1
|
Bravi B, Paolini M, Maccario M, Milano C, Raffaelli L, Melloni EMT, Zanardi R, Colombo C, Benedetti F. Abnormal choroid plexus, hippocampus, and lateral ventricles volumes as markers of treatment-resistant major depressive disorder. Psychiatry Clin Neurosci 2024. [PMID: 39563010 DOI: 10.1111/pcn.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
AIM One-third of patients with major depressive disorder (MDD) do not achieve full remission and have high relapse rates even after treatment, leading to increased medical costs and reduced quality of life and health status. The possible specificity of treatment-resistant depression (TRD) neurobiology is still under investigation, with risk factors such as higher inflammatory markers being identified. Given recent findings on the role of choroid plexus (ChP) in neuroinflammation and hippocampus in treatment response, the aim of the present study was to evaluate inflammatory- and trophic-related differences in these regions along with ventricular volumes among patients with treatment-sensitive depression (TSD), TRD, and healthy controls (HCs). METHODS ChP, hippocampal, and ventricular volumes were assessed in 197 patients with MDD and 58 age- and sex-matched HCs. Volumes were estimated using FreeSurfer 7.2. Treatment resistance status was defined as failure to respond to at least two separate antidepressant treatments. Region of interest volumes were then compared among groups. RESULTS We found higher ChP volumes in patients with TRD compared with patients with TSD and HCs. Our results also showed lower hippocampal volumes and higher lateral ventricular volumes in TRD compared with both patients without TRD and HCs. CONCLUSIONS These findings corroborate the link between TRD and neuroinflammation, as ChP volume could be considered a putative marker of central immune activity. The lack of significant differences in all of the region of interest volumes between patients with TSD and HCs may highlight the specificity of these features to TRD, possibly providing new insights into the specific neurobiological underpinnings of this condition.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Melania Maccario
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Milano
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Raffaelli
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaella Zanardi
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Au E, Panganiban KJ, Wu S, Sun K, Humber B, Remington G, Agarwal SM, Giacca A, Pereira S, Hahn M. Antipsychotic-Induced Dysregulation of Glucose Metabolism Through the Central Nervous System: A Scoping Review of Animal Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00300-8. [PMID: 39461717 DOI: 10.1016/j.bpsc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The use of antipsychotic drugs is associated with adverse metabolic effects. Disruptions in glucose metabolism such as hyperglycemia and insulin resistance have been shown to occur with antipsychotic use, independent of changes in body weight or adiposity. The regulation of whole-body glucose metabolism is partly mediated by the central nervous system. In particular, the hypothalamus and brainstem are responsive to peripheral energy signals and subsequently mediate feedback mechanisms to maintain peripheral glucose homeostasis. In this scoping review of preclinical in vivo studies, we aimed to explore central mechanisms through which antipsychotics dysregulate glucose metabolism. A systematic search for animal studies identified 29 studies that met our eligibility criteria for qualitative synthesis. The studies suggest that antipsychotic-induced changes in autonomic nervous system activity, certain neurotransmitter systems, expression of neuropeptides, and central insulin action mediate impairments in glucose metabolism. These findings provide insight into potential targets for the mitigation of the adverse effects of antipsychotics on glucose metabolism.
Collapse
Affiliation(s)
- Emily Au
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kristoffer J Panganiban
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kira Sun
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bailey Humber
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
4
|
Shnayder NA, Khasanova AK, Strelnik AI, Al-Zamil M, Otmakhov AP, Neznanov NG, Shipulin GA, Petrova MM, Garganeeva NP, Nasyrova RF. Cytokine Imbalance as a Biomarker of Treatment-Resistant Schizophrenia. Int J Mol Sci 2022; 23:ijms231911324. [PMID: 36232626 PMCID: PMC9570417 DOI: 10.3390/ijms231911324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is an important and unresolved problem in biological and clinical psychiatry. Approximately 30% of cases of schizophrenia (Sch) are TRS, which may be due to the fact that some patients with TRS may suffer from pathogenetically “non-dopamine” Sch, in the development of which neuroinflammation is supposed to play an important role. The purpose of this narrative review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines during the development of therapeutic resistance to APs and their pathogenetic and prognostic significance of cytokine imbalance as TRS biomarkers. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing the cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch and developing new therapeutic strategies for the treatment of TRS and psychosis in the setting of acute and chronic neuroinflammation. In addition, the inconsistency of the results of previous studies on the role of pro-inflammatory and anti-inflammatory cytokines indicates that the TRS biomarker, most likely, is not the serum level of one or more cytokines, but the cytokine balance. We have confirmed the hypothesis that cytokine imbalance is one of the most important TRS biomarkers. This hypothesis is partially supported by the variable response to immunomodulators in patients with TRS, which were prescribed without taking into account the cytokine balance of the relation between serum levels of the most important pro-inflammatory and anti-inflammatory cytokines for TRS.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| | - Aiperi K. Khasanova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Anna I. Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Department of Psychiatry, Narcology and Psychotherapy, Samara State Medical University, 443016 Samara, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey P. Otmakhov
- Basic Department of Psychological and Social Support, St. Petersburg State Institute of Psychology and Social Work, 199178 Saint Petersburg, Russia
- St. Nikolay Psychiatric Hospital, 190121 Saint Petersburg, Russia
| | - Nikolay G. Neznanov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| |
Collapse
|
5
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
6
|
Kruyer A, Parrilla-Carrero J, Powell C, Brandt L, Gutwinski S, Angelis A, Chalhoub RM, Jhou TC, Kalivas PW, Amato D. Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity. Mol Psychiatry 2021; 26:6159-6169. [PMID: 34349226 PMCID: PMC8760070 DOI: 10.1038/s41380-021-01235-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | | | - Courtney Powell
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Lasse Brandt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ariana Angelis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Reda M Chalhoub
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Chestnykh DA, Amato D, Kornhuber J, Müller CP. Pharmacotherapy of schizophrenia: Mechanisms of antipsychotic accumulation, therapeutic action and failure. Behav Brain Res 2021; 403:113144. [PMID: 33515642 DOI: 10.1016/j.bbr.2021.113144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a multi-dimensional disorder with a complex and mostly unknown etiology, leading to a severe decline in life quality. Antipsychotic drugs (APDs) remain beneficial interventions in the treatment of the disorder, but vary significantly in binding profile, clinical effects and adverse reactions. The present review summarizes the main principles of APD mechanisms of action with a particular focus on recent findings in APD accumulation and its role in the therapeutic efficacy and treatment failure. High and low doses of APDs were shown to be effective in different dimensions of antipsychotic-like behaviour in rodent models. Efficacy of the APDs correlates with high dopamine D2 receptor occupancy, which occurs quickly after drug administration. However, onset and peak of action are delayed up to several days or weeks. APD accumulation via acidic trapping in synaptic vesicles is considered to underlie the time course of APD action. Use-dependent exocytosis, co-release with dopamine and serotonin and inhibition of ion channels impact on the neuronal transmission and determine effects of APDs. Disruption in accumulating properties leads to diminished APD effects. In addition, long-term APD administration at therapeutic doses leads to treatment failure both in animal models and in humans. APD failure was associated with treatment induced neuroadaptations, including a decline in extracellular dopamine levels, dopamine transporter upregulation, and altered neuronal firing. However, enhanced synaptic vesicle release has also been reported. APD loss of efficacy may be reversed through inhibition of the dopamine transporter or switching the administration regimen from continuous to intermittent. Thus, manipulating the accumulation properties of APDs, changes in the administration regimen and doses, or co-administration with dopamine transporter inhibitors may be considered to yield benefits in the development of new effective strategies in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Daria A Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Davide Amato
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Kirschner M, Schmidt A, Hodzic-Santor B, Burrer A, Manoliu A, Zeighami Y, Yau Y, Abbasi N, Maatz A, Habermeyer B, Abivardi A, Avram M, Brandl F, Sorg C, Homan P, Riecher-Rössler A, Borgwardt S, Seifritz E, Dagher A, Kaiser S. Orbitofrontal-Striatal Structural Alterations Linked to Negative Symptoms at Different Stages of the Schizophrenia Spectrum. Schizophr Bull 2020; 47:849-863. [PMID: 33257954 PMCID: PMC8084448 DOI: 10.1093/schbul/sbaa169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Negative symptoms such as anhedonia and apathy are among the most debilitating manifestations of schizophrenia (SZ). Imaging studies have linked these symptoms to morphometric abnormalities in 2 brain regions implicated in reward and motivation: the orbitofrontal cortex (OFC) and striatum. Higher negative symptoms are generally associated with reduced OFC thickness, while higher apathy specifically maps to reduced striatal volume. However, it remains unclear whether these tissue losses are a consequence of chronic illness and its treatment or an underlying phenotypic trait. Here, we use multicentre magnetic resonance imaging data to investigate orbitofrontal-striatal abnormalities across the SZ spectrum from healthy populations with high schizotypy to unmedicated and medicated first-episode psychosis (FEP), and patients with chronic SZ. Putamen, caudate, accumbens volume, and OFC thickness were estimated from T1-weighted images acquired in all 3 diagnostic groups and controls from 4 sites (n = 337). Results were first established in 1 discovery dataset and replicated in 3 independent samples. There was a negative correlation between apathy and putamen/accumbens volume only in healthy individuals with schizotypy; however, medicated patients exhibited larger putamen volume, which appears to be a consequence of antipsychotic medications. The negative association between reduced OFC thickness and total negative symptoms also appeared to vary along the SZ spectrum, being significant only in FEP patients. In schizotypy, there was increased OFC thickness relative to controls. Our findings suggest that negative symptoms are associated with a temporal continuum of orbitofrontal-striatal abnormalities that may predate the occurrence of SZ. Thicker OFC in schizotypy may represent either compensatory or pathological mechanisms prior to the disease onset.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; 3801 Rue University, Montréal QC, H3A 2B4 Canada; tel: +1 514-398-1726, fax: +1 514–398–8948, e-mail:
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Wellcome Centre for Human Neuroimaging, University College London, London, UK,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Anke Maatz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Aslan Abivardi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mihai Avram
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, Lübeck Germany
| | - Felix Brandl
- Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY,Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY
| | | | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
11
|
Palaniyappan L, Sukumar N. Reconsidering brain tissue changes as a mechanistic focus for early intervention in psychiatry. J Psychiatry Neurosci 2020; 45. [PMID: 33119489 PMCID: PMC7595740 DOI: 10.1503/jpn.200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Lena Palaniyappan
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| | - Niron Sukumar
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| |
Collapse
|
12
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Oral quetiapine treatment results in time-dependent alterations of recognition memory and brain-derived neurotrophic factor-related signaling molecules in the hippocampus of rats. Pharmacol Biochem Behav 2020; 197:172999. [PMID: 32702397 DOI: 10.1016/j.pbb.2020.172999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Antipsychotic drugs (APDs) have a variety of important therapeutic applications for neuropsychiatric disorders. However, they are routinely prescribed off-label across all age categories, a controversial practice given their potential for producing metabolic and extrapyramidal side effects. Evidence also suggests that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although these findings are controversial. The purpose of the studies described here was to evaluate one of the most commonly prescribed APDs, quetiapine, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with quetiapine (25.0 mg/kg/day) for 30 or 90 days in their drinking water then evaluated for drug effects on motor function in a catalepsy assessment, recognition memory in a spontaneous novel object recognition (NOR) task, and BDNF-related signaling molecules in the post mortem hippocampus via Western Blot. The results indicated that oral quetiapine at a dose that did not induce catalepsy, led to time-dependent impairments in NOR performance, increases in the proBDNF/BDNF ratio, and decreases in Akt and CREB phosphorylation in the hippocampus. These results indicate that chronic treatment with quetiapine has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function. Given the widespread use this APD across multiple conditions and patient populations, such long-term effects observed in animals should be considered.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
13
|
Apathy is not associated with reduced ventral striatal volume in patients with schizophrenia. Schizophr Res 2020; 223:279-288. [PMID: 32928618 DOI: 10.1016/j.schres.2020.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND A growing body of neuroimaging research has revealed a relationship between blunted activation of the ventral striatum (VS) and apathy in schizophrenia. In contrast, the association between reduced striatal volume and apathy is less well established, while the relationship between VS function and structure in patients with schizophrenia remains an open question. Here, we aimed to replicate previous structural findings in a larger independent sample and to investigate the relationship between VS hypoactivation and VS volume. METHODS We included brain structural magnetic resonance imaging (MRI) data from 60 patients with schizophrenia (SZ) that had shown an association of VS hypoactivation with apathy during reward anticipation and 58 healthy controls (HC). To improve replicability, we applied analytical methods employed in two previously published studies: Voxel-based morphometry and the Multiple Automatically Generated Templates (MAGeT) algorithm. VS and dorsal striatum (DS) volume were correlated with apathy correcting for age, gender and total brain volume. Additionally, left VS activity was correlated with left VS volume. RESULTS We failed to replicate the association between apathy and reduced VS volume and did not find a correlation with DS volume. Functional and structural left VS measures exhibited a trend-level correlation (rs = 0.248, p = 0.067, r2 = 0.06). CONCLUSIONS Our present data suggests that functional and structural striatal neuroimaging correlates of apathy can occur independently. Replication of previous findings may have been limited by other factors (medication, illness duration, age) potentially related to striatal volume changes in SZ. Finally, associations between reward-related VS function and structure should be further explored.
Collapse
|
14
|
Hanger B, Couch A, Rajendran L, Srivastava DP, Vernon AC. Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Front Psychiatry 2020; 11:789. [PMID: 32848951 PMCID: PMC7433763 DOI: 10.3389/fpsyt.2020.00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Microglia, the resident tissue macrophages of the brain, are increasingly implicated in the pathophysiology of psychiatric disorders with a neurodevelopmental origin, including schizophrenia. To date, however, our understanding of the potential role for these cells in schizophrenia has been informed by studies of aged post-mortem samples, low resolution in vivo neuroimaging and rodent models. Whilst these have provided important insights, including signs of the heterogeneous nature of microglia, we currently lack a validated human in vitro system to characterize microglia in the context of brain health and disease during neurodevelopment. Primarily, this reflects a lack of access to human primary tissue during developmental stages. In this review, we first describe microglia, including their ontogeny and heterogeneity and consider their role in brain development. We then provide an evaluation of the potential for differentiating microglia from human induced pluripotent stem cells (hiPSCs) as a robust in vitro human model system to study these cells. We find the majority of protocols for hiPSC-derived microglia generate cells characteristically similar to foetal stage microglia when exposed to neuronal environment-like cues. This may represent a robust and relevant model for the study of cellular and molecular mechanisms in schizophrenia. Each protocol however, provides unique benefits as well as shortcomings, highlighting the need for context-dependent protocol choice and cross-lab collaboration and communication to identify the most robust and translatable microglia model.
Collapse
Affiliation(s)
- Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Lawrence Rajendran
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Andersen HG, Raghava JM, Svarer C, Wulff S, Johansen LB, Antonsen PK, Nielsen MØ, Rostrup E, Vernon AC, Jensen LT, Pinborg LH, Glenthøj BY, Ebdrup BH. Striatal Volume Increase After Six Weeks of Selective Dopamine D 2/3 Receptor Blockade in First-Episode, Antipsychotic-Naïve Schizophrenia Patients. Front Neurosci 2020; 14:484. [PMID: 32508577 PMCID: PMC7251943 DOI: 10.3389/fnins.2020.00484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Patients with chronic schizophrenia often display enlarged striatal volumes, and antipsychotic drugs may contribute via the dopamine D2/3 receptor (D2/3R) blockade. Separating the effects of disease from medication is challenging due to the lack of a proper placebo-group. To address this, we conducted a longitudinal study of antipsychotic-naïve, first-episode schizophrenia patients to test the hypothesis that selective blockade of D2/3R would induce a dose-dependent striatal volume increase. Twenty-one patients underwent structural magnetic resonance imaging (sMRI), single-photon emission computed tomography (SPECT), and symptom severity ratings before and after six weeks of amisulpride treatment. Twenty-three matched healthy controls underwent sMRI and baseline SPECT. Data were analyzed using repeated measures and multiple regression analyses. Correlations between symptom severity decrease, volume changes, dose and receptor occupancy were explored. Striatal volumes did not differ between patients and controls at baseline or follow-up, but a significant group-by-time interaction was found (p = 0.01). This interaction was explained by a significant striatal volume increase of 2.1% in patients (Cohens d = 0.45). Striatal increase was predicted by amisulpride dose, but not by either D2/3R occupancy or baseline symptom severity. A significant reduction in symptom severity was observed at a mean dose of 233.3 (SD = 109.9) mg, corresponding to D2/3R occupancy of 44.65%. Reduction in positive symptoms correlated significantly with striatal volume increase, driven by reductions in hallucinations. Our data demonstrate a clear link between antipsychotic treatment and striatal volume increase in antipsychotic-naïve schizophrenia patients. Moreover, the treatment-induced striatal volume increase appears clinically relevant by correlating to reductions in core symptoms of schizophrenia.
Collapse
Affiliation(s)
- Helle G Andersen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M Raghava
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Glostrup, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Wulff
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Louise B Johansen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Patrick K Antonsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ø Nielsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lars T Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lars H Pinborg
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
17
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Chronic oral treatment with risperidone impairs recognition memory and alters brain-derived neurotrophic factor and related signaling molecules in rats. Pharmacol Biochem Behav 2020; 189:172853. [PMID: 31945381 DOI: 10.1016/j.pbb.2020.172853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
Antipsychotic drugs (APDs) are essential for the treatment of schizophrenia and other neuropsychiatric illnesses such as bipolar disease. However, they are also extensively prescribed off-label for many other conditions, a practice that is controversial given their potential for long-term side effects. There is clinical and preclinical evidence that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although the molecular mechanisms of these effects are unknown. The purpose of the rodent studies described here was to evaluate a commonly prescribed APD, risperidone, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with risperidone (2.5 mg/kg/day) or vehicle (dilute acetic acid solution) in their drinking water for 30 or 90 days. Subjects were then evaluated for drug effects on recognition memory in a spontaneous novel object recognition task and protein levels of BDNF-related signaling molecules in the hippocampus and prefrontal cortex. The results indicated that depending on the treatment period, a therapeutically relevant daily dose of risperidone impaired recognition memory and increased the proBDNF/BDNF ratio in the hippocampus and prefrontal cortex. Risperidone treatment also led to a decrease in Akt and CREB phosphorylation in the prefrontal cortex. These results indicate that chronic treatment with a commonly prescribed APD, risperidone, has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
18
|
Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97:10-33. [DOI: 10.1016/j.neubiorev.2018.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
19
|
Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional Dopamine Uptake and Antipsychotic Treatment-Resistant Schizophrenia. Front Psychiatry 2019; 10:314. [PMID: 31214054 PMCID: PMC6557273 DOI: 10.3389/fpsyt.2019.00314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, yet the underlying neurobiological causes are unknown. All effective antipsychotic medications are thought to achieve their efficacy by targeting the dopaminergic system. Here we review early literature describing the fundamental mechanisms of antipsychotic drug efficacy, highlighting mechanistic concepts that have persisted over time. We then reconsider the original framework for understanding antipsychotic efficacy in light of recent advances in our scientific understanding of the dopaminergic effects of antipsychotics. Based on these new insights, we describe a role for the dopamine transporter in the genesis of both antipsychotic therapeutic response and primary resistance. We believe that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andreas Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
20
|
Faria MDA, Prado EBDA, Souza WCD, Martins VF, Ferreira VM. A utilização do Método de Rorschach no diagnóstico diferencial da Esquizofrenia e Transtorno Dissociativo de Identidade. PSICOLOGIA: TEORIA E PESQUISA 2019. [DOI: 10.1590/0102.3772e3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
RESUMO O objetivo deste artigo foi investigar a prevalência do Transtorno Dissociativo de Identidade (TDI) em dez pacientes diagnosticados com esquizofrenia com característica paranóide, com base no Método de Rorschach. Foram registrados indicadores ou sintomas psicológicos que caracterizaram o diagnóstico diferencial desses pacientes, analisadas diferenças clínicas específicas e verificado o enquadramento dos dados obtidos, com a aplicação da Técnica de Rorschach. Para fins de diagnóstico diferencial, observou-se que dois pacientes apresentaram sintomas diferenciais aos da esquizofrenia, sendo que um deles apresentou sintomas dissociativos, não sendo confirmada a prevalência do TDI entre os esquizofrênicos. No caso da esquizofrenia e do TDI, devido às características similares que apresentam, avaliações multidisciplinares são indicadas para se fazer o diagnóstico diferencial entre eles.
Collapse
|
21
|
Noori HR, Mervin LH, Bokharaie V, Durmus Ö, Egenrieder L, Fritze S, Gruhlke B, Reinhardt G, Schabel HH, Staudenmaier S, Logothetis NK, Bender A, Spanagel R. Systemic neurotransmitter responses to clinically approved and experimental neuropsychiatric drugs. Nat Commun 2018; 9:4699. [PMID: 30410047 PMCID: PMC6224407 DOI: 10.1038/s41467-018-07239-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
Neuropsychiatric disorders are the third leading cause of global disease burden. Current pharmacological treatment for these disorders is inadequate, with often insufficient efficacy and undesirable side effects. One reason for this is that the links between molecular drug action and neurobehavioral drug effects are elusive. We use a big data approach from the neurotransmitter response patterns of 258 different neuropsychiatric drugs in rats to address this question. Data from experiments comprising 110,674 rats are presented in the Syphad database [ www.syphad.org ]. Chemoinformatics analyses of the neurotransmitter responses suggest a mismatch between the current classification of neuropsychiatric drugs and spatiotemporal neurostransmitter response patterns at the systems level. In contrast, predicted drug-target interactions reflect more appropriately brain region related neurotransmitter response. In conclusion the neurobiological mechanism of neuropsychiatric drugs are not well reflected by their current classification or their chemical similarity, but can be better captured by molecular drug-target interactions.
Collapse
Affiliation(s)
- Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany.
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany.
- Courant Institute for Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA.
- Neuronal Convergence Group, Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany.
| | - Lewis H Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vahid Bokharaie
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany
| | - Özlem Durmus
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Lisamon Egenrieder
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Stefan Fritze
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Britta Gruhlke
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Giulia Reinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Hans-Hendrik Schabel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Sabine Staudenmaier
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| |
Collapse
|
22
|
Calevro A, Cotel MC, Natesan S, Modo M, Vernon AC, Mondelli V. Effects of chronic antipsychotic drug exposure on the expression of Translocator Protein and inflammatory markers in rat adipose tissue. Psychoneuroendocrinology 2018; 95:28-33. [PMID: 29793094 DOI: 10.1016/j.psyneuen.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023]
Abstract
The precise effect of antipsychotic drugs on either central or peripheral inflammation remains unclear. An important issue in this debate is to what extent the known peripheral metabolic effects of antipsychotics, including increased adiposity, may contribute to increased inflammation. Adipose tissue is known to contribute to the development of systemic inflammation, which can eventually lead to insulin resistance and metabolic dysregulation. As a first step to address this question, we evaluated whether chronic exposure to clinically comparable doses of haloperidol or olanzapine resulted in the immune activation of rat adipose tissue. Samples of visceral adipose tissue were sampled from male Sprague-Dawley rats exposed to, haloperidol, olanzapine or vehicle (all n = 8), for 8 weeks. From these we measured a cytokine profile, protein expression of F4/80 (a phenotypic macrophage marker) and translocator protein (TSPO), a target for radiotracers putatively indicating microgliosis in clinical neuroimaging studies. Chronic olanzapine exposure resulted in significantly higher adipose IL-6 levels compared with vehicle-controls (ANOVA p = 0.008, Bonferroni post-hoc test p = 0.006); in parallel, animals exposed to olanzapine had significantly higher F4/80 expression when compared with vehicle-controls (Mann Whitney Test, p = 0.014), whereas there was no difference between haloperidol and vehicle groups (Mann Whitney test, p = 0.1). There were no significant effects of either drug on adipose TSPO protein levels. Nevertheless, we found a positive correlation between F4/80 and TSPO adipose protein levels in the olanzapine-exposed rats (Spearman's rho = 0.76, p = 0.037). Our data suggest that chronic exposure to olanzapine, but not haloperidol, increases production of the pro-inflammatory cytokine IL-6 in adipose tissue and increased macrophages expression (F4/80), in the absence of measurable changes in TSPO with respect to vehicle. This may have potentially important consequences in terms of metabolic dysregulation associated with long-term antipsychotic treatment.
Collapse
Affiliation(s)
- Anita Calevro
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Marie-Caroline Cotel
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Sridhar Natesan
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Michel Modo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony C Vernon
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK.
| |
Collapse
|
23
|
Siafis S, Papazisis G. Detecting a potential safety signal of antidepressants and type 2 diabetes: a pharmacovigilance-pharmacodynamic study. Br J Clin Pharmacol 2018; 84:2405-2414. [PMID: 29953643 DOI: 10.1111/bcp.13699] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
AIMS Recent data suggest that antidepressants are associated with incident diabetes but the possible pharmacological mechanism is still questioned. The aim of the present study was to evaluate antidepressant's risk for reporting diabetes using disproportionality analysis of the FDA adverse events spontaneous reporting system (FAERS) database and to investigate possible receptor/transporter mechanisms involved. METHODS Data from 2004 to 2017 were analysed using OpenVigil2 and adjusted reporting odds ratio (aROR) for reporting diabetes was calculated for 22 antidepressants. Events included in the narrow scope of the SMQ 'hyperglycaemia/new-onset diabetes mellitus' were defined as cases and all the other events as non-cases. The pharmacodynamic profile was extracted using the PDSP and IUPHAR/BPS databases and the occupancy on receptors (serotonin, alpha adrenoreceptors, dopamine, muscarinic, histamine) and transporters (SERT, NET, DAT) was estimated. The relationship between aROR for diabetes and receptor occupancy was investigated with Pearson's correlation coefficient (r) and univariate linear regression. RESULTS Six antidepressants were associated with diabetes: nortriptyline with aROR [95% CI] of 2.01 [1.41-2.87], doxepin 1.97 [1.31-2.97], imipramine 1.82 [1.09-3.06], sertraline 1.47 [1.29-1.68], mirtazapine 1.33 [1.04-1.69] and amitriptyline 1.31 [1.09-1.59]. Strong positive correlation coefficients between occupancy and aROR for diabetes were identified for the receptors M1 , M3 , M4 , M5 and H1 . CONCLUSION Most of the tricyclic antidepressants, mirtazapine and sertraline seem to be associated with reporting diabetes in FAERS. Higher degrees of occupancy on muscarinic receptors and H1 may be a plausible pharmacological mechanism. Further clinical assessment and pharmacovigilance data is needed to validate this potential safety signal.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
24
|
de Bartolomeis A, Prinzivalli E, Callovini G, D'Ambrosio L, Altavilla B, Avagliano C, Iasevoli F. Treatment resistant schizophrenia and neurological soft signs may converge on the same pathology: Evidence from explanatory analysis on clinical, psychopathological, and cognitive variables. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:356-366. [PMID: 28887181 DOI: 10.1016/j.pnpbp.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 12/31/2022]
Abstract
Here, we investigated neurological soft signs (NSSs) in treatment resistant schizophrenia (TRS) vs treatment responder schizophrenia (SZ) patients. TRS is a severe condition, affecting approximately one-third of schizophrenia patients and representing a relevant clinical challenge. NSSs are neurological abnormalities reportedly described in schizophrenia patients and linked to dysregulated network connections. We explored the possibility that NSSs may be: i) more severe in TRS patients; ii) differentially associated to clinical/cognitive variables in TRS vs SZ; iii) predictive of having TRS. In addition, we evaluated whether diagnosis may mediate NSSs associations with the above-mentioned variables. Consecutive patients with schizophrenia diagnosis underwent stringent assessment for TRS diagnosis. Demographics and clinical variables were recorded. Psychopathology (by Positive and Negative Syndrome Scale, PANSS), cognitive performances, and NSSs (by Neurological Evaluation Scale, NES) were tested. TRS had higher scores than SZ patients in total NES score and in almost all NES subscales, even after correction for duration of illness and antipsychotic dose (ANCOVA, p<0.05). NSSs significantly correlated with multiple clinical, psychopathological, and cognitive variables (above all: duration of disease and negative symptoms) in TRS but not in SZ patients. Two-way ANOVA showed NSS-x-diagnosis interaction in determining outcomes on multiple cognitive performances, but not in other clinical variables. However, simple main effect analysis detected a significant relationship between high severity NSSs and TRS diagnosis on multiple clinical and cognitive outcomes. Hierarchical regression analysis showed that diagnosis was among a discrete number of predictors yielding significant increases in variance explained on NES total, Sensory Integration and Other Signs subscales' scores. NSSs, together with antipsychotic dose and disease severity, were found to be significantly predictive of TRS diagnosis in a binary logistic regression model. These results suggest a stringent association between NSSs and TRS diagnosis, and may imply that NSSs association with clinical, psychopathological, and cognitive variables may be in part mediated by TRS diagnosis.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy.
| | - Emiliano Prinzivalli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Gemma Callovini
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Luigi D'Ambrosio
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Benedetta Altavilla
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | - Felice Iasevoli
- Section of Psychiatry - Unit on Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| |
Collapse
|
25
|
Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 2018; 85:146-159. [DOI: 10.1016/j.neubiorev.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
|
26
|
Caravaggio F, Iwata Y, Plitman E, Chavez S, Borlido C, Chung JK, Kim J, Agarwal SM, Gerretsen P, Remington G, Hahn M, Graff-Guerrero A. Reduced insulin sensitivity may be related to less striatal glutamate: An 1H-MRS study in healthy non-obese humans. Eur Neuropsychopharmacol 2018; 28:285-296. [PMID: 29269206 DOI: 10.1016/j.euroneuro.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Levels of striatal dopamine (DA) may be positively correlated with levels of striatal glutamate (Glu). While reduced insulin sensitivity (%S) has been associated with reduced striatal DA levels in healthy non-obese persons, whether reduced %S is also associated with reduced striatal Glu levels has not yet been established. Using 1H-MRS, we measured levels of several neurometabolites in the striatum and dorsolateral prefrontal cortex (DLPFC) of seventeen healthy non-obese persons (9 female, mean age: 28.35 ± 9.53). Insulin sensitivity was estimated for each subject from fasting plasma glucose and insulin using the Homeostasis Model Assessment II. We hypothesized that %S would be positively related with levels of Glu and Glu + glutamine (Glx) in the striatum. Exploratory analyses were also conducted between other fasting markers of metabolic health and neurometabolites measured with 1H-MRS. In the right striatum, %S was positively correlated with levels of Glu (r(15) = .49, p = .04) and Glx (r(15) = .50, p = .04). In the left striatum, there was a trend positive correlation between %S and Glu (r(15) = .46, p = .06), but not Glx levels (r(15) = .20, p = .44). The relationships between %S and striatal Glu levels remained after controlling for age, sex, and BMI (right: r(12) = .73, β = .52, t = 2.55, p = .03; left: (r(12) = .63, β = .53, t = 2.25, p = .04) These preliminary findings suggest that %S may be related to markers of glutamatergic functioning in the striatum of healthy non-obese persons. These findings warrant replication in larger samples and extension into neuropsychiatric populations where altered striatal DA, Glu, and %S are implicated.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Carol Borlido
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Sri Mahavir Agarwal
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Margaret Hahn
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
27
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
28
|
Dieleman N, Koek HL, Hendrikse J. Short-term mechanisms influencing volumetric brain dynamics. NEUROIMAGE-CLINICAL 2017; 16:507-513. [PMID: 28971004 PMCID: PMC5609861 DOI: 10.1016/j.nicl.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of pathological processes and may aid in early detection of these diseases. Fluid-restriction, evening MRI, corticosteroids, & antipsychotics decrease volume Fluid-intake, morning MRI, surgical revascularization & medications increase volume Short-term changes within the light of long-term pathological changes should be investigated Short-term changes may introduce bias in longitudinal data
Collapse
Affiliation(s)
- Nikki Dieleman
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|