1
|
Feng LS, Wang YM, Liu H, Ning B, Yu HB, Li SL, Wang YT, Zhao MJ, Ma J. Hyperactivity in the Hypothalamic-Pituitary-Adrenal Axis: An Invisible Killer for Anxiety and/or Depression in Coronary Artherosclerotic Heart Disease. J Integr Neurosci 2024; 23:222. [PMID: 39735967 DOI: 10.31083/j.jin2312222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits. This review addresses the relevance of the HPA axis to the cardiovascular and nervous systems, as well as the latest research advancements regarding its mechanisms of action. The discussion includes a detailed function of the HPA axis in regulating the processes mentioned. Above all, it summarizes the therapeutic potential of HPA axis function as a biomarker for coronary atherosclerotic heart disease combined with anxiety or depression.
Collapse
Affiliation(s)
- Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| | - Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Hu-Bin Yu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Shi-Lin Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yu-Ting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Jing Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Gao X, Qi J, Du B, Weng X, Lai J, Wu R. Combined influence of nutritional and inflammatory status and breast cancer: findings from the NHANES. BMC Public Health 2024; 24:2245. [PMID: 39160507 PMCID: PMC11331661 DOI: 10.1186/s12889-024-19727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Previous studies have hinted at the benefits of following an anti-inflammatory diet for potentially reducing breast cancer prevalence. However, the combined influence of diet and inflammation on breast cancer remains unclear. METHODS The advanced lung cancer inflammation index (ALI) was used to assess inflammation and nutritional status. Statistical methods, such as multivariable logistic regression, eXtreme Gradient Boosting (XGBoost) model, and subgroup analysis, were employed to analyze the impact of ALI on prevalence of BC. Additionally, a two-piece-wise logistic regression model with smoothing was used to determine the ALI threshold for BC prevalence. The study aimed to understand the mechanistic association between ALI levels and BC development. RESULTS The mean (SD) age of the study population was 50.0 (17.7) years, with 40.0% of individuals classified as obese. Comparing ALI tertiles to the lowest tertile, the odds ratios (95% CI) for breast cancer (BC) were 0.78 (0.62, 0.98) and 0.68 (0.52, 0.87) for T2-T3. The XGBoost machine learning model was employed to assess the importance of selected factors, revealing ALI as one of the top five variables influencing BC. Subgroup analysis identified a correlation between ALI, alcohol consumption, and menopausal status. Additionally, ALI levels were associated with decreased estradiol (E2) levels, increased total testosterone (TT)/E2 ratio, and TT/sex hormone-binding globulin (SHBG) ratio. CONCLUSION This study indicates a potential protective effect of ALI levels against breast cancer, possibly related to sex hormone disruption. The findings support the use of optimal therapeutic strategies for preventing breast cancer.
Collapse
Affiliation(s)
- Xinyan Gao
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Jianchao Qi
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Bin Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaojiao Weng
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Riping Wu
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
4
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
5
|
Lamadé EK, Pedraz-Petrozzi B, Lindner O, Meininger P, Coenen M, Witt SH, Rietschel M, Dukal H, Gilles M, Wudy SA, Hellweg R, Deuschle M. Stress during pregnancy and fetal serum BDNF in cord blood at birth. Psychoneuroendocrinology 2024; 165:107035. [PMID: 38603892 DOI: 10.1016/j.psyneuen.2024.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Adverse environments during pregnancy impact neurodevelopment including cognitive abilities of the developing children. The mediating biological alterations are not fully understood. Maternal stress may impact the neurotrophic regulation of the offspring as early as in utero and at birth. Brain-derived neurotrophic factor (BDNF) is essential for neurodevelopment. Short-term higher levels of BDNF in mice upon stressors associate with lower BDNF later in life, which itself associates with depression in animals and humans. Stress including glucocorticoids may impact BDNF, but there is a lack of data at birth. This study investigated if stress near term associates with fetal BDNF at birth in humans. METHODS Pregnant women near term who underwent primary cesarean sections (at 38.80±0.64 weeks), were included in this study (n=41). Stress at the end of pregnancy was assessed before the cesarean section by determining maternal depressive symptoms (EDPS), maternal state and trait anxiety (STAI-S and STAI-T), maternal prenatal distress (PDQ), stress over the past month (PSS), prenatal attachment to the offspring (PAI), maternal social support (F-Sozu), maternal early life stress (CTQ), socioeconomic status, and the glucocorticoids cortisol and cortisone (n=40) in amniotic fluid at birth. The association with fetal BDNF was analyzed. Cord blood serum of n=34 newborns at birth was analyzed for BDNF and newborn anthropometrics (weight, length and head circumference per gestational age at birth) were assessed. The association of fetal BDNF with anthropometrics at birth was analyzed. RESULTS After a BDNF-outlier (>3 SD) was removed, higher fetal BDNF associated significantly with maternal depressive symptoms (r=0.398, p=0.022), with lower socioeconomic status as assessed by the average number of people per room in the household (r=0.526, p=0.002) and with borderline significance with net income per person in the household (r=-0.313, p=0.087) in the bivariate analyses. In multivariable analysis, BDNF stayed positively associated with maternal depressive symptoms (β=0.404, 95% CI [7.057, 306.041], p=0.041) and lower net income per person in the household (β=-0.562, 95% CI [-914.511, -60.523], p=0.027) when controlling for maternal age, maternal pre-pregnancy BMI, fetal sex and gestational age. Fetal BDNF did not associate with newborn anthropometrics with the outlier removed in bivariate analyses or in multivariable analyses when controlling for maternal BMI and fetal sex. CONCLUSION Maternal depressive symptoms and lower socioeconomic status associated with higher fetal BDNF when controlling for confounders. Fetal BDNF did not associate with newborn anthropometrics with the outlier removed. Further studies should investigate how early altered BDNF associate with the development and possibly psychopathology of the offspring.
Collapse
Affiliation(s)
- Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Research-group Stress-related disorders, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Research-group Stress-related disorders, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Ole Lindner
- Center for Child and Adolescent Health, Pediatrics, University Hospital of Freiburg, Freiburg 79106, Germany.
| | - Pascal Meininger
- Department of Gynecology and Obstetrics, Westpfalz-Klinikum, Kaiserslautern 67665, Germany.
| | - Michaela Coenen
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, Medical Faculty, LMU Munich, Munich, Germany; Pettenkofer School of Public Health, Munich, Germany.
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Research-group Stress-related disorders, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany.
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany.
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Research-group Stress-related disorders, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
6
|
Sanson A, Krieg P, Schramm MM, Kellner K, Maloumby R, Klampfl SM, Brunton PJ, Bosch OJ. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats. Neurobiol Stress 2024; 30:100631. [PMID: 38601362 PMCID: PMC11004997 DOI: 10.1016/j.ynstr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula Krieg
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Milena M. Schramm
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kellner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M. Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Cattane N, Di Benedetto MG, D'Aprile I, Riva MA, Cattaneo A. Dissecting the Long-Term Effect of Stress Early in Life on FKBP5: The Role of miR-20b-5p and miR-29c-3p. Biomolecules 2024; 14:371. [PMID: 38540789 PMCID: PMC10967956 DOI: 10.3390/biom14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Exposure to early-life stress (ELS) has been related to an increased susceptibility to psychiatric disorders later in life. Although the molecular mechanisms underlying this association are still under investigation, glucocorticoid signaling has been proposed to be a key mediator. Here, we used two preclinical models, the prenatal stress (PNS) animal model and an in vitro model of hippocampal progenitor cells, to assess the long-term effect of ELS on FKBP5, NR3C1, NR3C2, and FoxO1, four stress-responsive genes involved in the effects of glucocorticoids. In the hippocampus of male PNS rats sacrificed at different time points during neurodevelopment (PND 21, 40, 62), we found a statistically significant up-regulation of FKBP5 at PND 40 and PND 62 and a significant increase in FoxO1 at PND 62. Interestingly, all four genes were significantly up-regulated in differentiated cells treated with cortisol during cell proliferation. As FKBP5 was consistently modulated by PNS at adolescence (PND 40) and adulthood (PND 62) and by cortisol treatment after cell differentiation, we measured a panel of miRNAs targeting FKBP5 in the same samples where FKBP5 expression levels were available. Interestingly, both miR-20b-5p and miR-29c-3p were significantly reduced in PNS-exposed animals (both at PND40 and 62) and also in the in vitro model after cortisol exposure. Our results highlight the key role of miR-20b-5p and miR-29c-3p in sustaining the long-term effects of ELS on the stress response system, representing a mechanistic link possibly contributing to the enhanced stress-related vulnerability to mental disorders.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Wei B, Shi H, Yu X, Shi Y, Zeng H, Zhao Y, Zhao Z, Song Y, Sun M, Wang B. GR/Ahi1 regulates WDR68-DYRK1A binding and mediates cognitive impairment in prenatally stressed offspring. Cell Mol Life Sci 2024; 81:20. [PMID: 38195774 PMCID: PMC11073104 DOI: 10.1007/s00018-023-05075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Accumulating research shows that prenatal exposure to maternal stress increases the risk of behavioral and mental health problems for offspring later in life. However, how prenatal stress affects offspring behavior remains unknown. Here, we found that prenatal stress (PNS) leads to reduced Ahi1, decreased synaptic plasticity and cognitive impairment in offspring. Mechanistically, Ahi1 and GR stabilize each other, inhibit GR nuclear translocation, promote Ahi1 and WDR68 binding, and inhibit DYRK1A and WDR68 binding. When Ahi1 deletion or prenatal stress leads to hyperactivity of the HPA axis, it promotes the release of GC, leading to GR nuclear translocation and Ahi1 degradation, which further inhibits the binding of Ahi1 and WDR68, and promotes the binding of DYRK1A and WDR68, leading to elevated DYRK1A, reduced synaptic plasticity, and cognitive impairment. Interestingly, we identified RU486, an antagonist of GR, which increased Ahi1/GR levels and improved cognitive impairment and synaptic plasticity in PNS offspring. Our study contributes to understanding the signaling mechanisms of prenatal stress-mediated cognitive impairment in offspring.
Collapse
Affiliation(s)
- Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zejun Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yueyang Song
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
10
|
Creutzberg KC, Begni V, Orso R, Lumertz FS, Wearick-Silva LE, Tractenberg SG, Marizzoni M, Cattaneo A, Grassi-Oliveira R, Riva MA. Vulnerability and resilience to prenatal stress exposure: behavioral and molecular characterization in adolescent rats. Transl Psychiatry 2023; 13:358. [PMID: 37993429 PMCID: PMC10665384 DOI: 10.1038/s41398-023-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Exposure to stress can lead to long lasting behavioral and neurobiological consequences, which may enhance the susceptibility for the onset of mental disorders. However, there are significant individual differences in the outcome of stress exposure since only a percentage of exposed individuals may show pathological consequences, whereas others appear to be resilient. In this study, we aimed to characterize the effects of prenatal stress (PNS) exposure in rats at adolescence and to identify subgroup of animals with a differential response to the gestational manipulation. PNS adolescent offspring (regardless of sex) showed impaired emotionality in different pathological domains, such as anhedonia, anxiety, and sociability. However, using cluster analysis of the behavioral data we could identify 70% of PNS-exposed animals as vulnerable (PNS-vul), whereas the remaining 30% were considered resilient (PNS-res). At the molecular level, we found that PNS-res males show a reduced basal activation of the ventral hippocampus whereas other regions, such as amygdala and dorsal hippocampus, show significant PNS-induced changes regardless from vulnerability or resilience. Taken together, our results provide evidence of the variability in the behavioral and neurobiological effects of PNS-exposed offspring at adolescence. While these data may advance our understanding of the association between exposure to stress during gestation and the risk for psychopathology, the investigation of the mechanisms associated to stress vulnerability or resilience may be instrumental to develop novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Saulo Gantes Tractenberg
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia, 25125, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
11
|
Jin Z, Dong J, Wang Y, Liu Y. Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 2023; 28:444. [PMID: 37853458 PMCID: PMC10585738 DOI: 10.1186/s40001-023-01439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
The vagus nerve serves as a critical connection between the central nervous system and internal organs. Originally known for its effectiveness in treating refractory epilepsy, vagus nerve stimulation (VNS) has shown potential for managing other brain diseases, including ischaemic stroke, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. However, the precise mechanisms of VNS and its benefits for brain diseases are not yet fully understood. Recent studies have found that VNS can inhibit inflammation, promote neuroprotection, help maintain the integrity of the blood-brain barrier, have multisystemic modulatory effects, and even transmit signals from the gut flora to the brain. In this article, we will review several essential studies that summarize the current theories of VNS and its immunomodulatory effects, as well as the therapeutic value of VNS for brain disorders. By doing so, we aim to provide a better understanding of how the neuroimmune network operates and inspire future research in this field.
Collapse
Affiliation(s)
- Zeping Jin
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, People's Republic of China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Solntseva EI, Bukanova JV, Kondratenko R, Kudova E. Corticosteroids as Selective and Effective Modulators of Glycine Receptors. ACS Chem Neurosci 2023; 14:3132-3142. [PMID: 37584305 PMCID: PMC10485894 DOI: 10.1021/acschemneuro.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The mechanism of the negative impact of corticosteroids on the induction and progress of mental illness remains unclear. In this work, we studied the effects of corticosteroids on the activity of neuronal glycine receptors (GlyR) and GABA-A receptors (GABAAR) by measuring the chloride current induced by the application of GABA (2 or 5 μM) to isolated cerebellar Purkinje cells (IGABA) and by the application of glycine (100 μM) to pyramidal neurons of the rat hippocampus (IGly). It was found that corticosterone, 5α-dihydrodeoxycorticosterone, allotetrahydrocorticosterone, cortisol, and 17α,21-dihydroxypregnenolone were able to accelerate the desensitization of the IGly at physiological concentrations (IC50 values varying from 0.39 to 0.72 μM). Next, cortisone, 11-deoxycortisol, 11-deoxycorticosterone, 5β-dihydrodeoxycorticosterone, and tetrahydrocorticosterone accelerated the desensitization of IGly with IC50 values varying from 10.3 to 15.2 μM. Allotetrahydrocorticosterone and tetrahydrocorticosterone potentiated the IGABA albeit with high EC50 values (18-23 μM). The rest of the steroids had no effect on IGABA in the range of concentrations of 1-100 μM. Finally, our study has suggested a structural relationship of the 3β-hydroxyl group/3-oxo group with the selective modulatory activity on GlyRs in contrast to the 3α-hydroxyl group that is pivotal for GABAARs. In summary, our results suggest that increased GlyR desensitization by corticosteroids may contribute to brain dysfunction under chronic stress and identify corticosteroids for further development as selective modulators of GlyRs.
Collapse
Affiliation(s)
- Elena I. Solntseva
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Julia V. Bukanova
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Rodion Kondratenko
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Eva Kudova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
13
|
Gedzun VR, Khukhareva DD, Sarycheva NY, Kotova MM, Kabiolsky IA, Dubynin VA. Perinatal Stressors as a Factor in Impairments to Nervous System Development and Functions: Review of In Vivo Models. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023; 53:61-69. [PMID: 36969360 PMCID: PMC10006566 DOI: 10.1007/s11055-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/26/2022] [Indexed: 03/24/2023]
Abstract
The human body is faced with stress throughout ontogeny. At the stage of intrauterine development, the mother’s body serves as a source of resources and most of the humoral factors supporting the development of the fetus. In normal conditions, maternal stress-related humoral signals (e.g., cortisol) regulate fetal development; however, distress (excessive pathological stress) in the perinatal period leads to serious and sometimes irreversible changes in the developing brain. The mother being in an unfavorable psychoemotional state, toxins and teratogens, environmental conditions, and severe infectious diseases are the most common risk factors for the development of perinatal nervous system pathology in the modern world. In this regard, the challenge of modeling situations in which prenatal or early postnatal stresses lead to serious impairments to brain development and functioning is extremely relevant. This review addresses the various models of perinatal pathology used in our studies (hypoxia, exposure to valproate, hyperserotoninemia, alcoholization), and assesses the commonality of the mechanisms of the resulting disorders and behavioral phenotypes forming in these models, as well as their relationship with models of perinatal pathology based on the impact of psychoemotional stressors.
Collapse
Affiliation(s)
- V. R. Gedzun
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D. D. Khukhareva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N. Yu. Sarycheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M. M. Kotova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I. A. Kabiolsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V. A. Dubynin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Slavich GM, Roos LG, Mengelkoch S, Webb CA, Shattuck EC, Moriarity DP, Alley JC. Social Safety Theory: Conceptual foundation, underlying mechanisms, and future directions. Health Psychol Rev 2023; 17:5-59. [PMID: 36718584 PMCID: PMC10161928 DOI: 10.1080/17437199.2023.2171900] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Classic theories of stress and health are largely based on assumptions regarding how different psychosocial stressors influence biological processes that, in turn, affect human health and behavior. Although theoretically rich, this work has yielded little consensus and led to numerous conceptual, measurement, and reproducibility issues. Social Safety Theory aims to address these issues by using the primary goal and regulatory logic of the human brain and immune system as the basis for specifying the social-environmental situations to which these systems should respond most strongly to maximize reproductive success and survival. This analysis gave rise to the integrated, multi-level formulation described herein, which transforms thinking about stress biology and provides a biologically based, evolutionary account for how and why experiences of social safety and social threat are strongly related to health, well-being, aging, and longevity. In doing so, the theory advances a testable framework for investigating the biopsychosocial roots of health disparities as well as how health-relevant biopsychosocial processes crystalize over time and how perceptions of the social environment interact with childhood microbial environment, birth cohort, culture, air pollution, genetics, sleep, diet, personality, and self-harm to affect health. The theory also highlights several interventions for reducing social threat and promoting resilience.
Collapse
Affiliation(s)
- George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Christian A Webb
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric C Shattuck
- Institute for Health Disparities Research and Department of Public Health, University of Texas at San Antonio, San Antonio, TX, USA
| | - Daniel P Moriarity
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jenna C Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Advanced methods and implementations for the meta-analyses of animal models: Current practices and future recommendations. Neurosci Biobehav Rev 2023; 146:105016. [PMID: 36566804 DOI: 10.1016/j.neubiorev.2022.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Meta-analytic techniques have been widely used to synthesize data from animal models of human diseases and conditions, but these analyses often face two statistical challenges due to complex nature of animal data (e.g., multiple effect sizes and multiple species): statistical dependency and confounding heterogeneity. These challenges can lead to unreliable and less informative evidence, which hinders the translation of findings from animal to human studies. We present a literature survey of meta-analysis using animal models (animal meta-analysis), showing that these issues are not adequately addressed in current practice. To address these challenges, we propose a meta-analytic framework based on multilevel (linear mixed-effects) models. Through conceptualization, formulations, and worked examples, we illustrate how this framework can appropriately address these issues while allowing for testing new questions. Additionally, we introduce other advanced techniques such as multivariate models, robust variance estimation, and meta-analysis of emergent effect sizes, which can deliver robust inferences and novel biological insights. We also provide a tutorial with annotated R code to demonstrate the implementation of these techniques.
Collapse
|
16
|
Dong Y, Weng J, Zhu Y, Sun D, He W, Chen Q, Cheng J, Zhu Y, Jiang Y. Transcriptomic profiling of the developing brain revealed cell-type and brain-region specificity in a mouse model of prenatal stress. BMC Genomics 2023; 24:86. [PMID: 36829105 PMCID: PMC9951484 DOI: 10.1186/s12864-023-09186-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Prenatal stress (PS) is considered as a risk factor for many mental disorders. PS-induced transcriptomic alterations may contribute to the functional dysregulation during brain development. Here, we used RNA-seq to explore changes of gene expression in the mouse fetal brain after prenatal exposure to chronic unpredictable mild stress (CUMS). RESULTS We compared the stressed brains to the controls and identified groups of significantly differentially expressed genes (DEGs). GO analysis on up-regulated DEGs revealed enrichment for the cell cycle pathways, while down-regulated DEGs were mostly enriched in the neuronal pathways related to synaptic transmission. We further performed cell-type enrichment analysis using published scRNA-seq data from the fetal mouse brain and revealed cell-type-specificity for up- and down-regulated DEGs, respectively. The up-regulated DEGs were highly enriched in the radial glia, while down-regulated DEGs were enriched in different types of neurons. Cell deconvolution analysis further showed altered cell fractions in the stressed brain, indicating accumulation of neuroblast and impaired neurogenesis. Moreover, we also observed distinct brain-region expression pattern when mapping DEGs onto the developing Allen brain atlas. The up-regulated DEGs were primarily enriched in the dorsal forebrain regions including the cortical plate and hippocampal formation. Surprisingly, down-regulated DEGs were found excluded from the cortical region, but highly expressed on various regions in the ventral forebrain, midbrain and hindbrain. CONCLUSION Taken together, we provided an unbiased data source for transcriptomic alterations of the whole fetal brain after chronic PS, and reported differential cell-type and brain-region vulnerability of the developing brain in response to environmental insults during the pregnancy.
Collapse
Affiliation(s)
- Yuhao Dong
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jie Weng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yueyan Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Daijing Sun
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Wei He
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Qi Chen
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jin Cheng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Ying Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
17
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
18
|
Brandt L, Liu S, Heim C, Heinz A. The effects of social isolation stress and discrimination on mental health. Transl Psychiatry 2022; 12:398. [PMID: 36130935 PMCID: PMC9490697 DOI: 10.1038/s41398-022-02178-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Social isolation and discrimination are growing public health concerns associated with poor physical and mental health. They are risk factors for increased morbidity and mortality and reduced quality of life. Despite their detrimental effects on health, there is a lack of knowledge regarding translation across the domains of experimental research, clinical studies, and real-life applications. Here, we review and synthesize evidence from basic research in animals and humans to clinical translation and interventions. Animal models indicate that social separation stress, particularly in early life, activates the hypothalamic-pituitary-adrenal axis and interacts with monoaminergic, glutamatergic, and GABAergic neurotransmitter systems, inducing long-lasting reductions in serotonin turnover and alterations in dopamine receptor sensitivity. These findings are of particular importance for human social isolation stress, as effects of social isolation stress on the same neurotransmitter systems have been implicated in addictive, psychotic, and affective disorders. Children may be particularly vulnerable due to lasting effects of social isolation and discrimination stress on the developing brain. The effects of social isolation and loneliness are pronounced in the context of social exclusion due to discrimination and racism, during widespread infectious disease related containment strategies such as quarantine, and in older persons due to sociodemographic changes. This highlights the importance of new strategies for social inclusion and outreach, including gender, culture, and socially sensitive telemedicine and digital interventions for mental health care.
Collapse
Affiliation(s)
- Lasse Brandt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Shuyan Liu
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Christine Heim
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany.
| |
Collapse
|
19
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
20
|
Iftimovici A, Chaumette B, Duchesnay E, Krebs MO. Brain anomalies in early psychosis: From secondary to primary psychosis. Neurosci Biobehav Rev 2022; 138:104716. [PMID: 35661683 DOI: 10.1016/j.neubiorev.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Brain anomalies are frequently found in early psychoses. Although they may remain undetected for many years, their interpretation is critical for differential diagnosis. In secondary psychoses, their identification may allow specific management. They may also shed light on various pathophysiological aspects of primary psychoses. Here we reviewed cases of secondary psychoses associated with brain anomalies, reported over a 20-year period in adolescents and young adults aged 13-30 years old. We considered age at first psychotic symptoms, relevant medical history, the nature of psychiatric symptoms, clinical red flags, the nature of the brain anomaly reported, and the underlying disease. We discuss the relevance of each brain area in light of normal brain function, recent case-control studies, and postulated pathophysiology. We show that anomalies in all regions, whether diffuse, multifocal, or highly localized, may lead to psychosis, without necessarily being associated with non-psychiatric symptoms. This underlines the interest of neuroimaging in the initial workup, and supports the hypothesis of psychosis as a global network dysfunction that involves many different regions.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France; GHU Paris Psychiatrie et Neurosciences, Paris, France.
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
21
|
Luft C, da Costa MS, Antunes GL, de Oliveira JR, Donadio MVF. The role of maternal exercise on placental, behavioral and genetic alterations induced by prenatal stress. Neurochem Int 2022; 158:105384. [PMID: 35787396 DOI: 10.1016/j.neuint.2022.105384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
The present study aimed to evaluate the effects of treadmill maternal exercise on alterations induced by prenatal stress in neonatal mice. Female and male Balb/c mice were divided into five groups: control (CON), prenatal restraint stress (PNS), prenatal restraint stress and physical exercise before pregnancy (PNS + EX1), prenatal restraint stress and physical exercise during pregnancy (PNS + EX2), and prenatal restraint stress and physical exercise before and during pregnancy (PNS + EX3). Exercise was performed using a treadmill, at a speed of 10 m/min, for 60 minutes, 5 days a week. Maternal behavior was assessed on days 3, 4 and 5 postpartum (PPD). Placental gene expression of glucocorticoid receptor (GR), 11-β-hydroxysteroid dehydrogenase 2 (11β-HSD2), 5-hydroxytryptamine receptor 1A (5HT1AR), and corticotropin releasing hormone receptor 1 (CRHR1) were analyzed. In neonatal mice, the gene expression of GR, mineralocorticoid receptor (MR), CRHR1, 5HTr1, oxytocin Receptor 1 (OXTr1), tropomyosin related kinase B (TRκB), brain-derived neurotrophic factor exon I (BDNF I), and BDNF IV was analyzed in the brain (PND0) and hippocampus (PND10). Maternal exercise improved (p < 0.05) maternal care. In the placenta, maternal exercise prevented (p < 0.01) the increase in GR expression caused by PNS. In the brain from PND0, exercise before pregnancy prevented (p = 0.002) the decreased CRHR1 expression promoted by PNS. In the hippocampus of PND10 males, PNS decreased (p = 0.0005) GR expression, and exercise before pregnancy prevented (p = 0.003) this effect. In PND10 females, maternal exercise prevented (p < 0.05) the PNS-induced increase in MR expression. PNS + EX2 males showed increased (p < 0.01) BDNF I gene expression and PNS + EX1 females demonstrated increased (p = 0.03) BDNF IV expression. In conclusion, maternal physical exercise may play a role in modulating maternal-fetal health and may contribute to preventing neurodevelopmental changes induced by prenatal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Department of Physiotherapy, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
| |
Collapse
|
22
|
Metcalf CA, Johnson RL, Novick AM, Freeman EW, Sammel MD, Anthony LG, Epperson CN. Adverse childhood experiences interact with inflammation and menopause transition stage to predict verbal memory in women. Brain Behav Immun Health 2022; 20:100411. [PMID: 35079709 PMCID: PMC8777090 DOI: 10.1016/j.bbih.2022.100411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Women with more adverse childhood experiences (ACEs) may face a triple threat of risk factors for cognitive concerns during the menopause transition: reduced estradiol, increased inflammation, and early life stress sequelae. Our objective was to determine the extent to which ACEs and peripheral basal inflammatory markers associate with verbal memory across the menopause transition. METHODS Penn Ovarian Aging cohort participants (n = 167) were assessed for ACEs (low (0-1) or high (≥2)) and had remaining stored blood samples at study end assayed for interleukin (IL)-6, IL-1-beta (IL-1β), C-reactive protein (CRP), and tumor necrosis factor alpha (TNF-α). Annual assessment included a verbal memory test (the Buschke Selective Reminding Test) and menopause stage determination. To estimate the effects of menopause stage, ACEs, and cytokines on verbal memory, repeated cognitive outcome measures were modeled in generalized estimating equations. Covariates included body mass index, smoking, race, education, age at baseline, and baseline verbal memory performance. Cytokine levels were log-transformed. RESULTS Advancing menopause stage was associated with worse performance on immediate verbal recall and delayed verbal recall (ps < 0.001). During perimenopause, higher ACE exposure was associated with worse immediate verbal recall at higher levels of TNF-α (slope difference p = 0.041). CONCLUSIONS Inflammation may mechanistically link ACEs and verbal memory for high ACE women during perimenopause. Reducing inflammation for these individuals may have positive impact on verbal memory across the menopause transition.
Collapse
Affiliation(s)
- Christina A. Metcalf
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rachel L. Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew M. Novick
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ellen W. Freeman
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary D. Sammel
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura G. Anthony
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C. Neill Epperson
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Family Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
23
|
Calibration and recalibration of stress response systems across development: Implications for mental and physical health. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 63:35-69. [DOI: 10.1016/bs.acdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Zutshi I, Gupta S, Zanoletti O, Sandi C, Poirier GL. Early life adoption shows rearing environment supersedes transgenerational effects of paternal stress on aggressive temperament in the offspring. Transl Psychiatry 2021; 11:533. [PMID: 34657124 PMCID: PMC8520526 DOI: 10.1038/s41398-021-01659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Prenatal experience and transgenerational influences are increasingly recognized as critical for defining the socio-emotional system, through the development of social competences and of their underlying neural circuitries. Here, we used an established rat model of social stress resulting from male partner aggression induced by peripubertal (P28-42) exposure to unpredictable fearful experiences. Using this model, we aimed to first, characterize adult emotionality in terms of the breadth of the socio-emotional symptoms and second, to determine the relative impact of prenatal vs postnatal influences. For this purpose, male offspring of pairs comprising a control or a peripubertally stressed male were cross-fostered at birth and tested at adulthood on a series of socio-emotional tests. In the offspring of peripubertally stressed males, the expected antisocial phenotype was observed, as manifested by increased aggression towards a female partner and a threatening intruder, accompanied by lower sociability. This negative outcome was yet accompanied by better social memory as well as enhanced active coping, based on more swimming and longer latency to immobility in the forced swim test, and less immobility in the shock probe test. Furthermore, the cross-fostering manipulation revealed that these adult behaviors were largely influenced by the post- but not the prenatal environment, an observation contrasting with both pre- and postnatal effects on attacks during juvenile play behavior. Adult aggression, other active coping behaviors, and social memory were determined by the predominance at this developmental stage of postnatal over prenatal influences. Together, our data highlight the relative persistence of early life influences.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| | - Sonakshi Gupta
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Pharmacy Department, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|