on animal models of the disorder. Here we review how human paradigms can successfully translate animal findings to human subjects, with the view that substantially increased insight into the effect of endocannabinoid signalling on stress responding, emotional and intrusive memories, and fear extinction can be gained using modern paradigms and methods for assessing the state of the endocannabinoid system in PTSD.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychological Sciences, University of Tasmania, Australia; School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, United States
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Sweden
| | - Kim L Felmingham
- Department of Psychological Sciences, University of Melbourne, Australia
| | | | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| |
Collapse
|
14
|
Increased Vocalization of Rats in Response to Ultrasonic Playback as a Sign of Hypervigilance Following Fear Conditioning. Brain Sci 2021; 11:brainsci11080970. [PMID: 34439589 PMCID: PMC8393681 DOI: 10.3390/brainsci11080970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of prior stress on rats' responses to 50-kHz (appetitive) and 22-kHz (aversive) ultrasonic playback. Rats were treated with 0, 1, 6 or 10 shocks (1 s, 1.0 mA each) and were exposed to playbacks the following day. Previous findings were confirmed: (i) rats moved faster during 50-kHz playback and slowed down after 22-kHz playback; (ii) they all approached the speaker, which was more pronounced during and following 50-kHz playback than 22-kHz playback; (iii) 50-kHz playback caused heart rate (HR) increase; 22-kHz playback caused HR decrease; (iv) the rats vocalized more often during and following 50-kHz playback than 22-kHz playback. The previous shock affected the rats such that singly-shocked rats showed lower HR throughout the experiment and a smaller HR response to 50-kHz playback compared to controls and other shocked groups. Interestingly, all pre-shocked rats showed higher locomotor activity during 50-kHz playback and a more significant decrease in activity following 22-kHz playback; they vocalized more often, their ultrasonic vocalizations (USV) were longer and at a higher frequency than those of the control animals. These last two observations could point to hypervigilance, a symptom of post-traumatic stress disorder (PTSD) in human patients. Increased vocalization may be a valuable measure of hypervigilance used for PTSD modeling.
Collapse
|
15
|
Rosado AF, Rosa PB, Platt N, Pierone BC, Neis VB, Severo Rodrigues AL, Kaster MP, Kaufmann FN. Glibenclamide treatment prevents depressive-like behavior and memory impairment induced by chronic unpredictable stress in female mice. Behav Pharmacol 2021; 32:170-181. [PMID: 33079735 DOI: 10.1097/fbp.0000000000000599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glibenclamide is a second-generation sulfonylurea used in the treatment of Type 2 Diabetes Mellitus. The primary target of glibenclamide is ATP-sensitive potassium channels inhibition; however, other possible targets include the control of inflammation and blood-brain barrier permeability, which makes this compound potentially interesting for the management of brain-related disorders. Here, we showed that systemic treatment with glibenclamide (5 mg/kg, p.o., for 21 days) could prevent the behavioral despair and the cognitive dysfunction induced by chronic unpredictable stress (CUS) in mice. In nonhypoglycemic doses, glibenclamide attenuated the stress-induced weight loss, decreased adrenal weight, and prevented the increase in glucocorticoid receptors in the prefrontal cortex, suggesting an impact in hypothalamic-pituitary-adrenal (HPA) axis function. Additionally, we did not observe changes in Iba-1, NLRP3 and caspase-1 levels in the prefrontal cortex or hippocampus after CUS or glibenclamide treatment. Thus, this study suggests that chronic treatment with glibenclamide prevents the emotional and cognitive effects of chronic stress in female mice. On the other hand, the control of neuroinflammation and NLRP3 inflammasome pathway is not the major mechanism mediating these effects. The behavioral effects might be mediated, in part, by the normalization of glucocorticoid receptors and HPA axis.
Collapse
Affiliation(s)
- Axel Fogaça Rosado
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Priscila Batista Rosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicolle Platt
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Bruna Caroline Pierone
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vivian Binder Neis
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Manuella Pinto Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Neutzling Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| |
Collapse
|
16
|
Knox D, Della Valle R, Mohammadmirzaei N, Shultz B, Biddle M, Farkash A, Chamness M, Moulton E. PI3K-Akt Signaling in the Basolateral Amygdala Facilitates Traumatic Stress Enhancements in Fear Memory. Int J Neuropsychopharmacol 2020; 24:229-238. [PMID: 33151288 PMCID: PMC7968623 DOI: 10.1093/ijnp/pyaa083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A core symptom of posttraumatic stress disorder is persistent fear memory, which can be defined as fear memory that is resistant to updating, inhibition, or extinction. posttraumatic stress disorder emerges after traumatic stress exposure, but neurobiological mechanisms via which traumatic stress leads to persistent fear memory are not well defined. Akt signaling within the amygdala (Amy) is enhanced with traumatic stress, and phosphatidylinositol kinase 3 (PI3K) activation of Akt within the basolateral Amy (BLA) has been implicated as critical to fear memory formation. These findings raise the possibility that traumatic stress enhances PI3K→Akt signaling in the BLA, which leads to persistent fear memory. METHODS To test this hypothesis, rats were exposed to traumatic stress using the single prolonged stress model, and changes in Akt phosphorylation were assayed in the Amy at 0 and 30 minutes after fear conditioning (FC). In a separate experiment, we inhibited PI3K→Akt signaling in the BLA prior to FC and observed the effect this had on acquisition, expression, and extinction of FC in stressed and control rats. RESULTS Enhanced Akt phosphorylation in the Amy at both time points was observed in stressed rats, but not in control rats. PI3K→Akt inhibition in the BLA had no effect on freezing in control rats but decreased freezing during extinction training and testing in stressed rats. CONCLUSION These findings suggest that PI3K→Akt signaling in the BLA could be a mechanism via which traumatic stress leads to fear memory that is resistant to extinction.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA,Correspondence: Dayan Knox, PhD, 217 Wolf Hall, Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716 ()
| | - Rebecca Della Valle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Negin Mohammadmirzaei
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Brianna Shultz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Matt Biddle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Abigail Farkash
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Emily Moulton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
17
|
Belda X, Fuentes S, Labad J, Nadal R, Armario A. Acute exposure of rats to a severe stressor alters the circadian pattern of corticosterone and sensitizes to a novel stressor: Relationship to pre-stress individual differences in resting corticosterone levels. Horm Behav 2020; 126:104865. [PMID: 32991887 DOI: 10.1016/j.yhbeh.2020.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Traumatic events have been proposed to be associated with hypo-activity of the hypothalamic-pituitary-adrenal (HPA) axis, but data in animal models exposed to severe stressors are controversial and have important methodological concerns. Individual differences in resting or stress levels of corticosterone might explain some of the inconsistencies. We then studied this issue in male rats exposed to 2 h immobilization on boards (IMO), a severe stressor. Thirty-six rats were blood sampled under resting conditions four times a day on three non-consecutive days. Then, they were assigned to control (n = 14) or IMO (n = 22) to study the HPA response to IMO, the stressor-induced alterations in the circadian pattern of corticosterone (CPCORT), and the behavioral and HPA responsiveness to an open-field. Individual differences in pre-IMO resting corticosterone were inconsistent, but averaging data markedly improved consistency. The CPCORT was markedly altered on day 1 post-IMO (higher trough and lower peak levels), less altered on day 3 and apparently normal on day 7. Importantly, when rats were classified in low and high resting corticosterone groups (LCORT and HCORT, respectively), on the basis of the area under the curve (AUC) of the averaged pre-IMO data, AUC differences between LCORT and HCORT groups were maintained in controls but disappeared in IMO rats during the post-IMO week. Open-field hypo-activity and corticosterone sensitization were similar in LCORT and HCORT groups nine days after IMO. A single IMO exposure causes long-lasting HPA alterations, some of them dependent on pre-stress resting corticosterone levels, with no evidence for post-IMO resting corticosterone hypo-activity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Circadian Rhythm/physiology
- Conditioning, Classical/physiology
- Corticosterone/blood
- Corticosterone/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Individuality
- Male
- Pituitary-Adrenal System/metabolism
- Rats
- Rats, Sprague-Dawley
- Rest/physiology
- Rest/psychology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/psychology
- Stress, Psychological/blood
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Xavier Belda
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Roser Nadal
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Antonio Armario
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| |
Collapse
|
18
|
Zhu X, Chen Y, Xu X, Xu X, Lu Y, Huang X, Zhou J, Hu L, Wang J, Shen X. SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine 2020; 61:103061. [PMID: 33096484 PMCID: PMC7581884 DOI: 10.1016/j.ebiom.2020.103061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes severely afflicting the patients, while there is yet no effective medication against this disease. As Kv2.1 channel functions potently in regulating neurological disorders, the present work was to investigate the regulation of Kv2.1 channel against DPN-like pathology of DPN model mice by using selective Kv2.1 inhibitor SP6616 (ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate) as a probe. METHODS STZ-induced type 1 diabetic mice with DPN (STZ mice) were defined at 12 weeks of age (4 weeks after STZ injection) through behavioral tests, and db/db (BKS Cg-m+/+Leprdb/J) type 2 diabetic mice with DPN (db/db mice) were at 18 weeks of age. SP6616 was administered daily via intraperitoneal injection for 4 weeks. The mechanisms underlying the amelioration of SP6616 on DPN-like pathology were investigated by RT-PCR, western blot and immunohistochemistry technical approaches against diabetic mice, and verified against the STZ mice with Kv2.1 knockdown in dorsal root ganglion (DRG) tissue by injection of adeno associated virus AAV9-Kv2.1-RNAi. Amelioration of SP6616 on the pathological behaviors of diabetic mice was assessed against tactile allodynia, thermal sensitivity and motor nerve conduction velocity (MNCV). FINDINGS SP6616 treatment effectively ameliorated the threshold of mechanical stimuli, thermal sensitivity and MNCV of diabetic mice. Mechanism research results indicated that SP6616 suppressed Kv2.1 expression, increased the number of intraepidermal nerve fibers (IENFs), improved peripheral nerve structure and vascular function in DRG tissue. In addition, SP6616 improved mitochondrial dysfunction through Kv2.1/CaMKKβ/AMPK/PGC-1α pathway, repressed inflammatory response by inhibiting Kv2.1/NF-κB signaling and alleviated apoptosis of DRG neuron through Kv2.1-mediated regulation of Bcl-2 family proteins and Caspase-3 in diabetic mice. INTERPRETATION Our work has highly supported the beneficial of Kv2.1 inhibition in ameliorating DPN-like pathology and highlighted the potential of SP6616 in the treatment of DPN. FUNDING Please see funding sources.
Collapse
Affiliation(s)
- Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xu Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
Spencer-Segal JL, Singer BH, Laborc K, Somayaji K, Watson SJ, Standiford TJ, Akil H. Sepsis survivor mice exhibit a behavioral endocrine syndrome with ventral hippocampal dysfunction. Psychoneuroendocrinology 2020; 117:104679. [PMID: 32353815 PMCID: PMC7845932 DOI: 10.1016/j.psyneuen.2020.104679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
Abstract
Severe acute stressors are known to trigger mood disorders in humans. Sepsis represents one such stressor, and survivors often suffer long term from psychiatric morbidity. We hypothesized that sepsis leads to lasting changes in neural circuits involved in stress integration, altering affective behavior and the stress response. To investigate this hypothesis, sepsis was induced in male C57Bl/6 mice using cecal ligation and puncture (CLP), and control mice underwent sham surgery. Mice recovered from acute illness within 2 weeks, after which they exhibited increased avoidance behavior and behavioral despair compared with sham, with behavioral changes observed more than 5 weeks after recovery. Sepsis survivors also showed evidence of enhanced hypothalamic-pituitary-adrenal (HPA) axis activity, with increased corticosterone after a novel stressor and increased adrenal weight. In the brain, sepsis survivor mice showed decreased stress-induced cfos mRNA and increased glucocorticoid receptor immunoreactivity specifically in the ventral hippocampus, a brain region known to coordinate emotional behavior and HPA axis activity. We conclude that murine sepsis survivors exhibit a behavioral neuroendocrine syndrome of negative affective behavior and HPA axis hyperactivity, which could be explained by ventral hippocampal dysfunction. These findings could contribute to our understanding of the human post-intensive care syndrome.
Collapse
Affiliation(s)
- Joanna L. Spencer-Segal
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin H. Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Klaudia Laborc
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Khyati Somayaji
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Theodore J. Standiford
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
20
|
An early increase in glutamate is critical for the development of depression-like behavior in a chronic restraint stress (CRS) model. Brain Res Bull 2020; 162:59-66. [PMID: 32505508 DOI: 10.1016/j.brainresbull.2020.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
Dysfunction in glutamate homeostasis contributes to the pathology of depression-like behavior. Using a chronic restraint stress (CRS) model of depression in C57BL/6 mice, we measured glutamate levels in the cerebrospinal fluid at different restraint time points (CRS 1 d, CRS 3 d, CRS 5 d, CRS 7 d, CRS 14 d, and CRS 21 d). Glutamate levels were increased in the early stage of stress (CRS 1 d and CRS 5 d) but returned to basal levels at the other time points (CRS 7 d-21 d). We hypothesized that glutamate-induced excitotoxicity is critical for the development of depression-like behavior in the CRS model. Treatment with sodium valproate (VPA) or lamotrigine (LTG), two drugs that prevent excitotoxicity in neurons by increasing inhibitory inputs or blocking sodium channels, in the early stage (CRS 1 d-5 d) was sufficient to correct depression-like behavior. In contrast, treatment with the classic antidepressant fluoxetine (FLX) during the same time period was not sufficient to correct depressive behavior. Western blot of two markers of dendritic spines PSD95 and VGluT1 showed that restraining mice for 5 d resulted in the loss of dendritic spines, which was rescued by VPA or LTG. In conclusion, an initial increase in glutamate levels plays an important role in the development of depression-like behavior in the CRS model.
Collapse
|
21
|
Armario A, Labad J, Nadal R. Focusing attention on biological markers of acute stressor intensity: Empirical evidence and limitations. Neurosci Biobehav Rev 2020; 111:95-103. [PMID: 31954151 DOI: 10.1016/j.neubiorev.2020.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/03/2019] [Accepted: 01/11/2020] [Indexed: 01/19/2023]
Abstract
ARMARIO, A, J. Labad and R. Nadal. Focusing attention on biological markers of acute stressor intensity: empirical evidence and limitations. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS. The availability of biological markers that objectively quantify stress is a highly relevant issue. However, experimental evidence suggests that most physiological changes elicited by emotional stressors do not reflect their intensity and are not useful for this purpose. Thus, we review experimental evidence in animals and humans about the putative validity of neuroendocrine and sympathetic/parasympathetic variables to measure stress. Plasma levels of some hormones (e.g. ACTH, glucocorticoids, prolactin and catecholamines) have been found to reflect, at least under certain conditions, the intensity of emotional stressors in animals and probably in humans. However, the temporal resolution of hormone changes is insufficient to reflect the very dynamic psychological processes taking place while experiencing stressors. Cardiovascular parameters (e.g. heart rate and blood pressure) have much better temporal resolution but their validity as markers of stressor intensity either in animals or humans is problematic. Skin conductance and pupil dilation appear to be promising. Additional and more systematic studies are needed to demonstrate the actual validity of stress-induced physiological changes to quantify stress.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| | - Javier Labad
- CIBERSAM, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, I3PT, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Spain; CIBERSAM, Spain; Psicobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona Spain
| |
Collapse
|
22
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
23
|
Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. Neurobiological links between stress and anxiety. Neurobiol Stress 2019; 11:100191. [PMID: 31467945 PMCID: PMC6712367 DOI: 10.1016/j.ynstr.2019.100191] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
Stress and anxiety have intertwined behavioral and neural underpinnings. These commonalities are critical for understanding each state, as well as their mutual interactions. Grasping the mechanisms underlying this bidirectional relationship will have major clinical implications for managing a wide range of psychopathologies. After briefly defining key concepts for the study of stress and anxiety in pre-clinical models, we present circuit, as well as cellular and molecular mechanisms involved in either or both stress and anxiety. First, we review studies on divergent circuits of the basolateral amygdala (BLA) underlying emotional valence processing and anxiety-like behaviors, and how norepinephrine inputs from the locus coeruleus (LC) to the BLA are responsible for acute-stress induced anxiety. We then describe recent studies revealing a new role for mitochondrial function within the nucleus accumbens (NAc), defining individual trait anxiety in rodents, and participating in the link between stress and anxiety. Next, we report findings on the impact of anxiety on reward encoding through alteration of circuit dynamic synchronicity. Finally, we present work unravelling a new role for hypothalamic corticotropin-releasing hormone (CRH) neurons in controlling anxiety-like and stress-induce behaviors. Altogether, the research reviewed here reveals circuits sharing subcortical nodes and underlying the processing of both stress and anxiety. Understanding the neural overlap between these two psychobiological states, might provide alternative strategies to manage disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Nuria Daviu
- Hotchkiss Brain Institute. Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine. Center for Neurobiology of Addiction, Pain, and Emotion. University of Washington. 1959 NE Pacific Street, J-wing Health Sciences. Seattle, WA 98195, USA
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH, 1015, Lausanne, Switzerland
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000 Bordeaux, France
| |
Collapse
|
24
|
Della Valle R, Mohammadmirzaei N, Knox D. Single prolonged stress alters neural activation in the periacqueductal gray and midline thalamic nuclei during emotional learning and memory. Learn Mem 2019; 26:1-9. [PMID: 31527186 PMCID: PMC6749928 DOI: 10.1101/lm.050310.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/25/2022]
Abstract
Clinical and preclinical studies that have examined the neurobiology of persistent fear memory in posttraumatic stress disorder (PTSD) have focused on the medial prefrontal cortex, hippocampus, and amygdala. Sensory systems, the periaqueductal gray (PAG), and midline thalamic nuclei have been implicated in fear and extinction memory, but whether neural activity in these substrates is sensitive to traumatic stress (at baseline or during emotional learning and memory) remains unexplored. To address this, we used the single prolonged stress (SPS) model of traumatic stress. SPS and control rats were either subjected to fear conditioning (CS-fear) or presented with CSs alone (CS-only) during fear conditioning. All rats were then subjected to extinction training and testing. A subset of rats were euthanized after each behavioral stage and c-Fos and c-Jun used to measure neural activation in all substrates. SPS lowered c-Jun levels in the dorsomedial and lateral PAG at baseline, but the elevated c-Jun expression in the PAG during emotional learning and memory. SPS also altered c-Fos expression during fear and extinction learning/memory in midline thalamic nuclei. These findings suggest changes in neural function in the PAG and midline thalamic nuclei could contribute to persistent fear memory induced by traumatic stress. Interestingly, SPS effects were also observed in animals that never learned fear or extinction (i.e., CS-only). This raises the possibility that traumatic stress could have broader effects on the psychological function that are dependent on the PAG and midline thalamic nuclei.
Collapse
Affiliation(s)
- Rebecca Della Valle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Negin Mohammadmirzaei
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
25
|
Ravi M, Stevens JS, Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol 2019; 55:100790. [PMID: 31542288 PMCID: PMC6876844 DOI: 10.1016/j.yfrne.2019.100790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Women are twice as likely than men to suffer from posttraumatic stress disorder (PTSD). While women have increased exposure to traumatic events of many types and have greater prevalence of comorbid psychiatric disorders compared to men, these differences do not account for the overall sex difference in the prevalence of PTSD. The current review summarizes significant findings that implicate the role of estradiol, progesterone, and allopregnanolone in female risk for PTSD symptoms and dysregulation of fear psychophysiology that is cardinal to PTSD. We also discuss how these steroid hormones influence the stress axis and neural substrates critical for the regulation of fear responses. Understanding the role of ovarian steroid hormones in risk and resilience for trauma-related adverse mental health outcomes across the lifespan in women has important translational, clinical, and intergenerational implications for mitigating the consequences of trauma exposure.
Collapse
Affiliation(s)
- Meghna Ravi
- Emory University Graduate Program in Neuroscience, Atlanta, GA, United States
| | - Jennifer S Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States.
| |
Collapse
|
26
|
Bhattacharya S, Fontaine A, MacCallum PE, Drover J, Blundell J. Stress Across Generations: DNA Methylation as a Potential Mechanism Underlying Intergenerational Effects of Stress in Both Post-traumatic Stress Disorder and Pre-clinical Predator Stress Rodent Models. Front Behav Neurosci 2019; 13:113. [PMID: 31191267 PMCID: PMC6547031 DOI: 10.3389/fnbeh.2019.00113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Although most humans will experience some type of traumatic event in their lifetime only a small set of individuals will go on to develop post-traumatic stress disorder (PTSD). Differences in sex, age, trauma type, and comorbidity, along with many other elements, contribute to the heterogenous manifestation of this disorder. Nonetheless, aberrant hypothalamus-pituitary-adrenal (HPA) axis activity, especially in terms of cortisol and glucocorticoid receptor (GR) alterations, has been postulated as a tenable factor in the etiology and pathophysiology of PTSD. Moreover, emerging data suggests that the harmful effects of traumatic stress to the HPA axis in PTSD can also propagate into future generations, making offspring more prone to psychopathologies. Predator stress models provide an ethical and ethologically relevant way to investigate tentative mechanisms that are thought to underlie this phenomenon. In this review article, we discuss findings from human and laboratory predator stress studies that suggest changes to DNA methylation germane to GRs may underlie the generational effects of trauma transmission. Understanding mechanisms that promote stress-induced psychopathology will represent a major advance in the field and may lead to novel treatments for such devastating, and often treatment-resistant trauma and stress-disorders.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Audrey Fontaine
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.,Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James Drover
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
28
|
Moulton E, Chamness M, Knox D. Characterizing changes in glucocorticoid receptor internalization in the fear circuit in an animal model of post traumatic stress disorder. PLoS One 2018; 13:e0205144. [PMID: 30532228 PMCID: PMC6286002 DOI: 10.1371/journal.pone.0205144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid receptors (GRs) shuttle from the cytoplasm (cy) to the nucleus (nu) when bound with glucocorticoids (i.e. GR internalization) and alter transcriptional activity. GR activation within the fear circuit has been implicated in fear memory and post traumatic stress disorder (PTSD). However, no study to date has characterized GR internalization within the fear circuit during fear memory formation or examined how traumatic stress impacts this process. To address this, we assayed cy and nu GR levels at baseline and after auditory fear conditioning (FC) in the single prolonged stress (SPS) model of PTSD. Cy and nu GRs within the medial prefrontal cortex (mPFC), dorsal hippocampus (dHipp), ventral hippocampus (vHipp), and amygdala (AMY) were assayed using western blot. The distribution of GR in the cy and nu (at baseline and after FC) was varied across individual nodes of the fear circuit. At baseline, SPS enhanced cyGRs in the dHipp, but decreased cyGRs in the AMY. FC only enhanced GR internalization in the AMY and this effect was attenuated by SPS exposure. SPS also decreased cyGRs in the dHipp after FC. The results of this study suggests that GR internalization is varied across the fear circuit, which in turn suggests GR activation is selectively regulated within individual nodes of the fear circuit. The findings also suggest that changes in GR dynamics in the dHipp and AMY modulate the enhancing effect SPS has on fear memory persistence.
Collapse
Affiliation(s)
- Emily Moulton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
29
|
Nagpal J, Herget U, Choi MK, Ryu S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res 2018; 375:5-22. [PMID: 30109407 DOI: 10.1007/s00441-018-2900-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
Collapse
Affiliation(s)
- Jatin Nagpal
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd. Mail Code 156-29, Pasadena, CA, 91125, USA
| | - Min K Choi
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Soojin Ryu
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
30
|
St-Cyr S, Abuaish S, Spinieli RL, McGowan PO. Maternal Predator Odor Exposure in Mice Programs Adult Offspring Social Behavior and Increases Stress-Induced Behaviors in Semi-Naturalistic and Commonly-Used Laboratory Tasks. Front Behav Neurosci 2018; 12:136. [PMID: 30050417 PMCID: PMC6050368 DOI: 10.3389/fnbeh.2018.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 11/17/2022] Open
Abstract
Maternal stress has a profound impact on the long-term behavioral phenotype of offspring, including behavioral responses to stressful and social situations. In this study, we examined the effects of maternal exposure to predator odor, an ethologically relevant psychogenic stressor, on stress-induced behaviors in both semi-naturalistic and laboratory-based situations. Adult C57BL/6 mice offspring of dams exposed to predator odor during the last half of pregnancy showed increased anti-predatory behavior, more cautious foraging behavior and, in the elevated plus maze, avoidance of elevated open areas and elevated open areas following restraint stress challenge. These offspring also exhibited alterations in social behavior including reduced free interaction and increased initial investigation despite normal social recognition. These changes in behavior were associated with increased transcript abundance of corticotropin-releasing factor, mineralocorticoid receptor and oxytocin (Oxt) in the periventricular nucleus of the hypothalamus. Taken together, the findings are consistent with a long-term increase in ethologically-relevant behavioral and neural responses to stress in male and female offspring as a function of maternal predator odor exposure.
Collapse
Affiliation(s)
- Sophie St-Cyr
- Center for Environmental Epigenetics and Development, Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sameera Abuaish
- Center for Environmental Epigenetics and Development, Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Richard L Spinieli
- Center for Environmental Epigenetics and Development, Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada.,Psychobiology Graduate Program, School of Philosophy, Science and Literature, University of São Paulo, São Paulo, Brazil
| | - Patrick O McGowan
- Center for Environmental Epigenetics and Development, Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
St-Cyr S, McGowan PO. Adaptation or pathology? The role of prenatal stressor type and intensity in the developmental programing of adult phenotype. Neurotoxicol Teratol 2018; 66:113-124. [DOI: 10.1016/j.ntt.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
|
32
|
Justice NJ. The relationship between stress and Alzheimer's disease. Neurobiol Stress 2018; 8:127-133. [PMID: 29888308 PMCID: PMC5991350 DOI: 10.1016/j.ynstr.2018.04.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.
Collapse
Affiliation(s)
- Nicholas J. Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats. PLoS One 2018; 13:e0190044. [PMID: 29324797 PMCID: PMC5764258 DOI: 10.1371/journal.pone.0190044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an important factor in the study of the long-term impact of early and adult stressors.
Collapse
|
34
|
Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-Prolonged Stress: A Review of Two Decades of Progress in a Rodent Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:196. [PMID: 29867615 PMCID: PMC5962709 DOI: 10.3389/fpsyt.2018.00196] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common, costly, and often debilitating psychiatric condition. However, the biological mechanisms underlying this disease are still largely unknown or poorly understood. Considerable evidence indicates that PTSD results from dysfunction in highly-conserved brain systems involved in stress, anxiety, fear, and reward. Pre-clinical models of traumatic stress exposure are critical in defining the neurobiological mechanisms of PTSD, which will ultimately aid in the development of new treatments for PTSD. Single prolonged stress (SPS) is a pre-clinical model that displays behavioral, molecular, and physiological alterations that recapitulate many of the same alterations observed in PTSD, illustrating its validity and giving it utility as a model for investigating post-traumatic adaptations and pre-trauma risk and protective factors. In this manuscript, we review the present state of research using the SPS model, with the goals of (1) describing the utility of the SPS model as a tool for investigating post-trauma adaptations, (2) relating findings using the SPS model to findings in patients with PTSD, and (3) indicating research gaps and strategies to address them in order to improve our understanding of the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Michael J Lisieski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alana C Conti
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Mental Health Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
35
|
The expression level of muscarinic M1 receptor subtypes in different regions of rat brain. MARMARA MEDICAL JOURNAL 2017. [DOI: 10.5472/marumj.370855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Barbayannis G, Franco D, Wong S, Galdamez J, Romeo RD, Bauer EP. Differential effects of stress on fear learning and activation of the amygdala in pre-adolescent and adult male rats. Neuroscience 2017; 360:210-219. [PMID: 28768158 PMCID: PMC5973547 DOI: 10.1016/j.neuroscience.2017.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Adolescence is accompanied by the maturation of several stress-responsive areas of the brain including the amygdala, a key region for the acquisition and expression of conditioned fear. These changes may contribute to the development of stress-related disorders in adolescence, such as anxiety and depression, and increase the susceptibility to these psychopathologies later in life. Here, we assessed the effects of acute restraint stress on fear learning and amygdala activation in pre-adolescent and adult male rats. Pre-adolescents exposed to stress prior to fear conditioning showed greater resistance to the extinction of fear memories than adults. At the cellular level, the combination of stress and fear conditioning resulted in a greater number of FOS-positive cells in the basolateral nucleus of the amygdala (BLA) than fear conditioning alone, and this increase was greater in pre-adolescents than in adults. Despite age-dependent differences, we found no changes in glucocorticoid receptor (GR) levels in the amygdala of either pre-adolescent or adult males. Overall, our data indicate that stress prior to fear conditioning leads to extinction-resistant fear responses in pre-adolescent animals, and that the BLA may be one neural locus mediating these age-dependent effects of stress on fear learning.
Collapse
Affiliation(s)
- Georgia Barbayannis
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Daly Franco
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Solange Wong
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Josselyn Galdamez
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Russell D Romeo
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Elizabeth P Bauer
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Posttraumatic stress disorder (PTSD) is characterized by hyperarousal and recurrent stressful memories after an emotionally traumatic event. Extensive research has been conducted to identify the neurobiological determinants that underlie the pathophysiology of PTSD. In this review, we examine evidence regarding the molecular and cellular pathophysiology of PTSD focusing on two primary brain regions: the vmPFC and the amygdala. RECENT FINDINGS This discussion includes a review of the molecular alterations related to PTSD, focusing mainly on changes to glucocorticoid receptor signaling. We also examine postmortem gene expression studies that have been conducted to date and the molecular changes that have been observed in peripheral blood studies of PTSD patients. Causal, mechanistic evidence is difficult to obtain in human studies, so we also review preclinical models of PTSD. Integration of peripheral blood and postmortem studies with preclinical models of PTSD has begun to reveal the molecular changes occurring in patients with PTSD. These findings indicate that the pathophysiology of PTSD includes disruption of glucocorticoid signaling and inflammatory systems and occurs at the level of altered gene expression. We will assess the impact of these findings on the future of PTSD molecular research.
Collapse
Affiliation(s)
- Matthew J Girgenti
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Brendan D Hare
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Sriparna Ghosal
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Ronald S Duman
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
38
|
Acute or Chronic? A Stressful Question. Trends Neurosci 2017; 40:525-535. [DOI: 10.1016/j.tins.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|
39
|
Pase CS, Roversi K, Roversi K, Vey LT, Dias VT, Veit JC, Maurer LH, Duarte T, Emanuelli T, Duarte M, Bürger ME. Maternal trans fat intake during pregnancy or lactation impairs memory and alters BDNF and TrkB levels in the hippocampus of adult offspring exposed to chronic mild stress. Physiol Behav 2017; 169:114-123. [DOI: 10.1016/j.physbeh.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023]
|
40
|
Knox D, Stanfield BR, Staib JM, David NP, Keller SM, DePietro T. Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits. ACTA ACUST UNITED AC 2016; 23:689-698. [PMID: 27918273 PMCID: PMC5110987 DOI: 10.1101/lm.043141.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/10/2016] [Indexed: 01/20/2023]
Abstract
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Jennifer M Staib
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, Delaware 19716, USA
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
41
|
Cherry MJ, Morgan KE, Rutledge BT, Conner LM, Warren RJ. Can coyote predation risk induce reproduction suppression in white‐tailed deer? Ecosphere 2016. [DOI: 10.1002/ecs2.1481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael J. Cherry
- Warnell School of Forestry and Natural Resources University of Georgia E. Green Street Athens Georgia 30602 USA
- Joseph W. Jones Ecological Research Center 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Keri E. Morgan
- Warnell School of Forestry and Natural Resources University of Georgia E. Green Street Athens Georgia 30602 USA
| | - Brandon T. Rutledge
- Joseph W. Jones Ecological Research Center 3988 Jones Center Drive Newton Georgia 39870 USA
| | - L. Mike Conner
- Joseph W. Jones Ecological Research Center 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Robert J. Warren
- Warnell School of Forestry and Natural Resources University of Georgia E. Green Street Athens Georgia 30602 USA
| |
Collapse
|
42
|
Short-term effects of tagging on activity and movement patterns of Eurasian beavers (Castor fiber). EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Malisch JL, deWolski K, Meek TH, Acosta W, Middleton KM, Crino OL, Garland T. Acute Restraint Stress Alters Wheel-Running Behavior Immediately Following Stress and up to 20 Hours Later in House Mice. Physiol Biochem Zool 2016; 89:546-552. [PMID: 27792529 DOI: 10.1086/688660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P < 0.0001) but did not differ 2 or 3 h postrestraint. Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations than C mice, with no statistical effect of restraint and no interaction between line type and restraint. Overall, these results indicate that acute stress can affect locomotor activity (or activity patterns) for many hours, with the most prominent effect being an increase in activity during a period of typical inactivity at the start of the photophase, 15-20 h poststressor.
Collapse
|
44
|
Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output. Sci Rep 2016; 6:31244. [PMID: 27511270 PMCID: PMC4980629 DOI: 10.1038/srep31244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022] Open
Abstract
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Collapse
|
45
|
Time-dependent sensitization of stress responses in zebrafish: A putative model for post-traumatic stress disorder. Behav Processes 2016; 128:70-82. [DOI: 10.1016/j.beproc.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023]
|
46
|
Young-Adult Male Rats' Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. NEUROSCIENCE JOURNAL 2016; 2016:5317242. [PMID: 27433469 PMCID: PMC4940564 DOI: 10.1155/2016/5317242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022]
Abstract
In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors.
Collapse
|
47
|
Freiman SV, Onufriev MV, Stepanichev MY, Moiseeva YV, Lazareva NA, Gulyaeva NV. The stress effects of a single injection of isotonic saline solution: systemic (blood) and central (frontal cortex and dorsal and ventral hippocampus). NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Sanz-García A, Knafo S, Pereda-Pérez I, Esteban JA, Venero C, Armario A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus 2016; 26:1179-88. [PMID: 27068341 DOI: 10.1002/hipo.22599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/18/2023]
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| | - Shira Knafo
- IkerBasque Research Professor, Biophysics Unit (Unidad De Biofísica CSIC-UPV/EHU), Leioa, Bizkaia, Spain
| | | | - José A Esteban
- Deparment of Molecular Neurobiology, Centro De Biología Molecular "Severo Ochoa," Consejo Superior De Investigaciones Científicas (CSIC)/Universidad Autónoma De Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional De Educación a Distancia, Juan Del Rosal 10, Madrid, 28040, Spain
| | - Antonio Armario
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Jiang SZ, Eiden LE. PACAPergic Synaptic Signaling and Circuitry Mediating Mammalian Responses to Psychogenic and Systemic Stressors. CURRENT TOPICS IN NEUROTOXICITY 2016. [DOI: 10.1007/978-3-319-35135-3_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Vega-Rivera NM, Ortiz-López L, Gómez-Sánchez A, Oikawa-Sala J, Estrada-Camarena EM, Ramírez-Rodríguez GB. The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav Brain Res 2015; 301:72-83. [PMID: 26721469 DOI: 10.1016/j.bbr.2015.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Because stress may underlie the presence of depressive episodes, strategies to produce protection against or to reverse the effects of stress on neuroplasticity and behavior are relevant. Preclinical studies showed that exposure to stimuli, such as physical activity and environmental enrichment (ENR), produce beneficial effects against stress causing antidepressant-like effects in rodents. Additionally, ENR induces positive effects on neuroplasticity, neurochemistry and behavior at any age of rodents tested. Here, we analyzed whether ENR exposure prevents the development of depressive-like behavior produced by unpredictable, chronic mild stress (CMS) exposure as well as changes in hippocampal neurogenesis in a six-month-old female Balb/C mice, strain that shows low baseline levels of hippocampal neurogenesis. Mice were assigned to one of four groups: (1) normal housing-normal housing (NH-NH), (2) NH-CMS, (3) ENR-NH, or (4) ENR-CMS. The animals were exposed over 46 days to ENR or NH and subsequently to NH or CMS for 4 weeks. ENR induces long-term effects protecting against CMS induction of anhedonia and hopelessness behaviors. Independent of housing conditions, ENR increased the number of proliferative cells (Ki67), and CMS decreased the number of proliferative cells. ENR increased the newborn cells (BrdU) and mature phenotypes of neurons; these effects were not changed by CMS exposure. Similarly, the number of doublecortin-positive cells was not affected by CMS in ENR mice, which showed more cells with complex dendrite arborizations. Our study suggests that ENR induces protection against the effects of CMS on behavior and neuroplasticity in six-month-old Balb/C mice.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Julian Oikawa-Sala
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Erika Monserrat Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico.
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico.
| |
Collapse
|