1
|
Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Zhang J, Patino LR, Strawn JR, Fleck DE, Klein CC, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial. J Affect Disord 2025; 371:324-332. [PMID: 39577502 DOI: 10.1016/j.jad.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Response to pharmacotherapy varies considerably among youths with bipolar disorder (BD) and is poorly predicted by clinical or demographic features. It can take several weeks to determine whether medication for BD is clinically effective. Although neuroimaging biomarkers are promising predictors, few studies examined the predictive value of the brain connectomic topology. METHODS BD-I youth (N = 121) with no prior psychopharmacotherapy were randomized to 6-weeks of double-blind quetiapine or lithium. Structural magnetic resonance imaging (MRI) was performed before medication and at one week after medication initiation. Brain structural connectome was established from the MRI scans, and topological metrics were calculated for each patient. Deep learning-based prediction model was built using baseline and one-week connectome topology to predict medication response at week 6. RESULTS Both baseline topological metrics and one-week topological changes could predict treatment response with significant accuracy (73.8 % - 86.8 %). A longitudinally joint model combining baseline and one-week topology provided the highest accuracy (91.3 %). The transferability between models for quetiapine and lithium was relatively poor. In addition, predictions for the two drugs were driven by similar baseline but distinct one-week salient topological patterns. LIMITATIONS Independent replication is needed to validate our preliminary findings. CONCLUSION Brain structural connectomic topology at baseline and its acute changes within the first week enable accurate BD medication response prediction. The most contributive brain regions differed between prediction models for quetiapine and lithium after one week. These findings provide preliminary evidence for the development of neuroimaging-based biomarkers for guiding therapeutic interventions in youth with BD.
Collapse
Affiliation(s)
- Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, Westminster Bridge Road, London, UK
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA; Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| |
Collapse
|
2
|
Wang R, Wang C, Zhang G, Mundinano IC, Zheng G, Xiao Q, Zhong Y. Causal mechanisms of quadruple networks in pediatric bipolar disorder. Psychol Med 2024:1-12. [PMID: 39679552 DOI: 10.1017/s0033291724002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is characterized by abnormal functional connectivity among distributed brain regions. Increasing evidence suggests a role for the limbic network (LN) and the triple network model in the pathophysiology of bipolar disorder (BD). However, the specific relationship between the LN and the triple network in PBD remains unclear. This study aimed to investigate the aberrant causal connections among these four core networks in PBD. METHOD Resting-state functional MRI scans from 92 PBD patients and 40 healthy controls (HCs) were analyzed. Dynamic Causal Modeling (DCM) was employed to assess effective connectivity (EC) among the four core networks. Parametric empirical Bayes (PEB) analysis was conducted to identify ECs associated with group differences, as well as depression and mania severity. Leave-one-out cross-validation (LOOCV) was used to test predictive accuracy. RESULT Compared to HCs, PBD patients exhibited primarily excitatory bottom-up connections from the LN to the salience network (SN) and bidirectional excitatory connections between the default mode network (DMN) and SN. In PBD, top-down connectivity from the triple network to the LN was excitatory in individuals with higher depression severity but inhibitory in those with higher mania severity. LOOCV identified dysconnectivity circuits involving the caudate and hippocampus as being associated with mania and depression severity, respectively. CONCLUSIONS Disrupted bottom-up connections from the LN to the triple network distinguish PBD patients from healthy controls, while top-down disruptions from the triple network to LN relate to mood state differences. These findings offer insight into the neural mechanisms of PBD.
Collapse
Affiliation(s)
- Rong Wang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Chun Wang
- Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Inaki-Carril Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria 3800, Australia
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
3
|
Kiani I, Aarabi MH, Cattarinussi G, Sambataro F, Favalli V, Moltrasio C, Delvecchio G. White matter changes in paediatric bipolar disorder: A systematic review of diffusion magnetic resonance imaging studiesA systematic review of diffusion magnetic resonance imaging studies. J Affect Disord 2024; 373:67-79. [PMID: 39689732 DOI: 10.1016/j.jad.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Paediatric bipolar disorder (PBD) is characterized by severe mood fluctuations that deviate from typical childhood emotional development. Despite the efforts, the pathophysiology of this disorder is not well understood yet. In this review, we aimed to synthesize existing diffusion magnetic resonance imaging (dMRI) research findings in PBD. METHODS A literature search was conducted using PubMed, Embase, Scopus, and Web of Science databases to identify relevant studies published before April 2024. RESULTS A total of 23 studies were included in the review. The findings showed variations of fractional anisotropy (FA), axial diffusivity, radial diffusivity, and apparent diffusion coefficient in PBD compared to healthy controls (HCs). Key findings included decreased FA in the anterior cingulate, anterior corona radiata, and corpus callosum, particularly the genu, which correlated with clinical symptoms. Furthermore, longitudinal studies emphasized the significance of the uncinate fasciculus as having atypical developmental trajectories in PBD compared to HCs. In addition, graph analysis revealed widespread changes in structural connectivity, especially affecting the orbitofrontal cortex, frontal gyrus, and basal ganglia. Lastly, machine learning models showed promising results in differentiating PBD from HCs. LIMITATIONS Cross-sectional design of the studies, small sample sizes, and different imaging protocols preclude integration of the findings. CONCLUSION PBD seems to be associated with widespread structural changes compared to HC. Understanding these changes, which might account for the clinical manifestations of this disorder, increase our knowledge of the neurobiological underpinnings of PBD. This, in turn, may help develop more effective treatments for this disorder.
Collapse
Affiliation(s)
- Iman Kiani
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Virginia Favalli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Gao W, Chen Y, Cui D, Zhu C, Jiao Q, Su L, Lu S, Yang R. Alterations of subcortical structure volume in pediatric bipolar disorder patients with manic or depressive first-episode. BMC Psychiatry 2024; 24:762. [PMID: 39487398 PMCID: PMC11531125 DOI: 10.1186/s12888-024-06208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Bipolar disorder may begin as depression or mania, which can affect the treatment and prognosis. The physiological and pathological differences among pediatric bipolar disorder (PBD) patients with different onset symptoms are not clear. The aims of the present study were to investigate subcortical structural alterations in PBD patients with first-episode depressive (PBD-FED) and first-episode manic (PBD-FEM). METHODS A total of 59 individuals including 28 PBD-FED, 13 PBD-FEM, and 18 healthy controls (HCs) underwent high-resolution structural magnetic resonance scans. FreeSurfer 7.2 was used to detect changes in subcortical volumes. Simultaneously, thalamic, hippocampal, and amygdala subregion volumes were compared between the three groups. RESULTS Analysis of covariance controlling for age, sex, education, and estimated intracranial volume shows third and fourth ventricle enlargement in patients with PBD. Compared with the PBD-FED and HCs, the PBD-FEM group had reduced gray matter volume in the left thalamus, bilateral hippocampus, and right amygdala. Subsequent subregion analyses showed right cortico-amygdaloid transient, bilateral accessory-basal nucleus, left hippocampal tail, right hippocampal head, and body volume reduction in the PBD-FEM group. CONCLUSIONS The present findings provided evidence of decreased subcortical structure in PBD-FEM patients, which might present its trait feature.
Collapse
Affiliation(s)
- Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China
| | - Yue Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Ce Zhu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Psychiatry, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Linyan Su
- Mental Health Institute, Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital of Central South University, National Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Wu YK, Zhu LL, Li JT, Li Q, Dai YR, Li K, Mitchell PB, Si TM, Su YA. Striatal Functional Alterations Link to Distinct Symptomatology Across Mood States in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:777-785. [PMID: 38703823 DOI: 10.1016/j.bpsc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND As a central hub in cognitive and emotional brain circuits, the striatum is considered likely to be integrally involved in the psychopathology of bipolar disorder (BD). However, it remains unclear how alterations in striatal function contribute to distinct symptomatology of BD during different mood states. METHODS Behavioral assessment (i.e., emotional symptoms and cognitive performance) and neuroimaging data were collected from 125 participants comprising 31 (hypo)manic, 31 depressive, and 31 euthymic patients with BD, and 32 healthy control participants. We compared the functional connectivity (FC) of striatal subregions across BD mood states with healthy control participants and then used a multivariate data-driven approach to explore dimensional associations between striatal connectivity and behavioral performance. Finally, we compared the FC and behavioral composite scores, which reflect the individual weighted representation of the associations, among different mood states. RESULTS Patients in all mood states exhibited increased FC between the bilateral ventral rostral putamen and ventrolateral thalamus. Bipolar (hypo)mania uniquely exhibited increased ventral rostral putamen connectivity and superior ventral striatum connectivity. One latent component was identified, whereby increased FCs of striatal subregions were associated with distinct psychopathological symptomatology (more manic symptoms, elevated positive mood, less depressive symptoms, and worse cognitive performance). Patients with bipolar (hypo)mania had the highest FC and behavioral composite scores while bipolar patients with depression had the lowest scores. CONCLUSIONS Our data demonstrated both trait features of BD and state features specific to bipolar (hypo)mania. The findings underscored the fundamental role of the striatum in the pathophysiological processes underlying specific symptomatology across all mood states.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qian Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - You-Ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic support Force Characteristic Medical Center, Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, New South Wales, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
6
|
Tsai KW, Yang YF, Wang LJ, Pan CC, Chang CH, Chiang YC, Wang TY, Lu RB, Lee SY. Correlation of potential diagnostic biomarkers (circulating miRNA and protein) of bipolar II disorder. J Psychiatr Res 2024; 172:254-260. [PMID: 38412788 DOI: 10.1016/j.jpsychires.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES We previously identified certain peripheral biomarkers of bipolar II disorder (BD-II) including circulating miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) and proteins (Matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)). We try to explore the connection between these biomarkers. METHODS We explored correlations between the peripheral levels of above circulating miRNAs and proteins in our previously collected BD-II (N = 96) patients and control (N = 115) groups. We further searched TargetScan and BioGrid websites to identify direct and indirect interactions between these protein-coding genes and circulating miRNAs. RESULTS In the BD-II group, we identified significant correlations between the miR-221-5p and CA-1 (rho = -0.323, P = 0.001), FARSB (rho = 0.251, P = 0.014), MMP-9 (rho = 0.313, P = 0.002) and PCSK9 (rho = 0.252, P = 0.014). The miR-370-3p also significantly correlated with FARSB expression (rho = 0.330, P = 0.001) and PCSK9 expression (rho = 0.221, P = 0.031) in the BD-II group. Our findings were in line with the modulating axis identified from TargetScan and BioGrid, miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9, suggesting their association with BD-II. CONCLUSION Our result supported that peripheral candidate miRNA and protein biomarkers may interact in BD-II. We concluded that miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9 axes might act a critical role in the pathomechanism of BD-II.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chuan Pan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Huang Y, Zhang J, He K, Mo X, Yu R, Min J, Zhu T, Ma Y, He X, Lv F, Lei D, Liu M. Innovative Neuroimaging Biomarker Distinction of Major Depressive Disorder and Bipolar Disorder through Structural Connectome Analysis and Machine Learning Models. Diagnostics (Basel) 2024; 14:389. [PMID: 38396428 PMCID: PMC10888009 DOI: 10.3390/diagnostics14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) share clinical features, which complicates their differentiation in clinical settings. This study proposes an innovative approach that integrates structural connectome analysis with machine learning models to discern individuals with MDD from individuals with BD. High-resolution MRI images were obtained from individuals diagnosed with MDD or BD and from HCs. Structural connectomes were constructed to represent the complex interplay of brain regions using advanced graph theory techniques. Machine learning models were employed to discern unique connectivity patterns associated with MDD and BD. At the global level, both BD and MDD patients exhibited increased small-worldness compared to the HC group. At the nodal level, patients with BD and MDD showed common differences in nodal parameters primarily in the right amygdala and the right parahippocampal gyrus when compared with HCs. Distinctive differences were found mainly in prefrontal regions for BD, whereas MDD was characterized by abnormalities in the left thalamus and default mode network. Additionally, the BD group demonstrated altered nodal parameters predominantly in the fronto-limbic network when compared with the MDD group. Moreover, the application of machine learning models utilizing structural brain parameters demonstrated an impressive 90.3% accuracy in distinguishing individuals with BD from individuals with MDD. These findings demonstrate that combined structural connectome and machine learning enhance diagnostic accuracy and may contribute valuable insights to the understanding of the distinctive neurobiological signatures of these psychiatric disorders.
Collapse
Affiliation(s)
- Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Kewei He
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Xue Mo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Min
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Tong Zhu
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Yunfeng Ma
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Xiangqian He
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Fricchione G. Brain evolution and the meaning of catatonia - An update. Schizophr Res 2024; 263:139-150. [PMID: 36754715 DOI: 10.1016/j.schres.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Back in 2004, in a chapter titled "Brain Evolution and the Meaning of Catatonia", a case was made that the syndrome's core meaning is embedded in millions of years of vertebrate brain evolution. (Fricchione, 2004) In this update, advances over the last almost 20 years, in catatonia theory and research in particular, and pertinent neuropsychiatry in general, will be applied to this question of meaning. The approach will rely heavily on a number of thought leaders, including Nicos Tinbergen, Paul MacLean, John Bowlby, M. Marsel Mesulam, Bruce McEwen and Karl Friston. Their guidance will be supplemented with a selected survey of 21sty century neuropsychiatry, neurophysiology, molecular biology, neuroimaging and neurotherapeutics as applied to the catatonic syndrome. In an attempt to address the question of the meaning of the catatonic syndrome in human life, we will employ two conceptual networks representing the intersubjectivity of the quantitative conceptual network of physical terms and the subjectivity of the qualitative conceptual network of mental and spiritual terms. In the process, a common referent providing extensional identity may emerge (Goodman, 1991). The goal of this exercise is to enhance our attunement with the experience of patients suffering with catatonia. A deeper understanding of catatonia's origins in brain evolution and of the challenges of individual epigenetic development in the setting of environmental events coupled with appreciation of what has been described as the most painful mammalian condition, that of separation, has the potential to foster greater efforts on the part of clinicians to diagnose and treat patients who present with catatonia. In addition, in this ancient and extreme tactic, evolved to provide safety from extreme survival threat, one can speculate what is at the core of human fear and the challenge it presents to all of us. And when the biology, psychology and sociology of catatonia are examined, the nature of solutions to the challenge may emerge.
Collapse
Affiliation(s)
- Gregory Fricchione
- Benson-Henry Institute for Mind Body Medicine Division of Psychiatry and Medicine Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Jiang X, Zai CC, Kennedy KG, Zou Y, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with grey matter structure and white matter integrity in youth. Transl Psychiatry 2023; 13:322. [PMID: 37852985 PMCID: PMC10584947 DOI: 10.1038/s41398-023-02607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
There is a gap in knowledge regarding the polygenic underpinnings of brain anomalies observed in youth bipolar disorder (BD). This study examined the association of a polygenic risk score for BD (BD-PRS) with grey matter structure and white matter integrity in youth with and without BD. 113 participants were included in the analyses, including 78 participants with both T1-weighted and diffusion-weighted MRI images, 32 participants with T1-weighted images only, and 3 participants with diffusion-weighted images only. BD-PRS was calculated using PRS-CS-auto and was based on independent adult genome-wide summary statistics. Vertex- and voxel-wise analyses examined the associations of BD-PRS with grey matter metrics (cortical volume [CV], cortical surface area [CSA], cortical thickness [CTh]) and fractional anisotropy [FA] in the combined sample, and separately in BD and HC. In the combined sample of participants with T1-weighted images (n = 110, 66 BD, 44 HC), higher BD-PRS was associated with smaller grey matter metrics in frontal and temporal regions. In within-group analyses, higher BD-PRS was associated with lower CTh of frontal, temporal, and fusiform gyrus in BD, and with lower CV and CSA of superior frontal gyrus in HC. In the combined sample of participants with diffusion-weighted images (n = 81, 49 BD, 32 HC), higher BD-PRS was associated with lower FA in widespread white matter regions. In summary, BD-PRS calculated based on adult genetic data was negatively associated with grey matter structure and FA in youth in regions implicated in BD, which may suggest neuroimaging markers of vulnerability to BD. Future longitudinal studies are needed to examine whether BD-PRS predicts neurodevelopmental changes in BD vs. HC and its interaction with course of illness and long-term medication use.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Valizadeh P, Cattarinussi G, Sambataro F, Brambilla P, Delvecchio G. Neuroimaging alterations associated with medication use in early-onset bipolar disorder: An updated review. J Affect Disord 2023; 339:984-997. [PMID: 37481130 DOI: 10.1016/j.jad.2023.07.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is a severe disorder characterized by mood fluctuations starting at a young age. Several neuroimaging studies revealed a specific biological signature of PBD involving alterations in the amygdala and prefrontal regions. Considering the growing concerns regarding the effects of PBD treatments on developing brains, this review aims to provide an overview of the studies investigating the effect of mood stabilizers, antipsychotics, and anticonvulsants on neuroimaging findings in PBD. METHODS We searched PubMed, Scopus, and Web of Science to identify all structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) studies exploring the effects of medications on neuroimaging findings in PBD. A total of 18 studies met our inclusion criteria (fMRI n = 11, sMRI n = 6, DTI n = 1). RESULTS Although the findings varied highly across the studies, some investigations consistently indicated that medications primarily affect the prefrontal cortex and the amygdala. Moreover, despite some exceptions, the reported medication effects predominantly lean towards structural and functional normalization. LIMITATIONS The reviewed studies differ in methods, medications, and fMRI paradigms. Furthermore, most studies used observational approaches with small sample sizes, minimizing the statistical power. CONCLUSIONS Evidence suggests the potential of antipsychotics and mood stabilizers to modulate the neuroimaging findings in PBD patients, mostly normalizing brain structure and function in key mood-regulating regions.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran; Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
11
|
Macoveanu J, Damgaard V, Ysbæk-Nielsen AT, Frangou S, Yatham LN, Chakrabarty T, Stougaard ME, Knudsen GM, Vinberg M, Kessing LV, Kjærstad HL, Miskowiak KW. Early longitudinal changes in brain structure and cognitive functioning in remitted patients with recently diagnosed bipolar disorder. J Affect Disord 2023; 339:153-161. [PMID: 37442440 DOI: 10.1016/j.jad.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Patients with bipolar disorder (BD) who are presenting with cognitive impairment and associated structural brain abnormalities have generally a poorer clinical outcome. This study aims to map the early longitudinal trajectories in brain structure and cognition in patients with recently diagnosed BD. METHODS Fully or partially remitted patients with a recent diagnosis of BD and matched healthy controls (HC) underwent structural MRI and neuropsychological testing at baseline (BD n = 97; HC n = 66) and again following an average of 16 (range 6-27) months (BD n = 50; HC n = 38). We investigated the differential trajectories in BD vs. HC in cortical gray matter volume and thickness, total cerebral white matter, hippocampal and amygdala volumes, estimated brain age, and cognitive functioning using linear mixed models. Within patients, we further investigated whether brain structural abnormalities detected at baseline were associated with subsequent mood episodes. RESULTS Compared to HC, patients showed a decline in total white matter volume over time and they had a larger amygdala volume, both at baseline and at follow-up time. Patients further showed lower cognitive performance at both times of investigation with no significant change over time. There were no differences between patients and HC in cortical gray matter volume or thickness, hippocampal volume, or brain-aging patterns. CONCLUSIONS Cognitive impairment and amygdala enlargement may represent stable markers of BD early in the course of illness, whereas subtle white matter decline may result from illness progression.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Viktoria Damgaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - Alexander Tobias Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi N Yatham
- Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Canada
| | - Marie Eschau Stougaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Hanne Lie Kjærstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
12
|
Förster K, Horstmann RH, Dannlowski U, Houenou J, Kanske P. Progressive grey matter alterations in bipolar disorder across the life span - A systematic review. Bipolar Disord 2023; 25:443-456. [PMID: 36872645 DOI: 10.1111/bdi.13318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES To elucidate the relationship between the course of bipolar disorder (BD) and structural brain changes across the life span, we conducted a systematic review of longitudinal imaging studies in adolescent and adult BD patients. METHODS Eleven studies with 329 BD patients and 277 controls met our PICOS criteria (participants, intervention, comparison, outcome and study design): BD diagnosis based on DSM criteria, natural course of disease, comparison of grey matter changes in BD individuals over ≥1-year interval between scans. RESULTS The selected studies yielded heterogeneous findings, partly due to varying patient characteristics, data acquisition and statistical models. Mood episodes were associated with greater grey matter loss in frontal brain regions over time. Brain volume decreased or remained stable in adolescent patients, whereas it increased in healthy adolescents. Adult BD patients showed increased cortical thinning and brain structural decline. In particular, disease onset in adolescence was associated with amygdala volume reduction, which was not reported in adult BD. CONCLUSIONS The evidence collected suggests that the progression of BD impairs adolescent brain development and accelerates structural brain decline across the lifespan. Age-specific changes in amygdala volume in adolescent BD suggest that reduced amygdala volume is a correlate of early onset BD. Clarifying the role of BD in brain development across the lifespan promises a deeper understanding of the progression of BD patients through different developmental episodes.
Collapse
Affiliation(s)
- Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Rosa H Horstmann
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Josselin Houenou
- Translational Neuropsychiatry, Fondation FondaMental, Université Paris Est Créteil, INSERM U955, IMRB, APHP, DMU IMPACT, Mondor University Hospitals, Créteil, France
- NeuroSpin, Psychiatry Team, UNIACT Lab, CEA, University Paris Saclay, Gif-sur-Yvette, France
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Degraff Z, Souza GS, Santos NA, Shoshina II, Felisberti FM, Fernandes TP, Sigurdsson G. Brain atrophy and cognitive decline in bipolar disorder: Influence of medication use, symptomatology and illness duration. J Psychiatr Res 2023; 163:421-429. [PMID: 37276646 DOI: 10.1016/j.jpsychires.2023.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Bipolar disorder (BPD) is a chronic condition characterized by recurrent episodes of mania and depression. To date, the association of biological and psychopathological processes in BPD has not been extensively studied on a cognitive and cortical basis at the same time. We investigated whether brain atrophy (in prefrontal, temporal and occipital cortices) was associated with cognitive, biological and clinical processes in patients with BPD and healthy controls (HCs). A total of 104 participants (56 with BPD) completed tasks that measured attention, memory, information processing speed, inhibitory control, visuospatial working memory and cognitive flexibility. In addition, structural brain scans were obtained using high-resolution MRI. Outcomes of the measurements were examined using robust multiple mediation analyses. BPD patients showed greater cortical atrophy across all regions of interest when compared to HCs, linked to cognitive decline. BPD patients had slower reaction times and markedly increased errors of commission on the tasks. The outcomes were significantly influenced by medication use, symptomatology and illness duration. The findings showcase the complexity of brain structures and networks as well as the physiological mechanisms underlying diverse BPD symptomatology and endophenotypes. These differences were pronounced in patients with BPD, motivating further investigations of pathophysiological mechanisms involved in brain atrophy and cognitive decline.
Collapse
Affiliation(s)
- Zeke Degraff
- Svenskagier Neurologie, Stockholm, Sweden; Institute of Neurology, Belgium.
| | | | | | | | | | - Thiago P Fernandes
- Federal University of Para, Para, Brazil; Federal University of Paraiba, Paraiba, Brazil
| | | |
Collapse
|
14
|
Abé C, Liberg B, Klahn AL, Petrovic P, Landén M. Mania-related effects on structural brain changes in bipolar disorder - a narrative review of the evidence. Mol Psychiatry 2023; 28:2674-2682. [PMID: 37147390 PMCID: PMC10615759 DOI: 10.1038/s41380-023-02073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Cross-sectional neuroimaging studies show that bipolar disorder is associated with structural brain abnormalities, predominantly observed in prefrontal and temporal cortex, cingulate gyrus, and subcortical regions. However, longitudinal studies are needed to elucidate whether these abnormalities presage disease onset or are consequences of disease processes, and to identify potential contributing factors. Here, we narratively review and summarize longitudinal structural magnetic resonance imaging studies that relate imaging outcomes to manic episodes. First, we conclude that longitudinal brain imaging studies suggest an association of bipolar disorder with aberrant brain changes, including both deviant decreases and increases in morphometric measures. Second, we conclude that manic episodes have been related to accelerated cortical volume and thickness decreases, with the most consistent findings occurring in prefrontal brain areas. Importantly, evidence also suggests that in contrast to healthy controls, who in general show age-related cortical decline, brain metrics remain stable or increase during euthymic periods in bipolar disorder patients, potentially reflecting structural recovering mechanisms. The findings stress the importance of preventing manic episodes. We further propose a model of prefrontal cortical trajectories in relation to the occurrence of manic episodes. Finally, we discuss potential mechanisms at play, remaining limitations, and future directions.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Quantify Research, Stockholm, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Patino LR, Strawn JR, Fleck D, Klein CC, Lui S, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain morphometric features predict medication response in youth with bipolar disorder: a prospective randomized clinical trial. Psychol Med 2023; 53:4083-4093. [PMID: 35392995 PMCID: PMC10317810 DOI: 10.1017/s0033291722000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Identification of treatment-specific predictors of drug therapies for bipolar disorder (BD) is important because only about half of individuals respond to any specific medication. However, medication response in pediatric BD is variable and not well predicted by clinical characteristics. METHODS A total of 121 youth with early course BD (acute manic/mixed episode) were prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine (n = 71) or lithium (n = 50). Participants completed structural magnetic resonance imaging (MRI) at baseline before treatment and 1 week after treatment initiation, and brain morphometric features were extracted for each individual based on MRI scans. Positive antimanic treatment response at week 6 was defined as an over 50% reduction of Young Mania Rating Scale scores from baseline. Two-stage deep learning prediction model was established to distinguish responders and non-responders based on different feature sets. RESULTS Pre-treatment morphometry and morphometric changes occurring during the first week can both independently predict treatment outcome of quetiapine and lithium with balanced accuracy over 75% (all p < 0.05). Combining brain morphometry at baseline and week 1 allows prediction with the highest balanced accuracy (quetiapine: 83.2% and lithium: 83.5%). Predictions in the quetiapine and lithium group were found to be driven by different morphometric patterns. CONCLUSIONS These findings demonstrate that pre-treatment morphometric measures and acute brain morphometric changes can serve as medication response predictors in pediatric BD. Brain morphometric features may provide promising biomarkers for developing biologically-informed treatment outcome prediction and patient stratification tools for BD treatment development.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Walter H. L. Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, Westminster Bridge Road, London, UK
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - L. Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - David Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Christina C. Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Caleb M. Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, USA
| |
Collapse
|
16
|
Van Rheenen TE, Cotton SM, Dandash O, Cooper RE, Ringin E, Daglas-Georgiou R, Allott K, Chye Y, Suo C, Macneil C, Hasty M, Hallam K, McGorry P, Fornito A, Yücel M, Pantelis C, Berk M. Increased cortical surface area but not altered cortical thickness or gyrification in bipolar disorder following stabilisation from a first episode of mania. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110687. [PMID: 36427550 DOI: 10.1016/j.pnpbp.2022.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| | - Sue M Cotton
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Elysha Ringin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Rothanthi Daglas-Georgiou
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kelly Allott
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Craig Macneil
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Melissa Hasty
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Karen Hallam
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Patrick McGorry
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Clayton, VIC, Australia
| | - Michael Berk
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
17
|
Zovetti N, Rossetti MG, Perlini C, Brambilla P, Bellani M. Brain ageing and neurodegeneration in bipolar disorder. J Affect Disord 2023; 323:171-175. [PMID: 36435402 DOI: 10.1016/j.jad.2022.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a psychiatric condition characterized by alternating episodes of mania and depression frequently associated with cognitive impairments. BD is associated with brain alterations in fronto-temporal and limbic networks. Recent conceptualizations view BD as a neurodegenerative disorder characterized by progressive deterioration of grey and white matter (GM, WM) volumes and accelerated brain ageing. Therefore, we conducted a review gathering neuroimaging evidence about neurodegenerative processes in BD. METHODS A literature search was conducted on the PubMed, Scopus and Web of Science databases in September 2021. After title and abstract screening of the retrieved records, 19 studies that met our inclusion criteria were included in the review. RESULTS The available evidence suggests the presence of a progressive reduction of GM volumes at the whole-brain level and in the amygdala, prefrontal regions and the anterior cingulate cortex. Conversely, WM lesions and alterations seem to emerge only in the early phases of the condition masking the effects of normal ageing. Lastly, machine learning models indicate that the gap between predicted and chronological brain age differs considerably between healthy controls and BD patients, as the latter are characterized by larger gaps. LIMITATIONS The included studies had cross-sectional study design, small sample sizes and heterogeneous methodology, and lack of control for pharmacological treatment. CONCLUSIONS BD seems to be associated with generalized age-related structural GM volumes reductions and functional brain alterations thus suggesting the presence of neurodegenerative processes. Future systematic reviews and meta-analyses should be conducted to quantify the magnitude of brain ageing-related effects in BD.
Collapse
Affiliation(s)
- Niccolò Zovetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Liebing S, Dalkner N, Ischebeck A, Bengesser SA, Birner A, Fellendorf FT, Lenger M, Maget A, Kroisenbrunner H, Häussl A, Platzer M, Queissner R, Schönthaler EMD, Stross T, Tmava-Berisha A, Reininghaus EZ. A one-year view on the association of metabolic syndrome and cognitive function in bipolar disorder - Preliminary data. J Affect Disord 2023; 323:251-256. [PMID: 36435403 DOI: 10.1016/j.jad.2022.11.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individuals with bipolar disorder have a high prevalence of metabolic syndrome and an increased risk for cognitive deficits. The aim of this longitudinal study was to investigate the trajectory of cognitive decline in dependence of metabolic syndrome over a one-year interval. METHODS 52 well-diagnosed individuals with bipolar disorder, euthymic at baseline and follow-up (n = 17 with metabolic syndrome vs. n = 35 without metabolic syndrome) were investigated with a comprehensive neurocognitive test battery (Trail Making Test A/B, Digit Symbol Test, California Verbal Leaning Test, or the Verbal Learning and Memory Test respectively) twice within the interval of one year. RESULTS Patients with bipolar disorder and additional metabolic syndrome performed significantly worse in the domain of psychomotor and processing speed/attention than patients without metabolic syndrome at test point one. No deteriorating effects of metabolic syndrome on the cognitive domain scores and overall cognitive performance were found at the one-year follow up. However, no cognitive decline could be reported in both groups. LIMITATIONS Time interval, small sample size and selection of metabolic syndrome affected patients were the major limitations of this study. CONCLUSION There was no association of metabolic syndrome on the one-year trajectory of cognitive function in bipolar disorder. Future studies should expand the observation period and investigate larger samples.
Collapse
Affiliation(s)
- S Liebing
- Institute of Psychology, University of Graz, Austria
| | - N Dalkner
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria.
| | - A Ischebeck
- Institute of Psychology, University of Graz, Austria
| | - S A Bengesser
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - A Birner
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - F T Fellendorf
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - M Lenger
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - A Maget
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | | | - A Häussl
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - M Platzer
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - R Queissner
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - E M D Schönthaler
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - T Stross
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - A Tmava-Berisha
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - E Z Reininghaus
- University Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| |
Collapse
|
19
|
Martyn FM, McPhilemy G, Nabulsi L, Quirke J, Hallahan B, McDonald C, Cannon DM. Alcohol use is associated with affective and interoceptive network alterations in bipolar disorder. Brain Behav 2023; 13:e2832. [PMID: 36448926 PMCID: PMC9847622 DOI: 10.1002/brb3.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Alcohol use in bipolar disorder (BD) is associated with mood lability and negative illness trajectory, while also impacting functional networks related to emotion, cognition, and introspection. The adverse impact of alcohol use in BD may be explained by its additive effects on these networks, thereby contributing to a poorer clinical outcome. METHODS Forty BD-I (DSM-IV-TR) and 46 psychiatrically healthy controls underwent T1 and resting state functional MRI scanning and the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) to assess alcohol use. Functional images were decomposed using spatial independent component analysis into 14 resting state networks (RSN), which were examined for effect of alcohol use and diagnosis-by-alcohol use accounting for age, sex, and diagnosis. RESULTS Despite the groups consuming similar amounts of alcohol (BD: mean score ± SD 3.63 ± 3; HC 4.72 ± 3, U = 713, p = .07), for BD participants, greater alcohol use was associated with increased connectivity of the paracingulate gyrus within a default mode network (DMN) and reduced connectivity within an executive control network (ECN) relative to controls. Independently, greater alcohol use was associated with increased connectivity within an ECN and reduced connectivity within a DMN. A diagnosis of BD was associated with increased connectivity of a DMN and reduced connectivity of an ECN. CONCLUSION Affective symptomatology in BD is suggested to arise from the aberrant functionality of networks subserving emotive, cognitive, and introspective processes. Taken together, our results suggest that during euthymic periods, alcohol can contribute to the weakening of emotional regulation and response, potentially explaining the increased lability of mood and vulnerability to relapse within the disorder.
Collapse
Affiliation(s)
- Fiona M. Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
- School of PsychologyNational University of IrelandGalwayIreland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaCA 90292USA
| | - Jacqueline Quirke
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayGalwayH91 TK33Ireland
| |
Collapse
|
20
|
İnal N, Cavusoglu B, Ermiş Ç, Turan S, Gormez V, Karabay N. Reduced Cortical Thicknesses of Adolescents with Bipolar Disorder and Relationship with Brain-derived Neurotrophic Factor. Scand J Child Adolesc Psychiatr Psychol 2023; 11:78-86. [PMID: 37377456 PMCID: PMC10291755 DOI: 10.2478/sjcapp-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Background Cortical thickness (CT) and brain-derived neurotrophic factor (BDNF) were widely investigated in bipolar disorder (BD). Previous studies focused on the association between the volume of subcortical regions and neurotrophic factor levels. Objective In this study, we aimed to evaluate the association of the CT in youth with early-onset BD with BDNF levels as a potential peripheral marker of neuronal integrity. Method Twenty-three euthymic patients having a clinical diagnosis of BD and 17 healthy subjects as an age-matched control group with neuroimaging and blood BDNF levels were found eligible for CT measurement. A structural magnetic resonance scan (MRI) and timely blood samples were drawn. Results Youth with BD exhibited lower cortical thickness in caudal part of left (L) middle frontal gyrus, right (R) paracentral gyrus, triangular part of R inferior frontal gyrus, R pericalcarine region, R precentral gyrus, L precentral gyrus, R superior frontal gyrus and L superior frontal gyrus when compared to healthy controls. The effect sizes of these differences were moderate to large (d=0.67-0.98) There was a significant correlation between BDNF levels with caudal part of the R anterior cingulate gyrus (CPRACG) in adolescents with BD (r=0.49, p=0.023). Conclusion As a special region for mood regulation, the CT of the caudal part of the R anterior cingulate gyrus had a positive correlation with BDNF. Regarding the key role of CPRACG for affective regulation skills, our results should be replicated in future follow-up studies, investigating a predictive neuroimaging biomarker for the early-onset BD.
Collapse
Affiliation(s)
- Neslihan İnal
- Department of Child and Adolescent Psychiatry, Dokuz Eylul University, Izmir, Turkey
| | | | - Çağatay Ermiş
- Department of Children and Adolescent Psyhciatry, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Uludag University, Bursa, Turkey
| | - Vahdet Gormez
- Department of Child and Adolescent Psychiatry, Medeniyet University Göztepe Training and Research Hospital, Istanbul, Turkey
| | - Nuri Karabay
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
21
|
Correa-Ghisays P, Vicent Sánchez-Ortí J, Balanzá-Martínez V, Fuentes-Durá I, Martinez-Aran A, Ruiz-Bolo L, Correa-Estrada P, Ruiz-Ruiz JC, Selva-Vera G, Vila-Francés J, Macias Saint-Gerons D, San-Martín C, Ayesa-Arriola R, Tabarés-Seisdedos R. MICEmi: A method to identify cognitive endophenotypes of mental illnesses. Eur Psychiatry 2022; 65:e85. [PMID: 36440538 PMCID: PMC9807453 DOI: 10.1192/j.eurpsy.2022.2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Characterizing neurocognitive endophenotypes of mental illnesses (MIs) could be useful for identifying at-risk individuals, increasing early diagnosis, improving disease subtyping, and proposing therapeutic strategies to reduce the negative effects of the symptoms, in addition to serving as a scientific basis to unravel the physiopathology of the disease. However, a standardized algorithm to determine cognitive endophenotypes has not yet been developed. The main objective of this study was to present a method for the identification of endophenotypes in MI research. METHODS For this purpose, a 14-expert working group used a scoping review methodology and designed a method that includes a scoring template with five criteria and indicators, a strategy for their verification, and a decision tree. CONCLUSIONS This work is ongoing since it is necessary to obtain external validation of the applicability of the method in future research.
Collapse
Affiliation(s)
- Patricia Correa-Ghisays
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Joan Vicent Sánchez-Ortí
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Balanzá-Martínez
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Inmaculada Fuentes-Durá
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Anabel Martinez-Aran
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Bipolar Disorders Unit, Neurosciences Institute, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
| | - Lara Ruiz-Bolo
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | | | - Juan Carlos Ruiz-Ruiz
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Gabriel Selva-Vera
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Joan Vila-Francés
- Intelligent Data Analysis Laboratory (IDAL), University of Valencia, Spain
| | - Diego Macias Saint-Gerons
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Constanza San-Martín
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Rafael Tabarés-Seisdedos
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Altered language network lateralization in euthymic bipolar patients: a pilot study. Transl Psychiatry 2022; 12:435. [PMID: 36202786 PMCID: PMC9537562 DOI: 10.1038/s41398-022-02202-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar patients (BD) in the euthymic phase show almost no symptoms, nevertheless possibility of relapse is still present. We expected to find a psychobiological trace of their vulnerability by analyzing a specific network-the Language Network (LN)-connecting many high-level processes and brain regions measured at rest. According to Crow's hypothesis on the key role of language in the origin of psychoses, we expected an altered asymmetry of the LN in euthymic BDs. Eighteen euthymic BD patients (10 females; age = 54.50 ± 11.38 years) and 16 healthy controls (HC) (8 females; age = 51.16 ± 11.44 years) underwent a functional magnetic resonance imaging scan at rest. The LN was extracted through independent component analysis. Then, LN time series was used to compute the fractional amplitude of the low-frequency fluctuation (fALFF) index, which was then correlated with clinical scales. Compared with HC, euthymic patients showed an altered LN with greater activation of Broca's area right homologous and anterior insula together with reduced activation of left middle temporal gyrus. The normalized fALFF analysis on BD patients' LN time series revealed that the Slow-5 fALFF band was positively correlated with residual mania symptoms but negatively associated with depression scores. In line with Crow's hypothesis postulating an altered language hemispheric asymmetry in psychoses, we revealed, in euthymic BD patients, a right shift involving both the temporal and frontal linguistic hubs. The fALFF applied to LN allowed us to highlight a number of significant correlations of this measure with residual mania and depression psychiatric symptoms.
Collapse
|
23
|
Lei D, Li W, Tallman MJ, Strakowski SM, DelBello MP, Rodrigo Patino L, Fleck DE, Lui S, Gong Q, Sweeney JA, Strawn JR, Nery FG, Welge JA, Rummelhoff E, Adler CM. Changes in the structural brain connectome over the course of a nonrandomized clinical trial for acute mania. Neuropsychopharmacology 2022; 47:1961-1968. [PMID: 35585125 PMCID: PMC9485114 DOI: 10.1038/s41386-022-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Disrupted topological organization of brain functional networks has been widely reported in bipolar disorder. However, the potential clinical implications of structural connectome abnormalities have not been systematically investigated. The present study included 109 unmedicated subjects with acute mania who were assigned to 8 weeks of treatment with quetiapine or lithium and 60 healthy controls. High resolution 3D-T1 weighted magnetic resonance images (MRI) were collected from both groups at baseline, week 1 and week 8. Brain networks were constructed based on the similarity of morphological features across brain regions and analyzed using graph theory approaches. At baseline, individuals with bipolar disorder illness showed significantly lower clustering coefficient (Cp) (p = 0.012) and normalized characteristic path length (λ) (p = 0.004) compared to healthy individuals, as well as differences in nodal centralities across multiple brain regions. No baseline or post-treatment differences were identified between drug treatment conditions, so change after treatment were considered in the combined treatment groups. Relative to healthy individuals, differences in Cp, λ and cingulate gyrus nodal centrality were significantly reduced with treatment; changes in these parameters correlated with changes in Young Mania Rating Scale scores. Baseline structural connectome matrices significantly differentiated responder and non-responder groups at 8 weeks with 74% accuracy. Global and nodal network alterations evident at baseline were normalized with treatment and these changes associated with symptomatic improvement. Further, baseline structural connectome matrices predicted treatment response. These findings suggest that structural connectome abnormalities are clinically significant and may be useful for predicting clinical outcome of treatment and tracking drug effects on brain anatomy in bipolar disorder. CLINICAL TRIALS REGISTRATION Name: Functional and Neurochemical Brain Changes in First-episode Bipolar Mania Following Successful Treatment with Lithium or Quetiapine. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00609193. Name: Neurofunctional and Neurochemical Markers of Treatment Response in Bipolar Disorder. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00608075.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of the Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry & Behavioral Sciences, Dell Medical School of The University of Texas at Austin, Austin, 78712, TX, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
24
|
Goldman DA, Sankar A, Colic L, Villa L, Kim JA, Pittman B, Constable RT, Scheinost D, Blumberg HP. A graph theory-based whole brain approach to assess mood state differences in adolescents and young adults with bipolar disorder. Bipolar Disord 2022; 24:412-423. [PMID: 34665907 PMCID: PMC9016085 DOI: 10.1111/bdi.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Identifying hubs of brain dysfunction in adolescents and young adults with Bipolar I Disorder (BDAYA ) could provide targets for early detection, prevention, and treatment. Previous neuroimaging studies across mood states of BDAYA are scarce and often examined limited brain regions potentially prohibiting detection of other important regions. We used a data-driven whole-brain Intrinsic Connectivity Distribution (ICD) approach to investigate dysconnectivity hubs across mood states in BDAYA . METHODS Functional magnetic resonance imaging whole-brain ICD data were investigated for differences across four groups: BDAYA -depressed (n = 22), BDAYA -euthymic (n = 45), BDAYA -elevated (n = 24), and healthy controls (HC, n = 111). Clusters of ICD differences were assessed for regional dysconnectivity and mood symptom relationships. Analyses were also performed for BDAYA overall (vs. HC) ICD differences persisting across mood states. RESULTS ICD was higher in the BDAYA- depressed group than other groups in bilateral ventral/rostral/dorsal prefrontal cortex (PFC) and right lenticular nucleus (LN) (pcorrected <0.05). In BDAYA -depressed, functional connectivity (FC) was increased between these regions with their contralateral homologues and PFC-medial temporal FC was more negative (p < 0.005). PFC-related findings correlated with depression scores (p < 0.05). The overall BDAYA group showed ICD increases in more ventral left PFC and right cerebellum, present across euthymia and acute mood states. CONCLUSIONS This ICD approach supports a PFC hub of inter- and intra-hemispheric frontotemporal dysconnectivity in BDAYA with potential trait features and disturbances of higher magnitude during depression. Hubs were also revealed in LN and cerebellum, less common foci of BD research. The hubs are potential targets for early interventions to detect, prevent, and treat BD.
Collapse
Affiliation(s)
- Danielle A Goldman
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lejla Colic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Luca Villa
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Roberts G, Lenroot R, Overs B, Fullerton J, Leung V, Ridgway K, Stuart A, Frankland A, Levy F, Hadzi-Pavlovic D, Breakspear M, Mitchell PB. Accelerated cortical thinning and volume reduction over time in young people at high genetic risk for bipolar disorder. Psychol Med 2022; 52:1344-1355. [PMID: 32892764 DOI: 10.1017/s0033291720003153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a familial psychiatric disorder associated with frontotemporal and subcortical brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about structural brain trajectories in those at risk. METHOD Neuroimaging was conducted at baseline and at 2-year follow-up interval in 90 high-risk individuals with a first-degree BD relative (HR), and 56 participants with no family history of mental illness who could have non-BD diagnoses. All 146 subjects were aged 12-30 years at baseline. We examined longitudinal change in gray and white matter volume, cortical thickness, and surface area in the frontotemporal cortex and subcortical regions. RESULTS Compared to controls, HR participants showed accelerated cortical thinning and volume reduction in right lateralised frontal regions, including the inferior frontal gyrus, lateral orbitofrontal cortex, frontal pole and rostral middle frontal gyrus. Independent of time, the HR group had greater cortical thickness in the left caudal anterior cingulate cortex, larger volume in the right medial orbitofrontal cortex and greater area of right accumbens, compared to controls. This pattern was evident even in those without the new onset of psychopathology during the inter-scan interval. CONCLUSIONS This study suggests that differences previously observed in BD are developing prior to the onset of the disorder. The pattern of pathological acceleration of cortical thinning is likely consistent with a disturbance of molecular mechanisms responsible for normal cortical thinning. We also demonstrate that neuroanatomical differences in HR individuals may be progressive in some regions and stable in others.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - R Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - B Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - J Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Stuart
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Prince of Wales Hospital, Randwick, NSW, Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- School of psychology, University of Newcastle, Callaghan, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
- Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
26
|
Shoshina II, Almeida NL, Oliveira MEC, Trombetta BNT, Silva GM, Fars J, Santos NA, Fernandes TP. Serum levels of olanzapine are associated with acute cognitive effects in bipolar disorder. Psychiatry Res 2022; 310:114443. [PMID: 35286918 DOI: 10.1016/j.psychres.2022.114443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
Abstract
Bipolar (BPD) patients have deficits in cognition, but there are still controversies about the effects of some medications on their cognitive performance. Here, we investigated the relationship between cognition in terms of executive functions, memory, and attention in both first-episode medication-naive BPD patients and BPD patients taking olanzapine. Forty-one healthy controls, 40 unmedicated drug-naive BPD patients, and 34 BPD patients who took only olanzapine were recruited for the study. Cognitive performance was assessed using the Flanker test, Stroop test, and Corsi-block test. Bayesian multivariate regression analysis was run considering maximum robustness to avoid bias and to predict the outcomes. Our results revealed that unmedicated medication-naive BPD patients performed worse than healthy controls and the olanzapine group in some tasks. Additionally, BPD patients who took olanzapine had better cognitive performance than healthy controls and unmedicated BPD patients. The acute cognitive effects were predicted by olanzapine dosage and serum levels (i.e., large effects). The potential pro-cognitive effects of olanzapine in BPD patients should be carefully interpreted by considering various other clinical variables. We expect that our findings will contribute to further research in this area, with the goal of helping other researchers, patients, and the population.
Collapse
Affiliation(s)
- Irina I Shoshina
- Pavlov Institute of Physiology, RAS, Laboratory of Vision Physiology, Saint-Petersburg, Russia; St. Petersburg State University, Institute for Cognitive Research, Saint-Petersburg, Russia
| | - Natalia L Almeida
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Milena E C Oliveira
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Bianca N T Trombetta
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Gabriella M Silva
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Julien Fars
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Natanael A Santos
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Thiago P Fernandes
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil.
| |
Collapse
|
27
|
Abé C, Ching CRK, Liberg B, Lebedev AV, Agartz I, Akudjedu TN, Alda M, Alnæs D, Alonso-Lana S, Benedetti F, Berk M, Bøen E, Bonnin CDM, Breuer F, Brosch K, Brouwer RM, Canales-Rodríguez EJ, Cannon DM, Chye Y, Dahl A, Dandash O, Dannlowski U, Dohm K, Elvsåshagen T, Fisch L, Fullerton JM, Goikolea JM, Grotegerd D, Haatveit B, Hahn T, Hajek T, Heindel W, Ingvar M, Sim K, Kircher TTJ, Lenroot RK, Malt UF, McDonald C, McWhinney SR, Melle I, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Opel N, Overs BJ, Panicalli F, Pfarr JK, Poletti S, Pomarol-Clotet E, Radua J, Repple J, Ringwald KG, Roberts G, Rodriguez-Cano E, Salvador R, Sarink K, Sarró S, Schmitt S, Stein F, Suo C, Thomopoulos SI, Tronchin G, Vieta E, Westlye LT, White AG, Yatham LN, Zak N, Thompson PM, Andreassen OA, Landén M. Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group. Biol Psychiatry 2022; 91:582-592. [PMID: 34809987 DOI: 10.1016/j.biopsych.2021.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD. METHODS Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables. RESULTS Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18 <d < 0.22). More (hypo)manic episodes were associated with faster cortical thinning, primarily in the prefrontal cortex. CONCLUSIONS In the hitherto largest longitudinal MRI study on BD, we did not detect accelerated cortical thinning but noted faster ventricular enlargements in BD. However, abnormal frontocortical thinning was observed in association with frequent manic episodes. Our study yields insights into disease progression in BD and highlights the importance of mania prevention in BD treatment.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Benny Liberg
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Lebedev
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Agartz
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Bournemouth University, Bournemouth, United Kingdom; Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Michael Berk
- Orygen, the National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, the University of Melbourne, Melbourne, Victoria, Australia; Department of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Deakin University, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Erlend Bøen
- Unit of Psychosomatic and CL Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Caterina Del Mar Bonnin
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Fabian Breuer
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Signal Processing Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Science and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Orwa Dandash
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janice M Fullerton
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Jose M Goikolea
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tim Hahn
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia; National Institute of Mental Health, Klecany, Czech Republic; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Martin Ingvar
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Department of Neuroradiology, Stockholm, Sweden
| | - Kang Sim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; West Region, Institute of Mental Health, Singapore, Singapore; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | | | - Ulrik F Malt
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Addiction, Section for C-L Psychiatry and Psychosomatics, Oslo University Hospital, Oslo, Norway
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Sean R McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Elisa M T Melloni
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California; Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bronwyn J Overs
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Francesco Panicalli
- Hospital general de Granollers, Barcelona, Spain; Benito Menni CASM, Barcelona, Spain
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Joaquim Radua
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Elena Rodriguez-Cano
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni CASM, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Kelvin Sarink
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; West Region, Institute of Mental Health, Singapore, Singapore; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Simon Schmitt
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany; Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig, University of Giessen, Giessen, Germany
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Science and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Giulia Tronchin
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland, Galway, Ireland
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clínic, Institute of Neurosciences, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Adam G White
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, California
| | - Ole A Andreassen
- KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Tassi E, Boscutti A, Mandolini GM, Moltrasio C, Delvecchio G, Brambilla P. A scoping review of near infrared spectroscopy studies employing a verbal fluency task in bipolar disorder. J Affect Disord 2022; 298:604-617. [PMID: 34780861 DOI: 10.1016/j.jad.2021.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deficits in cognitive functioning, including attention, memory, and executive functions, along with impairments in language production, are present in patients with bipolar disorder (BD) patients during mood phases, but also during euthymia.Verbal fluency tasks (VFTs), being able to evaluate integrity of a wide range of cognitive domains and represent, can be used to screen for these disturbances. Neuroimaging studies, including Near-InfraRed Spectroscopy (NIRS), have repeatedly showed widespread alterations in the prefrontal and temporal cortex during the performance of VFTs in BD patients. This review aims to summarize the results of NIRS studies that evaluated hemodynamic responses associated with the VFTs in prefrontal and temporal regions in BD patients. METHODS We performed a scoping review of studies evaluating VFT-induced activation in prefrontal and temporal regions in BD patients, and the relationship between NIRS data and various clinical variables. RESULTS 15 studies met the inclusion criteria. In BD patients, compared to healthy controls, NIRS studies showed hypoactivation of the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and anterior temporal regions. Moreover, clinical variables, such as depressive and social adaptation scores, were negatively correlated with hemodynamic responses in prefrontal and temporal regions, while a positive correlation were reported for measures of manic symptoms and impulsivity. LIMITATIONS The heterogeneity of the studies in terms of methodology, study design and clinical characteristics of the samples limited the comparability of the findings. CONCLUSIONS Given its non-invasiveness, good time-resolution and no need of posturalconstraint, NIRS technique could represent a useful tool for the evaluation of prefrontal and temporal haemodynamic correlates of cognitive performances in BD patients.
Collapse
Affiliation(s)
- Emma Tassi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| |
Collapse
|
29
|
Girela-Serrano BM, Guerrero-Jiménez M, Spiers ADV, Gutiérrez-Rojas L. Obesity and overweight among children and adolescents with bipolar disorder from the general population: A review of the scientific literature and a meta-analysis. Early Interv Psychiatry 2022; 16:113-125. [PMID: 33735937 DOI: 10.1111/eip.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
There is substantial evidence of the high prevalence of obesity (OB) and overweight (OW) and their association with increased medical and psychiatric burden among adults with bipolar disorder (BD). However, little is known regarding its prevalence among young people with BD, other than the risk from psychotropic medication, which has been the focus of research in this population. We present a systematic review and meta-analysis of the literature on prevalence and correlates of OB and OW children and adolescents with BD using a different perspective than impact of medication. Four studies met inclusion criteria. The prevalence of OB in children and adolescents with BD was 15% (95% CI 11-20%). We observed a higher prevalence of OB in comparison to the general population. Different studies found significant associations between OB, OW, and BD in young populations including non-Caucasian race, physical abuse, suicide attempts, self-injurious behaviours, psychotropic medication, and psychiatric hospitalizations.
Collapse
Affiliation(s)
| | - Margarita Guerrero-Jiménez
- Department of Psychiatry, University of Granada, Granada, Spain.,Virgen de las Nieves University Hospital, Granada, Spain
| | - Alexander D V Spiers
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry, University of Granada, Granada, Spain.,Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain.,San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
30
|
A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry 2022; 27:202-211. [PMID: 33859358 DOI: 10.1038/s41380-021-01091-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
This work provides an overview of the most consistent alterations in bipolar disorder (BD), attempting to unify them in an internally coherent working model of the pathophysiology of BD. Data on immune-inflammatory changes, structural brain abnormalities (in gray and white matter), and functional brain alterations (from neurotransmitter signaling to intrinsic brain activity) in BD were reviewed. Based on the reported data, (1) we hypothesized that the core pathological alteration in BD is a damage of the limbic network that results in alterations of neurotransmitter signaling. Although heterogeneous conditions can lead to such damage, we supposed that the main pathophysiological mechanism is traceable to an immune/inflammatory-mediated alteration of white matter involving the limbic network connections, which destabilizes the neurotransmitter signaling, such as dopamine and serotonin signaling. Then, (2) we suggested that changes in such neurotransmitter signaling (potentially triggered by heterogeneous stressors onto a structurally-damaged limbic network) lead to phasic (and often recurrent) reconfigurations of intrinsic brain activity, from abnormal subcortical-cortical coupling to changes in network activity. We suggested that the resulting dysbalance between networks, such as sensorimotor networks, salience network, and default-mode network, clinically manifest in combined alterations of psychomotricity, affectivity, and thought during the manic and depressive phases of BD. Finally, (3) we supposed that an additional contribution of gray matter alterations and related cognitive deterioration characterize a clinical-biological subgroup of BD. This model may provide a general framework for integrating the current data on BD and suggests novel specific hypotheses, prompting for a better understanding of the pathophysiology of BD.
Collapse
|
31
|
Song Y, Yang J, Chang M, Wei Y, Yin Z, Zhu Y, Zhou Y, Zhou Y, Jiang X, Wu F, Kong L, Xu K, Wang F, Tang Y. Shared and distinct functional connectivity of hippocampal subregions in schizophrenia, bipolar disorder, and major depressive disorder. Front Psychiatry 2022; 13:993356. [PMID: 36186868 PMCID: PMC9515660 DOI: 10.3389/fpsyt.2022.993356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) share etiological and pathophysiological characteristics. Although neuroimaging studies have reported hippocampal alterations in SZ, BD, and MDD, little is known about how different hippocampal subregions are affected in these conditions because such subregions, namely, the cornu ammonis (CA), dentate gyrus (DG), and subiculum (SUB), have different structural foundations and perform different functions. Here, we hypothesize that different hippocampal subregions may reflect some intrinsic features among the major psychiatric disorders, such as SZ, BD, and MDD. By investigating resting functional connectivity (FC) of each hippocampal subregion among 117 SZ, 103 BD, 96 MDD, and 159 healthy controls, we found similarly and distinctly changed FC of hippocampal subregions in the three disorders. The abnormal functions of middle frontal gyrus might be the core feature of the psychopathological mechanisms of SZ, BD, and MDD. Anterior cingulate cortex and inferior orbital frontal gyrus might be the shared abnormalities of SZ and BD, and inferior orbital frontal gyrus is also positively correlated with depression and anxiety symptoms in SZ and BD. Caudate might be the unique feature of SZ and showed a positive correlation with the cognitive function in SZ. Middle temporal gyrus and supplemental motor area are the differentiating features of BD. Our study provides evidence for the different functions of different hippocampal subregions in psychiatric pathology.
Collapse
Affiliation(s)
- Yanzhuo Song
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Jingyu Yang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Miao Chang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiyang Yin
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yuning Zhou
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Cao H. Towards the understanding of state-independent neural traits underlying psychiatric disorders. Neurosci Biobehav Rev 2021; 133:104515. [PMID: 34968524 DOI: 10.1016/j.neubiorev.2021.104515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 01/10/2023]
Abstract
Hampered by the symptom complexity and diversity, the understanding of fundamental mechanisms underlying psychiatric disorders remains elusive. Traditional neuroscience research focusing on each behavioral domain separately may lack an overarching view of the pathogenesis of an entire disorder, offering limited power to identify core neuropathology that could possibly account for the disorder's various symptoms. The search for neural traits that are robustly present across different brain functional states and disease stages may provide insights into the rudimentary changes beneath manifest clinical phenotypes and thus help penetrate the causal mechanisms underlying a complex disorder. In this review, I briefly summarize previous research on this topic, emphasize how neural traits may help boost the understanding of biological mechanisms underlying psychiatric disorders, and exemplify how the observed traits may aid individualized predictions for diagnosis and prognosis in precision psychiatry, in particular related to schizophrenia. I also discuss a proposed research framework that can be leveraged for future studies on neural traits, as well as considerations for future applications of this nascent research strategy.
Collapse
Affiliation(s)
- Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
33
|
Neuronal cells from bipolar individuals are more susceptible to glutamate induced apoptosis than cells from non-bipolar subjects. J Affect Disord 2021; 294:568-573. [PMID: 34330053 DOI: 10.1016/j.jad.2021.07.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with marked parenchymal brain loss in a significant fraction of patients. The lack of necrosis in postmortem examination suggests an apoptotic process. Emerging evidence suggests that mood stabilizers, like lithium, have antiapoptotic actions. Glutamatergic abnormalities have been associated with BD. METHODS Olfactory neuroepithelial progenitors (ONPs) harvested by biopsy from type I bipolar patients (BD-ONPs, n = 3) and non-bipolar controls (non-BD-ONPs, n = 6), were treated with glutamate at concentrations sufficient to mimic the observed doubling of intracellular sodium known to occur in both mania and bipolar depression, to investigate potential differential lithium effect on both BD-ONPs and non-BD-ONPs. RESULTS Apoptosis was detected in BP-ONPs exposed to 0.1 M glutamate for 6 h but in non-BD-ONPs at 24 h. Moreover, after treatment with 0.1 M glutamate treated for 6 h the levels of the pro-apoptotic cleaved-caspase-3 and cleaved-PARP proteins were significantly higher in BD-ONPs compare to non-BD-ONPs. Pretreatment with a therapeutic concentration of 1 mM lithium for 3 days attenuated the glutamate induced apoptosis. Lithium pretreatment 3 days also prevented the DNA fragmentation induced by glutamate, and significantly increased the antiapoptotic phospho-B-Raf and Bcl-2 proteins in BD-ONPs compared to non-BD-ONPs. LIMITATIONS ONPs are obtained from subjects with and without bipolar illness, but outcome of their study may still not reflect the biology of the illness. CONCLUSIONS ONPs derived from BD are more susceptible to glutamate-induced apoptosis. Lithium is associated with a greater increase of anti-apoptotic B-Raf and Bcl-2 expression in BD-ONPs.
Collapse
|
34
|
Zhang L, Wu H, Zhang A, Bai T, Ji GJ, Tian Y, Wang K. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study. Eur Arch Psychiatry Clin Neurosci 2021; 271:1379-1391. [PMID: 33386961 DOI: 10.1007/s00406-020-01219-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Characterizing the properties of brain networks across mood states seen in bipolar disorder (BP) can provide a deeper insight into the mechanisms involved in this type of affective disorder. In this study, graph theoretical methods were used to examine global, modular and nodal brain network topology in the resting state using functional magnetic resonance imaging data acquired from 95 participants, including those with bipolar depression (BPD; n = 30) and bipolar mania (BPM; n = 39) and healthy control (HC) subjects (n = 26). The threshold value of the individual subjects' connectivity matrix varied from 0.15 to 0.30 with steps of 0.01. We found that: (1) at the global level, BP patients showed a significantly increased global efficiency and synchronization and a decreased path length; (2) at the nodal level, BP patients showed impaired nodal parameters, predominantly within the frontoparietal and limbic sub-network; (3) at the module level, BP patients were characterized by denser FCs (edges) between Module III (the front-parietal system) and Module V (limbic/paralimbic systems); (4) at the nodal level, the BPD and BPM groups showed state-specific differences in the orbital part of the left superior-frontal gyrus, right putamen, right parahippocampal gyrus and left fusiform gyrus. These results revealed abnormalities in topological organization in the whole brain, especially in the frontoparietal-limbic circuit in both BPD and BPM. These deficits may reflect the pathophysiological processes occurring in BP. In addition, state-specific regional nodal alterations in BP could potentially provide biomarkers of conversion across different mood states.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Huiling Wu
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Aiguo Zhang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
35
|
Cruz-Sanabria F, Reyes PA, Triviño-Martínez C, García-García M, Carmassi C, Pardo R, Matallana DL. Exploring Signatures of Neurodegeneration in Early-Onset Older-Age Bipolar Disorder and Behavioral Variant Frontotemporal Dementia. Front Neurol 2021; 12:713388. [PMID: 34539558 PMCID: PMC8446277 DOI: 10.3389/fneur.2021.713388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Older-age bipolar disorder (OABD) may involve neurocognitive decline and behavioral disturbances that could share features with the behavioral variant of frontotemporal dementia (bvFTD), making the differential diagnosis difficult in cases of suspected dementia. Objective: To compare the neuropsychological profile, brain morphometry, and structural connectivity patterns between patients diagnosed with bvFTD, patients classified as OABD with an early onset of the disease (EO-OABD), and healthy controls (HC). Methods: bvFTD patients (n = 25, age: 66 ± 7, female: 64%, disease duration: 6 ± 4 years), EO-OABD patients (n = 17, age: 65 ± 9, female: 71%, disease duration: 38 ± 8 years), and HC (n = 28, age: 62 ± 7, female: 64%) were evaluated through neuropsychological tests concerning attention, memory, executive function, praxis, and language. Brain morphometry was analyzed through surface-based morphometry (SBM), while structural brain connectivity was assessed through diffusion tensor imaging (DTI). Results: Both bvFTD and EO-OABD patients showed lower performance in neuropsychological tests of attention, verbal fluency, working memory, verbal memory, and praxis than HC. Comparisons between EO-OABD and bvFTD showed differences limited to cognitive flexibility delayed recall and intrusion errors in the memory test. SBM analysis demonstrated that several frontal, temporal, and parietal regions were altered in both bvFTD and EO-OABD compared to HC. In contrast, comparisons between bvFTD and EO-OABD evidenced differences exclusively in the right temporal pole and the left entorhinal cortex. DTI analysis showed alterations in association and projection fibers in both EO-OABD and bvFTD patients compared to HC. Commissural fibers were found to be particularly affected in EO-OABD. The middle cerebellar peduncle and the pontine crossing tract were exclusively altered in bvFTD. There were no significant differences in DTI analysis between EO-OABD and bvFTD. Discussion: EO-OABD and bvFTD may share an overlap in cognitive, brain morphometry, and structural connectivity profiles that could reflect common underlying mechanisms, even though the etiology of each disease can be different and multifactorial.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research, New Surgical, and Medical Technologies, University of Pisa, Pisa, Italy
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Alexander Reyes
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Cristian Triviño-Martínez
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Milena García-García
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rodrigo Pardo
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana L. Matallana
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
36
|
Longitudinal grey matter changes following first episode mania in bipolar I disorder: A systematic review. J Affect Disord 2021; 291:198-208. [PMID: 34049189 DOI: 10.1016/j.jad.2021.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/25/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND While widespread grey matter (GM) changes are seen in bipolar I disorder (BD-I), it is unclear how early in the illness such changes emerge. To date there has been little synthesis of findings regarding longitudinal grey matter changes early in the course of BD-I. We conducted a systematic review to examine the evolution of GM changes in BD-I patients following the first episode of mania (FEM). METHODS Following PRISMA guidelines, we conducted a systematic review of studies examining longitudinal changes in GM volume (GMV), cortical thickness and/or surface area in BD-I patients following FEM. We qualitatively synthesized results regarding longitudinal GM changes in BD-I patients. RESULTS Fifteen studies met inclusion criteria, all examining GMV changes. Longitudinal ACC volume decrease following FEM was the most replicated finding, but was only reported in 4 out of 7 studies that examined this region as part of a whole brain/region of interest analysis, with 2 of these positive studies using an overlapping patient sample. The impact of episode recurrence, medications, and other clinical factors was inconsistently examined. LIMITATIONS The literature regarding GM changes early in BD-I is highly inconsistent, likely due to heterogeneity in participant characteristics, imaging methodology/analysis and duration of follow up. CONCLUSIONS Though there was some suggestion that structural ACC changes may represent a marker for neuroprogression following FEM, results were too inconsistent to draw any conclusions. Larger longitudinal studies examining cortical thickness/surface area, and the influence of relevant clinical factors, are needed to better understand neuroprogression in early BD-I.
Collapse
|
37
|
Lei D, Li W, Tallman MJ, Patino LR, McNamara RK, Strawn JR, Klein CC, Nery FG, Fleck DE, Qin K, Ai Y, Yang J, Zhang W, Lui S, Gong Q, Adler CM, Sweeney JA, DelBello MP. Changes in the brain structural connectome after a prospective randomized clinical trial of lithium and quetiapine treatment in youth with bipolar disorder. Neuropsychopharmacology 2021; 46:1315-1323. [PMID: 33753882 PMCID: PMC8134458 DOI: 10.1038/s41386-021-00989-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The goals of the current study were to determine whether topological organization of brain structural networks is altered in youth with bipolar disorder, whether such alterations predict treatment outcomes, and whether they are normalized by treatment. Youth with bipolar disorder were randomized to double-blind treatment with quetiapine or lithium and assessed weekly. High-resolution MRI images were collected from children and adolescents with bipolar disorder who were experiencing a mixed or manic episode (n = 100) and healthy youth (n = 63). Brain networks were constructed based on the similarity of morphological features across regions and analyzed using graph theory approaches. We tested for pretreatment anatomical differences between bipolar and healthy youth and for changes in neuroanatomic network metrics following treatment in the youth with bipolar disorder. Youth with bipolar disorder showed significantly increased clustering coefficient (Cp) (p = 0.009) and characteristic path length (Lp) (p = 0.04) at baseline, and altered nodal centralities in insula, inferior frontal gyrus, and supplementary motor area. Cp, Lp, and nodal centrality of the insula exhibited normalization in patients following treatment. Changes in these neuroanatomic parameters were correlated with improvement in manic symptoms but did not differ between the two drug therapies. Baseline structural network matrices significantly differentiated medication responders and non-responders with 80% accuracy. These findings demonstrate that both global and nodal structural network features are altered in early course bipolar disorder, and that pretreatment alterations in neuroanatomic features predicted treatment outcome and were reduced by treatment. Similar connectome normalization with lithium and quetiapine suggests that the connectome changes are a downstream effect of both therapies that is related to their clinical efficacy.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yuan Ai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Jing Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China.
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
38
|
Lee SY, Wang TY, Lu RB, Wang LJ, Chang CH, Chiang YC, Tsai KW. Peripheral BDNF correlated with miRNA in BD-II patients. J Psychiatr Res 2021; 136:184-189. [PMID: 33610945 DOI: 10.1016/j.jpsychires.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have identified the association between peripheral levels of candidate miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) for BD-II in previous study. Most of these miRNAs are associated with regulation of expression of peripheral brain derived neurotrophic factor (BDNF) levels. In order to clarify the underlying mechanism of BDNF and miRNAs in the pathogenesis of BD-II, it is of interest to investigate the relation between the peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p with BDNF levels. Because the BDNF Val66Met polymorphism influence the secretion of BDNF, we further stratified the above correlations by this polymorphism. METHODS We have recruited 98 BD-II patients. Beside analyzing peripheral levels of miR-7-5p, miR-142-3p, miR-221-5p, miR-370-3p, and BDNF, the genetic distribution of the BDNF Val66Met polymorphism was also analyzed. RESULTS We found that the miR7-5p, miR221-5p, and miR370-3p significantly correlated with the BDNF levels for all patients. If stratified by the BDNF Val66Met polymorphism, the significant correlation between miR221-5p and miR370-3p with BDNF only remained in the Val/Met genotype. However, the correlation between miR7-5p and BDNF level is significant in all 3 genotypes. CONCLUSION Our result supported that these miRNAs may be involved in the pathomechanism of BD-II through relation with BDNF.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| |
Collapse
|
39
|
Sultan AA, Kennedy KG, Fiksenbaum L, MacIntosh BJ, Goldstein BI. Neurostructural Correlates of Cannabis Use in Adolescent Bipolar Disorder. Int J Neuropsychopharmacol 2021; 24:181-190. [PMID: 33103721 PMCID: PMC7968618 DOI: 10.1093/ijnp/pyaa077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Little is known regarding the association of cannabis use with brain structure in adolescents with bipolar disorder (BD). This subject is timely, given expanded availability of cannabis contemporaneously with increased social acceptance and diminished societal constraints to access. Therefore, we set out to examine this topic in a sample of adolescents with BD and healthy control (HC) adolescents. METHODS Participants included 144 adolescents (47 BD with cannabis use [BDCB+; including 13 with cannabis use disorder], 34 BD without cannabis use [BDCB-], 63 HC without cannabis use) ages 13-20 years. FreeSurfer-processed 3T MRI with T1-weighted contrast yielded measures of cortical thickness, surface area (SA), and volume. Region of interest (amygdala, hippocampus, ventrolateral prefrontal cortex, ventromedial prefrontal cortex, and anterior cingulate cortex) analyses and exploratory vertex-wise analysis were undertaken. A general linear model tested for between-group differences, accounting for age, sex, and intracranial volume. RESULTS Vertex-wise analysis revealed significant group effects in frontal and parietal regions. In post-hoc analyses, BDCB+ exhibited larger volume and SA in parietal regions, and smaller thickness in frontal regions, relative to HC and BDCB-. BDCB- had smaller volume, SA, and thickness in parietal and frontal regions relative to HC. There were no significant region of interest findings after correcting for multiple comparisons. CONCLUSION This study found that cannabis use is associated with differences in regional brain structure among adolescents with BD. Future prospective studies are necessary to determine the direction of the observed association and to assess for dose effects.
Collapse
Affiliation(s)
- Alysha A Sultan
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences & Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Bechi Gabrielli G, Rossi-Arnaud C, Spataro P, Doricchi F, Costanzi M, Santirocchi A, Angeletti G, Sani G, Cestari V. The Attentional Boost Effect in Young and Adult Euthymic Bipolar Patients and Healthy Controls. J Pers Med 2021; 11:185. [PMID: 33800780 PMCID: PMC8001531 DOI: 10.3390/jpm11030185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the Attentional Boost Effect (ABE), stimuli encoded with to-be-responded targets are later recognized more accurately than stimuli encoded with to-be-ignored distractors. While this effect is robust in young adults, evidence regarding healthy older adults and clinical populations is sparse. The present study investigated whether a significant ABE is present in bipolar patients (BP), who, even in the euthymic phase, suffer from attentional deficits, and whether the effect is modulated by age. Young and adult euthymic BP and healthy controls (HC) presented with a sequence of pictures paired with target or distractor squares were asked to pay attention to the pictures and press the spacebar when a target square appeared. After a 15-min interval, their memory of the pictures was tested in a recognition task. The performance in the detection task was lower in BP than in HC, in both age groups. More importantly, neither young nor adult BP exhibited a significant ABE; for HC, a robust ABE was only found in young participants. The results suggest that the increase in the attentional demands of the detection task in BP and in adult HC draws resources away from the encoding of target-associated stimuli, resulting in elimination of the ABE. Clinical implications are discussed.
Collapse
Affiliation(s)
- Giulia Bechi Gabrielli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.B.G.); (C.R.-A.); (F.D.); (A.S.)
| | - Clelia Rossi-Arnaud
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.B.G.); (C.R.-A.); (F.D.); (A.S.)
| | - Pietro Spataro
- Faculty of Economics, Universitas Mercatorum, 00100 Rome, Italy;
| | - Fabrizio Doricchi
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.B.G.); (C.R.-A.); (F.D.); (A.S.)
| | - Marco Costanzi
- Department of Human Sciences, Lumsa University, 00100 Rome, Italy;
| | - Alessandro Santirocchi
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.B.G.); (C.R.-A.); (F.D.); (A.S.)
| | - Gloria Angeletti
- Nesmos Department, Sapienza University, Sant’Andrea Hospital, 00100 Rome, Italy;
| | - Gabriele Sani
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, 00100 Rome, Italy;
- Department of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00100 Rome, Italy
| | - Vincenzo Cestari
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.B.G.); (C.R.-A.); (F.D.); (A.S.)
| |
Collapse
|
41
|
Neuroprogression as an Illness Trajectory in Bipolar Disorder: A Selective Review of the Current Literature. Brain Sci 2021; 11:brainsci11020276. [PMID: 33672401 PMCID: PMC7926350 DOI: 10.3390/brainsci11020276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Bipolar disorder (BD) is a chronic and disabling psychiatric condition that is linked to significant disability and psychosocial impairment. Although current neuropsychological, molecular, and neuroimaging evidence support the existence of neuroprogression and its effects on the course and outcome of this condition, whether and to what extent neuroprogressive changes may impact the illness trajectory is still poorly understood. Thus, this selective review was aimed toward comprehensively and critically investigating the link between BD and neurodegeneration based on the currently available evidence. According to the most relevant findings of the present review, most of the existing neuropsychological, neuroimaging, and molecular evidence demonstrates the existence of neuroprogression, at least in a subgroup of BD patients. These studies mainly focused on the most relevant effects of neuroprogression on the course and outcome of BD. The main implications of this assumption are discussed in light of specific shortcomings/limitations, such as the inability to carry out a meta-analysis, the inclusion of studies with small sample sizes, retrospective study designs, and different longitudinal investigations at various time points.
Collapse
|
42
|
Wang J, Liu P, Zhang A, Yang C, Liu S, Wang J, Xu Y, Sun N. Specific Gray Matter Volume Changes of the Brain in Unipolar and Bipolar Depression. Front Hum Neurosci 2021; 14:592419. [PMID: 33505257 PMCID: PMC7829967 DOI: 10.3389/fnhum.2020.592419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
To identify the common and specific structural basis of bipolar depression (BD) and unipolar depression (UD) is crucial for clinical diagnosis. In this study, a total of 85 participants, including 22 BD patients, 36 UD patients, and 27 healthy controls, were enrolled. A voxel-based morphology method was used to identify the common and specific changes of the gray matter volume (GMV) to determine the structural basis. Significant differences in GMV were found among the three groups. Compared with healthy controls, UD patients showed decreased GMV in the orbital part of the left inferior frontal gyrus, whereas BD patients showed decreased GMV in the orbital part of the left middle frontal gyrus. Compared with BD, UD patients have increased GMV in the left supramarginal gyrus and middle temporal gyrus. Our results revealed different structural changes in UD and BD patients suggesting BD and UD have different neurophysiological underpinnings. Our study contributes toward the biological determination of morphometric changes, which could help to discriminate between UD and BD.
Collapse
Affiliation(s)
- Junyan Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.,Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.,Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
43
|
Squassina A, Niola P, Lopez JP, Cruceanu C, Pisanu C, Congiu D, Severino G, Ardau R, Chillotti C, Alda M, Turecki G, Del Zompo M. MicroRNA expression profiling of lymphoblasts from bipolar disorder patients who died by suicide, pathway analysis and integration with postmortem brain findings. Eur Neuropsychopharmacol 2020; 34:39-49. [PMID: 32241689 DOI: 10.1016/j.euroneuro.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Post-mortem brain studies suggest that miRNAs may be involved in suicide, but their role as peripheral biomarkers or targets of preventive pharmacological treatments in suicide has yet to be elucidated. We used nCounter miRNA Expression assay to measure miRNAs expression in lymphoblastoid cell lines (LCLs) from patients with Bipolar Disorder (BD) who died by suicide (SC, n = 7) and with low risk of suicide (LR, n = 11). Five miRNAs were differentially expressed in SC compared to LR (false discovery rate p<0.05). The two most significant miRNAs were measured with RT-qPCR in the same sample and in 12 healthy controls (HC): miR-4286 was increased while miR-186-5p was decreased in SC compared to LR and HC (ANOVA F = 14.92, p = 0.000043 and F = 3.95, p = 0.032 respectively). miR-4286 was also decreased in postmortem brains from 12 patients with BD who died by suicide compared to 13 controls, even though it did not reach statistical significance (FC=0.51, p = 0.07). Treatment with lithium of human neural progenitor cells reduced the expression of miR-4286 (FC=0.30, p = 0.038). Pathway analysis on predicted miR-4286 targets showed that "insulin resistance" was significantly enriched after correction for multiple testing. This pathway comprised 17 genes involved in lipid and glucose metabolism, several of which were also dysregulated in postmortem brains from patients with BD who died by suicide from the Stanley-foundation array collection. In conclusion, our study suggests that miR-4286 could be a biomarker of suicide but further studies are warranted to investigate its targeted genes and how these could be involved in the neurobiology of suicide.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - Paola Niola
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; UCL Genomics, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Juan Pablo Lopez
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Canada
| | - Cristiana Cruceanu
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Canada
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Canada
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy
| |
Collapse
|
44
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
45
|
Ananth M, Bartlett EA, DeLorenzo C, Lin X, Kunkel L, Vadhan NP, Perlman G, Godstrey M, Holzmacher D, Ogden RT, Parsey RV, Huang C. Prediction of lithium treatment response in bipolar depression using 5-HTT and 5-HT 1A PET. Eur J Nucl Med Mol Imaging 2020; 47:2417-2428. [PMID: 32055965 DOI: 10.1007/s00259-020-04681-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lithium, one of the few effective treatments for bipolar depression (BPD), has been hypothesized to work by enhancing serotonergic transmission. Despite preclinical evidence, it is unknown whether lithium acts via the serotonergic system. Here we examined the potential of serotonin transporter (5-HTT) or serotonin 1A receptor (5-HT1A) pre-treatment binding to predict lithium treatment response and remission. We hypothesized that lower pre-treatment 5-HTT and higher pre-treatment 5-HT1A binding would predict better clinical response. Additional analyses investigated group differences between BPD and healthy controls and the relationship between change in binding pre- to post-treatment and clinical response. Twenty-seven medication-free patients with BPD currently in a depressive episode received positron emission tomography (PET) scans using 5-HTT tracer [11C]DASB, a subset also received a PET scan using 5-HT1A tracer [11C]-CUMI-101 before and after 8 weeks of lithium monotherapy. Metabolite-corrected arterial input functions were used to estimate binding potential, proportional to receptor availability. Fourteen patients with BPD with both [11C]DASB and [11C]-CUMI-101 pre-treatment scans and 8 weeks of post-treatment clinical scores were included in the prediction analysis examining the potential of either pre-treatment 5-HTT or 5-HT1A or the combination of both to predict post-treatment clinical scores. RESULTS We found lower pre-treatment 5-HTT binding (p = 0.003) and lower 5-HT1A binding (p = 0.035) were both significantly associated with improved clinical response. Pre-treatment 5-HTT predicted remission with 71% accuracy (77% specificity, 60% sensitivity), while 5-HT1A binding was able to predict remission with 85% accuracy (87% sensitivity, 80% specificity). The combined prediction analysis using both 5-HTT and 5-HT1A was able to predict remission with 84.6% accuracy (87.5% specificity, 60% sensitivity). Additional analyses BPD and controls pre- or post-treatment, and the change in binding were not significant and unrelated to treatment response (p > 0.05). CONCLUSIONS Our findings suggest that while lithium may not act directly via 5-HTT or 5-HT1A to ameliorate depressive symptoms, pre-treatment binding may be a potential biomarker for successful treatment of BPD with lithium. CLINICAL TRIAL REGISTRATION PET and MRI Brain Imaging of Bipolar Disorder Identifier: NCT01880957; URL: https://clinicaltrials.gov/ct2/show/NCT01880957.
Collapse
Affiliation(s)
- Mala Ananth
- Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | | | - Christine DeLorenzo
- Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Xuejing Lin
- Biostatistics, Columbia University, New York, NY, USA
| | - Laura Kunkel
- Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Nehal P Vadhan
- Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Great Neck, NY, USA
| | - Greg Perlman
- Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | | | | | - R Todd Ogden
- Biostatistics, Columbia University, New York, NY, USA
| | - Ramin V Parsey
- Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Psychiatry, Stony Brook University, Stony Brook, NY, USA.,Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Chuan Huang
- Psychiatry, Stony Brook University, Stony Brook, NY, USA.,Radiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
46
|
Abé C, Liberg B, Song J, Bergen SE, Petrovic P, Ekman CJ, Sellgren CM, Ingvar M, Landén M. Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use. Biol Psychiatry 2020; 87:271-281. [PMID: 31635761 DOI: 10.1016/j.biopsych.2019.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly heritable psychiatric disorder characterized by episodes of manic and depressed mood states and associated with cortical brain abnormalities. Although the course of BD is often progressive, longitudinal brain imaging studies are scarce. It remains unknown whether brain abnormalities are static traits of BD or result from pathological changes over time. Moreover, the genetic effect on implicated brain regions remains unknown. METHODS Patients with BD and healthy control (HC) subjects underwent structural magnetic resonance imaging at baseline (123 patients, 83 HC subjects) and after 6 years (90 patients, 61 HC subjects). Cortical thickness maps were generated using FreeSurfer. Using linear mixed effects models, we compared longitudinal changes in cortical thickness between patients with BD and HC subjects across the whole brain. We related our findings to genetic risk for BD and tested for effects of demographic and clinical variables. RESULTS Patients showed abnormal cortical thinning of temporal cortices and thickness increases in visual/somatosensory brain areas. Thickness increases were related to genetic risk and lithium use. Patients who experienced hypomanic or manic episodes between time points showed abnormal thinning in inferior frontal cortices. Cortical changes did not differ between diagnostic BD subtypes I and II. CONCLUSIONS In the largest longitudinal BD study to date, we detected abnormal cortical changes with high anatomical resolution. We delineated regional effects of clinical symptoms, genetic factors, and medication that may explain progressive brain changes in BD. Our study yields important insights into disease mechanisms and suggests that neuroprogression plays a role in BD.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Ekman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| |
Collapse
|
47
|
Van Rheenen TE, Lewandowski KE, Bauer IE, Kapczinski F, Miskowiak K, Burdick KE, Balanzá-Martínez V. Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disord 2020; 22:13-27. [PMID: 31408230 DOI: 10.1111/bdi.12821] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Cognitive dysfunction affects a significant proportion of people with bipolar disorder (BD), but the cause, trajectory and correlates of such dysfunction remains unclear. Increased understanding of these factors is required to progress treatment development for this symptom dimension. METHODS This paper provides a critical overview of the literature concerning the trajectories and emerging correlates of cognitive functioning in BD. It is a narrative review in which we provide a qualitative synthesis of current evidence concerning clinical, molecular, neural and lifestyle correlates of cognitive impairment in BD across the lifespan (in premorbid, prodromal, early onset, post-onset, elderly cohorts). RESULTS There is emerging evidence of empirical links between cognitive impairment and an increased inflammatory state, brain structural abnormalities and reduced neuroprotection in BD. However, evidence regarding the progressive nature of cognitive impairment is mixed, since consensus between different cross-sectional data is lacking and does not align to the outcomes of the limited longitudinal studies available. Increased recognition of cognitive heterogeneity in BD may help to explain some inconsistencies in the extant literature. CONCLUSIONS Large, longitudinally focussed studies of cognition and its covariation alongside biological and lifestyle factors are required to better define cognitive trajectories in BD, and eventually pave the way for the application of a precision medicine approach for individual patients in clinical practice.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia.,Faculty of Health, Arts and Design, School of Health Sciences, Centre for Mental Health, Swinburne University, Melbourne, Australia
| | - Kathryn E Lewandowski
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle E Bauer
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Kamilla Miskowiak
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Katherine E Burdick
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| |
Collapse
|
48
|
Structural and Functional Brain Correlates of Neuroprogression in Bipolar Disorder. Curr Top Behav Neurosci 2020; 48:197-213. [PMID: 33040317 DOI: 10.1007/7854_2020_177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuroprogression is associated with structural and functional brain changes that occur in parallel with cognitive and functioning impairments. There is substantial evidence showing early white matter changes, as well as trajectory-related gray matter alterations. Several structures, including prefrontal, parietal, temporal cortex, and limbic structures, seem to be altered over the course of bipolar disorder, especially associated with the number of episodes and length of the disease. An important limitation is that most of the studies used either a cross-sectional design or a short follow-up period, which may be insufficient to identify all neuroprogressive changes over time. In addition, the heterogeneity of patients with bipolar disorder is another challenge to determine which subjects will have a more pernicious trajectory. Larger studies and the use of new techniques, such as machine learning, may help to enable more discoveries and evidence on the role of neuroprogression in BD.
Collapse
|
49
|
Birner A, Bengesser SA, Seiler S, Dalkner N, Queissner R, Platzer M, Fellendorf FT, Hamm C, Maget A, Pilz R, Lenger M, Reininghaus B, Pirpamer L, Ropele S, Hinteregger N, Magyar M, Deutschmann H, Enzinger C, Kapfhammer HP, Reininghaus EZ. Total gray matter volume is reduced in individuals with bipolar disorder currently treated with atypical antipsychotics. J Affect Disord 2020; 260:722-727. [PMID: 31563071 DOI: 10.1016/j.jad.2019.09.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND/AIMS Recent evidence indicates that the intake of atypical antipsychotics (AAP) is associated with gray matter abnormalities in patients with psychiatric disorders. We explored if patients with bipolar disorder (BD) who are medicated with AAP exhibit total gray matter volume (TGV) reduction compared to BD individuals not medicated with AAP and healthy controls (HC). METHODS In a cross-sectional design, 124 individuals with BD and 86 HC underwent 3T-MRI of the brain and clinical assessment as part of our BIPFAT-study. The TGV was estimated using Freesurfer. We used univariate covariance analysis (ANCOVA) to test for normalized TGV differences and controlled for covariates. RESULTS ANCOVA results indicated that 75 BD individuals taking AAP had significantly reduced normalized TGV as compared to 49 BD not taking AAP (F = 9.995, p = .002., Eta = 0.084) and 86 HC (F = 7.577, p = .007, Eta = 0.046). LIMITATIONS Our cross-sectional results are not suited to draw conclusions about causality. We have no clear information on treatment time and baseline volumes before drug treatment in the studied subjects. We cannot exclude that patients received different psychopharmacologic medications prior to the study point. We did not included dosages into the calculation. Many BD individuals received combinations of psychopharmacotherapy across drug classes. We did not have records displaying quantitative alcohol consumption and drug abuse in our sample. CONCLUSIONS Our data provide further evidence for the impact of AAP on brain structure in BD. Longitudinal studies are needed to investigate the causal directions of the proposed relationships.
Collapse
Affiliation(s)
- Armin Birner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Susanne A Bengesser
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria.
| | - Stephan Seiler
- Imaging of Dementia and Aging (IDeA), Laboratory Department of Neurology and Center for Neuroscience, University of California, Davis, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicole Hinteregger
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Marton Magyar
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| |
Collapse
|
50
|
Fricchione G, Beach S. Cingulate-basal ganglia-thalamo-cortical aspects of catatonia and implications for treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:223-252. [PMID: 31731912 DOI: 10.1016/b978-0-444-64196-0.00012-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The catatonic syndrome is an example of a multifactorial neurobehavioral disorder that causes much morbidity and mortality but also has the potential to unlock the mystery of how motivation and movement interact to produce behavior. In this chapter, an attempt is made to understand better the catatonic syndrome through the lens of neurobiology and neuropathophysiology updated by recent studies in molecular biology, genomics, inflammasomics, neuroimaging, neural network theory, and neuropsychopathology. This will result in a neurostructural model for the catatonic syndrome that centers on paralimbic regions including the anterior and midcingulate cortices, as they interface with striatal and thalamic nodes in the salience decision-making network. Examination of neurologic disorders like the abulic syndrome, which includes in its extreme catatonic form, akinetic mutism, will identify the cingulate cortex and paralimbic neighbors as regions of interest. This exploration has the potential to unlock mysteries of the brain cascade from motivation to movement and to clarify catatonia therapeutics. Such a synthesis may also help us discern meaning inherent in this complex neurobehavioral syndrome.
Collapse
Affiliation(s)
- Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Scott Beach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|