1
|
Conte M, De Feo MS, Corica F, Gorica J, Sidrak MMA, De Cristofaro F, Filippi L, Ricci M, De Vincentis G, Frantellizzi V. A Systematic Review on Dementia and Translocator Protein (TSPO): When Nuclear Medicine Highlights an Underlying Expression. Biomolecules 2023; 13:biom13040598. [PMID: 37189346 DOI: 10.3390/biom13040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Translocator protein (TSPO) is a neuroinflammation hallmark. Different TSPO affinity compounds have been produced and over time, the techniques of radiolabeling have been refined. The aim of this systematic review is to summarize the development of new radiotracers for dementia and neuroinflammation imaging. Methods: An online search of the literature was conducted in the PubMed, Scopus, Medline, Cochrane Library, and Web of Science databases, selecting published studies from January 2004 to December 2022. The accepted studies considered the synthesis of TSPO tracers for nuclear medicine imaging in dementia and neuroinflammation. Results: A total of 50 articles was identified. Twelve papers were selected from the included studies’ bibliographies and 34 were excluded. Thus, 28 articles were ultimately selected for quality assessment. Conclusion: Huge efforts in developing specific and stable tracers for PET/SPECT imaging have been made. The long half-life of 18F makes this isotope a preferable choice to 11C. An emerging limitation to this however is that neuroinflammation involves all of the brain which inhibits the possibility of detecting a slight inflammation status change in patients. A partial solution to this is using the cerebellum as a reference region and developing higher TSPO affinity tracers. Moreover, it is necessary to consider the presence of distomers and racemic compounds interfering with pharmacological tracers’ effects and increasing the noise ratio in images.
Collapse
|
2
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
3
|
Huang J. Novel brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Front Immunol 2022; 13:1010946. [PMID: 36211392 PMCID: PMC9537554 DOI: 10.3389/fimmu.2022.1010946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with a concealed onset and continuous deterioration. Mild cognitive impairment (MCI) is the prodromal stage of AD. Molecule-based imaging with positron emission tomography (PET) is critical in tracking pathophysiological changes among AD and MCI patients. PET with novel targets is a promising approach for diagnostic imaging, particularly in AD patients. Our present review overviews the current status and applications of in vivo molecular imaging toward neuroinflammation. Although radiotracers can remarkably diagnose AD and MCI patients, a variety of limitations prevent the recommendation of a single technique. Recent studies examining neuroinflammation PET imaging suggest an alternative approach to evaluate disease progression. This review concludes that PET imaging towards neuroinflammation is considered a promising approach to deciphering the enigma of the pathophysiological process of AD and MCI.
Collapse
|
4
|
Wang Q, Xie C. Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimer's disease. Front Neurosci 2022; 16:951128. [PMID: 36033617 PMCID: PMC9417618 DOI: 10.3389/fnins.2022.951128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- *Correspondence: Chunming Xie
| |
Collapse
|
5
|
The mitochondrial translocator protein (TSPO): a key multifunctional molecule in the nervous system. Biochem J 2022; 479:1455-1466. [PMID: 35819398 DOI: 10.1042/bcj20220050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Translocator protein (TSPO, 18 kDa), formerly known as peripheral benzodiazepine receptor, is an evolutionary well-conserved protein located on the outer mitochondrial membrane. TSPO is involved in a variety of fundamental physiological functions and cellular processes. Its expression levels are regulated under many pathological conditions, therefore, TSPO has been proposed as a tool for diagnostic imaging and an attractive therapeutic drug target in the nervous system. Several synthetic TSPO ligands have thus been explored as agonists and antagonists for innovative treatments as neuroprotective and regenerative agents. In this review, we provide state-of-the-art knowledge of TSPO functions in the brain and peripheral nervous system. Particular emphasis is placed on its contribution to important physiological functions such as mitochondrial homeostasis, energy metabolism and steroidogenesis. We also report how it is involved in neuroinflammation, brain injury and diseases of the nervous system.
Collapse
|
6
|
Jung ME. A Protective Role of Translocator Protein in Alzheimer's Disease Brain. Curr Alzheimer Res 2021; 17:3-15. [PMID: 32065102 DOI: 10.2174/1567205017666200217105950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Translocator Protein (18 kDa) (TSPO) is a mitochondrial protein that locates cytosol cholesterol to mitochondrial membranes to begin the synthesis of steroids including neurotrophic neurosteroids. TSPO is abundantly present in glial cells that support neurons and respond to neuroinflammation. Located at the outer membrane of mitochondria, TSPO regulates the opening of mitochondrial permeability transition pore (mPTP) that controls the entry of molecules necessary for mitochondrial function. TSPO is linked to neurodegenerative Alzheimer's Disease (AD) such that TSPO is upregulated in the brain of AD patients and signals AD-induced adverse changes in brain. The initial increase in TSPO in response to brain insults remains elevated to repair cellular damages and perhaps to prevent further neuronal degeneration as AD progresses. To exert such protective activities, TSPO increases the synthesis of neuroprotective steroids, decreases neuroinflammation, limits the opening of mPTP, and reduces the generation of reactive oxygen species. The beneficial effects of TSPO on AD brain are manifested as the attenuation of neurotoxic amyloid β and mitochondrial dysfunction accompanied by the improvement of memory and cognition. However, the protective activities of TSPO appear to be temporary and eventually diminish as the severity of AD becomes profound. Timely treatment with TSPO agonists/ligands before the loss of endogenous TSPO's activity may promote the protective functions and may extend neuronal survival.
Collapse
Affiliation(s)
- Marianna E Jung
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, United States
| |
Collapse
|
7
|
Torrado-Carvajal A, Toschi N, Albrecht DS, Chang K, Akeju O, Kim M, Edwards RR, Zhang Y, Hooker JM, Duggento A, Kalpathy-Cramer J, Napadow V, Loggia ML. Thalamic neuroinflammation as a reproducible and discriminating signature for chronic low back pain. Pain 2021; 162:1241-1249. [PMID: 33065737 DOI: 10.1097/j.pain.0000000000002108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Using positron emission tomography, we recently demonstrated elevated brain levels of the 18 kDa translocator protein (TSPO), a glial activation marker, in chronic low back pain (cLBP) patients, compared to healthy controls (HCs). Here, we first sought to replicate the original findings in an independent cohort (15 cLBP, 37.8 ± 12.5 y/o; 18 HC, 48.2 ± 12.8 y/o). We then trained random forest machine learning algorithms based on TSPO imaging features combining discovery and replication cohorts (totaling 25 cLBP, 42.4 ± 13.2 y/o; 27 HC, 48.9 ± 12.6 y/o), to explore whether image features other than the mean contain meaningful information that might contribute to the discrimination of cLBP patients and HC. Feature importance was ranked using SHapley Additive exPlanations values, and the classification performance (in terms of area under the curve values) of classifiers containing only the mean, other features, or all features was compared using the DeLong test. Both region-of-interest and voxelwise analyses replicated the original observation of thalamic TSPO signal elevations in cLBP patients compared to HC (P < 0.05). The random forest-based analyses revealed that although the mean is a discriminating feature, other features demonstrate similar level of importance, including the maximum, kurtosis, and entropy. Our observations suggest that thalamic neuroinflammatory signal is a reproducible and discriminating feature for cLBP, further supporting a role for glial activation in human cLBP, and the exploration of neuroinflammation as a therapeutic target for chronic pain. This work further shows that TSPO signal contains a richness of information that the simple mean might fail to capture completely.
Collapse
Affiliation(s)
- Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA, United States
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, HMS, Boston, MA, United States
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andrea Duggento
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK, Georgiadou C, Lawrence C, Busson J, Vercouillie J, Tauber C, Buron F, Routier S, Reekie T, Snellman A, Kassiou M, Rokka J, Davies KE, Rinne JO, Salih DA, Edwards FA, Orton LD, Williams SR, Chalon S, Boutin H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Am J Cancer Res 2021; 11:6644-6667. [PMID: 34093845 PMCID: PMC8171096 DOI: 10.7150/thno.56059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.
Collapse
|
9
|
Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation 2021; 18:76. [PMID: 33740987 PMCID: PMC7980620 DOI: 10.1186/s12974-021-02122-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background The translocator protein (TSPO) has been identified as a positron emission tomography (PET)-visible biomarker of inflammation and promising immunotherapeutic target for the treatment of Alzheimer’s disease (AD). While TSPO ligands have been shown to reduce the accumulation of the toxic Alzheimer’s beta-amyloid peptide, their effect on tau pathology has not yet been investigated. To address this, we analyzed the effects of TSPO ligand, Ro5-4864, on the progression of neuropathology in rTg4510 tau transgenic mice (TauTg). Methods Brain atrophy, tau accumulation, and neuroinflammation were assessed longitudinally using volumetric magnetic resonance imaging, tau-PET, and TSPO-PET, respectively. In vivo neuroimaging results were confirmed by immunohistochemistry for markers of neuronal survival (NeuN), tauopathy (AT8), and inflammation (TSPO, ionized calcium-binding adaptor molecule 1 or IBA-1, and complement component 1q or C1q) in brain sections from scanned mice. Results TSPO ligand treatment attenuated brain atrophy and hippocampal neuronal loss in the absence of any detected effect on tau depositions. Atrophy and neuronal loss were strongly associated with in vivo inflammatory signals measured by TSPO-PET, IBA-1, and levels of C1q, a regulator of the complement cascade. In vitro studies confirmed that the TSPO ligand Ro5-4864 reduces C1q expression in a microglial cell line in response to inflammation, reduction of which has been shown in previous studies to protect synapses and neurons in models of tauopathy. Conclusions These findings support a protective role for TSPO ligands in tauopathy, reducing neuroinflammation, neurodegeneration, and brain atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02122-1.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Naruhiko Sahara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Bin Ji
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Tetsuya Suhara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore. .,National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan.
| |
Collapse
|
10
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
11
|
Nag S, Jia Z, Svedberg M, Jackson A, Ahmad R, Luthra S, Varnäs K, Farde L, Halldin C. Synthesis and Autoradiography of Novel F-18 Labeled Reversible Radioligands for Detection of Monoamine Oxidase B. ACS Chem Neurosci 2020; 11:4398-4404. [PMID: 33284012 PMCID: PMC7747220 DOI: 10.1021/acschemneuro.0c00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
![]()
Monoamine oxidase B (MAO-B) is an
important enzyme regulating the
levels of monoaminergic neurotransmitters. Selective MAO-B inhibitors
have been labeled with carbon-11 or fluorine-18 to visualize the localization
of MAO-B in vivo by positron emission tomography
(PET) and thereby have been useful for studying neurodegenerative
diseases. The aim of this study was to develop promising fluorine-18
labeled reversible MAO-B PET radioligands and their biological evaluation in vitro by autoradiography. Radiolabeling was achieved
by classical one-step fluorine-18 nucleophilic substitution reaction.
The stability and radiochemical yield was analyzed with HPLC. All
five fluorine-18 labeled compounds were tested in human whole hemisphere
autoradiography experiments. Five compounds (GEH200439, GEH200448,
GEH200449, GEH200431A, and GEH200431B) were successfully radiolabeled
with fluorine-18, and the incorporation yield of the fluorination
reactions varied from 10 to 45% depending on the compound. The radiochemical
purity was higher than 99% for all at the end of synthesis. Radioligands
were found to be stable, with a radiochemical purity of >99% in
a
sterile phosphate buffered saline (pH = 7.4) over the duration of
the study. The ARG binding density of only 18F-GEH200449
was consistent with known MAO-B expression in the human brain. Radiolabeling
of five new fluorine-18 MAO-B reversible inhibitors was successfully
accomplished. Compound 18F-GEH200449 binds specifically
to MAO-B in vitro postmortem brain and could be a
potential candidate for in vivo PET investigation.
Collapse
Affiliation(s)
- Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Marie Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Alex Jackson
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Rabia Ahmad
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Sajinder Luthra
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| |
Collapse
|
12
|
In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 2020; 87:498-507. [PMID: 32027960 PMCID: PMC7864588 DOI: 10.1016/j.bbi.2020.01.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1β). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.
Collapse
|
13
|
Fu X, Chen H, Han S. C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation. Life Sci 2020; 256:117894. [PMID: 32502544 DOI: 10.1016/j.lfs.2020.117894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/27/2022]
Abstract
AIMS Pathological alterations in the brain can cause microglial activation (MA). Thus, inhibiting MA could provide a new approach for treating neurodegenerative disorders. MAIN METHODS To investigate the effect of C16 peptide and angiopoietin-1 (Ang1) on inflammation following MA, we stimulated microglial BV-2 cells with lipopolysaccharide (LPS) and used dexmedetomidine (DEX) as a positive control. Specific inhibitors of Tie2, αvβ3 and α5β1 integrins, and PI3K/Akt were applied to investigate the neuron-protective and anti-inflammatory effects and signaling pathway of C16 + Ang1 treatment in the LPS-induced BV-2 cells. KEY FINDINGS Our results showed that C16 + Ang1 treatment reduced the microglia M1 phenotype but promoted the microglia M2 phenotype. In addition, C16 + Ang1 treatment suppressed leukocyte migration across human pulmonary microvascular endothelial cells, reduced the levels of pro-inflammatory factors [inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, tumor necrosis factor (TNF-α)], and cellular apoptosis factors (caspase-3 and p53), and decreased lactate dehydrogenase (LDH) release, but promoted anti-inflammatory cytokine (IL-10) expression and cell proliferation in the LPS-activated BV-2 cells. The signaling pathways underlying the neuron-protective and anti-inflammatory effects of C16 + Ang1 may be mediated by Tie2-PI3K/Akt, Tie2-integrin and integrin-PI3K/Akt. SIGNIFICANCE The neuron-protective and anti-inflammatory effects of C16 + Ang1 treatment included M1 to M2 microglia phenotype switching, blocking leukocyte transmigration, decreasing apoptotic and inflammatory factors, and promoting cellular viability.
Collapse
Affiliation(s)
- Xiaoxiao Fu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China.
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Tong J, Williams B, Rusjan PM, Mizrahi R, Lacapère JJ, McCluskey T, Furukawa Y, Guttman M, Ang LC, Boileau I, Meyer JH, Kish SJ. Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab 2020; 40:1061-1076. [PMID: 31220997 PMCID: PMC7181090 DOI: 10.1177/0271678x19858003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) imaging of the translocator protein (TSPO) is widely used as a biomarker of microglial activation. However, TSPO protein concentration in human brain has not been optimally quantified nor has its regional distribution been compared to TSPO binding. We determined TSPO protein concentration, change with age, and regional distribution by quantitative immunoblotting in autopsied human brain. Brain TSPO protein concentration (>0.1 ng/µg protein) was higher than those reported by in vitro binding assays by at least 2 to 70 fold. TSPO protein distributed widely in both gray and white matter regions, with distribution in major gray matter areas ranked generally similar to that of PET binding in second-generation radiotracer studies. TSPO protein concentration in frontal cortex was high at birth, declined precipitously during the first three months, and increased modestly during adulthood/senescence (10%/decade; vs. 30% for comparison astrocytic marker GFAP). As expected, TSPO protein levels were significantly increased (+114%) in degenerating putamen in multiple system atrophy, providing further circumstantial support for TSPO as a gliosis marker. Overall, findings show some similarities between TSPO protein and PET binding characteristics in the human brain but also suggest that part of the TSPO protein pool might be less available for radioligand binding.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Junchao Tong, Preclinical Imaging, Centre
for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8,
Canada.
| | - Belinda Williams
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Pablo M. Rusjan
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Jean-Jacques Lacapère
- Sorbonne Universités-UPMC University of
Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University,
Paris, France
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo
Koto Geriatric Medical Center, and Faculty of Medicine, University & Post
Graduate University of Juntendo, Tokyo, Japan
| | - Mark Guttman
- Centre for Movement Disorders, Toronto,
Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London
Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| |
Collapse
|
15
|
Microglial activation in schizophrenia: Is translocator 18 kDa protein (TSPO) the right marker? Schizophr Res 2020; 215:167-172. [PMID: 31699629 DOI: 10.1016/j.schres.2019.10.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Positron emission tomography (PET) with translocator 18 kDa protein (TSPO) radioligands has frequently been used to investigate microglial activation in schizophrenia in vivo. However, the specificity of this marker is increasingly debated. Here we show that TSPO expression is 1) not increased in postmortem brain tissue of schizophrenia patients; 2) not correlated with expression of microglial activation markers; 3) not restricted to microglia; and 4) not upregulated in ex vivo activated human primary microglia. Our data are in line with recent reports showing that TSPO expression is not increased in schizophrenia and that it is not a specific marker for activated microglia. This study emphasizes the need for further development of tracers to study the role of microglial activation in schizophrenia and other diseases.
Collapse
|
16
|
Nettis MA, Pariante CM. Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:23-40. [DOI: 10.1016/bs.irn.2019.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Xu J, Sun J, Perrin RJ, Mach RH, Bales KR, Morris JC, Benzinger TLS, Holtzman DM. Translocator protein in late stage Alzheimer's disease and Dementia with Lewy bodies brains. Ann Clin Transl Neurol 2019; 6:1423-1434. [PMID: 31402620 PMCID: PMC6689696 DOI: 10.1002/acn3.50837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [3 H]PK11195 and [3 H]PBR28. RESULTS No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Jianjun Sun
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Richard J. Perrin
- Department of Pathology & ImmunologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Robert H. Mach
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | | | - John C. Morris
- Department of NeurologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Tammie L. S. Benzinger
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - David M. Holtzman
- Department of NeurologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| |
Collapse
|
18
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Boerwinkle A, Ances BM. Molecular Imaging of Neuroinflammation in HIV. J Neuroimmune Pharmacol 2018; 14:9-15. [PMID: 30515624 DOI: 10.1007/s11481-018-9823-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
The development of combined antiretroviral therapy (cART) has increased the lifespan of persons living with HIV (PLWH), with most PLWH having a normal life expectancy. While significant progress has occurred, PLWH continue to have multiple health complications, including HIV associated neurocognitive disorders (HAND). While the exact cause of HAND is not known, persistent neuroinflammation is hypothesized to be an important potential contributor. Molecular imaging using positron emission tomography (PET) can non-invasively evaluate neuroinflammation. PET radiotracers specific for increased expression of the translocator protein18kDa (TSPO) on activated microglia can detect the presence of neuroinflammation in PLWH. However, results from these studies have been inconsistent and inconclusive. Future studies are needed to address key limitations that continue to persist with these techniques before accurate conclusions can be drawn regarding the role of persistent neuroinflammation in PLWH.
Collapse
Affiliation(s)
- Anna Boerwinkle
- Department of Neurology, Washington University in Saint Louis, Box 8111, 660 South Euclid Ave, St. Louis, MO, 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, Box 8111, 660 South Euclid Ave, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Graf R, Longo JL, Hughes ZA. The location discrimination reversal task in mice is sensitive to deficits in performance caused by aging, pharmacological and other challenges. J Psychopharmacol 2018; 32:1027-1036. [PMID: 29897000 DOI: 10.1177/0269881118779383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deficits in hippocampal-mediated pattern separation are one aspect of cognitive function affected in schizophrenia (SZ) or Alzheimer's disease (AD). To develop novel therapies, it is beneficial to explore this specific aspect of cognition preclinically. The location discrimination reversal (LDR) task is a hippocampal-dependent operant paradigm that evaluates spatial learning and cognitive flexibility using touchscreens. Here we assessed baseline performance as well as multimodal disease-relevant manipulations in mice. Mice were trained to discriminate between the locations of two images where the degree of separation impacted performance. Administration of putative pro-cognitive agents was unable to improve performance at narrow separation. Furthermore, a range of disease-relevant manipulations were characterized to assess whether performance could be impaired and restored. Pertinent to the cholinergic loss in AD, scopolamine (0.1 mg/kg) produced a disruption in LDR, which was attenuated by donepezil (1 mg/kg). Consistent with NMDA hypofunction in cognitive impairment associated with SZ, MK-801 (0.1 mg/kg) also disrupted performance; however, this deficit was not modified by rolipram. Microdeletion of genes associated with SZ (22q11) resulted in impaired performance, which was restored by rolipram (0.032 mg/kg). Since aging and inflammation affect cognition and are risk factors for AD, these aspects were also evaluated. Aged mice were slower to acquire the task than young mice and did not reach the same level of performance. A systemic inflammatory challenge (lipopolysaccharide (LPS), 1 mg/kg) produced prolonged (7 days) deficits in the LDR task. These data suggest that LDR task is a valuable platform for evaluating disease-relevant deficits in pattern separation and offers potential for identifying novel therapies.
Collapse
Affiliation(s)
- Radka Graf
- Pfizer Internal Medicine Research Unit, Cambridge, MA, USA
| | - Jami L Longo
- Pfizer Internal Medicine Research Unit, Cambridge, MA, USA
| | - Zoë A Hughes
- Pfizer Internal Medicine Research Unit, Cambridge, MA, USA
| |
Collapse
|
22
|
Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:123-131. [PMID: 28533150 DOI: 10.1016/j.pnpbp.2017.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Neuroinflammatory changes have been demonstrated to be an important feature of Alzheimer's disease (AD); however, the exact role of neuroinflammation and its progression during disease is still not well understood. One of the main drivers of the neuroinflammatory process are microglial cells. Positron Emission Tomography allows for the quantification of microglial activation by labelling the Translocator Protein 18kDa (TSPO), which becomes overexpressed upon activation of microglial cells. Several radioligands have been designed to target TSPO and have been studied in-vivo in AD populations. While most studies have shown important increases in TSPO binding in AD populations compared to healthy volunteers, whether the neuroinflammatory progress occurs early on or later during disease is still unclear. In order to investigate the early changes in neuroinflammation, studies have sought to investigate microglial activation in patients with mild cognitive impairment (MCI), which is defined as a transitional stage between normal aging and dementia. In this prodromal population, conflicting results have been reported with some studies reporting increased binding in MCI, while others demonstrate no differences from controls. Here we review the TSPO PET studies in AD and MCI populations and discuss the important methodological considerations of imaging microglial activation.
Collapse
Affiliation(s)
- Dunja Knezevic
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Romina Mizrahi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
23
|
Barichello T, Simões LR, Collodel A, Giridharan VV, Dal-Pizzol F, Macedo D, Quevedo J. The translocator protein (18 kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav Rev 2017; 83:183-199. [DOI: 10.1016/j.neubiorev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
|
24
|
Kreisl WC, Henter ID, Innis RB. Imaging Translocator Protein as a Biomarker of Neuroinflammation in Dementia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:163-185. [PMID: 29413519 PMCID: PMC6190574 DOI: 10.1016/bs.apha.2017.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroinflammation has long been considered a potential contributor to neurodegenerative disorders that result in dementia. Accumulation of abnormal protein aggregates in Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies is associated with the activation of microglia and astrocytes into proinflammatory states, and chronic low-level activation of glial cells likely contributes to the pathological changes observed in these and other neurodegenerative diseases. The 18kDa translocator protein (TSPO) is a key biomarker for measuring inflammation in the brain via positron emission tomography (PET). Increased TSPO density has been observed in brain tissue from patients with neurodegenerative diseases and colocalizes to activated microglia and reactive astrocytes. Several radioligands have been developed to measure TSPO density in vivo with PET, and these have been used in clinical studies of different dementia syndromes. However, TSPO radioligands have limitations, including low specific-to-nonspecific signal and differential affinity to a polymorphism on the TSPO gene, which must be taken into consideration in designing and interpreting human PET studies. Nonetheless, most PET studies have shown that increased TSPO binding is associated with various dementias, suggesting that TSPO has potential as a biomarker to further explore the role of neuroinflammation in dementia pathogenesis and may prove useful in monitoring disease progression.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute, Columbia University Medical Center, New York, NY, United States.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, Galloway D, Williams JB, Lehr J, Mandhair H, Peferoen LA, Taylor PC, Amor S, Antel JP, Matthews PM, Moore CS. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 2017; 37:2679-2690. [PMID: 28530125 PMCID: PMC5536262 DOI: 10.1177/0271678x17710182] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18kDa Translocator Protein (TSPO) is the most commonly used tissue-specific marker of inflammation in positron emission tomography (PET) studies. It is expressed in myeloid cells such as microglia and macrophages, and in rodent myeloid cells expression increases with cellular activation. We assessed the effect of myeloid cell activation on TSPO gene expression in both primary human and rodent microglia and macrophages in vitro, and also measured TSPO radioligand binding with 3H-PBR28 in primary human macrophages. As observed previously, we found that TSPO expression increases (∼9-fold) in rodent-derived macrophages and microglia upon pro-inflammatory stimulation. However, TSPO expression does not increase with classical pro-inflammatory activation in primary human microglia (fold change 0.85 [95% CI 0.58-1.12], p = 0.47). In contrast, pro-inflammatory activation of human monocyte-derived macrophages is associated with a reduction of both TSPO gene expression (fold change 0.60 [95% CI 0.45-0.74], p = 0.02) and TSPO binding site abundance (fold change 0.61 [95% CI 0.49-0.73], p < 0.0001). These findings have important implications for understanding the biology of TSPO in activated macrophages and microglia in humans. They are also clinically relevant for the interpretation of PET studies using TSPO targeting radioligands, as they suggest changes in TSPO expression may reflect microglial and macrophage density rather than activation phenotype.
Collapse
Affiliation(s)
- David R Owen
- 1 Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, UK
| | - Nehal Narayan
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK
| | - Luke Healy
- 4 Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Erica Smyth
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK
| | - Eugenii A Rabiner
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK.,5 Centre for Neuroimaging Sciences, King's College, London, UK
| | - Dylan Galloway
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - John B Williams
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - Joshua Lehr
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - Harpreet Mandhair
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Laura An Peferoen
- 7 Pathology Department, VU Medical Centre, VU University of Amsterdam, The Netherlands
| | - Peter C Taylor
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Sandra Amor
- 7 Pathology Department, VU Medical Centre, VU University of Amsterdam, The Netherlands.,8 Neuroimmunology Unit, Blizard Institute, Barts and the London School of medicine & Dentistry Queen Mary University of London, UK
| | - Jack P Antel
- 4 Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul M Matthews
- 1 Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, UK.,9 UK Dementia Research Institute, Imperial College London, London, UK
| | - Craig S Moore
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| |
Collapse
|
26
|
Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry 2017; 4:563-572. [PMID: 28454915 DOI: 10.1016/s2215-0366(17)30101-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022]
Abstract
The role of immune activation in psychiatric disorders has attracted considerable attention over the past two decades, contributing to the rise of a new era for psychiatry. Microglia, the macrophages of the brain, are progressively becoming the main focus of the research in this field. In this Review, we assess the literature on microglia activation across different psychiatric disorders, including post-mortem and in-vivo studies in humans and experimental studies in animals. Although microglia activation has been noted in all types of psychiatric disorder, no association was seen with specific diagnostic categories. Furthermore, the findings from these studies highlight that not all psychiatric patients have microglial activation. Therefore, the cause of the neuroinflammation in these cohorts and its implications are unclear. We discuss psychosocial stress as one of the main factors determining microglial activation in patients with psychiatric disorders, and explore the relevance of these findings for future treatment strategies.
Collapse
Affiliation(s)
- Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
27
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
28
|
Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE. 4'-Chlorodiazepam Protects Mitochondria in T98G Astrocyte Cell Line from Glucose Deprivation. Neurotox Res 2017; 32:163-171. [PMID: 28405935 DOI: 10.1007/s12640-017-9733-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
Abstract
The translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), is considered an important regulator of steroidogenesis and a potential therapeutic target in neurological disorders. Previous evidence suggests that TSPO ligands can protect cells during injury and prevent apoptosis in central nervous system (CNS) cells. However, its actions on astrocytic cells under metabolic injury are not well understood. In this study, we explored whether 4'-chlorodiazepam (Ro5-4864), a TSPO ligand, might protect astrocyte mitochondria under glucose deprivation. Our results showed that 4'-chlorodiazepam preserved cell viability and reduced nuclear fragmentation in glucose-deprived cells. These effects were accompanied by a reduced production of free radicals and maintenance of mitochondrial functions in cells treated with 4'-chlorodiazepam. Finally, our findings suggest that TSPO might be involved in reducing oxidative stress by preserving mitochondrial functions in astrocytic cells exposed to glucose withdrawal.
Collapse
Affiliation(s)
- Eliana Baez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Gina Paola Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Daniel Andres Sandoval-Rueda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
29
|
Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017; 17:25. [DOI: 10.1007/s11910-017-0733-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, Yoshikawa E, Futatsubashi M, Suzuki K, Mori N, Ouchi Y. Depiction of microglial activation in aging and dementia: Positron emission tomography with [ 11C]DPA713 versus [ 11C]( R)PK11195. J Cereb Blood Flow Metab 2017; 37:877-889. [PMID: 27117856 PMCID: PMC5363467 DOI: 10.1177/0271678x16646788] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The presence of activated microglia in the brains of healthy elderly people is a matter of debate. We aimed to clarify the degree of microglial activation in aging and dementia as revealed by different tracers by comparing the binding potential (BPND) in various brain regions using a first-generation translocator protein (TSPO) tracer [11C]( R)PK11195 and a second-generation tracer [11C]DPA713. The BPND levels, estimated using simplified reference tissue models, were compared among healthy young and elderly individuals and patients with Alzheimer's disease (AD) and were correlated with clinical scores. An analysis of variance showed category-dependent elevation in levels of [11C]DPA713 BPND in all brain regions and showed a significant increase in the AD group, whereas no significant changes among groups were found when [11C]( R)PK11195 BPND was used. Cognito-mnemonic scores were significantly correlated with [11C]DPA713 BPND levels in many brain regions, whereas [11C]( R)PK11195 BPND failed to correlate with the scores. As mentioned elsewhere, the present results confirmed that the second-generation TSPO tracer [11C]DPA713 has a greater sensitivity to TSPO in both aging and neuronal degeneration than [11C]( R)PK11195. Positron emission tomography with [11C]DPA713 is suitable for the delineation of in vivo microglial activation occurring globally over the cerebral cortex irrespective of aging and degeneration.
Collapse
Affiliation(s)
- Masamichi Yokokura
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kyoko Nakaizumi
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyokazu Takebayashi
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhide Iwata
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- 3 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | | | - Katsuaki Suzuki
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norio Mori
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
31
|
Sokias R, Werry EL, Chua SW, Reekie TA, Munoz L, Wong ECN, Ittner LM, Kassiou M. Determination and reduction of translocator protein (TSPO) ligand rs6971 discrimination. MEDCHEMCOMM 2016; 8:202-210. [PMID: 30108706 PMCID: PMC6071920 DOI: 10.1039/c6md00523c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation.
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation. Clinical translation of TSPO imaging agents has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Disclosed brain-permeant second-generation TSPO ligands bind TSPO A147T with reduced affinity compared to the wild type protein (TSPO WT). Efforts to develop a TSPO ligand that binds TSPO WT and TSPO A147T with similarly high affinity have been hampered by a lack of knowledge about how ligand structure differentially influences interaction with the two forms of TSPO. To gain insight, we have established human embryonic kidney cell lines stably over-expressing human TSPO WT and TSPO A147T, and tested how modifications of a novel N-alkylated carbazole scaffold influence affinity to both TSPO isoforms. Most of the new analogues developed in this study showed high affinity to TSPO WT and a 5–6-fold lower affinity to TSPO A147T. Addition of electron-withdrawing substituents yielded analogues with highest affinity for TSPO A147T without decreasing affinity for TSPO WT. This knowledge can be used to inform further development of non-discriminating TSPO ligands for use as diagnostic markers for glioblastoma and neuroinflammation irrespective of rs6971.
Collapse
Affiliation(s)
- Renee Sokias
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Eryn L Werry
- Faculty of Health Sciences , The University of Sydney , NSW 2006 , Australia.,School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Sook W Chua
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Tristan A Reekie
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Lenka Munoz
- School of Medical Sciences (Pathology) and Charles Perkins Centre , The University of Sydney , NSW 2006 , Australia
| | - Erick C N Wong
- School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Lars M Ittner
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| |
Collapse
|
32
|
Toyohara J, Sakata M, Hatano K, Yanai S, Endo S, Ishibashi K, Wagatsuma K, Ishii K, Ishiwata K. Preclinical and first-in-man studies of [(11)C]CB184 for imaging the 18-kDa translocator protein by positron emission tomography. Ann Nucl Med 2016; 30:534-43. [PMID: 27329083 DOI: 10.1007/s12149-016-1094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We performed preclinical and first-in-man clinical positron emission tomography (PET) studies in human brain using N,N-di-n-propyl-2-[2-(4-[(11)C]methoxyphenyl)-6,8-dichloroimidazol[1,2-a]pyridine-3-yl]acetamide ([(11)C]CB184) to image the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia in neuroinflammatory conditions. METHODS In vitro selectivity of CB184 was characterized. The radiation absorbed dose by [(11)C]CB184 in humans was calculated from murine distribution data. Acute toxicity of CB184 hydrochloride in rats at a dose of 5.81 mg/kg body weight, which is >10,000-fold higher than the clinical equivalent dose of [(11)C]CB184, was evaluated. Acute toxicity of [(11)C]CB184 injection of a 400-fold dose to administer a postulated dose of 740 MBq [(11)C]CB184 was also evaluated after the decay-out of (11)C. The mutagenicity of CB184 was studied with a reverse mutation test (Ames test). The pharmacological effect of CB184 injection in mice was studied with an open field test. The first PET imaging of TSPO with [(11)C]CB184 in a normal human volunteer was performed. RESULTS A suitable preparation method for [(11)C]CB184 injection was established. CB184 showed low activity in a 28-standard receptor binding profile. The radiation absorbed dose by [(11)C]CB184 in humans was sufficiently low for clinical use, and no acute toxicity of CB184 or [(11)C]CB184 injection was found. No mutagenicity or apparent effect on locomotor activity or anxiety status was observed for CB184. We safely performed brain imaging with PET following administration of [(11)C]CB184 in a normal human volunteer. A 90-min dynamic scan showed rapid initial uptake of radioactivity in the brain followed by prompt clearance. [(11)C]CB184 was homogeneously distributed in the gray matter. The total distribution volume of [(11)C]CB184 was highest in the thalamus followed by the cerebellar cortex and elsewhere. Although regional differences were small, the observed [(11)C]CB184 binding pattern was consistent with the TSPO distribution in normal human brain. Peripherally, [(11)C]CB184 was metabolized in humans: 30 % of the radioactivity in plasma was detected as the unchanged form after 60 min. CONCLUSIONS [(11)C]CB184 is suitable for imaging TSPO in human brain and provides an acceptable radiation dose. Pharmacological safety was noted at the dose required for PET imaging.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shuichi Yanai
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.,Institute of Cyclotron and Drug Discovery Research, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
33
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
Takano A, Stepanov V, Nakao R, Amini N, Gulyás B, Kimura H, Halldin C. Brain PET measurement of PDE10A occupancy by TAK-063, a new PDE10A inhibitor, using [11C]T-773 in nonhuman primates. Synapse 2016; 70:253-63. [DOI: 10.1002/syn.21896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| | - Ryuji Nakao
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| | - Haruhide Kimura
- Pharmaceutical Research Division; CNS Drug Discovery Unit, Takeda Pharmaceutical Company Limited; Fujisawa Japan
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
35
|
In-vivo imaging of grey and white matter neuroinflammation in Alzheimer's disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol Psychiatry 2015; 20:1579-87. [PMID: 25707397 PMCID: PMC8026116 DOI: 10.1038/mp.2015.1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
Abstract
Our primary aim was to compare neuroinflammation in cognitively intact control subjects and patients with Alzheimer's disease (AD) by using positron emission tomography (PET) with translocator protein 18 kDa (TSPO)-specific radioligand [(18)F]-FEPPA. [(18)F]-FEPPA PET scans were acquired on a high-resolution research tomograph in 21 patients with AD (47- 81 years) and 21 control subjects (49-82 years). They were analyzed by using a 2-tissue compartment model with arterial plasma input function. Differences in neuroinflammation, indexed as [(18)F]-FEPPA binding were compared, adjusting for differences in binding affinity class as determined by a single polymorphism in the TSPO gene (rs6971). In grey matter areas, [(18)F]-FEPPA was significantly higher in AD compared with healthy control subjects. Large increases were seen in the hippocampus, prefrontal, temporal, parietal and occipital cortex (average Cohen's d= 0.89). Voxel-based analyses confirmed significant clusters of neuroinflammation in the frontal, temporal and parietal cortex in patients with AD. In white matter, [(18)F]-FEPPA binding was elevated in the posterior limb of the internal capsule, and the cingulum bundle. Higher neuroinflammation in the parietal cortex (r= -0.7, P= 0.005), and posterior limb of the internal capsule (r= -0.8, P=0.001) was associated with poorer visuospatial function. In addition, a higher [(18)F]-FEPPA binding in the posterior limb of the internal capsule was associated with a greater impairment in language ability (r= -0.7, P=0.004). Elevated neuroinflammation can be detected in AD patients throughout the brain grey and white matter by using [(18)F]-FEPPA PET. Our results also suggest that neuroinflammation is associated with some cognitive deficits.
Collapse
|
36
|
|
37
|
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138:1138-59. [PMID: 25823474 DOI: 10.1093/brain/awv066] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hanane Touil
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luke M Healy
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David R Owen
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Bryce A Durafourt
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Craig S Moore
- 3 Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
38
|
Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice. Biochem Biophys Res Commun 2015; 460:439-45. [PMID: 25796326 DOI: 10.1016/j.bbrc.2015.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
Abstract
The sigma-2 receptor is a steroid-binding membrane-associated receptor which has been implicated in cell survival. Sigma-2 has recently been shown to bind amyloid-β (Aβ) oligomers in Alzheimer's disease (AD) brain. Furthermore, blocking this interaction was shown to prevent or reverse the effects of Aβ to cause cognitive impairment in mouse models and synaptic loss in neuronal cultures. In the present work, the density of sigma-2 receptors was measured in a double transgenic mouse model of amyloid-β deposition (APP/PS1). Comparisons were made between males and females and between transgenic and wt animals. Sigma-2 receptor density was assessed by quantitative autoradiography performed on coronal brain slices using [(3)H]N-[4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methyl-benzamide ([(3)H]RHM-1), which has a 300-fold selectivity for the sigma-2 receptor over the sigma-1 receptor. The translocator protein of 18 kDa (TSPO) is expressed on activated microglia and is a marker for neuroinflammation. TSPO has been found to be upregulated in neurodegenerative disorders, including AD. Therefore, in parallel with the sigma-2 autoradiography experiments, we measured TSPO expression using the selective radioligand, [(3)H]PBR28. We also quantified Aβ plaque burden in the same animals using a monoclonal antibody raised against aggregated Aβ. Sigma-2 receptor density was significantly decreased in piriform and motor cortices as well as striata of 16-month old female, but not male, APP/PS1 mice as compared to their wt counterparts. [(3)H]PBR28 binding and immunostaining for Aβ plaques were significantly increased in piriform and motor cortices of both male and female transgenic mice. In striatum however, significant increases were observed only in females.
Collapse
|
39
|
Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Ji RR, Riley M, Wasan AD, Zürcher NR, Albrecht DS, Vangel MG, Rosen BR, Napadow V, Hooker JM. Evidence for brain glial activation in chronic pain patients. ACTA ACUST UNITED AC 2015; 138:604-15. [PMID: 25582579 DOI: 10.1093/brain/awu377] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.
Collapse
Affiliation(s)
- Marco L Loggia
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | - Daniel B Chonde
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Oluwaseun Akeju
- 3 Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA 02114, USA
| | - Grae Arabasz
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ciprian Catana
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert R Edwards
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 4 Department of Psychiatry, Brigham and Women's Hospital, HMS, Boston, MA 02155, USA
| | - Elena Hill
- 5 Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shirley Hsu
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David Izquierdo-Garcia
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ru-Rong Ji
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 6 Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Misha Riley
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ajay D Wasan
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 4 Department of Psychiatry, Brigham and Women's Hospital, HMS, Boston, MA 02155, USA 7 Departments of Anesthesiology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Nicole R Zürcher
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel S Albrecht
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark G Vangel
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 8 Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitaly Napadow
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 9 Department of Biomedical Engineering, Kyung Hee University, Seoul 130-872, Republic of Korea
| | - Jacob M Hooker
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
40
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
41
|
Brody AL, Okita K, Shieh J, Liang L, Hubert R, Mamoun M, Farahi J, Mandelkern MA. Radiation dosimetry and biodistribution of the translocator protein radiotracer [(11)C]DAA1106 determined with PET/CT in healthy human volunteers. Nucl Med Biol 2014; 41:871-5. [PMID: 25156039 PMCID: PMC4192057 DOI: 10.1016/j.nucmedbio.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION When microglia become activated (an integral part of neuroinflammation), cellular morphology changes and expression of translocator protein (TSPO) 18 kDa is increased. Over the past several years, [(11)C]DAA1106 has emerged as a reliable radiotracer for labeling TSPO with high affinity during positron emission tomography (PET) scanning. While [(11)C]DAA1106 PET scanning has been used in several research studies, a radiation dosimetry study of this radiotracer in humans has not yet been published. METHODS Twelve healthy participants underwent full body dynamic [(11)C]DAA1106 PET scanning, with 8 sequential whole body scans (approximately 12 bed positions each), following a single injection. Regions of interest were drawn manually, and time activity curves (TACs) were obtained for 15 organs. OLINDA/EXM 1.1 was used to compute radiation absorbed doses to the target organs, as well as effective dose (ED) and effective dose equivalent (EDE). RESULTS The ED and EDE were 4.06 ± 0.58 μSv/MBq and 5.89 ± 0.83 μSv/MBq, respectively. The highest absorbed doses were to the heart wall, kidney, liver, pancreas, and spleen. TACs revealed that peak dose rates are during the first scan (at 6 min) for all organs other than the urinary bladder wall, which had its peak dose rate during the fourth scan (at 30 min). CONCLUSIONS The recently developed radiotracer [(11)C]DAA1106 has its EDE and target-organ absorbed dose such that, for a single administration, its radiation dosimetry is well within the U.S. FDA guidelines for basic research studies in adults. This dose level implies that the dosimetry for multiple [(11)C]DAA1106 scans within a given year also falls within FDA guidelines, and this favorable property makes this radiotracer suitable for examining microglial activation repeatedly over time, which may in the future be useful for longitudinal tracking of disease progression and monitoring of therapy response in conditions marked by neuroinflammation (e.g., head trauma and multiple sclerosis).
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073; Department of Psychiatry, University of California at Los Angeles, 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA 90095.
| | - Kyoji Okita
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073; UCLA Laboratory of Molecular Imaging, 760 Westwood Plaza C8-538, Los Angeles, CA 90095
| | - Jennifer Shieh
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073
| | - Lidia Liang
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073
| | - Robert Hubert
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073
| | - Michael Mamoun
- Department of Research, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd., Los Angeles, CA 90073
| | - Judah Farahi
- Department of Imaging, VAGLAHS, 11301 Wilshire Blvd., Los Angeles, CA 90073
| | - Mark A Mandelkern
- Department of Imaging, VAGLAHS, 11301 Wilshire Blvd., Los Angeles, CA 90073; Department of Physics, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697
| |
Collapse
|
42
|
Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics 2013; 3:448-66. [PMID: 23843893 PMCID: PMC3706689 DOI: 10.7150/thno.6592] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.
Collapse
|
43
|
Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, Corona W, Morse CL, Zoghbi SS, Pike VW, McMahon FJ, Turner RS, Innis RB. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:2228-38. [PMID: 23775979 DOI: 10.1093/brain/awt145] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer's disease, patients with mild cognitive impairment and older control subjects were also scanned with (11)C-Pittsburgh Compound B to measure amyloid burden. Twenty-nine amyloid-positive patients (19 Alzheimer's, 10 mild cognitive impairment) and 13 amyloid-negative control subjects were studied. The primary goal of this study was to determine whether TSPO binding is elevated in patients with Alzheimer's disease, and the secondary goal was to determine whether TSPO binding correlates with neuropsychological measures, grey matter volume, (11)C-Pittsburgh Compound B binding, or age of onset. Patients with Alzheimer's disease, but not those with mild cognitive impairment, had greater (11)C-PBR28 binding in cortical brain regions than controls. The largest differences were seen in the parietal and temporal cortices, with no difference in subcortical regions or cerebellum. (11)C-PBR28 binding inversely correlated with performance on Folstein Mini-Mental State Examination, Clinical Dementia Rating Scale Sum of Boxes, Logical Memory Immediate (Wechsler Memory Scale Third Edition), Trail Making part B and Block Design (Wechsler Adult Intelligence Scale Third Edition) tasks, with the largest correlations observed in the inferior parietal lobule. (11)C-PBR28 binding also inversely correlated with grey matter volume. Early-onset (<65 years) patients had greater (11)C-PBR28 binding than late-onset patients, and in parietal cortex and striatum (11)C-PBR28 binding correlated with lower age of onset. Partial volume corrected and uncorrected results were generally in agreement; however, the correlation between (11)C-PBR28 and (11)C-Pittsburgh Compound B binding was seen only after partial volume correction. The results suggest that neuroinflammation, indicated by increased (11)C-PBR28 binding to TSPO, occurs after conversion of mild cognitive impairment to Alzheimer's disease and worsens with disease progression. Greater inflammation may contribute to the precipitous disease course typically seen in early-onset patients. (11)C-PBR28 may be useful in longitudinal studies to mark the conversion from mild cognitive impairment or to assess response to experimental treatments of Alzheimer's disease.
Collapse
Affiliation(s)
- William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ikoma Y, Takano A, Varrone A, Halldin C. Graphic plot analysis for estimating binding potential of translocator protein (TSPO) in positron emission tomography studies with [¹⁸F]FEDAA1106. Neuroimage 2013; 69:78-86. [PMID: 23247191 DOI: 10.1016/j.neuroimage.2012.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/22/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE [(18)F]FEDAA1106 is expected to be used for evaluating the regional density of the peripheral benzodiazepine receptor (also called TSPO) in several neurodegenerative disorders. Regarding the quantification, direct binding potential (BP(ND)) has been reported to be preferable because of the variation of nondisplaceable distribution volume (V(ND)) among individuals. However, the precise calculation of BP(ND) is difficult in small regions or at voxel levels due to noise. Recently, a new graphical analysis (GA) was proposed to estimate V(ND) in a direct way. In this paper, we evaluated two types of GA for reliable quantification of BP(ND) in PET study with [(18)F]FEDAA1106 using computer simulations and human data. METHODS In the simulations, time-activity curves were generated with various rate constants and noise levels, and the errors of BP(ND) estimated by GA were analyzed by comparing with true values calculated from rate constants given for the simulations. Thereafter, in a human study with [(18)F]FEDAA1106 for healthy volunteers, BP(ND) was estimated by two types of GA for region-of-interest (ROI) data. Parametric images of BP(ND) were generated by two types of GA with or without wavelet-denoising. RESULTS Simulations showed that BP(ND) by GA was well correlated with true values, despite an underestimation. GA reduced unreasonable estimates compared with a conventional nonlinear least-square fitting (NLS), although larger variation of BP(ND) estimates was observed. In a ROI-based analysis of data obtained in a human study, BP(ND)s estimated by GA were well correlated with those generated by NLS, though they were underestimated. Parametric BP(ND) images by GA could be improved with wavelet-denoising. CONCLUSION Graphical analysis could provide BP(ND) values with high stability and simple calculation in both ROI-based and voxel-based analyses of [(18)F]FEDAA1106 data.
Collapse
Affiliation(s)
- Yoko Ikoma
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, SE-171 76, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging 2013; 40:921-31. [DOI: 10.1007/s00259-013-2359-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
|
46
|
Synthesis and biological evaluation of novel propargyl amines as potential fluorine-18 labeled radioligands for detection of MAO-B activity. Bioorg Med Chem 2013; 21:186-95. [DOI: 10.1016/j.bmc.2012.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
47
|
Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [¹¹C]DAA1106. Psychiatry Res 2012; 203:67-74. [PMID: 22892349 DOI: 10.1016/j.pscychresns.2011.08.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 11/22/2022]
Abstract
Subjects with mild cognitive impairment (MCI) have "prodromal or incipient" dementia with neuropathological changes. Peripheral benzodiazepine receptor (PBR) binding was shown to reflect activated microglia, one of the predictive biomarkers of conversion to dementia. We sought to evaluate PBR binding in MCI subjects using positron emission tomography (PET). PET scans with [¹¹C]DAA1106, a potent and selective ligand for PBR, were performed on seven MCI subjects, 10 patients with Alzheimer's disease (AD) and 10 age-matched control subjects. PBR binding in the regions of interest was quantified by binding potential (BP). Five MCI subjects were clinically followed for 5 years after their initial PET scans. [¹¹C]DAA1106 binding to PBR was significantly increased in widespread areas in MCI subjects when compared to healthy controls. We found no significant difference in BP between MCI and AD patients. MCI subjects with [¹¹C]DAA1106 binding values higher than the control mean +0.5 standard deviation (S.D.) developed dementia within 5 years. Our finding of higher DAA binding in MCI subjects indicated that microglial activation may occur before the onset of dementia. In vivo detection of microglial activation may provide useful prognostic information with respect to stratifying MCI subjects at increased risk of dementia.
Collapse
|
48
|
Abstract
Diagnosis and treatment strategies for dementia are based on the sensitive and specific detection of the incipient neuropathological characteristics, combined with emerging treatments that counteract molecular processes in its pathogenesis. Positron emission tomography (PET) is used for diverse clinical and basic studies on dementia with a wide range of radiotracers. Approaches to visualize amyloid deposition in human brains non-invasively with PET depend on imaging agents reacting with amyloid fibrils. The most widely used tracer is [(11) C]-6-OH-BTA-1, also known as Pittsburgh Compound-B, which has a high affinity to amyloid β peptide (Aβ) aggregates. Some (18) F-labeled amyloid ligands with a longer radioactive half-life have also been developed for broader clinical applications. In addition, there have been demonstrated advantages of tracers with high specific radioactivity in the sensitive detection of amyloid, which have indicated the significance of Aβ-N3-pyroglutamate as a new diagnostic and therapeutic target. Furthermore, beneficial outcomes of Aβ and tau immunization in humans and mouse models have highlighted crucial roles of immunocompetent glia in the protection of neurons against amyloid toxicities. The utility of PET with a radioligand for translocator protein as a biomarker for tau-triggered toxicity, and as a complement to amyloid and tau imaging for diagnostic assessment of tauopathies with and without Aβ pathologies, has also been demonstrated. Meanwhile, brain cholinergic function can be estimated by measuring acetylcholinesterase activity in the brain with PET and radiolabeled acetylcholine analogues. It has been reported that patients with early Parkinson's disease exhibit a reduction in acetylcholinesterase activity in the cerebral cortex, and this decline is more profound in patients with Parkinson's disease with dementia and dementia with Lewy bodies than in patients with Parkinson's disease without dementia. The Alzheimer's Disease Neuroimaging Initiative was a multicentre research project conducted over 6 years that studied changes in cognition, brain structure, and biomarkers in healthy elderly controls and subjects with mild cognitive impairment and Alzheimer's disease. An international workgroup of the National Institute on Aging-Alzheimer's Association has suggested that Alzheimer's disease would be optimally treated before significant cognitive impairment, defined as a 'presymptomatic' or 'preclinical' stage. Therefore, PET will be of technical importance for both clinical and basic research aimed at prodromal pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Takaaki Mori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, Gulyas B, Halldin C. Synthesis and evaluation of [18F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO-B). Bioorg Med Chem 2012; 20:3065-71. [DOI: 10.1016/j.bmc.2012.02.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 11/24/2022]
|
50
|
Distribution and binding of 18F-labeled and 125I-labeled analogues of ACI-80, a prospective molecular imaging biomarker of disease: a whole hemisphere post mortem autoradiography study in human brains obtained from Alzheimer's disease patients. Neurochem Int 2011; 60:153-62. [PMID: 22100791 DOI: 10.1016/j.neuint.2011.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/23/2011] [Accepted: 10/25/2011] [Indexed: 01/23/2023]
Abstract
One of the major pathological landmarks of Alzheimer's disease and other neurodegenerative diseases is the presence of amyloid deposits in the brain. The early non-invasive visualization of amyloid is a major objective of recent diagnostic neuroimaging approaches, including positron emission tomography (PET), with an eye on follow-up of disease progression and/or therapy efficacy. The development of molecular imaging biomarkers with binding affinity to amyloid in the brain is therefore in the forefront of imaging biomarker and radiochemistry research. Recently, a dodecamer peptide (amino acid sequence=QSHYRHISPAQV; denominated D1 or ACI-80) was identified as a prospective ligand candidate, binding with high ex vivo affinity to L-Aβ-amyloid (K(d): 0.4 μM). In order to assess the ligand's capacity to visualize amyloid in Alzheimer's disease (AD), two (125)I labeled and three (18)F labeled analogues of the peptide were synthesized and tested in post mortem human autoradiography experiments using whole hemisphere brain slices obtained from deceased AD patients and age matched control subjects. The (18)F-labeled radioligands showed more promising visualization capacity of amyloid that the (125)I-labeled radioligands. In the case of each (18)F radioligands the grey matter uptake in the AD brains was significantly higher than that in control brains. Furthermore, the grey matter: white matter uptake ratio was over ~2, the difference being significant for each (18)F-radioligands. The regional distribution of the uptake of the various radioligands systematically shows a congruent pattern between the high uptake regions and spots in the autoradiographic images and the disease specific signals obtained in adjacent or identical brain slices labeled with histological, immunohistochemical or autoradiographic stains for amyloid deposits or activated astrocytes. The present data, using post mortem human brain autoradiography in whole hemisphere human brains obtained from deceased AD patients and age matched control subjects, support the visualization capacity of the radiolabeled ACI-80 analogues of amyloid deposits in the human brain. Further studies are warranted to explore the usefulness of the (18)F-labeled analogues as in vivo molecular imaging biomarkers in diagnostic PET studies.
Collapse
|