1
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
3
|
Gao JH, Liu YY, Xu HX, Wu K, Zhang LL, Cheng P, Peng XH, Cao JL, Hua R, Zhang YM. Divergent input patterns to the central lateral amygdala play a duet in fear memory formation. iScience 2024; 27:110886. [PMID: 39319272 PMCID: PMC11421289 DOI: 10.1016/j.isci.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Somatostatin (SOM)-expressing neurons in the central lateral amygdala (CeL) are responsible for fear memory learning, but the circuit and molecular mechanisms underlying this biology remain elusive. Here, we found that glutamatergic neurons in the lateral parabrachial nucleus (LPB) directly dominated the activity of CeLSOM neurons, and that selectively inhibiting the LPBGlu→CeLSOM pathway suppressed fear memory acquisition. By contrast, inhibiting CeL-projecting glutamatergic neurons in the paraventricular thalamic nucleus (PVT) interfered with consolidation-related processes. Notably, CeLSOM-innervating neurons in the LPB were modulated by presynaptic cannabinoid receptor 1 (CB1R), and knock down of CB1Rs in LPB glutamatergic neurons enhanced excitatory transmission to the CeL and partially rescued the impairment in fear memory induced by CB1R activation in the CeL. Overall, our study reveals the mechanisms by which CeLSOM neurons mediate the formation of fear memories during fear conditioning in mice, which may provide a new direction for the clinical research of fear-related disorders.
Collapse
Affiliation(s)
- Jing-Hua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng 224008, Jiangsu, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Hui-Xiang Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
4
|
Pae C, Kim HJ, Bang M, Il Park C, Lee SH. Predicting treatment outcomes in patients with panic disorder: Cross-sectional and two-year longitudinal structural connectome analysis using machine learning methods. J Anxiety Disord 2024; 106:102895. [PMID: 39121510 DOI: 10.1016/j.janxdis.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
PURPOSE This study examined the relationship between structural brain networks and long-term treatment outcomes in patients with panic disorder (PD) using machine learning methods. METHOD The study involved 80 participants (53 PD patients and 27 healthy controls) and included clinical assessments and MRI scans at baseline and after two years (160 MRIs). Patients were categorized based on their response to two-year pharmacotherapy. Brain networks were analyzed using white matter tractography and network-based statistics. RESULTS Results showed structural network changes in PD patients, particularly in the extended fear network, including frontal regions, thalamus, and cingulate gyrus. Longitudinal analysis revealed that increased connections to the amygdala, hippocampus, and insula were associated with better treatment response. Conversely, overconnectivity in the amygdala and insula at baseline was associated with poor response, and similar patterns were found in the insula and parieto-occipital cortex related to non-remission. This study found that SVM and CPM could effectively predict treatment outcomes based on network pattern changes in PD. CONCLUSIONS These findings suggest that monitoring structural connectome changes in limbic and paralimbic regions is critical for understanding PD and tailoring treatment. The study highlights the potential of using personalized biomarkers to develop individualized treatment strategies for PD.
Collapse
Affiliation(s)
- Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
5
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
6
|
Rojas AKP, Linley SB, Vertes RP. Chemogenetic inactivation of the nucleus reuniens and its projections to the orbital cortex produce deficits on discrete measures of behavioral flexibility in the attentional set-shifting task. Behav Brain Res 2024; 470:115066. [PMID: 38801950 DOI: 10.1016/j.bbr.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The nucleus reuniens (RE) of the ventral midline thalamus is a critical node in the communication between the orbitomedial prefrontal cortex (OFC) and the hippocampus (HF). While RE has been shown to directly participate in memory-associated functions through its connections with the medial prefrontal cortex and HF, less is known regarding the role of RE in executive functioning. Here, we examined the involvement of RE and its projections to the orbital cortex (ORB) in attention and behavioral flexibility in male rats using the attentional set shifting task (AST). Rats expressing the hM4Di DREADD receptor in RE were implanted with indwelling cannulas in either RE or the ventromedial ORB to pharmacologically inhibit RE or its projections to the ORB with intracranial infusions of clozapine-N-oxide hydrochloride (CNO). Chemogenetic-induced suppression of RE resulted in impairments in reversal learning and set-shifting. This supports a vital role for RE in behavioral flexibility - or the ability to adapt behavior to changing reward or rule contingencies. Interestingly, CNO suppression of RE projections to the ventromedial ORB produced impairments in rule abstraction - or dissociable effects elicited with direct RE suppression. In summary, the present findings indicate that RE, mediated in part by actions on the ORB, serves a critical role in the flexible use of rules to drive goal directed behavior. The cognitive deficits of various neurological disorders with impaired communication between the HF and OFC, may be partly attributed to alterations of RE -- as an established intermediary between these cortical structures.
Collapse
Affiliation(s)
- Amanda K P Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
7
|
Wu Y, Zhang D, Liu J, Jiang J, Xie K, Wu L, Leng Y, Liang P, Zhu T, Zhou C. Activity of the Sodium Leak Channel Maintains the Excitability of Paraventricular Thalamus Glutamatergic Neurons to Resist Anesthetic Effects of Sevoflurane in Mice. Anesthesiology 2024; 141:56-74. [PMID: 38625708 DOI: 10.1097/aln.0000000000005015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. This study aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in the paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHODS Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how NALCN influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of the NALCN in the paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of the NALCN in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of the NALCN in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of NALCN knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS Activity of the NALCN maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Keyu Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Leng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhou G, Lane G, Kahnt T, Zelano C. Structural Connectivity between Olfactory Tubercle and Ventrolateral Periaqueductal Gray Implicated in Human Feeding Behavior. J Neurosci 2024; 44:e2342232024. [PMID: 38755004 PMCID: PMC11209663 DOI: 10.1523/jneurosci.2342-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
The olfactory tubercle (TUB), also called the tubular striatum, receives direct input from the olfactory bulb and, along with the nucleus accumbens, is one of the two principal components of the ventral striatum. As a key component of the reward system, the ventral striatum is involved in feeding behavior, but the vast majority of research on this structure has focused on the nucleus accumbens, leaving the TUB's role in feeding behavior understudied. Given the importance of olfaction in food seeking and consumption, olfactory input to the striatum should be an important contributor to motivated feeding behavior. Yet the TUB is vastly understudied in humans, with very little understanding of its structural organization and connectivity. In this study, we analyzed macrostructural variations between the TUB and the whole brain and explored the relationship between TUB structural pathways and feeding behavior, using body mass index (BMI) as a proxy in females and males. We identified a unique structural covariance between the TUB and the periaqueductal gray (PAG), which has recently been implicated in the suppression of feeding. We further show that the integrity of the white matter tract between the two regions is negatively correlated with BMI. Our findings highlight a potential role for the TUB-PAG pathway in the regulation of feeding behavior in humans.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland 21224
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
9
|
Sherman SM, Usrey WM. A Reconsideration of the Core and Matrix Classification of Thalamocortical Projections. J Neurosci 2024; 44:e0163242024. [PMID: 38866538 PMCID: PMC11170670 DOI: 10.1523/jneurosci.0163-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95616
| |
Collapse
|
10
|
Hall S. Is the Papez circuit the location of the elusive episodic memory engram? IBRO Neurosci Rep 2024; 16:249-259. [PMID: 38370006 PMCID: PMC10869290 DOI: 10.1016/j.ibneur.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
All of the brain structures and white matter that make up Papez' circuit, as well as the circuit as a whole, are implicated in the literature in episodic memory formation and recall. This paper shows that Papez' circuit has the detailed structure and connectivity that is evidently required to support the episodic memory engram, and that identifying Papez' circuit as the location of the engram answers a number of long-standing questions regarding the role of medial temporal lobe structures in episodic memory. The paper then shows that the process by which the episodic memory engram may be formed is a network-wide Hebbian potentiation termed "racetrack potentiation", whose frequency corresponds to that observed in vivo in humans for memory functions. Further, by considering the microcircuits observed in the medial temporal lobe structures forming Papez' circuit, the paper establishes the neural mechanisms behind the required functions of sensory information storage and recall, pattern completion, pattern separation, and memory consolidation. The paper shows that Papez' circuit has the necessary connectivity to gather the various elements of an episodic memory occurring within Pöppel's experienced time or "quantum of experience". Finally, the paper shows how the memory engram located in Papez' circuit might be central to the formation of a duplicate engram in the cortex enabling consolidation and long-term storage of episodic memories.
Collapse
Affiliation(s)
- Steven Hall
- Department of Psychology, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| |
Collapse
|
11
|
Vantomme G, Devienne G, Hull JM, Huguenard JR. Reuniens thalamus recruits recurrent excitation in medial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596906. [PMID: 38854099 PMCID: PMC11160760 DOI: 10.1101/2024.05.31.596906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic Reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here we used in vivo and in vitro electrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition for both Re-mPFC and Re-dCA1 pathways. However, we also identified a novel biphasic excitation of mPFC by Re, but not dCA1. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to neocortex. Local field potential recordings in mPFC brain slices revealed that this biphasic excitation propagates throughout all cortical lamina, with the late excitation specifically enhanced by GABAAR blockade. In vivo Neuropixels recordings in head-fixed awake mice revealed a similar biphasic excitation of mPFC units by Re activation. In summary, Re output produces recurrent feed-forward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain. Significance statement The interactions between medial prefrontal cortex and hippocampus are crucial for memory formation and retrieval. Yet, it is still poorly understood how the functional connectivity of direct and indirect pathways underlies these functions. This research explores the synaptic connectivity of the indirect pathway through the Reuniens nucleus of the thalamus using electrophysiological recordings and optogenetic manipulations. The study found that Reuniens stimulation recruits recurrent and long-lasting activity in mPFC - a phenomenon not previously recorded. This recurrent activity might create a temporal window ideal for coincidence detection and be an underlying mechanism for memory formation and retrieval.
Collapse
Affiliation(s)
- Gil Vantomme
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gabrielle Devienne
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jacob M Hull
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Wang L, Yang B, Zheng W, Liang T, Chen X, Chen Q, Du J, Lu J, Li B, Chen N. Alterations in cortical thickness and volumes of subcortical structures in pediatric patients with complete spinal cord injury. CNS Neurosci Ther 2024; 30:e14810. [PMID: 38887969 PMCID: PMC11183907 DOI: 10.1111/cns.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Tengfei Liang
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Qian Chen
- Department of Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baowei Li
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
13
|
Lyuboslavsky P, Ordemann GJ, Kizimenko A, Brumback AC. Two contrasting mediodorsal thalamic circuits target the mouse medial prefrontal cortex. J Neurophysiol 2024; 131:876-890. [PMID: 38568510 PMCID: PMC11383385 DOI: 10.1152/jn.00456.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 05/09/2024] Open
Abstract
At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.
Collapse
Affiliation(s)
- Polina Lyuboslavsky
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Gregory J Ordemann
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Alena Kizimenko
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Audrey C Brumback
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
14
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
15
|
Biesbroek JM, Verhagen MG, van der Stigchel S, Biessels GJ. When the central integrator disintegrates: A review of the role of the thalamus in cognition and dementia. Alzheimers Dement 2024; 20:2209-2222. [PMID: 38041861 PMCID: PMC10984498 DOI: 10.1002/alz.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/04/2023]
Abstract
The thalamus is a complex neural structure with numerous anatomical subdivisions and intricate connectivity patterns. In recent decades, the traditional view of the thalamus as a relay station and "gateway to the cortex" has expanded in recognition of its role as a central integrator of inputs from sensory systems, cortex, basal ganglia, limbic systems, brain stem nuclei, and cerebellum. As such, the thalamus is critical for numerous aspects of human cognition, mood, and behavior, as well as serving sensory processing and motor functions. Thalamus pathology is an important contributor to cognitive and functional decline, and it might be argued that the thalamus has been somewhat overlooked as an important player in dementia. In this review, we provide a comprehensive overview of thalamus anatomy and function, with an emphasis on human cognition and behavior, and discuss emerging insights on the role of thalamus pathology in dementia.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of NeurologyDiakonessenhuis HospitalUtrechtThe Netherlands
| | - Marieke G. Verhagen
- VIB Center for Brain and DiseaseLeuvenBelgium
- Department of NeurosciencesKatholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - Stefan van der Stigchel
- Department of Experimental PsychologyHelmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | - Geert Jan Biessels
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
16
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Dedic N, Wang L, Hajos-Korcsok E, Hecksher-Sørensen J, Roostalu U, Vickers SP, Wu S, Anacker C, Synan C, Jones PG, Milanovic S, Hopkins SC, Bristow LJ, Koblan KS. TAAR1 agonists improve glycemic control, reduce body weight and modulate neurocircuits governing energy balance and feeding. Mol Metab 2024; 80:101883. [PMID: 38237896 PMCID: PMC10839149 DOI: 10.1016/j.molmet.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.
Collapse
Affiliation(s)
- Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| | - Lien Wang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | | | - Serena Wu
- Department of Psychiatry, New York State Psychiatric Institute (NYSPI), Columbia University, NY, New York City, USA
| | - Christoph Anacker
- Department of Psychiatry, New York State Psychiatric Institute (NYSPI), Columbia University, NY, New York City, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Zou Y, He X, Ye Z, Li Z, Guo Q, Zou W, Peng Q. Inhibition of the glutamatergic PVT-NAc projections attenuates local anesthetic-induced neurotoxic behaviors. Reg Anesth Pain Med 2024:rapm-2023-104964. [PMID: 38233353 DOI: 10.1136/rapm-2023-104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Local anesthetic-induced neurotoxicity contributes to perioperative nerve damage; however, the underlying mechanisms remain unclear. Here, we investigated the role of the paraventricular thalamus (PVT)-nucleus accumbens (NAc) projections in neurotoxicity induced by ropivacaine, a local anesthetic agent. METHODS Ropivacaine (58 mg/kg, intraperitoneal administration) was used to construct the local anesthetic systemic toxicity (LAST) mice model. We first identified neural projections from the PVT to the NAc through the expression of a retrograde tracer and virus. The inhibitory viruses (rAAV-EF1α-DIO-hm4D(Gi)-mCherry-WPREs: AAV2/retro and rAAV-CaMKII-CRE-WPRE-hGh: AAV2/9) were injected into the mice model to assess the effects of the specific inhibition of the PVT-NAc pathway on neurological behaviors in the presence of clozapine-N-oxide. The inhibition of the PVT-NAc pathway was evaluated by immunofluorescence staining of c-Fos-positive neurons and Ca2+ signals in CaMKIIa neurons. RESULTS We successfully identified a circuit connecting the PVT and NAc in C57BL/6 mice. Ropivacaine administration induced the activation of the PVT-NAc pathway and seizures. Specific inhibition of NAc-projecting CaMKII neurons in the PVT was sufficient to inhibit the neuronal activity in the NAc, which subsequently decreased ropivacaine-induced neurotoxicity. CONCLUSION These results reveal the presence of a dedicated PVT-NAc circuit that regulates local anesthetic-induced neurotoxicity and provide a potential mechanistic explanation for the treatment and prevention of LAST.
Collapse
Affiliation(s)
- Yu Zou
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xin He
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Zhiwen Ye
- Department of Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders, Changsha, Hunan Province, China
| | - Zhengyiqi Li
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Wangyuan Zou
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Tong Y, Cho S, Coenen VA, Döbrössy MD. Input-output relation of midbrain connectomics in a rodent model of depression. J Affect Disord 2024; 345:443-454. [PMID: 37890539 DOI: 10.1016/j.jad.2023.10.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The symptoms associated with depression are believed to arise from disruptions in information processing across brain networks. The ventral tegmental area (VTA) influences reward-based behavior, motivation, addiction, and psychiatric disorders, including depression. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB), is an emerging therapy for treatment-resistant depression. Understanding the depression associated anatomical networks crucial for comprehending its antidepressant effects. METHODS Flinders Sensitive Line (FSL), a rodent model of depression and Sprague-Dawley rats (n = 10 each) were used in this study. We used monosynaptic tracing to map inputs of VTA efferent neurons: VTA-to-NAc nucleus accumbens (NAc) (both core and shell) and VTA-to-prefrontal cortex (PFC). Quantitative analysis explored afferent diversity and strengths. RESULTS VTA efferent neurons receive a variety of afferents with varying input weights and predominant neuromodulatory representation. Notably, NAc-core projecting VTA neurons showed stronger afferents from dorsal raphe, while NAc shell-projecting VTA neurons displayed lower input strengths from cortex, thalamus, zona incerta and pretectal area in FSL rats. NAc shell-projecting VTA neurons showed the most difference in connectivity across the experimental groups. LIMITATIONS Lack of functional properties of the anatomical connections is the major limitation of this study. Incomplete labeling and the cytotoxicity of the rabies virus should be made aware of. CONCLUSIONS These findings provide the first characterization of inputs to different VTA ascending projection neurons, shedding light on critical differences in the connectome of the midbrain-forebrain system. Moreover, these differences support potential network effects of these circuits in the context of MFB DBS neuromodulation for depression.
Collapse
Affiliation(s)
- Y Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - S Cho
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - V A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany; IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg, Germany
| | - M D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
20
|
Filetti C, Kane-Grade F, Gunnar M. The Development of Stress Reactivity and Regulation in Children and Adolescents. Curr Neuropharmacol 2024; 22:395-419. [PMID: 37559538 PMCID: PMC10845082 DOI: 10.2174/1570159x21666230808120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 08/11/2023] Open
Abstract
Adversity experienced in early life can have detrimental effects on physical and mental health. One pathway in which these effects occur is through the hypothalamic-pituitary-adrenal (HPA) axis, a key physiological stress-mediating system. In this review, we discuss the theoretical perspectives that guide stress reactivity and regulation research, the anatomy and physiology of the axis, developmental changes in the axis and its regulation, brain systems regulating stress, the role of genetic and epigenetics variation in axis development, sensitive periods in stress system calibration, the social regulation of stress (i.e., social buffering), and emerging research areas in the study of stress physiology and development. Understanding the development of stress reactivity and regulation is crucial for uncovering how early adverse experiences influence mental and physical health.
Collapse
Affiliation(s)
- Clarissa Filetti
- Institute of Child Development, University of Minnesota, Minneapolis, USA
| | - Finola Kane-Grade
- Institute of Child Development, University of Minnesota, Minneapolis, USA
| | - Megan Gunnar
- Institute of Child Development, University of Minnesota, Minneapolis, USA
| |
Collapse
|
21
|
Moreira A, Santos Hernández DA, Caceros V, Barahona KC, Campos F, Reyes WA, Blanco A, Soto T, Ramirez J, Mejias R, Cruz C, Lovo EE. Dual-Target Radiosurgery for Concomitant Continuous Pain Presentation of Trigeminal Neuralgia: Radiomodulation Effect and Dose. Cureus 2024; 16:e51602. [PMID: 38313895 PMCID: PMC10836852 DOI: 10.7759/cureus.51602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 02/06/2024] Open
Abstract
OBJECTIVES Patients with trigeminal neuralgia (TN) experience concomitant continuous pain (CCP) that can be difficult to treat. A dual-target approach delivering a high dose of radiation to the nerve and the contralateral thalamus can develop a fast radiomodulation effect on lowering pain. We sought to determine if this effect was dose dependent. METHODS We retrospectively reviewed 21 patients treated with radiosurgery in CCP and severe TN pain, with a visual analog scale (VAS) score of nine out of 10 at the time of treatment. Ten patients were treated with a high dose (>120 Gy) in the thalamus 90 Gy to the nerve, and the rest with a low dose (<120 Gy) to the thalamus and >90 Gy to the nerve. RESULTS Of those who received the high dose to the thalamus, six patients (60%) received 140 Gy, and four (40%) received 120 Gy, with a median dose to the trigeminal nerve of 90 and 85 Gy, respectively. The high thalamus dose showed a radiomodulation effect from day 1. The low thalamus dose did not produce radiomodulation on any of the first four days. The percentage of VAS score reduction one month after treatment was higher in the high-thalamus dose group than in the low-thalamus dose group. At three months, VAS score was 2 in the high-dose group and 4 in the low-dose group. CONCLUSIONS The radiomodulation effect in pain and dual-target radiosurgery is dose dependent in CCP in TN; a high dose can provide a more consistent clinical result than a lower dose.
Collapse
Affiliation(s)
| | | | - Victor Caceros
- Radiation Oncology, International Cancer Center, San Salvador, SLV
| | - Kaory C Barahona
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Fidel Campos
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - William A Reyes
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | | | - Tatiana Soto
- Radiation, Robotic Radiosurgery Center, San Jose, CRI
| | - Juliana Ramirez
- Radiosurgery, Centro de Radiocirugia Robotica, San Jose, CRI
| | - Ricardo Mejias
- Medical Physics, Robotic Radiosurgery Center, San Jose, CRI
| | - Claudia Cruz
- Anesthesia and Pain Management, Hospital De Diagnóstico, San Salvador, SLV
| | - Eduardo E Lovo
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| |
Collapse
|
22
|
Reeders PC, Rivera Núñez MV, Vertes RP, Mattfeld AT, Allen TA. Identifying the midline thalamus in humans in vivo. Brain Struct Funct 2023; 228:1835-1847. [PMID: 36598561 DOI: 10.1007/s00429-022-02607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The midline thalamus is critical for flexible cognition, memory, and stress regulation in humans and its dysfunction is associated with several neurological and psychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. Despite the pervasive role of the midline thalamus in cognition and disease, there is a limited understanding of its function in humans, likely due to the absence of a rigorous noninvasive neuroimaging methodology to identify its location. Here, we introduce a new method for identifying the midline thalamus in vivo using probabilistic tractography and k-means clustering with diffusion weighted imaging data. This approach clusters thalamic voxels based on data-driven cortical and subcortical connectivity profiles and then segments the midline thalamus according to anatomical connectivity tracer studies in rodents and macaques. Results from two different diffusion weighted imaging sets, including adult data (22-35 years) from the Human Connectome Project (n = 127) and adolescent data (9-14 years) collected at Florida International University (n = 34) showed that this approach reliably classifies midline thalamic clusters. As expected, these clusters were most evident along the dorsal/ventral extent of the third ventricle and were primarily connected to the agranular medial prefrontal cortex (e.g., anterior cingulate cortex), nucleus accumbens, and medial temporal lobe regions. The midline thalamus was then bisected based on a human brain atlas into a dorsal midline thalamic cluster (paraventricular and paratenial nuclei) and a ventral midline thalamic cluster (rhomboid and reuniens nuclei). This anatomical connectivity-based identification of the midline thalamus offers the opportunity for necessary investigation of this region in vivo in the human brain and how it relates to cognitive functions in humans, and to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Puck C Reeders
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, 33155, USA
| | - M Vanessa Rivera Núñez
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33231, USA
| | - Aaron T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA.
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
23
|
Boeken OJ, Cieslik EC, Langner R, Markett S. Characterizing functional modules in the human thalamus: coactivation-based parcellation and systems-level functional decoding. Brain Struct Funct 2023; 228:1811-1834. [PMID: 36547707 PMCID: PMC10516793 DOI: 10.1007/s00429-022-02603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally connected cortical regions. Our results confirm thalamic structure-function relationships known from animal and clinical studies and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuroscience literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure-function relationships at the brain network level, and to build viable starting points for future studies.
Collapse
Affiliation(s)
- Ole J Boeken
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sebastian Markett
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| |
Collapse
|
24
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat Commun 2023; 14:6758. [PMID: 37875465 PMCID: PMC10598272 DOI: 10.1038/s41467-023-42429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.
Collapse
Affiliation(s)
- Heather C Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA
| | - Mark E J Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA.
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
25
|
Collomb-Clerc A, Gueguen MCM, Minotti L, Kahane P, Navarro V, Bartolomei F, Carron R, Regis J, Chabardès S, Palminteri S, Bastin J. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning. Nat Commun 2023; 14:6534. [PMID: 37848435 PMCID: PMC10582006 DOI: 10.1038/s41467-023-42380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.
Collapse
Affiliation(s)
- Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Maëlle C M Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrice Bartolomei
- Timone University Hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, University Hospital of Marseille, Marseille, France
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Timone University Hospital, Department of functional and stereotactic neurosurgery, University Hospital of Marseille, Marseille, France
| | - Jean Regis
- Neurosurgery Department, University Hospital of Marseille, Marseille, France
| | - Stephan Chabardès
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurosurgery Department, University Hospital of Grenoble, Grenoble, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d'Etudes Cognitives, ENS, PSL, INSERM, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
26
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
28
|
de Mooij-van Malsen JG, Röhrdanz N, Buschhoff AS, Schiffelholz T, Sigurdsson T, Wulff P. Task-specific oscillatory synchronization of prefrontal cortex, nucleus reuniens, and hippocampus during working memory. iScience 2023; 26:107532. [PMID: 37636046 PMCID: PMC10450413 DOI: 10.1016/j.isci.2023.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Working memory requires maintenance of and executive control over task-relevant information on a timescale of seconds. Spatial working memory depends on interactions between hippocampus, for the representation of space, and prefrontal cortex, for executive control. A monosynaptic hippocampal projection to the prefrontal cortex has been proposed to serve this interaction. However, connectivity and inactivation experiments indicate a critical role of the nucleus reuniens in hippocampal-prefrontal communication. We have investigated the dynamics of oscillatory coherence throughout the prefrontal-hippocampal-reuniens network in a touchscreen-based working memory task. We found that coherence at distinct frequencies evolved depending on phase and difficulty of the task. During choice, the reuniens did not participate in enhanced prefrontal-hippocampal theta but in gamma coherence. Strikingly, the reuniens was strongly embedded in performance-related increases in beta coherence, suggesting the execution of top-down control. In addition, we show that during working memory maintenance the prefrontal-hippocampal-reuniens network displays performance-related delay activity.
Collapse
Affiliation(s)
| | - Niels Röhrdanz
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Thomas Schiffelholz
- Center of Integrative Psychiatry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
29
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
30
|
Woodson J, Bergan JF. Uncovering the brain-wide pattern of synaptic input to vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus. J Comp Neurol 2023; 531:1017-1031. [PMID: 37121600 PMCID: PMC10566340 DOI: 10.1002/cne.25476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023]
Abstract
Arginine vasopressin (AVP) is a neuropeptide critical for the mammalian stress response and social behavior. AVP produced in the hypothalamus regulates water osmolality and vasoconstriction in the body, and in the brain, it regulates social behavior, aggression, and anxiety. However, the circuit mechanisms that link AVP to social behavior, homeostatic function, and disease are not well understood. This study investigates the circuit configurations of AVP-expressing neurons in the rodent hypothalamus and characterizes synaptic input from the entire brain. We targeted the paraventricular nucleus (PVN) using retrograde viral tracing techniques to identify direct afferent synaptic connections made onto AVP-expressing neurons. AVP neurons in the PVN display region-specific anatomical configurations that reflect their unique contributions to homeostatic function, motor behaviors, feeding, and affiliative behavior. The afferent connections identified were similar in both sexes and subsequent molecular investigation of these inputs shows that those local hypothalamic inputs are overwhelmingly nonpeptidergic cells indicating a potential interneuron nexus between hormone cell activation and broader cortical connection. This proposed work reveals new insights into the organization of social behavior circuits in the brain, and how neuropeptides act centrally to modulate social behaviors.
Collapse
Affiliation(s)
- Jonathan Woodson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Joseph F Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
31
|
Ji R, Cui M, Zhou D, Pan X, Xie Y, Wu X, Liang X, Zhang H, Song W. Adulthood bisphenol A exposure induces anxiety in male mice via downregulation of alpha-1D adrenergic receptor in paraventricular thalamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115205. [PMID: 37392660 DOI: 10.1016/j.ecoenv.2023.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disrupting chemical, is widely used in household plastic products. Large amounts of evidence indicate prenatal and postnatal BPA exposure causes neurodevelopmental disorders such as anxiety and autism. However, the neuronal mechanisms underlying the neurotoxic effects of adulthood BPA exposure remain poorly understood. Here, we provided evidences that adult mice treated with BPA (0.45 mg/kg/day) during 3 weeks exhibited sex-specific anxiety like behaviors. We demonstrated that the BPA-induced anxiety in male mice, but not in female mice, was closely associated with hyperactivity of glutamatergic neurons in the paraventricular thalamus (PVT). Acute chemogenetic activation of PVT glutamatergic neurons caused similar effects on anxiety as observed in male mice exposed to BPA. In contrast, acute chemogenetic inhibition of PVT glutamatergic neurons reduced BPA-induced anxiety in male mice. Concomitantly, the BPA-induced anxiety was related with a down-regulation of alpha-1D adrenergic receptor in the PVT. Taken together, the present study indicated a previously unknown target region in the brain for neurotoxic effects of BPA on anxiety and implicated a possible molecular mechanism of action.
Collapse
Affiliation(s)
- Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuqi Xie
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiling Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Liang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
32
|
Zhang JP, Shen J, Xiang YT, Xing XX, Kang BX, Zhao C, Wu JJ, Zheng MX, Hua XY, Xiao LB, Xu JG. Modulation of Brain Network Topological Properties in Knee Osteoarthritis by Electroacupuncture in Rats. J Pain Res 2023; 16:1595-1605. [PMID: 37220632 PMCID: PMC10200108 DOI: 10.2147/jpr.s406374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Osteoarthritis is a chronic, ongoing disease that affects patients, and pain is considered a key factor affecting patients, but the brain changes during the development of osteoarthritis pain are currently unclear. In this study, we used electroacupuncture (EA) to intervene the rat model of knee osteoarthritis and analyzed the changes in topological properties of brain networks using graph theory. Methods Sixteen SD rat models of right-knee osteoarthritis with anterior cruciate ligament transection (ACLT) were randomly divided into electroacupuncture intervention group and control group. The electroacupuncture group was intervened on Zusanli (ST36) and Futu (ST32) for 20 min each time, five times a week for 3 weeks, while the control group was applied sham stimulation. Both groups were measured for pain threshold. The small-world properties and node properties of the brain network between the two groups after the intervention were statistically analyzed by graph theory methods. Results The differences are mainly in the changes in node attributes between the two groups, such as degree centrality, betweenness centrality, and so on in different brain regions (P<0.05). Both groups showed no small-world characteristics in the brain networks of the two groups. The mechanical thresholds and thermal pain thresholds were significantly higher in the EA group than in the control group (P<0.05). Conclusion The study demonstrated that electroacupuncture intervention enhanced the activity of nodes related to pain circuit and relieved pain in osteoarthritis, which provides a complementary basis for explaining the effect of electroacupuncture intervention on pain through graphical analysis of changes in brain network topological properties and helps to develop an imaging model for pain affected by electroacupuncture.
Collapse
Affiliation(s)
- Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Shen
- Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, People’s Republic of China
- Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bing-Xin Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Chi Zhao
- Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Mou-Xiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xu-Yun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lian-Bo Xiao
- Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, People’s Republic of China
- Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
Shan J, Song Y, Wang Y, Fan P, Lu B, Luo J, Xu W, Jing L, Mo F, Hu R, Luo Y, Mao G, Wang Y, Cai X. Highly Activated Neuronal Firings Monitored by Implantable Microelectrode Array in the Paraventricular Thalamus of Insomnia Rats. SENSORS (BASEL, SWITZERLAND) 2023; 23:4629. [PMID: 37430543 DOI: 10.3390/s23104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023]
Abstract
Insomnia is a common sleep disorder around the world, which is harmful to people's health, daily life, and work. The paraventricular thalamus (PVT) plays an essential role in the sleep-wake transition. However, high temporal-spatial resolution microdevice technology is lacking for accurate detection and regulation of deep brain nuclei. The means for analyzing sleep-wake mechanisms and treating sleep disorders are limited. To detect the relationship between the PVT and insomnia, we designed and fabricated a special microelectrode array (MEA) to record electrophysiological signals of the PVT for insomnia and control rats. Platinum nanoparticles (PtNPs) were modified onto an MEA, which caused the impedance to decrease and improved the signal-to-noise ratio. We established the model of insomnia in rats and analyzed and compared the neural signals in detail before and after insomnia. In insomnia, the spike firing rate was increased from 5.48 ± 0.28 spike/s to 7.39 ± 0.65 spike/s, and the power of local field potential (LFP) decreased in the delta frequency band and increased in the beta frequency band. Furthermore, the synchronicity between PVT neurons declined, and burst-like firing was observed. Our study found neurons of the PVT were more activated in the insomnia state than in the control state. It also provided an effective MEA to detect the deep brain signals at the cellular level, which conformed with macroscopical LFP and insomnia symptoms. These results laid the foundation for studying PVT and the sleep-wake mechanism and were also helpful for treating sleep disorders.
Collapse
Affiliation(s)
- Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Gang Mao
- The Fourth People's Hospital of Jinan, Jinan 250031, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Li JN, Wu XM, Zhao LJ, Sun HX, Hong J, Wu FL, Chen SH, Chen T, Li H, Dong YL, Li YQ. Central medial thalamic nucleus dynamically participates in acute itch sensation and chronic itch-induced anxiety-like behavior in male mice. Nat Commun 2023; 14:2539. [PMID: 37137899 PMCID: PMC10156671 DOI: 10.1038/s41467-023-38264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Itch is an annoying sensation consisting of both sensory and emotional components. It is known to involve the parabrachial nucleus (PBN), but the following transmission nodes remain elusive. The present study identified that the PBN-central medial thalamic nucleus (CM)-medial prefrontal cortex (mPFC) pathway is essential for itch signal transmission at the supraspinal level in male mice. Chemogenetic inhibition of the CM-mPFC pathway attenuates scratching behavior or chronic itch-related affective responses. CM input to mPFC pyramidal neurons is enhanced in acute and chronic itch models. Specifically chronic itch stimuli also alter mPFC interneuron involvement, resulting in enhanced feedforward inhibition and a distorted excitatory/inhibitory balance in mPFC pyramidal neurons. The present work underscores CM as a transmit node of the itch signal in the thalamus, which is dynamically engaged in both the sensory and affective dimensions of itch with different stimulus salience.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liu-Jie Zhao
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Feng-Ling Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Si-Hai Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China.
| |
Collapse
|
36
|
Wang X, Leong ATL, Tan SZK, Wong EC, Liu Y, Lim LW, Wu EX. Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation. Nat Commun 2023; 14:2195. [PMID: 37069169 PMCID: PMC10110623 DOI: 10.1038/s41467-023-37682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
As a key oscillatory activity in the brain, thalamic spindle activities are long believed to support memory consolidation. However, their propagation characteristics and causal actions at systems level remain unclear. Using functional MRI (fMRI) and electrophysiology recordings in male rats, we found that optogenetically-evoked somatosensory thalamic spindle-like activities targeted numerous sensorimotor (cortex, thalamus, brainstem and basal ganglia) and non-sensorimotor limbic regions (cortex, amygdala, and hippocampus) in a stimulation frequency- and length-dependent manner. Thalamic stimulation at slow spindle frequency (8 Hz) and long spindle length (3 s) evoked the most robust brain-wide cross-modal activities. Behaviorally, evoking these global cross-modal activities during memory consolidation improved visual-somatosensory associative memory performance. More importantly, parallel visual fMRI experiments uncovered response potentiation in brain-wide sensorimotor and limbic integrative regions, especially superior colliculus, periaqueductal gray, and insular, retrosplenial and frontal cortices. Our study directly reveals that thalamic spindle activities propagate in a spatiotemporally specific manner and that they consolidate associative memory by strengthening multi-target memory representation.
Collapse
Affiliation(s)
- Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shawn Z K Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eddie C Wong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lee-Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
37
|
Wen J, Gao Y, Li M, Hu S, Zhao M, Su C, Wang Q, Xi H, Zhan L, Lv Y, Antwi CO, Ren J, Jia X. Regional abnormalities of spontaneous brain activity in migraine: A coordinate‐based meta‐analysis. J Neurosci Res 2023. [DOI: 10.1002/jnr.25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
|
38
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. Direct Thalamic Inputs to Hippocampal CA1 Transmit a Signal That Suppresses Ongoing Contextual Fear Memory Retrieval. RESEARCH SQUARE 2023:rs.3.rs-2729263. [PMID: 37034716 PMCID: PMC10081386 DOI: 10.21203/rs.3.rs-2729263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Collapse
Affiliation(s)
- Heather C. Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Mark E. J. Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
39
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. Direct Thalamic Inputs to Hippocampal CA1 Transmit a Signal That Suppresses Ongoing Contextual Fear Memory Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534420. [PMID: 37034812 PMCID: PMC10081195 DOI: 10.1101/2023.03.27.534420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Collapse
Affiliation(s)
- Heather C. Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Mark E. J. Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
40
|
Ahmed N, Paré D. The Basolateral Amygdala Sends a Mixed (GABAergic and Glutamatergic) Projection to the Mediodorsal Thalamic Nucleus. J Neurosci 2023; 43:2104-2115. [PMID: 36788026 PMCID: PMC10039751 DOI: 10.1523/jneurosci.1924-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023] Open
Abstract
The medial prefrontal cortex receives converging inputs from the mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA). Although many studies reported that the BLA also projects to MD, there is conflicting evidence regarding this projection, with some data suggesting that it originates from GABAergic or glutamatergic neurons. Therefore, the present study aimed to determine the neurotransmitter used by MD-projecting BLA cells in male and female rats. We first examined whether BLA cells retrogradely labeled by Fast Blue infusions in MD are immunopositive for multiple established markers of BLA interneurons. A minority of MD-projecting BLA cells expressed somatostatin (∼22%) or calretinin (∼11%) but not other interneuronal markers, suggesting that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Second, we examined the responses of MD cells to optogenetic activation of BLA axons using whole-cell recordings in vitro Consistent with our immunohistochemical findings, among responsive MD cells, light stimuli typically elicited isolated EPSPs (73%) or IPSPs (27%) as well as coincident EPSPs and IPSPs (11%). Indicating that these IPSPs were monosynaptic, light-evoked EPSPs and IPSPs had the same latency and the IPSPs persisted in the presence of ionotropic glutamate receptor antagonists. Overall, our results indicate that the BLA sends a mixed, glutamatergic-GABAergic projection to MD, which likely influences coordination of activity between BLA, MD, and medial prefrontal cortex. An important challenge for future studies will be to examine the connections formed by MD-projecting glutamatergic and GABAergic BLA cells with each other and other populations of BLA cells.SIGNIFICANCE STATEMENT The mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA) send convergent projections to the medial prefrontal cortex. Although many studies reported that the BLA also projects to MD, there is conflicting evidence as to whether this projection is glutamatergic or GABAergic. By combining tract tracing, immunohistochemistry, optogenetics, and patch clamp recordings in vitro, we found that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Differential recruitment of these two contingents of cells likely influences coordination of activity between the BLA, MD, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
41
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Vertes RP, Hoover WB, Witter MP, Yanik MF, Rojas AKP, Linley SB. Projections from the five divisions of the orbital cortex to the thalamus in the rat. J Comp Neurol 2023; 531:217-237. [PMID: 36226328 PMCID: PMC9772129 DOI: 10.1002/cne.25419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
The orbital cortex (ORB) of the rat consists of five divisions: the medial (MO), ventral (VO), ventrolateral (VLO), lateral (LO), and dorsolateral (DLO) orbital cortices. No previous report has comprehensively examined and compared projections from each division of the ORB to the thalamus. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we describe the efferent projections from the five divisions of the ORB to the thalamus in the rat. We demonstrated that, with some overlap, each division of the ORB distributed in a distinct (and unique) manner to nuclei of the thalamus. Overall, ORB projected to a relatively restricted number of sites in the thalamus, and strikingly distributed entirely to structures of the medial/midline thalamus, while completely avoiding lateral regions or principal nuclei of the thalamus. The main termination sites in the thalamus were the paratenial nucleus (PT) and nucleus reuniens (RE) of the midline thalamus, the medial (MDm) and central (MDc) divisions of the mediodorsal nucleus, the intermediodorsal nucleus, the central lateral, paracentral, and central medial nuclei of the rostral intralaminar complex and the submedial nucleus (SM). With some exceptions, medial divisions of the ORB (MO, VO) mainly targeted "limbic-associated" nuclei such as PT, RE, and MDm, whereas lateral division (VLO, LO, DLO) primarily distributed to "sensorimotor-associated" nuclei including MDc, SM, and the rostral intralaminar complex. As discussed herein, the medial/midline thalamus may represent an important link (or bridge) between the orbital cortex and the hippocampus and between the ORB and medial prefrontal cortex. In summary, the present results demonstrate that each division of the orbital cortex projects in a distinct manner to nuclei of the thalamus which suggests unique functions for each division of the orbital cortex.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Walter B Hoover
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, D-ITET, ETH, University of Zurich, Zurich, Switzerland
| | - Amanda K P Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
43
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
44
|
Kim SW, Kim M, Baek J, Latchoumane CF, Gangadharan G, Yoon Y, Kim DS, Lee JH, Shin HS. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron 2023; 111:418-429.e4. [PMID: 36460007 PMCID: PMC10681369 DOI: 10.1016/j.neuron.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Observational fear, a form of emotional contagion, is thought to be a basic form of affective empathy. However, the neural process engaged at the specific moment when socially acquired information provokes an emotional response remains elusive. Here, we show that reciprocal projections between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) in the right hemisphere are essential for observational fear, and 5-7 Hz neural oscillations were selectively increased in those areas at the onset of observational freezing. A closed-loop disruption demonstrated the causal relationship between 5-7 Hz oscillations in the cingulo-amygdala circuit and observational fear responses. The increase/decrease in theta power induced by optogenetic manipulation of the hippocampal theta rhythm bi-directionally modulated observational fear. Together, these results indicate that hippocampus-dependent 5-7 Hz oscillations in the cingulo-amygdala circuit in the right hemisphere are the essential component of the cognitive process that drives empathic fear, but not freezing, in general.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Minsoo Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jinhee Baek
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yongwoo Yoon
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Republic of Korea
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; SL Bigen, Incheon 21983, Republic of Korea.
| |
Collapse
|
45
|
Bonham LW, Geier EG, Sirkis DW, Leong JK, Ramos EM, Wang Q, Karydas A, Lee SE, Sturm VE, Sawyer RP, Friedberg A, Ichida JK, Gitler AD, Sugrue L, Cordingley M, Bee W, Weber E, Kramer JH, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Ravits J, Miller BL, Yokoyama JS. Radiogenomics of C9orf72 Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. J Neurosci 2023. [PMID: 36446586 DOI: 10.1101/2022.04.29.490104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
Collapse
Affiliation(s)
- Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Transposon Therapeutics, San Diego, California 92122
| | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Josiah K Leong
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Adit Friedberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | | | - Walter Bee
- Transposon Therapeutics, San Diego, California 92122
| | - Eckard Weber
- Transposon Therapeutics, San Diego, California 92122
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Pathology, University of California, San Francisco, San Francisco, California 94158
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California, San Diego, La Jolla, California 92093
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Bonham LW, Geier EG, Sirkis DW, Leong JK, Ramos EM, Wang Q, Karydas A, Lee SE, Sturm VE, Sawyer RP, Friedberg A, Ichida JK, Gitler AD, Sugrue L, Cordingley M, Bee W, Weber E, Kramer JH, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Ravits J, Miller BL, Yokoyama JS. Radiogenomics of C9orf72 Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. J Neurosci 2023; 43:333-345. [PMID: 36446586 PMCID: PMC9838702 DOI: 10.1523/jneurosci.1448-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
Collapse
Affiliation(s)
- Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Transposon Therapeutics, San Diego, California 92122
| | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Josiah K Leong
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Adit Friedberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
| | | | - Walter Bee
- Transposon Therapeutics, San Diego, California 92122
| | - Eckard Weber
- Transposon Therapeutics, San Diego, California 92122
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Pathology, University of California, San Francisco, San Francisco, California 94158
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California, San Diego, La Jolla, California 92093
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94158, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Parallel Pathways Provide Hippocampal Spatial Information to Prefrontal Cortex. J Neurosci 2023; 43:68-81. [PMID: 36414405 PMCID: PMC9838712 DOI: 10.1523/jneurosci.0846-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Long-range synaptic connections define how information flows through neuronal networks. Here, we combined retrograde and anterograde trans-synaptic viruses to delineate areas that exert direct and indirect influence over the dorsal and ventral prefrontal cortex (PFC) of the rat (both sexes). Notably, retrograde tracing using pseudorabies virus (PRV) revealed that both dorsal and ventral areas of the PFC receive prominent disynaptic input from the dorsal CA3 (dCA3) region of the hippocampus. The PRV experiments also identified candidate anatomical relays for this disynaptic pathway, namely, the ventral hippocampus, lateral septum, thalamus, amygdala, and basal forebrain. To determine the viability of each of these relays, we performed three additional experiments. In the first, we injected the retrograde monosynaptic tracer Fluoro-Gold into the PFC and the anterograde monosynaptic tracer Fluoro-Ruby into the dCA3 to confirm the first-order connecting areas and revealed several potential relay regions between the PFC and dCA3. In the second, we combined PRV injection in the PFC with polysynaptic anterograde viral tracer (HSV-1) in the dCA3 to reveal colabeled connecting neurons, which were evident only in the ventral hippocampus. In the third, we combined retrograde adeno-associated virus (AAV) injections in the PFC with an anterograde AAV in the dCA3 to reveal anatomical relay neurons in the ventral hippocampus and dorsal lateral septum. Together, these findings reveal parallel disynaptic pathways from the dCA3 to the PFC, illuminating a new anatomical framework for understanding hippocampal-prefrontal interactions. We suggest that the representation of context and space may be a universal feature of prefrontal function.SIGNIFICANCE STATEMENT The known functions of the prefrontal cortex are shaped by input from multiple brain areas. We used transneuronal viral tracing to discover multiple prominent disynaptic pathways through which the dorsal hippocampus (specifically, the dorsal CA3) has the potential to shape the actions of the prefrontal cortex. The demonstration of neuronal relays in the ventral hippocampus and lateral septum presents a new foundation for understanding long-range influences over prefrontal interactions, including the specific contribution of the dorsal CA3 to prefrontal function.
Collapse
|
48
|
Chibaatar E, Watanabe K, Okamoto N, Orkhonselenge N, Natsuyama T, Hayakawa G, Ikenouchi A, Kakeda S, Yoshimura R. Volumetric assessment of individual thalamic nuclei in patients with drug-naïve, first-episode major depressive disorder. Front Psychiatry 2023; 14:1151551. [PMID: 37032922 PMCID: PMC10073419 DOI: 10.3389/fpsyt.2023.1151551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Despite the previous inconsistent findings of structural and functional abnormalities of the thalamus in patients with major depressive disorder (MDD), the disruption of the thalamic nuclei in the pathophysiology of this disorder has not yet been adequately studied. Therefore, we investigated the volumetric changes of thalamic subregions and their nuclei in drug-naïve, first-episode MDD patients. We also investigated the association between HAM-D scores, a clinical scale frequently used to evaluate the severity of depression and thalamic nuclei volumes in MDD patients. Methods This study included 76 drug-naïve MDD patients and an equal number of healthy subjects. Magnetic resonance imaging (MRI) data were obtained using a 3T MR system and thalamic nuclei volumes were evaluated using FreeSurfer ver.7.11. The volumetric differences were compared by one-way analysis of covariance (ANCOVA) and to ensure that effects were not accounted for by other factors, age, sex, and ETICV variables were included as covariates. Results We observed significant volume reductions of the left whole thalamus (p < 0.003) and several thalamic nuclei mostly on the left side in the MDD group compared with healthy controls (HCs). Furthermore, we have revealed weak negative correlations between several thalamic nuclei volumes and HAM-D total and subscale scores. Discussion This is the first research study to investigate alterations of the various thalamic nuclei volumes in MDD patients compared with HCs. Moreover, we first analyzed the association between individual thalamic nuclei volumes and HAM-D subscale scores. Though our study may be restricted at certain levels, especially by the demographic difference between the two groups, they possibly contribute at a preliminary level to understanding the thalamic structural changes at its subregions in patients with drug-naïve, first-episode MDD.
Collapse
Affiliation(s)
- Enkhmurun Chibaatar
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nasanbadrakh Orkhonselenge
- Department of Second Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoya Natsuyama
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gaku Hayakawa
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Reiji Yoshimura,
| |
Collapse
|
49
|
Zhao J, Liu C, Zhang F, Zheng Z, Luo F, Xia J, Wang Y, Zhang Z, Tang J, Song Z, Li S, Xu K, Chen M, Jiang C, He C, Tang L, Hu Z, Gao D, Ren S. A paraventricular thalamus to central amygdala neural circuit modulates acute stress-induced heightened wakefulness. Cell Rep 2022; 41:111824. [PMID: 36516774 DOI: 10.1016/j.celrep.2022.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Chengyu Liu
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400050, China
| | - Fenyan Zhang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ziyi Zheng
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Siyu Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Kan Xu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Mengting Chen
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Army 953 Hospital, Army Medical University, Shigatse 857000, China.
| |
Collapse
|
50
|
Ballerini A, Tondelli M, Talami F, Molinari MA, Micalizzi E, Giovannini G, Turchi G, Malagoli M, Genovese M, Meletti S, Vaudano AE. Amygdala subnuclear volumes in temporal lobe epilepsy with hippocampal sclerosis and in non-lesional patients. Brain Commun 2022; 4:fcac225. [PMID: 36213310 PMCID: PMC9536297 DOI: 10.1093/braincomms/fcac225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Together with hippocampus, the amygdala is important in the epileptogenic network of patients with temporal lobe epilepsy. Recently, an increase in amygdala volumes (i.e. amygdala enlargement) has been proposed as morphological biomarker of a subtype of temporal lobe epilepsy patients without MRI abnormalities, although other data suggest that this finding might be unspecific and not exclusive to temporal lobe epilepsy. In these studies, the amygdala is treated as a single entity, while instead it is composed of different nuclei, each with peculiar function and connection. By adopting a recently developed methodology of amygdala's subnuclei parcellation based of high-resolution T1-weighted image, this study aims to map specific amygdalar subnuclei participation in temporal lobe epilepsy due to hippocampal sclerosis (n = 24) and non-lesional temporal lobe epilepsy (n = 24) with respect to patients with focal extratemporal lobe epilepsies (n = 20) and healthy controls (n = 30). The volumes of amygdala subnuclei were compared between groups adopting multivariate analyses of covariance and correlated with clinical variables. Additionally, a logistic regression analysis on the nuclei resulting statistically different across groups was performed. Compared with other populations, temporal lobe epilepsy with hippocampal sclerosis showed a significant atrophy of the whole amygdala (p Bonferroni = 0.040), particularly the basolateral complex (p Bonferroni = 0.033), while the non-lesional temporal lobe epilepsy group demonstrated an isolated hypertrophy of the medial nucleus (p Bonferroni = 0.012). In both scenarios, the involved amygdala was ipsilateral to the epileptic focus. The medial nucleus demonstrated a volume increase even in extratemporal lobe epilepsies although contralateral to the seizure onset hemisphere (p Bonferroni = 0.037). Non-lesional patients with psychiatric comorbidities showed a larger ipsilateral lateral nucleus compared with those without psychiatric disorders. This exploratory study corroborates the involvement of the amygdala in temporal lobe epilepsy, particularly in mesial temporal lobe epilepsy and suggests a different amygdala subnuclei engagement depending on the aetiology and lateralization of epilepsy. Furthermore, the logistic regression analysis indicated that the basolateral complex and the medial nucleus of amygdala can be helpful to differentiate temporal lobe epilepsy with hippocampal sclerosis and with MRI negative, respectively, versus controls with a consequent potential clinical yield. Finally, the present results contribute to the literature about the amygdala enlargement in temporal lobe epilepsy, suggesting that the increased volume of amygdala can be regarded as epilepsy-related structural changes common across different syndromes whose meaning should be clarified.
Collapse
Affiliation(s)
- Alice Ballerini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Francesca Talami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Elisa Micalizzi
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giada Giovannini
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giulia Turchi
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | | | | | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| |
Collapse
|