1
|
Ketelauri P, Scharov K, von Gall C, Johann S. Acute Circadian Disruption Due to Constant Light Promotes Caspase 1 Activation in the Mouse Hippocampus. Cells 2023; 12:1836. [PMID: 37508501 PMCID: PMC10378425 DOI: 10.3390/cells12141836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In mammals, the circadian system controls various physiological processes to maintain metabolism, behavior, and immune function during a daily 24 h cycle. Although driven by a cell-autonomous core clock in the hypothalamus, rhythmic activities are entrained to external cues, such as environmental lighting conditions. Exposure to artificial light at night (ALAN) can cause circadian disruption and thus is linked to an increased occurrence of civilization diseases in modern society. Moreover, alterations of circadian rhythms and dysregulation of immune responses, including inflammasome activation, are common attributes of neurodegenerative diseases, including Alzheimer', Parkinson's, and Huntington's disease. Although there is evidence that the inflammasome in the hippocampus is activated by stress, the direct effect of circadian disruption on inflammasome activation remains poorly understood. In the present study, we aimed to analyze whether exposure to constant light (LL) affects inflammasome activation in the mouse hippocampus. In addition to decreased circadian power and reduced locomotor activity, we found cleaved caspase 1 significantly elevated in the hippocampus of mice exposed to LL. However, we did not find hallmarks of inflammasome priming or cleavage of pro-interleukins. These findings suggest that acute circadian disruption leads to an assembled "ready to start" inflammasome, which may turn the brain more vulnerable to additional aversive stimuli.
Collapse
Affiliation(s)
- Pikria Ketelauri
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Sonja Johann
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
2
|
McEwen BS, Karatsoreos IN. Sleep Deprivation and Circadian Disruption Stress, Allostasis, and Allostatic Load. Sleep Med Clin 2022; 17:253-262. [DOI: 10.1016/j.jsmc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Choudhury ME, Miyanishi K, Takeda H, Tanaka J. Microglia and the Aging Brain: Are Geriatric Microglia Linked to Poor Sleep Quality? Int J Mol Sci 2021; 22:ijms22157824. [PMID: 34360590 PMCID: PMC8345993 DOI: 10.3390/ijms22157824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Poor sleep quality and disrupted circadian behavior are a normal part of aging and include excessive daytime sleepiness, increased sleep fragmentation, and decreased total sleep time and sleep quality. Although the neuronal decline underlying the cellular mechanism of poor sleep has been extensively investigated, brain function is not fully dependent on neurons. A recent antemortem autographic study and postmortem RNA sequencing and immunohistochemical studies on aged human brain have investigated the relationship between sleep fragmentation and activation of the innate immune cells of the brain, microglia. In the process of aging, there are marked reductions in the number of brain microglial cells, and the depletion of microglial cells disrupts circadian rhythmicity of brain tissue. We also showed, in a previous study, that pharmacological suppression of microglial function induced sleep abnormalities. However, the mechanism underlying the contribution of microglial cells to sleep homeostasis is only beginning to be understood. This review revisits the impact of aging on the microglial population and activation, as well as microglial contribution to sleep maintenance and response to sleep loss. Most importantly, this review will answer questions such as whether there is any link between senescent microglia and age-related poor quality sleep and how this exacerbates neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammed E. Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Correspondence: (M.E.C.); (J.T.)
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Haruna Takeda
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Aoba, Sendai 980-8575, Miyagi, Japan;
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Correspondence: (M.E.C.); (J.T.)
| |
Collapse
|
4
|
Guidotti G, Scarlata C, Brambilla L, Rossi D. Tumor Necrosis Factor Alpha in Amyotrophic Lateral Sclerosis: Friend or Foe? Cells 2021; 10:cells10030518. [PMID: 33804386 PMCID: PMC8000008 DOI: 10.3390/cells10030518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a massive neuroinflammatory reaction, which plays a key role in the progression of the disease. One of the major mediators of the inflammatory response is the pleiotropic cytokine tumor necrosis factor α (TNFα), mainly released within the central nervous system (CNS) by reactive astrocytes and microglia. Increased levels of TNFα and its receptors (TNFR1 and TNFR2) have been described in plasma, serum, cerebrospinal fluid and CNS tissue from both ALS patients and transgenic animal models of disease. However, the precise role exerted by TNFα in the context of ALS is still highly controversial, since both protective and detrimental functions have been reported. These opposing actions depend on multiple factors, among which includes the type of TNFα receptor activated. In fact, TNFR2 seems to mediate a harmful role being involved in motor neuron cell death, whereas TNFR1 signaling mediates neuroprotective effects, promoting the expression and secretion of trophic factors. This suggests that a better understanding of the cytokine impact on ALS progression may enable the development of effective therapies aimed at strengthening the protective roles of TNFα and at suppressing the detrimental ones.
Collapse
|
5
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
6
|
Szentirmai É, Kapás L. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα. Brain Behav Immun 2019; 81:260-271. [PMID: 31220563 PMCID: PMC6754767 DOI: 10.1016/j.bbi.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 01/09/2023] Open
Abstract
Increased production of pro-inflammatory cytokines is assumed to mediate increased sleep under inflammatory conditions, such as systemic infections or recovery from sleep loss. The role of cytokines in sleep regulation under normal conditions is less clear. In the present study, we investigated the role of endogenous tumor necrosis factor alpha (TNFα) in sleep regulation using TNFα knockout (KO) mice. Under control conditions at thermoneutral ambient temperature, total sleep time did not differ between TNFα KO and wild-type (WT) mice, but TNFα KO mice had increased rapid-eye-movement sleep (REMS), accompanied by decreased motor activity and body temperature. Exposure to 17 °C induced decreases in total sleep time similarly in both genotypes. Sleep deprivation by gentle handling elicited robust rebound increases in non-rapid-eye movement sleep (NREMS), REMS and electroencephalographic (EEG) slow-wave activity (SWA), accompanied by suppressed motor activity and decreased body temperature; there was no significant difference between the responses of WT and KO mice. Systemic injection of the beta3-adrenergic receptor (β3-AR) agonist CL-316,243 induced increases in NREMS and body temperature. The temperature response, but not the sleep effect, was attenuated in the KO animals. Systemic injection of TNFα induced increased NREMS, reduced REMS and biphasic temperature responses in both genotypes. In the KO mice, the NREMS-promoting effects of exogenously administered TNFα was decreased, while REMS suppression was enhanced, and the first, hypothermic, phase of temperature response was attenuated. Overall, TNFα KO mice did not show any deficiency in sleep regulation which suggests that the role of endogenous TNFα in sleep regulation is less pronounced than previously suggested.
Collapse
Affiliation(s)
- Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| |
Collapse
|
7
|
Christensen J, Noel M, Mychasiuk R. Neurobiological mechanisms underlying the sleep-pain relationship in adolescence: A review. Neurosci Biobehav Rev 2019; 96:401-413. [PMID: 30621863 DOI: 10.1016/j.neubiorev.2018.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
Adolescence characterizes a period of significant change in brain structure and function, causing the neural circuitry to be particularly susceptible to the environment and various other experiences. Chronic pain and sleep deprivation represent major health issues that plague adolescence. A bidirectional relationship exists between sleep and pain; however, emerging evidence suggests that sleep disturbances have a stronger influence on subsequent pain than vice versa. The neurobiological underpinnings of this relationship, particularly during adolescence, are poorly understood. This review examines the current literature regarding sleep and pain in adolescence, with a particular focus on the neurobiological mechanisms underlying pain, sleep problems, and the neural circuitry that potentially links the two. Finally, a research agenda is outlined to stimulate future research on this topic. Given the high prevalence of these health issues during adolescence and the debilitating effects they inflict on nearly every domain of development, it is crucial that we determine the neurobiological mechanisms fundamental to this relationship and identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada.
| |
Collapse
|
8
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
9
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
10
|
Mori H, Momosaki K, Kido J, Naramura T, Tanaka K, Matsumoto S, Nakamura K, Mitsubuchi H, Endo F, Iwai M. Amelioration by glycine of brain damage in neonatal rat brain following hypoxia-ischemia. Pediatr Int 2017; 59:321-327. [PMID: 27613478 DOI: 10.1111/ped.13164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glycine protected adult brains against injury in an experimental model of stroke, but, because the ischemic response of neonatal brains differs from that of adult brains, we examined the neuroprotective efficacy of glycine and associated mechanisms in an experimental model of neonatal hypoxic-ischemic (HI) encephalopathy. METHODS Neonatal (postnatal day 7) Wistar rats were randomly divided into an untreated group (non-HI) and two HI groups that were treated with left common carotid artery ligation and saline control or glycine. After recovery, pups that received surgery were injected i.p. with saline or glycine (800 mg/kg; optimal dose determined in pilot experiments) and were placed in a controlled 8% O2 chamber for 120 min. Brains were harvested at various times after return to normoxia (several hours-days after HI) for analysis of infarct area, glial activation, cell apoptosis, and tumor necrosis factor-α (TNF-α) expression on histology and reverse transcription-polymerase chain reaction. RESULTS Glycine injections induced large (approx. 15-fold) but brief (approx. 2 h) increases in cerebrospinal fluid concentrations. In particular, the glycine group had a >70% decrease in infarct areas compared with controls at 7 days after HI. Glycine also significantly reduced astrocyte reactive transformation, microglia activation, and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive (apoptotic) cell numbers in peri-lesional areas at 3 days after HI, and TNF-α mRNA expression in the injured hemisphere at 12 and 24 h after HI. CONCLUSION Glycine protected neonatal rat brains against HI, in part by inhibiting TNF-α-induced inflammation and gliosis. Hence, systemic glycine infusions may have clinical utility for the treatment of HI injury in human newborns.
Collapse
Affiliation(s)
- Hiroko Mori
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Jun Kido
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Tetsuo Naramura
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tanaka
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masanori Iwai
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Drougard A, Fournel A, Marlin A, Meunier E, Abot A, Bautzova T, Duparc T, Louche K, Batut A, Lucas A, Le-Gonidec S, Lesage J, Fioramonti X, Moro C, Valet P, Cani PD, Knauf C. Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Sci Rep 2016; 6:31849. [PMID: 27549402 PMCID: PMC4994119 DOI: 10.1038/srep31849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Apelin is a bioactive peptide involved in the control of energy metabolism. In the hypothalamus, chronic exposure to high levels of apelin is associated with an increase in hepatic glucose production, and then contributes to the onset of type 2 diabetes. However, the molecular mechanisms behind deleterious effects of chronic apelin in the brain and consequences on energy expenditure and thermogenesis are currently unknown. We aimed to evaluate the effects of chronic intracerebroventricular (icv) infusion of apelin in normal mice on hypothalamic inflammatory gene expression, energy expenditure, thermogenesis and brown adipose tissue functions. We have shown that chronic icv infusion of apelin increases the expression of pro-inflammatory factors in the hypothalamus associated with an increase in plasma interleukin-1 beta. In parallel, mice infused with icv apelin exhibit a significant lower energy expenditure coupled to a decrease in PGC1alpha, PRDM16 and UCP1 expression in brown adipose tissue which could explain the alteration of thermogenesis in these mice. These data provide compelling evidence that central apelin contributes to the development of type 2 diabetes by altering energy expenditure, thermogenesis and fat browning.
Collapse
Affiliation(s)
- Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Etienne Meunier
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70 CH-4056 Basel, Switzerland
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Tereza Bautzova
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Thibaut Duparc
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Katie Louche
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Aurelie Batut
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Jean Lesage
- Université de Lille, Unité environnement périnatal et santé, EA 4489, Équipe malnutrition maternelle et programmation des maladies métaboliques, Université de Lille1, Bâtiment SN4, 59655 Villeneuve d'Ascq, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France.,Université catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Av. E. Mounier, 73 B1.73.11, B-1200, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCLAv. E. Mounier, 73 B1.73.11, B-1200, Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France.,NeuroMicrobiota, European Associated Laboratory, (EAL) INSERM/UCL, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan - Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France
| |
Collapse
|
12
|
Brambilla L, Guidotti G, Martorana F, Iyer AM, Aronica E, Valori CF, Rossi D. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis. Hum Mol Genet 2016; 25:3080-3095. [PMID: 27288458 DOI: 10.1093/hmg/ddw161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/14/2022] Open
Abstract
Considerable evidence indicates that neurodegeneration in amyotrophic lateral sclerosis (ALS) can be conditioned by a deleterious interplay between motor neurons and astrocytes. Astrocytes are the major glial component in the central nervous system (CNS) and fulfill several activities that are essential to preserve CNS homeostasis. In physiological and pathological conditions, astrocytes secrete a wide range of factors by which they exert multimodal influences on their cellular neighbours. Among others, astrocytes can secrete glial cell line-derived neurotrophic factor (GDNF), one of the most potent protective agents for motor neurons. This suggests that the modulation of the endogenous mechanisms that control the production of astrocytic GDNF may have therapeutic implications in motor neuron diseases, particularly ALS. In this study, we identified TNF receptor 1 (TNFR1) signalling as a major promoter of GDNF synthesis/release from human and mouse spinal cord astrocytes in vitro and in vivo To determine whether endogenously produced TNFα can also trigger the synthesis of GDNF in the nervous system, we then focused on SOD1G93A ALS transgenic mice, whose affected tissues spontaneously exhibit high levels of TNFα and its receptor 1 at the onset and symptomatic stage of the disease. In SOD1G93A spinal cords, we verified a strict correlation in the expression of the TNFα, TNFR1 and GDNF triad at different stages of disease progression. Yet, ablation of TNFR1 completely abolished GDNF rises in both SOD1G93A astrocytes and spinal cords, a condition that accelerated motor neuron degeneration and disease progression. Our data suggest that the astrocytic TNFR1-GDNF axis represents a novel target for therapeutic intervention in ALS.
Collapse
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Giulia Guidotti
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Anand M Iyer
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chiara F Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy,
| |
Collapse
|
13
|
Acute Psychological Stress Modulates the Expression of Enzymes Involved in the Kynurenine Pathway throughout Corticolimbic Circuits in Adult Male Rats. Neural Plast 2015; 2016:7215684. [PMID: 26819772 PMCID: PMC4706967 DOI: 10.1155/2016/7215684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022] Open
Abstract
Tryptophan is an essential dietary amino acid that is necessary for protein synthesis, but also serves as the precursor for serotonin. However, in addition to these biological functions, tryptophan also serves as a precursor for the kynurenine pathway, which has neurotoxic (quinolinic acid) and neuroprotective (kynurenic acid) metabolites. Glucocorticoid hormones and inflammatory mediators, both of which are increased by stress, have been shown to bias tryptophan along the kynurenine pathway and away from serotonin synthesis; however, to date, there is no published data regarding the effects of stress on enzymes regulating the kynurenine pathway in a regional manner throughout the brain. Herein, we examined the effects of an acute psychological stress (120 min restraint) on gene expression patterns of enzymes along the kynurenine pathway over a protracted time-course (1–24 h post-stress termination) within the amygdala, hippocampus, hypothalamus, and medial prefrontal cortex. Time-dependent changes in differential enzymes along the kynurenine metabolism pathway, particularly those involved in the production of quinolinic acid, were found within the amygdala, hypothalamus, and medial prefrontal cortex, with no changes seen in the hippocampus. These regional differences acutely may provide mechanistic insight into processes that become dysregulated chronically in stress-associated disorders.
Collapse
|
14
|
Schmidt EM, Linz B, Diekelmann S, Besedovsky L, Lange T, Born J. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes. Brain Behav Immun 2015; 47:178-85. [PMID: 25535859 DOI: 10.1016/j.bbi.2014.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 12/23/2022] Open
Abstract
Pro-inflammatory cytokines like interleukin-1 beta (IL-1) are major players in the interaction between the immune system and the central nervous system. Various animal studies report a sleep-promoting effect of IL-1 leading to enhanced slow wave sleep (SWS). Moreover, this cytokine was shown to affect hippocampus-dependent memory. However, the role of IL-1 in human sleep and memory is not yet understood. We administered the synthetic IL-1 receptor antagonist anakinra (IL-1ra) in healthy humans (100mg, subcutaneously, before sleep; n=16) to investigate the role of IL-1 signaling in sleep regulation and sleep-dependent declarative memory consolidation. Inasmuch monocytes have been considered a model for central nervous microglia, we monitored cytokine production in classical and non-classical blood monocytes to gain clues about how central nervous effects of IL-1ra are conveyed. Contrary to our expectation, IL-1ra increased EEG slow wave activity during SWS and non-rapid eye movement (NonREM) sleep, indicating a deepening of sleep, while sleep-associated memory consolidation remained unchanged. Moreover, IL-1ra slightly increased prolactin and reduced cortisol levels during sleep. Production of IL-1 by classical monocytes was diminished after IL-1ra. The discrepancy to findings in animal studies might reflect species differences and underlines the importance of studying cytokine effects in humans.
Collapse
Affiliation(s)
- Eva-Maria Schmidt
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Barbara Linz
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Germany
| | - Susanne Diekelmann
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Luciana Besedovsky
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Tanja Lange
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD) and Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Dimitrov S, Besedovsky L, Born J, Lange T. Differential acute effects of sleep on spontaneous and stimulated production of tumor necrosis factor in men. Brain Behav Immun 2015; 47:201-10. [PMID: 25500219 DOI: 10.1016/j.bbi.2014.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 01/20/2023] Open
Abstract
Tumor necrosis factor (TNF) is considered a key molecule in the regulation of sleep in health and disease. Conversely, sleep compared to sleep deprivation can modulate TNF release, but overall results are conflicting. In this study we focused on the influence of sleep on spontaneous, i.e., unstimulated TNF production, which might be involved in sleep regulation under normal non-infectious conditions, and on lipopolysaccharide (LPS)-stimulated TNF production, which reflects the capacity of the immune system to respond to a pathogen. To this end, we monitored 10 healthy men during a regular sleep-wake cycle and during 24h of wakefulness while blood was sampled repeatedly to analyze circulating TNF levels in serum as well as intracellular TNF production in monocytes spontaneously and after stimulation with LPS employing whole blood cell cultures. In addition we assessed numbers of monocyte subsets and levels of various hormones in blood. In comparison with nocturnal wakefulness, sleep acutely decreased serum TNF levels, with no parallel decrease in spontaneous monocytic TNF production, but was associated with a striking nighttime increase in the percentage of TNF producing monocytes after stimulation with LPS. The following day circulating TNF showed a reverse pattern with higher levels after regular sleep than after the nocturnal vigil. The mechanisms mediating the differential effects of sleep on circulating TNF (acutely decreased) vs. stimulated monocytic TNF production (acutely increased) remain unclear, although explorative correlational analyses pointed to a regulatory involvement of cortisol, norepinephrine and prolactin. The acute enhancing effect of sleep on LPS stimulated monocytic TNF production adds to the notion that nocturnal sleep favors immune defense to a microbial challenge.
Collapse
Affiliation(s)
- Stoyan Dimitrov
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Luciana Besedovsky
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| | - Tanja Lange
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany; Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
|
17
|
Abstract
OBJECTIVE The objective of the current article is to review the shared pathophysiological mechanisms which may underlie the clinical association between headaches and sleep disorders. BACKGROUND The association between sleep and headache is well documented in terms of clinical phenotypes. Disrupted sleep-wake patterns appear to predispose individuals to headache attacks and increase the risk of chronification, while sleep is one of the longest established abortive strategies. In agreement, narcoleptic patients show an increased prevalence of migraine compared to the general population and specific familial sleep disorders have been identified to be comorbid with migraine with aura. CONCLUSION The pathophysiology and pharmacology of headache and sleep disorders involves an array of neural networks which likely underlie their shared clinical association. While it is difficult to differentiate between cause and effect, or simply a spurious relationship the striking brainstem, hypothalamic and thalamic convergence would suggest a bidirectional influence.
Collapse
Affiliation(s)
- Philip R Holland
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, UK
| |
Collapse
|
18
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Takács G, Szalay C, Nagy B, Szabó I, Simon D, Berki T, Karádi Z. Insulin and leptin plasma levels after the microinjection of interleukin-1β into the nucleus accumbens of the rat. ACTA ACUST UNITED AC 2013; 99:472-8. [PMID: 23238549 DOI: 10.1556/aphysiol.99.2012.4.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nucleus accumbens (NAcc), an important basal forebrain structure, has a central integratory function in the control of feeding and metabolism. The primary cytokine interleukin-1β (IL-1β) exerts its neuromodulatory effects on the endocrine functions both centrally and peripherally. The present study was designed to elucidate the possible consequences of direct administration of IL-1β into the NAcc on the endocrine regulation of metabolism. Plasma concentrations of insulin and leptin, two key hormones in the homeostatic control were determined 15 minutes after a single bilateral microinjection of IL-1β into the NAcc of adult male Wistar rats, and the effects were compared with those found in vehicle treated control animals. Insulin plasma levels of the cytokine treated animals were significantly higher than those parameters of the control rats. No differences were found in leptin plasma concentrations between the two groups. Our findings show that IL-1β mediated processes in the NAcc have important roles in the central neuroendocrine control.
Collapse
Affiliation(s)
- Gábor Takács
- Institute of Physiology and Neurophysiology Research Group, Hungarian Academy of Sciences Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kalsbeek A, Liu J, Lei J, Timmermans L, Foppen E, Cailotto C, Fliers E. Differential involvement of the suprachiasmatic nucleus in lipopolysaccharide-induced plasma glucose and corticosterone responses. Chronobiol Int 2012; 29:835-49. [PMID: 22823867 DOI: 10.3109/07420528.2012.699123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Santello M, Volterra A. TNFα in synaptic function: switching gears. Trends Neurosci 2012; 35:638-47. [DOI: 10.1016/j.tins.2012.06.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 01/17/2023]
|
22
|
|
23
|
Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012; 2012:264378. [PMID: 22530156 PMCID: PMC3317003 DOI: 10.1155/2012/264378] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/04/2011] [Indexed: 02/04/2023] Open
Abstract
Converging lines of evidence strongly support a role for sleep in brain plasticity. An elegant idea that may explain how sleep accomplishes this role is the "synaptic homeostasis hypothesis (SHY)." According to SHY, sleep promotes net synaptic weakening which offsets net synaptic strengthening that occurs during wakefulness. SHY is intuitively appealing because it relates the homeostatic regulation of sleep to an important function (synaptic plasticity). SHY has also received important experimental support from recent studies in Drosophila melanogaster. There remain, however, a number of unanswered questions about SHY. What is the cellular mechanism governing SHY? How does it fit with what we know about plasticity mechanisms in the brain? In this review, I discuss the evidence and theory of SHY in the context of what is known about Hebbian and non-Hebbian synaptic plasticity. I conclude that while SHY remains an elegant idea, the underlying mechanisms are mysterious and its functional significance unknown.
Collapse
|
24
|
Logan RW, Sarkar DK. Circadian nature of immune function. Mol Cell Endocrinol 2012; 349:82-90. [PMID: 21784128 DOI: 10.1016/j.mce.2011.06.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
The primary physiological role of the circadian system is to synchronize and coordinate organ systems, particularly in response to dynamics in the environment. The immune system is under direct circadian control by systemic cues and molecular clocks within immune cells. The master circadian pacemaker called the suprachiasmatic nucleus (SCN) conveys timing information to the immune system through endocrine and autonomic pathways. These signals promote phase coherence of peripheral clocks in the immune system, and also govern daily variations in immune function. The coordination of immune response may compose an anticipatory state for optimal immune response. Interactions between circadian and immune systems are bidirectional, in that immune factors can modulate phasing of circadian clocks. Circadian disruption, such as environmental desynchronization and/or anomalous molecular clock functions, may lead to lack of system coordination, and particular vulnerabilities to infection and disease may develop.
Collapse
Affiliation(s)
- Ryan W Logan
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
25
|
Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci 2011; 15:576-84. [PMID: 22078931 DOI: 10.1016/j.tics.2011.10.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/19/2022]
Abstract
The brain and body need to adapt constantly to changing social and physical environments. A key mechanism for this adaptation is the 'stress response', which is necessary and not negative in and of itself. The term 'stress', however, is ambiguous and has acquired negative connotations. We argue that the concept of allostasis can be used instead to describe the mechanisms employed to achieve stability of homeostatic systems through active intervention (adaptive plasticity). In the context of allostasis, resilience denotes the ability of an organism to respond to stressors in the environment by means of the appropriate engagement and efficient termination of allostatic responses. In this review, we discuss the neurobiological and organismal factors that modulate resilience, such as growth factors, chaperone molecules and circadian rhythms, and highlight its consequences for cognition and behavior.
Collapse
|
26
|
Reyes-Vázquez C, Prieto-Gómez B, Dafny N. Interferon modulates central nervous system function. Brain Res 2011; 1442:76-89. [PMID: 22322149 DOI: 10.1016/j.brainres.2011.09.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 12/15/2022]
Abstract
The interferons (IFNs) are an endogenous pleiotropic family of cytokines that perform fundamental physiological functions as well as protecting host organisms from disease and in maintaining homeostasis. This review covers the effects of endogenous IFN on the nervous system. It starts with the description of its receptors, followed how it modulate neuronal activity, mood, sleep, temperature, the endocrine system, the opioid system and how it regulate food consumption and the immune system. Similar to other multifunctional cytokines, an excessive or inappropriate activity of IFNs can cause toxicity and even death. Furthermore, IFNs are currently the major treatment modality for several malignant and non-malignant diseases such as chronic hepatitis C and B, multiple sclerosis, hematological malignancies, malignant melanoma, renal cell carcinoma, etc.
Collapse
Affiliation(s)
- Cruz Reyes-Vázquez
- Departamento de Fisiología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México Apdo. Postal 70250, México, 20, DF México
| | | | | |
Collapse
|
27
|
Twohig JP, Cuff SM, Yong AA, Wang ECY. The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis. Rev Neurosci 2011; 22:509-33. [PMID: 21861782 DOI: 10.1515/rns.2011.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members' roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined.
Collapse
Affiliation(s)
- Jason P Twohig
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | | |
Collapse
|
28
|
Margaretten M, Julian L, Katz P, Yelin E. Depression in patients with rheumatoid arthritis: description, causes and mechanisms. ACTA ACUST UNITED AC 2011; 6:617-623. [PMID: 22211138 DOI: 10.2217/ijr.11.6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two sets of contributory factors to depression among patients with rheumatoid arthritis (RA) are generally examined - the social context of the individual and the biologic disease state of that person's RA. This article will review the evidence for both. RA affects patients both physically and psychologically. Comorbid depression is common with RA and leads to worse health outcomes. Low socioeconomic status, gender, age, race/ethnicity, functional limitation, pain and poor clinical status have all been linked to depression among persons with RA. Systemic inflammation may also be associated with, cause, or contribute to depression in RA. Understanding the socioeconomic factors, individual patient characteristics and biologic causes of depression in RA can lead to a more comprehensive paradigm for targeting interventions to eliminate depression in RA.
Collapse
Affiliation(s)
- Mary Margaretten
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | |
Collapse
|
29
|
Cearley CN, Blindheim K, Sorg BA, Krueger JM, Churchill L. Acute cocaine increases interleukin-1β mRNA and immunoreactive cells in the cortex and nucleus accumbens. Neurochem Res 2011; 36:686-92. [PMID: 21399909 DOI: 10.1007/s11064-011-0410-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
The cytokine, interleukin-1β (IL1β) is a sleep regulatory substance whose expression is enhanced in response to neuronal stimulation. In this study, IL1β mRNA and immunoreactivity (IR) are evaluated after acute cocaine. First, IL1β mRNA levels were measured at the start or end of the light period after saline or acute exposure to a low dose of cocaine (5 mg/kg, intraperitoneal (ip)). IL1β mRNA levels after an acute exposure to cocaine (5 mg/kg, ip) at dark onset were significantly higher than those obtained from rats sacrificed after an acute exposure to saline in the piriform and somatosensory cortex, and nucleus accumbens. Acute exposure of cocaine at 5 mg/kg at dark onset also increased the number of IL1β-immunoreactive astrocytes in layer I-V of the prefrontal cortex, somatosensory cortex and nucleus accumbens. These data suggest that IL1β mRNA and protein levels in some of the dopaminergically innervated brain regions are responsive to cocaine.
Collapse
|
30
|
Liu Y, Ushijima K, Ohmori M, Takada M, Tateishi M, Ando H, Fujimura A. Chronopharmacology of angiotensin II-receptor blockers in stroke-prone spontaneously hypertensive rats. J Pharmacol Sci 2011; 115:196-204. [PMID: 21282930 DOI: 10.1254/jphs.10284fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022] Open
Abstract
Protective effect of valsartan (Val), an angiotensin II (AII)-receptor blocker (ARB), against organ damage is reported to depend on the dosing time in hypertensive patients. Dosing-time-dependent effect of Val on survival of stroke-prone spontaneously hypertensive rats (SHRSP) under a 12-h lighting cycle was examined. Val (4 mg/kg per day) and olmesartan medoxomil (OM) (1 mg/kg per day), another ARB with a slower dissociation from the AII receptor, were given once daily at 2, 8, 14, or 20 HALO (hours after lights on). Dosing-time-dependent differences in plasma drug concentrations and effect on blood pressure (BP) were also evaluated. Survival of SHRSP showed a dosing-time-dependent change during Val therapy, with a peak at 2 HALO and a trough at 14 HALO. OM equally prolonged survival in all groups. The BP-lowering effect persisted for more than 24 h after dosing of Val at 2 HALO and of OM at 2 and 14 HALO, but disappeared at 5.5-h after Val dosing at 14 HALO. Plasma concentrations of Val and OM were higher after dosing at 2 HALO than at 14 HALO. These results suggest that the chronopharmacological phenomenon of Val was partly due to the dosing-time-dependent difference in plasma concentration and subsequent duration of the antihypertensive effect. Slower dissociation of OM from AII receptors might have blunted a potential dosing-time-dependent event.
Collapse
Affiliation(s)
- Yuwang Liu
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Gądek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep 2010; 62:969-82. [DOI: 10.1016/s1734-1140(10)70359-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/26/2010] [Indexed: 01/07/2023]
|
32
|
Herman AP, Misztal T, Herman A. Expression of Interleukin (IL)-1β and IL-1 Receptors Genes in the Hypothalamus of Anoestrous Ewes after Lipopolysaccharide Treatment. Reprod Domest Anim 2010; 45:e426-33. [DOI: 10.1111/j.1439-0531.2010.01595.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Kraig RP, Mitchell HM, Christie-Pope B, Kunkler PE, White DM, Tang YP, Langan G. TNF-α and Microglial Hormetic Involvement in Neurological Health & Migraine. Dose Response 2010; 8:389-413. [PMID: 21191481 DOI: 10.2203/dose-response.09-056.kraig] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Environmental enrichment, i.e., increased intellectual, social, and physical activity makes brain more resilient to subsequent neurological disease. The mechanisms for this effect remain incompletely defined, but evidence shows tumor necrosis factor-alpha (TNF-α) is involved. TNF-α, at acutely high levels, possesses the intrinsic capacity to enhance injury associated with neurological disease. Conversely, the effect of TNF-α at low-levels is nutritive over time, consistent with physiological conditioning hormesis. Evidence shows that neural activity triggers low-level pro-inflammatory signaling involving TNF-α. This low-level TNF-α signaling alters gene expression, resulting in an enhanced resilience to disease. Brain-immune signaling may become maladaptive when increased activity is chronic without sufficient periods of reduced activity necessary for nutritive adaptation. Such tonically increased activity may explain, for example, the transformation of episodic to chronic migraine with related increased susceptibility to spreading depression, the most likely underlying cause of this malady. Thus, TNF-α, whose function is to alter gene expression, and its principal cellular source, microglia, seem powerfully positioned to orchestrate hormetic immune signaling that establishes the phenotype of neurological health and disease from brain activity.
Collapse
Affiliation(s)
- Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
34
|
Takács G, Papp S, Lukáts B, Szalay C, Nagy B, Fotakos D, Karádi Z. Homeostatic alterations after IL-1beta microinjection into the nucleus accumbens of the rat. Appetite 2010; 54:354-62. [PMID: 20060862 DOI: 10.1016/j.appet.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/29/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
The present study investigates the effects of direct administration of interleukin-1beta (IL-1beta) into the nucleus accumbens (NAcc) on homeostatic regulation. Short- and long-term food intakes (FI), water intakes (WI) and body temperature (BT) were measured before and after bilateral microinjection of IL-1beta (with or without paracetamol pretreatment) into the NAcc of Wistar rats, and the effects were compared with those found in vehicle treated control animals. In addition, blood glucose levels, along with a glucose tolerance test (GTT), and plasma concentrations of metabolic parameters, such as total cholesterol, triglycerides, HDL, LDL and uric acid were determined in cytokine treated and control rats. Short-term FI and WI were suppressed after intraaccumbens application of IL-1beta. A significant increase of BT was also observed after the cytokine microinjection. Pretreatment with paracetamol failed to influence the anorexigenic, adipsogenic, and pyrogenic effects of IL-1beta. A definite glucose intolerance of the cytokine treated animals and their pathologically elevated blood glucose levels became obvious in the acute GTT. Following IL-1beta microinjection, plasma levels of triglycerides, total cholesterol and LDL were found increased. Our present findings show that the NAcc is an important site of action of IL-1beta mediated processes in central homeostatic regulation.
Collapse
Affiliation(s)
- Gábor Takács
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University, Medical School, Szigeti str. 12, H-7624 Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.
Collapse
|
36
|
Coogan AN, Wyse CA. Neuroimmunology of the circadian clock. Brain Res 2008; 1232:104-12. [PMID: 18703032 DOI: 10.1016/j.brainres.2008.07.087] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/31/2008] [Accepted: 07/11/2008] [Indexed: 12/12/2022]
Abstract
Circadian timekeeping is a ubiquitous feature of all eukaryotes which allows for the imposition of a biologically appropriate temporal architecture on an animal's physiology, behavior and metabolism. There is growing evidence that in mammals the processes of circadian timing are under the influence of the immune system. Such a role for the neuroimmune regulation of the circadian clock has inferences for phenomena such as sickness behavior. Conversely, there is also accumulating evidence for a circadian influence on immune function, raising the likelihood that there is a bidirectional communication between the circadian and immune systems. In this review, we examine the evidence for these interactions, including circadian rhythmicity in models of disease and immune challenge, distribution of cytokines and their receptors in the suprachiasmatic nucleus of the hypothalamus, the site of the master circadian pacemaker, and the evidence for endogenous circadian timekeeping in immune cells.
Collapse
Affiliation(s)
- Andrew N Coogan
- Neuroscience and Molecular Psychiatry, Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK.
| | | |
Collapse
|
37
|
Pekary AE, Stevens SA, Sattin A. Lipopolysaccharide modulation of thyrotropin-releasing hormone (TRH) and TRH-like peptide levels in rat brain and endocrine organs. J Mol Neurosci 2008; 31:245-59. [PMID: 17726229 DOI: 10.1385/jmn:31:03:245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharide (LPS) is a proinflammatory and depressogenic agent whereas thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an endogenous antidepressant and neuroprotective peptide. LPS and TRH also have opposing effects on K+ channel conductivity. We hypothesized that LPS can modulate the expression and release of not only TRH but also TRH-like peptides with the general structure pGlu-X-Pro-NH2, where "X" can be any amino acid residue. The response might be "homeostatic," that is, LPS might increase TRH and TRH-like peptide release, thereby moderating the cell damaging effects of this bacterial cell wall constituent. On the other hand, LPS might impair the synthesis and release of these neuropeptides, thus facilitating the induction of early response genes, cytokines, and other downstream biochemical changes that contribute to the "sickness syndrome." Sprague-Dawley rats (300 g) received a single intraperitoneal injection of 100 microg/kg LPS. Animals were then decapitated 0, 2, 4, 8, and 24 h later. Serum cytokines and corticosterone peaked 2 h after intraperitoneal LPS along with a transient decrease in serum T3. TRH and TRH-like peptides were measured by a combination of high-performance liquid chromatography and radioimmunoassay. TRH declined in the nucleus accumbens and amygdala in a manner consistent with LPS-accelerated release and degradation. Various TRH-like peptide levels increased at 2 h in the anterior cingulate, hippocampus, striatum, entorhinal cortex, posterior cingulate, and cerebellum, indicating decreased release and clearance of these peptides. These brain regions are part of a neuroimmunomodulatory system that coordinates the behavioral, endocrine, and immune responses to the stresses of sickness, injury, and danger. A sustained rise in TRH levels in pancreatic beta-cells accompanied LPS-impaired insulin secretion. TRH and Leu-TRH in prostate and TRH in epididymis remained elevated 2-24 h after intraperitoneal LPS. We conclude that these endogenous neuroprotective and antidepressant-like peptides both mediate and moderate some of the behavioral and toxic effects of LPS.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | | | | |
Collapse
|
38
|
Imeri L, Bianchi S, Opp MR. Inhibition of caspase-1 in rat brain reduces spontaneous nonrapid eye movement sleep and nonrapid eye movement sleep enhancement induced by lipopolysaccharide. Am J Physiol Regul Integr Comp Physiol 2006; 291:R197-204. [PMID: 16455762 DOI: 10.1152/ajpregu.00828.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Evidence suggests that IL-1β is involved in promoting physiological nonrapid eye movement (NREM) sleep. IL-1β has also been proposed to mediate NREM sleep enhancement induced by bacteria or their components. Mature and biologically active IL-1β is cleaved from an inactive precursor by a cysteinyl aspartate-specific protease (caspase)-1. This study aimed to test the hypothesis that inhibition in brain of the cleavage of biologically active IL-1β will reduce in rats both spontaneous NREM sleep and NREM sleep enhancement induced by the peripheral administration of components of the bacterial cell wall. To test this hypothesis, rats were intracerebroventricularly administered the caspase-1 inhibitor Ac-Tyr-Val-Ala-Asp chloromethyl ketone (YVAD; 3, 30, 300, and 1,500 ng) or were pretreated intracerebroventricularly with YVAD (300 ng) and then intraperitoneally injected with the gram-negative bacterial cell wall component LPS (250 μg/kg). Subsequent sleep-wake behavior was determined by standard polygraphic recordings. YVAD administration at the beginning of the light phase of the light-dark cycle significantly reduced time spontaneously spent in NREM sleep during the first 12 postinjection hours. YVAD pretreatment also completely prevented NREM sleep enhancement induced by peripheral LPS administration at the beginning of the dark phase. These results, in agreement with previous evidence, support the involvement of brain IL-1β in physiological promotion of NREM sleep and in mediating NREM sleep enhancement induced by peripheral immune challenge.
Collapse
Affiliation(s)
- Luca Imeri
- Institute of Human Physiology II, University of Milan Medical School, Milan, Italy
| | | | | |
Collapse
|
39
|
Yasuda T, Yasuda K, Brown RA, Krueger JM. State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1083-9. [PMID: 16183627 DOI: 10.1152/ajpregu.00112.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatosensory (SSctx) and visual cortex (Vctx) EEG were evaluated in rats under a 12:12-h light-dark (LD) cycle and under constant light (LL) or constant dark (DD) in each sleep or wake state. Under LD conditions during light period, relative Vctx EEG slow-wave activity (SWA) was higher than that of the SSctx, whereas during dark period, relative Vctx EEG SWA was lower than in the SSctx. These effects were state specific, occurring only during non-rapid eye movement sleep (NREMS). Under LL conditions, the duration of REMS and NREMS during the period that would have been dark if the LD cycle had continued (subjective dark period) was greater than under LD conditions. DD conditions had little effect on the duration of NREMS and REMS. SSctx and Vctx EEG SWA were suppressed by LL during the subjective dark period; however, the degree of Vctx SWA suppression was smaller than that of the SSctx. DD conditions during the subjective light period enhanced SSctx SWA, whereas Vctx SWA was suppressed. Under LL conditions during the subjective dark period, Vctx EEG power was higher than that of the SSctx across a broad frequency range during NREMS, REMS, and wakefulness. During DD, SSctx EEG power during NREMS was higher than that of the Vctx in the delta wave band, whereas SSctx power during REMS and wakefulness was higher than that of the Vctx in frequencies higher than 8 Hz. We concluded that the SSctx and Vctx EEGs are differentially affected by light during subsequent sleep. Results provide support for the notion that regional sleep intensity is dependent on prior regional afferent input.
Collapse
Affiliation(s)
- Tadanobu Yasuda
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
40
|
Lukáts B, Egyed R, Lénárd L, Karádi Z. Homeostatic alterations induced by interleukin-1β microinjection into the orbitofrontal cortex in the rat. Appetite 2005; 45:137-47. [PMID: 15953659 DOI: 10.1016/j.appet.2005.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/09/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022]
Abstract
The present experiments were designed to elucidate the effect of direct orbitofrontal cortical administration of interleukin-1beta (IL-1beta) on the homeostatic regulation. Short- and long-term food intakes (FI), water intakes and body temperature (BT) were measured before and after a bilateral microinjection of IL-1beta (with or without paracetamol /P/ pretreatment) into the orbitofrontal cortex (OBF) of Wistar rats, and the effects were compared with those found in vehicle-treated and i.p. injected IL-1beta, IL-1beta+P or control animals. In addition, blood glucose levels (BGLs), along a glucose tolerance test, and plasma concentrations of insulin, leptin, cholesterol, triglycerides and urate were determined in cytokine treated and control rats. Short-term FI was suppressed after orbitofrontal cortical or peripheral application of IL-1beta. In the long-term FI, however, there was no significant difference among the groups. Cytokine microinjection into the OBF, similar to the i.p. administration, was also followed by a significant increase in BT. Pretreatment with P failed to influence the anorexigenic and hyperthermic effects of the centrally administered IL-1beta. The sugar load led to a diabetes-like prolonged elevation of BGL in the IL-1beta treated animals. Following cytokine administration, plasma levels of insulin and that of triglycerides were found decreased, whereas that of uric acid increased. The present findings confirm that the OBF is one of the neural routes through which IL-1beta exerts modulatory effect on the central homeostatic regulation.
Collapse
Affiliation(s)
- Balázs Lukáts
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University, Medical School, Pécs, Szigeti út 12, H-7624, Hungary
| | | | | | | |
Collapse
|
41
|
Abdulla D, Goralski KB, Del Busto Cano EG, Renton KW. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during a lipopolysaccharide-induced model of central nervous system inflammation. Drug Metab Dispos 2005; 33:1521-31. [PMID: 16006567 DOI: 10.1124/dmd.105.004564] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that inflammatory and infectious conditions of the central nervous system (CNS) differentially regulate hepatic drug metabolism through changes in cytochrome P450 (P450); however, the pathways leading to this regulation remain unknown. We provide evidence delineating a signal transduction pathway for hepatic P450 gene expression down-regulation in an established rat model of CNS inflammation using lipopolysaccharide (LPS) injected (i.c.v.) directly into the lateral cerebral ventricle. Brain cytokine levels were elevated, and the expression of tumor necrosis factor alpha and inhibitor of kappaB alpha (IkappaBalpha) were increased in the liver following the i.c.v. administration of LPS, indicating the presence of an inflammatory response in the brain and liver. The expression of CYP2D1/5, CYP2B1/2, and CYP1A1 was down-regulated following CNS inflammation. The binding of several transcription factors [nuclear factor of the kappa enhancer in B cells (NF-kappaB), activator protein-1, cAMP response element binding protein, CCAAT-enhancer binding protein (C/EBP)] to responsive elements on P450 promoter regions was examined using electromobility shift assays. Binding of both NF-kappaB and C/EBP to the promoter regions of CYP2D5 and CYP2B1, respectively, was increased, indicating that they play an important role in the regulation of these two isoforms during inflammatory responses. Evidence is also provided suggesting that the rapid transfer of LPS from the CNS into the periphery likely accounts for the down-regulation of P450s in the liver.
Collapse
Affiliation(s)
- Dalya Abdulla
- Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, N.S., B3H 4H7, Canada
| | | | | | | |
Collapse
|
42
|
Maruyama Y, Stenvinkel P, Lindholm B. Role of interleukin-1beta in the development of malnutrition in chronic renal failure patients. Blood Purif 2005; 23:275-81. [PMID: 15925866 DOI: 10.1159/000086012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2005] [Indexed: 01/04/2023]
Abstract
Protein-energy malnutrition and wasting are common among patients with end-stage renal disease (ESRD) and these complications are strongly associated with poor survival in these patients. Whereas both under- and overweight predict in increased mortality risk in the general population, a high body mass index is associated with better outcome in ESRD patients. Circulating levels of pro-inflammatory cytokines are markedly elevated in uremia and also predictor of a poor clinical outcome in ESRD patients. Interleukin-1beta (IL-1beta), which is a major pro-inflammatory cytokine, may further amplify inflammation and lead to malnutrition, through inducing anorexia, and muscle wasting due to increased protein breakdown. Several clinical studies have shown that the circulating level of IL-1beta may affect nutritional status, especially body composition. Several IL-1 gene cluster polymorphisms were reported, and they may affect the prevalence of cytokine-mediated diseases. Although a number of factors are related to malnutrition and wasting in ESRD, pro-inflammatory cytokines, such as IL-1beta, may play an important role. This could in part be due to genetic factors. Further research, especially regarding the IL-1 gene cluster polymorphisms, is necessary to determine this hypothesis.
Collapse
Affiliation(s)
- Yukio Maruyama
- Divisions of Baxter Novum and Renal Medicine, Department of Clinical Science, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Lukáts B, Egyed R, Karádi Z. Single neuron activity changes to interleukin-1β in the orbitofrontal cortex of the rat. Brain Res 2005; 1038:243-6. [PMID: 15757641 DOI: 10.1016/j.brainres.2005.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 01/05/2005] [Accepted: 01/11/2005] [Indexed: 11/20/2022]
Abstract
The orbitofrontal cortex (OBF) is known to play important roles in various regulatory processes. Our preliminary behavioral studies showed homeostatic alterations after orbitofrontal cortical microinjection of interleukin-1beta (IL-1beta) in the rat. To elucidate whether the above alterations were due to direct neuronal action of the cytokine, extracellular single neuron activity was recorded in the OBF of anesthetized rats by means of tungsten fiber multibarreled glass microelectrodes during microelectrophoretic administration of IL-1beta. More than half (56%) of all cells tested changed in firing rate in response to IL-1beta. Approximately 90% of these cytokine-modulated neurons were also sensitive to microelectrophoretically applied d-glucose, that is, proved to be the elements of the central glucose-monitoring neural network. The present findings demonstrate that IL-1beta can exert direct modulatory role on neurons in the OBF.
Collapse
Affiliation(s)
- Balázs Lukáts
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University, Medical School, Pécs H-7624, Hungary.
| | | | | |
Collapse
|
44
|
Abdulla D, Renton KW. Beta-adrenergic receptor modulation of the LPS-mediated depression in CYP1A activity in astrocytes. Biochem Pharmacol 2005; 69:741-50. [PMID: 15710352 DOI: 10.1016/j.bcp.2004.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 11/25/2004] [Indexed: 11/19/2022]
Abstract
CYP1A1 and 1A2, two important P450 isoforms in the brain that metabolize many endogenous and exogenous substrates, are downregulated during central nervous system (CNS) inflammation. The stimulation of beta-adrenergic receptors has been demonstrated to be anti-inflammatory in many cell types, leading us to hypothesize that stimulation of beta-adrenergic receptors could prevent the downregulation in CYP1A1 and 1A2 activity in an in vitro model of CNS inflammation. Isoproterenol, a general beta(1)/beta(2) receptor agonist, and clenbuterol, a specific beta(2) receptor agonist, were both able to prevent the LPS-induced downregulation in CYP1A1/2 activity in astrocytes. The involvement of beta-adrenergic receptors was confirmed using the general beta(1)/beta(2) receptor antagonist propranolol, which was able to abrogate the protection conferred by isoproterenol and clenbuterol in astrocytes treated with LPS. The isoproterenol and clenbuterol mediated protective effect on the LPS-induced downregulation in CYP1A activity was a cyclic AMP (cAMP) dependent process, since forskolin was able to mimic the protective effect. Isoproterenol and clenbuterol may also prevent the LPS-induced downregulation in CYP1A activity through changes in TNF alpha expression. Despite a slight reduction in the LPS-induced nuclear translocation of the p65 subunit of NF-kappa B, isoproterenol and clenbuterol had no effect on the DNA binding ability of this transcription factor, indicating that the beta-adrenergic protective effects on CYP1A activity occurred independent of changes in NF-kappa B activity. The results presented in this paper reveal that beta-adrenergic receptor stimulation can modulate cytochrome P450 activity in an in vitro model of CNS inflammation by a cAMP mediated pathway.
Collapse
Affiliation(s)
- Dalya Abdulla
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada B3H 4H7
| | | |
Collapse
|