1
|
Toussaint B, Heinzle J, Stephan KE. A computationally informed distinction of interoception and exteroception. Neurosci Biobehav Rev 2024; 159:105608. [PMID: 38432449 DOI: 10.1016/j.neubiorev.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
While interoception is of major neuroscientific interest, its precise definition and delineation from exteroception continue to be debated. Here, we propose a functional distinction between interoception and exteroception based on computational concepts of sensor-effector loops. Under this view, the classification of sensory inputs as serving interoception or exteroception depends on the sensor-effector loop they feed into, for the control of either bodily (physiological and biochemical) or environmental states. We explain the utility of this perspective by examining the perception of skin temperature, one of the most challenging cases for distinguishing between interoception and exteroception. Specifically, we propose conceptualising thermoception as inference about the thermal state of the body (including the skin), which is directly coupled to thermoregulatory processes. This functional view emphasises the coupling to regulation (control) as a defining property of perception (inference) and connects the definition of interoception to contemporary computational theories of brain-body interactions.
Collapse
Affiliation(s)
- Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland; Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
2
|
Quadros Santos Rocha J, Pereira Vieira Y, Lucia Caputo E, Manjourany Silva Duro S, de Oliveira Saes M. Association between physical activity status and musculoskeletal pain in individuals infected with SARS-CoV-2: Sulcovid-19 survey. Musculoskelet Sci Pract 2024; 69:102878. [PMID: 38006659 DOI: 10.1016/j.msksp.2023.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND This study aimed to evaluate the association of physical activity (PA) before SARS-Cov-2 infection with Musculoskeletal (MSK) pain after infection. METHODS We used data from the Sulcovid-19, a longitudinal study. This study was carried out in the city of Rio Grande, in the extreme south of Brazil with individuals who were infected by SARS-Cov-2 between December/2020 and March/2021. Participants were asked on MSK pain in the cervical, thoracic, low back, upper and lower limbs. Three PA variables were built, as follows: 1) any PA (yes or no), 2) sufficient PA (based on WHO recommendations), and 3) PA status before and after COVID-19 (i.e., remained inactive, became inactive, and remained active). RESULTS Participants reporting sufficient PA levels were less likely to experience pain in the cervical (PR 0.70, 0.53-0.92 95% CI) after COVID-19. Those who remained active were less likely to experience pain in the cervical spine and in at least one body site. Becoming inactive increased the likelihood of experiencing pain in the lower limbs after infection by 30%. CONCLUSIONS Continuous PA practice regardless SARS-Cov-2 infection showed important protection effect for MSK as a consequence of infection.
Collapse
Affiliation(s)
| | | | - Eduardo Lucia Caputo
- Center for Evidence Synthesis in Health-School of Public Health- Brown University, RI, 02912, USA
| | | | | |
Collapse
|
3
|
Yano H, Takiguchi T, Nakagawa S. Magnetic cortical oscillations associated with subjective auditory coolness during paired comparison of time-varying HVAC sounds. Neuroreport 2024; 35:1-8. [PMID: 37942702 DOI: 10.1097/wnr.0000000000001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The impressions of heating, ventilation, and air conditioning (HVAC) sounds are important for the comfort people experience in their living spaces. Revealing neural substrates of the impressions induced by HVAC sounds can help to develop neurophysiological indices of the comfort of HVAC sounds. There have been numerous studies on the brain activities associated with the pleasantness of sounds, but few on the brain activities associated with the thermal impressions of HVAC sounds. Seven time-varying HVAC sounds were synthesized as stimuli using amplitude modulation. Six participants took part in subjective evaluation tests and MEG measurements. Subjective coolness of the HVAC sounds was measured using the paired comparison method. Magnetoencephalographic (MEG) measurements were carried out while participants listened to and compared the time-varying HVAC sounds. Time-frequency analysis and cluster-based analysis were performed on the MEG data. The subjective evaluation tests showed that the subjective coolness of the amplitude-modulated HVAC sounds was affected by the modulation frequency, and that there was individual difference in subjective coolness. A cluster-based analysis of the MEG data revealed that the brain activities of two participants significantly differed when they listened to cooler or less cool HVAC sounds. The frontal low-theta (4-5 Hz) and the temporal alpha (8-13 Hz) activities were observed. The frontal low-theta and the temporal alpha activities may be associated with the coolness of HVAC sound. This result suggests that the comfort level of HVAC sound can be evaluated and individually designed using neurophysiological measurements.
Collapse
Affiliation(s)
- Hajime Yano
- Graduate School of System Informatics, Kobe University, Kobe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda
| | | | - Seiji Nakagawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Henderson MJ, Grandou C, Chrismas BCR, Coutts AJ, Impellizzeri FM, Taylor L. Core Body Temperatures in Intermittent Sports: A Systematic Review. Sports Med 2023; 53:2147-2170. [PMID: 37526813 PMCID: PMC10587327 DOI: 10.1007/s40279-023-01892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hyperthermia (and associated health and performance implications) can be a significant problem for athletes and teams involved in intermittent sports. Quantifying the highest thermal strain (i.e. peak core body temperature [peak Tc]) from a range of intermittent sports would enhance our understanding of the thermal requirements of sport and assist in making informed decisions about training or match-day interventions to reduce thermally induced harm and/or performance decline. OBJECTIVE The objective of this systematic review was to synthesise and characterise the available thermal strain data collected in competition from intermittent sport athletes. METHODS A systematic literature search was performed on Web of Science, MEDLINE, and SPORTDiscus to identify studies up to 17 April 2023. Electronic databases were searched using a text mining method to provide a partially automated and systematic search strategy retrieving terms related to core body temperature measurement and intermittent sport. Records were eligible if they included core body temperature measurement during competition, without experimental intervention that may influence thermal strain (e.g. cooling), in healthy, adult, intermittent sport athletes at any level. Due to the lack of an available tool that specifically includes potential sources of bias for physiological responses in descriptive studies, a methodological evaluation checklist was developed and used to document important methodological considerations. Data were not meta-analysed given the methodological heterogeneity between studies and therefore were presented descriptively in tabular and graphical format. RESULTS A total of 34 studies were selected for review; 27 were observational, 5 were experimental (2 parallel group and 3 repeated measures randomised controlled trials), and 2 were quasi-experimental (1 parallel group and 1 repeated measures non-randomised controlled trial). Across all included studies, 386 participants (plus participant numbers not reported in two studies) were recruited after accounting for shared data between studies. A total of 4 studies (~ 12%) found no evidence of hyperthermia, 24 (~ 71%) found evidence of 'modest' hyperthermia (peak Tc between 38.5 and 39.5 °C), and 6 (~ 18%) found evidence of 'marked' hyperthermia (peak Tc of 39.5 °C or greater) during intermittent sports competition. CONCLUSIONS Practitioners and coaches supporting intermittent sport athletes are justified to seek interventions aimed at mitigating the high heat strain observed in competition. More research is required to determine the most effective interventions for this population that are practically viable in intermittent sports settings (often constrained by many competing demands). Greater statistical power and homogeneity among studies are required to quantify the independent effects of wet bulb globe temperature, competition duration, sport and level of competition on peak Tc, all of which are likely to be key modulators of the thermal strain experienced by competing athletes. REGISTRATION This systematic review was registered on the Open Science Framework ( https://osf.io/vfb4s ; https://doi.org/10.17605/OSF.IO/EZYFA , 4 January 2021).
Collapse
Affiliation(s)
- Mitchell J Henderson
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia.
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia.
| | - Clementine Grandou
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Aaron J Coutts
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Franco M Impellizzeri
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Lee Taylor
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Ntoumani M, Dugué B, Rivas E, Gongaki K. Thermoregulation and thermal sensation during whole-body water immersion at different water temperatures in healthy individuals: A scoping review. J Therm Biol 2023; 112:103430. [PMID: 36796887 DOI: 10.1016/j.jtherbio.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Severe thermal discomfort may increase risk of drowning due to hypothermia or hyperthermia from prolonged exposure to noxious water temperatures. The importance of using a behavioral thermoregulation model with thermal sensation may predict the thermal load that the human body receives when exposed to various immersive water conditions. However, there is no thermal sensation "gold standard" model specific for water immersion. This scoping review aims to present a comprehensive overview regarding human physiological and behavioral thermoregulation during whole-body water immersion and explore the feasibility for an accepted defined sensation scale for cold and hot water immersion. METHODS A standard literary search was performed on PubMed, Google Scholar, and SCOPUS. The words "Water Immersion," "Thermoregulation," "Cardiovascular responses" were used either as independent searched terms and MeSH terms (Medical Subject Headings) or in combination with other text words. The inclusion criteria for clinical trials terms to thermoregulatory measurements (core or skin temperature), whole-body immersion, 18-60 years old and healthy individuals. The prementioned data were analyzed narratively to achieve the overall study objective. RESULTS Twenty-three published articles fulfilled the review inclusion/exclusion criteria (with nine measured behavioral responses). Our outcomes illustrated a homogenous thermal sensation in a variety of water temperatures ranges, that was strongly associated with thermal balance, and observed different thermoregulatory responses. This scoping review highlights the impact of water immersion duration on human thermoneutral zone, thermal comfort zone, and thermal sensation. CONCLUSION Our findings enlighten the significance of thermal sensation as a health indicator for establishing a behavioral thermal model applicable for water immersion. This scoping review provides insight for the needed development of subjective thermal model of thermal sensation in relation to human thermal physiology specific to immersive water temperature ranges within and outside the thermal neutral and comfort zone.
Collapse
Affiliation(s)
- Maria Ntoumani
- National & Kapodistrian University of Athens, Medical School, Department of Physiology, 11527, Athens, Greece; National & Kapodistrian University of Athens, School of Physical Education and Sport Science, Philosophy Division, 17237, Athens, Greece.
| | - Benoit Dugué
- Université de Poitiers, Faculté des Sciences du Sport, UR 20296, Laboratoire "Mobilité, Vieillissement et Exercice (MOVE)", 86000, Poitiers, France
| | - Eric Rivas
- KBR, Human Physiology, Performance, Protection & Operations Laboratory, NASA Johnson Space Center, 77058, Houston, Texas, USA
| | - Konstantina Gongaki
- National & Kapodistrian University of Athens, School of Physical Education and Sport Science, Philosophy Division, 17237, Athens, Greece
| |
Collapse
|
6
|
Nagashima K, Nakata H, Harada T, Kato I, Sadato N. Differences in the neural networks of thermal sensation with and without evaluation process. IBRO Neurosci Rep 2022; 13:274-283. [PMID: 36176319 PMCID: PMC9513600 DOI: 10.1016/j.ibneur.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Several neuroimaging studies have analyzed the neural networks involved in thermal sensation. In some of these studies, participants were instructed to evaluate and report the thermal sensation using a point scale, visual analog scale, or other psychophysical rating tool while the imaging data were obtained. Therefore, the imaging data may reflect signals involved in the processes of both sensation and evaluation. The present study aimed to discriminate the neural networks involved in identifying different temperature stimuli and the two different processes by using functional magnetic resonance imaging (fMRI). We applied four different thermal stimuli (“hot,” 40C; “warm,” 36 °C, “cool,” 27 °C; and “cold,” 22 °C) to the left forearm using Peltier apparatus. During the stimuli, participants were instructed to either evaluate (evaluation task) or not evaluate (no-evaluation task) and report the thermal sensation. We found brain activation in the medial prefrontal cortex/anterior cingulate gyrus, inferior frontal gyrus, bilateral insula, and posterior parietal cortex during the four thermal stimuli both with and without the evaluation task. Additionally, the stimuli with the evaluation task induced stronger and broader activation, including the right fronto-parietal and anterior insula regions. These results indicate that thermal stimulation activates the common neural networks, independent of the thermal conditions and evaluation process. Moreover, the evaluation process may increase the attention to the thermal stimuli, resulting in the activation of the right lateralized ventral attentional network. Neural networks involved in thermal sensation were assessed by functional MRI. Warm or cold stimulation was applied to the left forearm. The stimulation was conducted with or without the evaluation of the sensation. Greater activation of a right-lateralized attention network was induced by the evaluation process. A common neural network was found, which was activated by both warm and cold stimuli.
Collapse
|
7
|
Banozic A. Neuroimaging of pleasantness and unpleasantness induced by thermal stimuli. Temperature (Austin) 2021; 8:342-350. [PMID: 34901317 DOI: 10.1080/23328940.2021.1959288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Functional brain imaging techniques provide unique insight into the process of human thermal regulation and its associated hedonics. Similar neuroimaging techniques have predominantly focused on the neural characterization of thermal response separately from hedonics. In this instance, there is a gap in the understanding of hedonics related to regional brain activations. Responses to localized, thermal stimuli are yet to be characterized, but it would appear that thermoregulatory regions are widely distributed throughout the hemispheres of the human brain. The distributed nature of neural activations related to temperature responses is consistent with multiple related functions contributing to thermoregulation. Estimating hedonics of thermal stimulation includes a cognitive process that could potentially interfere with identifying activation specific to hedonics. A future challenge for brain imaging studies is to more accurately dissect the functional neuroanatomy of thermoregulation and related hedonics in hemispheric regions.
Collapse
Affiliation(s)
- Adriana Banozic
- YLL School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Brewer R, Murphy J, Bird G. Atypical interoception as a common risk factor for psychopathology: A review. Neurosci Biobehav Rev 2021; 130:470-508. [PMID: 34358578 PMCID: PMC8522807 DOI: 10.1016/j.neubiorev.2021.07.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The inadequacy of a categorial approach to mental health diagnosis is now well-recognised, with many authors, diagnostic manuals and funding bodies advocating a dimensional, trans-diagnostic approach to mental health research. Variance in interoception, the ability to perceive one's internal bodily state, is reported across diagnostic boundaries, and is associated with atypical functioning across symptom categories. Drawing on behavioural and neuroscientific evidence, we outline current research on the contribution of interoception to numerous cognitive and affective abilities (in both typical and clinical populations), and describe the interoceptive atypicalities seen in a range of psychiatric conditions. We discuss the role that interoception may play in the development and maintenance of psychopathology, as well as the ways in which interoception may differ across clinical presentations. A number of important areas for further research on the role of interoception in psychopathology are highlighted.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, United Kingdom.
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
9
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Aizawa Y, Harada T, Nakata H, Tsunakawa M, Sadato N, Nagashima K. Assessment of brain mechanisms involved in the processes of thermal sensation, pleasantness/unpleasantness, and evaluation. IBRO Rep 2019; 6:54-63. [PMID: 30656240 PMCID: PMC6329283 DOI: 10.1016/j.ibror.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/05/2019] [Indexed: 11/28/2022] Open
Abstract
The conscious perception of thermal stimuli is divided into two categories: thermal sensation (i.e., discriminative component) and pleasantness/unpleasantness (i.e., hedonic component). There have been very few studies which clearly dissociated the two components. The aim of the present study was 1) to identify brain regions involved in perception of thermal stimuli per se, dissociating those related to the two components, and additionally 2) to examine brain regions of the explicit evaluation processes for the two components. Sixteen participants received local thermal stimuli of either 41.5 °C or 18.0 °C during whole-body thermal stimuli of 47.0 °C, 32.0 °C, or 17.0 °C. The local stimuli were delivered to the right forearm with the Peltier device. The whole-body stimuli delivered through a water-perfusion suit was aimed to modulate thermal pleasantness/unpleasantness to the local stimulus. The local stimulation at the same temperature was conducted five times with 30-s intervals. Brain activation was assessed by functional magnetic resonance imaging (fMRI), and the participants were asked to report their ratings of thermal sensation and pleasantness/unpleasantness following the cessation of each local stimulus. Local thermal stimulation activated specific brain regions such as the anterior cingulate cortex, insula, and inferior parietal lobe, irrespective of the temperature of local and whole-body stimuli; however, no specific activation for hot or cold sensation was observed. Different brain regions were associated with pleasantness and unpleasantness; the caudate nucleus and frontal regions for pleasantness, and the medial frontal and anterior cingulate cortex for unpleasantness. In addition, the explicit evaluation process for the discriminative and hedonic components immediately following the cessation of local stimulus involved different brain regions; the medial prefrontal cortex extending to the anterior cingulate cortex, insula, middle frontal cortex, and parietal lobes during the explicit evaluation of thermal sensation, and the medial prefrontal cortex, posterior cingulate cortex, and inferior parietal lobes during that of pleasantness/unpleasantness.
Collapse
Affiliation(s)
- Yuka Aizawa
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Tokiko Harada
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Nakata
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Mizuki Tsunakawa
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
11
|
Peripheral and central determinants of skin wetness sensing in humans. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:83-102. [PMID: 30454611 DOI: 10.1016/b978-0-444-63912-7.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Evolutionarily, our ability to sense skin wetness and humidity (i.e., hygroreception) could have developed as a way of helping to maintain thermal homeostasis, as much as it is the case for the role of temperature sensation and thermoreception. Humans are not provided with a specific skin hygroreceptor, and recent studies have indicated that skin wetness is likely to be centrally processed as a result of the multisensory integration of peripheral inputs from skin thermoreceptors and mechanoreceptors coding the biophysical interactions between skin and moisture. The existence of a specific hygrosensation strategy for human wetness perception has been proposed and the first neurophysiologic model of skin wetness sensing has been recently developed. However, while these recent findings have shed light on some of the peripheral and central neural mechanisms underlying wetness sensing, our understanding of how the brain processes the thermal and mechanical inputs that give rise to one of our "most worn" skin sensory experiences is still far from being conclusive. Understanding these neural mechanisms is clinically relevant in the context of those neurologic conditions that are accompanied by somatosensory abnormalities. The present chapter will present the current knowledge on the peripheral and central determinants of skin wetness sensing in humans.
Collapse
|
12
|
Abstract
The processes of thermoregulation are roughly divided into two categories: autonomic and behavioral. Behavioral thermoregulation alone does not have the capacity to regulate core temperature, as autonomic thermoregulation. However, behavioral thermoregulation is often utilized to maintain core temperature in a normal environment and is critical for surviving extreme environments. Thermal comfort, i.e., the hedonic component of thermal perception, is believed to be important for initiating and/or activating behavioral thermoregulation. However, the mechanisms involved are not fully understood. Thermal comfort is usually obtained when thermal stimuli to the skin restore core temperature to a regulated level. Conversely, thermal discomfort is produced when thermal stimuli result in deviations of core temperature away from a regulated level. Regional differences in the thermal sensitivity of the skin, hypohydration, and adaptation of the skin may affect thermal perception. Thermal comfort and discomfort seem to be determined by brain mechanisms, not by peripheral mechanisms such as thermal sensing by the skin. The insular and cingulate cortices may play a role in assessing thermal comfort and discomfort. In addition, brain sites involved in decision making may trigger behavioral responses to environmental changes.
Collapse
Affiliation(s)
- Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan.
| | - Ken Tokizawa
- National Institute of Occupational Safety and Health, Tokyo, Japan
| | - Shuri Marui
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
13
|
Neural correlates of ambient thermal sensation: An fMRI study. Sci Rep 2017; 7:11279. [PMID: 28900235 PMCID: PMC5595885 DOI: 10.1038/s41598-017-11802-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022] Open
Abstract
An increasing number of biometeorological and psychological studies have demonstrated the importance and complexity of the processes involved in environmental thermal perception in humans. However, extant functional imaging data on thermal perception have yet to fully reveal the neural mechanisms underlying these processes because most studies were performed using local thermal stimulation and did not dissociate thermal sensation from comfort. Thus, for the first time, the present study employed functional magnetic resonance imaging (fMRI) and manipulated ambient temperature during brain measurement to independently explore the neural correlates of thermal sensation and comfort. There were significant correlations between the sensation of a lower temperature and activation in the left dorsal posterior insula, putamen, amygdala, and bilateral retrosplenial cortices but no significant correlations were observed between brain activation and thermal comfort. The dorsal posterior insula corresponds to the phylogenetically new thermosensory cortex whereas the limbic structures (i.e., amygdala and retrosplenial cortex) and dorsal striatum may be associated with supramodal emotional representations and the behavioral motivation to obtain heat, respectively. The co-involvement of these phylogenetically new and old systems may explain the psychological processes underlying the flexible psychological and behavioral thermo-environmental adaptations that are unique to humans.
Collapse
|
14
|
Borhani K, Làdavas E, Fotopoulou A, Haggard P. "Lacking warmth": Alexithymia trait is related to warm-specific thermal somatosensory processing. Biol Psychol 2017; 128:132-140. [PMID: 28735971 PMCID: PMC5595273 DOI: 10.1016/j.biopsycho.2017.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 01/24/2023]
Abstract
Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been extensively validated, but the underlying neural and physiological systems remain controversial. One theory suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive and affective impairments in alexithymia. In two separate samples (total N=100), we used an established Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somatosensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores. We discuss the relations between low-level thermoceptive function and cognitive processing of emotion.
Collapse
Affiliation(s)
- Khatereh Borhani
- Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy; CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy; Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Elisabetta Làdavas
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy; CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
15
|
Filingeri D, Ackerley R. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics. J Neurophysiol 2017; 117:1761-1775. [PMID: 28123008 DOI: 10.1152/jn.00883.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/11/2023] Open
Abstract
Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life.NEW & NOTEWORTHY Little is known about the underlying mechanisms that generate the perception of skin wetness. Humans have no specific hygroreceptor, and thus temperature and touch information combine to produce wetness sensations. The present review covers the potential mechanisms leading to the perception of wetness, both peripherally and centrally, along with their implications for manual function. These insights are relevant to inform the design of neuroengineering interfaces, such as sensory prostheses for amputees.
Collapse
Affiliation(s)
- Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom;
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Göteborg, Sweden; and.,Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), Aix Marseille Université-Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
16
|
Yeon J, Kim J, Ryu J, Park JY, Chung SC, Kim SP. Human Brain Activity Related to the Tactile Perception of Stickiness. Front Hum Neurosci 2017; 11:8. [PMID: 28163677 PMCID: PMC5247468 DOI: 10.3389/fnhum.2017.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments-the methods of constant stimuli and the magnitude estimation-we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception.
Collapse
Affiliation(s)
- Jiwon Yeon
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology Ulsan, South Korea
| | - Junsuk Kim
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and TechnologyUlsan, South Korea; Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| | - Jaekyun Ryu
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwon, South Korea; Department of Biomedical Engineering, Magnetic Resonance Advanced Imaging Research Lab, Sungkyunkwan UniversitySuwon, South Korea
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwon, South Korea; Department of Biomedical Engineering, Magnetic Resonance Advanced Imaging Research Lab, Sungkyunkwan UniversitySuwon, South Korea
| | - Soon-Cheol Chung
- School of Biomedical Engineering, Konkuk University Chungju, South Korea
| | - Sung-Phil Kim
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology Ulsan, South Korea
| |
Collapse
|
17
|
Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies. Sports Med 2016; 47:1289-1302. [DOI: 10.1007/s40279-016-0657-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Micturition Drive is Associated with Decreased Brain Response to Palatable Milkshake in the Human Anterior Insular Cortex. CHEMOSENS PERCEPT 2016. [DOI: 10.1007/s12078-016-9215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Roelands B, De Pauw K, Meeusen R. Neurophysiological effects of exercise in the heat. Scand J Med Sci Sports 2016; 25 Suppl 1:65-78. [PMID: 25943657 DOI: 10.1111/sms.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
Abstract
Fatigue during prolonged exercise is a multifactorial phenomenon. The complex interplay between factors originating from both the periphery and the brain will determine the onset of fatigue. In recent years, electrophysiological and imaging tools have been fine-tuned, allowing for an improved understanding of what happens in the brain. In the first part of the review, we present literature that studied the changes in electrocortical activity during and after exercise in normal and high ambient temperature. In general, exercise in a thermo-neutral environment or at light to moderate intensity increases the activity in the β frequency range, while exercising at high intensity or in the heat reduces β activity. In the second part, we review literature that manipulated brain neurotransmission, through either pharmacological or nutritional means, during exercise in the heat. The dominant outcomes were that manipulations changing brain dopamine concentration have the potential to delay fatigue, while the manipulation of serotonin had no effect and noradrenaline reuptake inhibition was detrimental for performance in the heat. Research on the effects of neurotransmitter manipulations on brain activity during or after exercise is scarce. The combination of brain imaging techniques with electrophysiological measures presents one of the major future challenges in exercise physiology/neurophysiology.
Collapse
Affiliation(s)
- B Roelands
- Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium; Fund for Scientific Research Flanders (FWO), Brussels, Belgium
| | | | | |
Collapse
|
20
|
Inagaki TK, Irwin MR, Eisenberger NI. Blocking opioids attenuates physical warmth-induced feelings of social connection. Emotion 2015; 15:494-500. [PMID: 26098729 PMCID: PMC4516568 DOI: 10.1037/emo0000088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
"Heartwarming" social experiences, when one feels interpersonally connected to others, have recently been linked with physical warmth. According to one theory (Panksepp, 1998), "social warmth" and physical warmth may be closely linked because both experiences are supported by similar neurobiological mechanisms; however, the neurochemical substrates underlying this overlap have not been explored. Here, an opioid antagonist, naltrexone, was administered in order to examine the role of opioids, previously shown to alter temperature and social bonding behavior, on perceived thermal intensity, general positive affect, and feelings of social connection from physical warmth. Thirty-one participants took both naltrexone and a placebo and completed a temperature manipulation task (held a warm pack, cold pack, and neutral object) while on each drug. Replicating previous research, holding a warm (vs. a cold or neutral) object increased feelings of social connection. Moreover, blocking opioids reduced this effect. Hence, naltrexone specifically reduced feelings of social connection to holding a warm (vs. neutral) object but not to holding a cold (vs. neutral) object. These results lend further support to the theory that social and physical warmth share neurobiological, opioid receptor dependent mechanisms.
Collapse
Affiliation(s)
| | - Michael R Irwin
- Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles
| | | |
Collapse
|
21
|
Hasan M, Whiteley J, Bresnahan R, MacIver K, Sacco P, Das K, Nurmikko T. Somatosensory Change and Pain Relief Induced by Repetitive Transcranial Magnetic Stimulation in Patients With Central Poststroke Pain. Neuromodulation 2014; 17:731-6; discussion 736. [DOI: 10.1111/ner.12198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/14/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Hasan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | | | - Rebecca Bresnahan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kate MacIver
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Paul Sacco
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kumar Das
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | - Turo Nurmikko
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| |
Collapse
|
22
|
Ding X, Tang YY, Cao C, Deng Y, Wang Y, Xin X, Posner MI. Short-term meditation modulates brain activity of insight evoked with solution cue. Soc Cogn Affect Neurosci 2014; 10:43-9. [PMID: 24532700 DOI: 10.1093/scan/nsu032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meditation has been shown to improve creativity in some situation. However, little is known about the brain systems underling insight into a problem when the person fails to solve the problem. Here, we examined the neural correlation using Chinese Remote Association Test, as a measure of creativity. We provide a solution following the failure of the participant to provide one. We examine how meditation in comparison with relaxation influences the reaction of the participant to a correct solution. The event-related functional magnetic resonance imaging showed greater activity, mainly distributed in the right cingulate gyrus (CG), insula, putamen, inferior frontal gyrus (IFG), and the bilateral middle frontal gyrus (MFG), the inferior parietal lobule (IPL) and the superior temporal gyrus (STG). This pattern of activation was greater following 5 h of meditation training than the same amount of relaxation. Based on prior research, we speculate on the function of this pattern of brain activity: (i) CG may be involved in detecting conflict and breaking mental set, (ii) MFG/IFG may play an important role in restructuring of the problem representation, (iii) insula, IPL and STG may be associated with error detection, problem understanding or general attentive control and (iv) putamen may be activated by 'Aha' feeling.
Collapse
Affiliation(s)
- Xiaoqian Ding
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Yi-Yuan Tang
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Chen Cao
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Yuqin Deng
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Yan Wang
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiu Xin
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael I Posner
- Institute of Neuroinformatics and Laboratory for Body and Mind, Dalian University of Technology, Dalian 116024, China, Department of Psychology, University of Oregon, Eugene, OR 97403, USA, and Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
23
|
De Pauw K, Roelands B, Marusic U, Tellez HF, Knaepen K, Meeusen R. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol (1985) 2013; 115:1324-31. [PMID: 23990240 PMCID: PMC3841834 DOI: 10.1152/japplphysiol.00633.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.
Collapse
Affiliation(s)
- Kevin De Pauw
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Inagaki TK, Eisenberger NI. Shared neural mechanisms underlying social warmth and physical warmth. Psychol Sci 2013; 24:2272-80. [PMID: 24048423 DOI: 10.1177/0956797613492773] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many of people's closest bonds grow out of socially warm exchanges and the warm feelings associated with being socially connected. Indeed, the neurobiological mechanisms underlying thermoregulation may be shared by those that regulate social warmth, the experience of feeling connected to other people. To test this possibility, we placed participants in a functional MRI scanner and asked them to (a) read socially warm and neutral messages from friends and family and (b) hold warm and neutral-temperature objects (a warm pack and a ball, respectively). Findings showed an overlap between physical and social warmth: Participants felt warmer after reading the positive (compared with neutral) messages and more connected after holding the warm pack (compared with the ball). In addition, neural activity during social warmth overlapped with neural activity during physical warmth in the ventral striatum and middle insula, but neural activity did not overlap during another pleasant task (soft touch). Together, these results suggest that a common neural mechanism underlies physical and social warmth.
Collapse
|
25
|
Parrott AC. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users. Neurosci Biobehav Rev 2013; 37:1466-84. [PMID: 23660456 DOI: 10.1016/j.neubiorev.2013.04.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022]
Abstract
Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component.
Collapse
Affiliation(s)
- Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, SA2 8PP, South Wales, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia.
| |
Collapse
|
26
|
Jenkinson PM, Haggard P, Ferreira NC, Fotopoulou A. Body ownership and attention in the mirror: insights from somatoparaphrenia and the rubber hand illusion. Neuropsychologia 2013; 51:1453-62. [PMID: 23603022 DOI: 10.1016/j.neuropsychologia.2013.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 11/19/2022]
Abstract
The brain receives and synthesises information about the body from different modalities, coordinates and perspectives, and affords us with a coherent and stable sense of body ownership. We studied this sense in a somatoparaphrenic patient and three control patients, all with unilateral right-hemisphere lesions. We experimentally manipulated the visual perspective (direct- versus mirror-view) and spatial attention (drawn to peripersonal space versus extrapersonal space) in an experiment involving recognising one's own hand. The somatoparaphrenic patient denied limb ownership in all direct view trials, but viewing the hand via a mirror significantly increased ownership. The extent of this increase depended on spatial attention; when attention was drawn to the extrapersonal space (near-the-mirror) the patient showed a near perfect recognition of her arm in the mirror, while when attention was drawn to peripersonal space (near-the-body) the patient recognised her arm in only half the mirror trials. In a supplementary experiment, we used the Rubber Hand Illusion to manipulate the same factors in healthy controls. Ownership of the rubber hand occurred in both direct and mirror view, but shifting attention between peripersonal and extrapersonal space had no effect on rubber-hand ownership. We conclude that the isolation of visual perspectives on the body and the division of attention between two different locations is not sufficient to affect body ownership in healthy individuals and right hemisphere controls. However, in somatoparaphrenia, where first-person body ownership and stimulus-driven attention are impaired by lesions to a right-hemisphere ventral attentional-network, the body can nevertheless be recognised as one's own if perceived in a third-person visual perspective and particularly if top-down, spatial attention is directed away from peripersonal space.
Collapse
|
27
|
Mazzone SB, McGovern AE, Yang SK, Woo A, Phipps S, Ando A, Leech J, Farrell MJ. Sensorimotor circuitry involved in the higher brain control of coughing. COUGH 2013; 9:7. [PMID: 23497672 PMCID: PMC3602068 DOI: 10.1186/1745-9974-9-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023]
Abstract
There is an overwhelming body of evidence to support the existence of higher brain circuitries involved in the sensory detection of airways irritation and the motor control of coughing. The concept that cough is purely a reflex response to airways irritation is now superseded by the recognition that perception of an urge-to-cough and altered behavioral modification of coughing are key elements of cough disorders associated with airways disease. Understanding the pathways by which airway sensory nerves ascend into the brain and the patterns of neural activation associated with airways irritation will undoubtedly provide new insights into disordered coughing. This brief review aims to explore our current understanding of higher order cough networks by summarizing data from recent neuroanatomical and functional studies in animals and humans. We provide evidence for the existence of distinct higher order network components involved in the discrimination of signals arising from the airways and the motor control of coughing. The identification of these network components provides a blueprint for future research and the development of targeted managements for cough and the urge-to-cough.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumru H, Kofler M, Flores MC, Portell E, Robles V, Leon N, Vidal J. Effect of intrathecal baclofen on evoked pain perception: an evoked potentials and quantitative thermal testing study. Eur J Pain 2012; 17:1039-47. [PMID: 23239275 DOI: 10.1002/j.1532-2149.2012.00266.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. METHODS Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. RESULT In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. CONCLUSION Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen.
Collapse
Affiliation(s)
- H Kumru
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Rosenkranz MA, Busse WW, Sheridan JF, Crisafi GM, Davidson RJ. Are there neurophenotypes for asthma? Functional brain imaging of the interaction between emotion and inflammation in asthma. PLoS One 2012; 7:e40921. [PMID: 22870208 PMCID: PMC3411610 DOI: 10.1371/journal.pone.0040921] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/14/2012] [Indexed: 11/20/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease noteworthy for its vulnerability to stress and emotion-induced symptom intensification. The fact that psychological stress and mood and anxiety disorders appear to increase expression of asthma symptoms suggests that neural signaling between the brain and lung at least partially modulates the inflammatory response and lung function. However, the precise nature of the neural pathways implicated in modulating asthma symptoms is unknown. Moreover, the extent to which variations in neural signaling predict different phenotypes of disease expression has not been studied. Methods and Results We used functional magnetic resonance imaging to measure neural signals in response to asthma-specific emotional cues, following allergen exposure, in asthmatics with a dual response to allergen challenge (significant inflammation), asthmatics with only an immediate response (minimal inflammation), and healthy controls. The anterior insular cortex was differentially activated by asthma-relevant cues, compared to general negative cues, during the development of the late phase of the dual response in asthmatics. Moreover, the degree of this differential activation predicted changes in airway inflammation. Conclusions These findings indicate that neurophenotypes for asthma may be identifiable by neural reactivity of brain circuits known to be involved in processing emotional information. Those with greater activation in the anterior insula, in response to asthma-relevant psychological stimuli, exhibit greater inflammatory signals in the lung and increased severity of disease and may reflect a subset of asthmatics most vulnerable to the development of psychopathology. This approach offers an entirely new target for potential therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | |
Collapse
|
30
|
Čeko M, Seminowicz DA, Bushnell MC, Olausson HW. Anatomical and functional enhancements of the insula after loss of large primary somatosensory fibers. ACTA ACUST UNITED AC 2012; 23:2017-24. [PMID: 22819967 DOI: 10.1093/cercor/bhs157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain changes associated with the loss of a sensory modality such as vision and audition have previously been reported. Here, we examined the effect of loss of discriminative touch and proprioception on cortical thickness and functional connectivity. We performed structural magnetic resonance imaging and resting-state functional magnetic resonance imaging scans on a 60-year-old female who at age 31 suffered a selective loss of large-diameter myelinated primary afferents and, therefore, relies mainly on her intact thin-fiber senses (temperature, pain, itch, and C-fiber touch) and vision to negotiate her environment. The patient showed widespread cortical thinning compared with 12 age-matched female controls. In contrast, her right anterior insula was significantly thick. Seed-based resting-state analysis revealed that her right anterior insula had increased connectivity to bilateral posterior insula. A separate independent component analysis revealed the increased connectivity between the insula and visual cortex in the patient. As the insula is an important processing area for temperature and C-fiber tactile information, the increased intrainsular and insular-visual functional connectivity could be related to the patient's use of C-fiber (gentle) touch and temperature information in conjunction with visual information to navigate her environment. We, thus, demonstrated plasticity in networks involving the insular cortex following denervation of large-diameter somatosensory afferents.
Collapse
Affiliation(s)
- Marta Čeko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada H3A 2T5.
| | | | | | | |
Collapse
|
31
|
Neural correlates coding stimulus level and perception of capsaicin-evoked urge-to-cough in humans. Neuroimage 2012; 61:1324-35. [DOI: 10.1016/j.neuroimage.2012.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/28/2022] Open
|
32
|
Abstract
The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.
Collapse
|
33
|
Parrott AC. MDMA and temperature: a review of the thermal effects of 'Ecstasy' in humans. Drug Alcohol Depend 2012; 121:1-9. [PMID: 21924843 DOI: 10.1016/j.drugalcdep.2011.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/20/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
AIMS To review the thermal effects of MDMA in humans, and discuss the practical implications. METHODS The literature on Ecstasy/MDMA, body temperature, and subjective thermal self-ratings was reviewed, and explanatory models for the changes in thermal homeostasis were examined and debated. RESULTS In human placebo-controlled laboratory studies, the effects of MDMA were dose related. Low doses had little effect, moderate doses increased body temperature by around +0.4°C, and higher doses caused a mean increase of +0.7°C. With Ecstasy/MDMA using dance clubbers, the findings showed greater variation, due possibly to uncontrolled factors such as physical activity, ambient temperature, and overcrowding. Some real world studies found average body temperature increases of over +1.0°C. Thermal homeostasis involves a balance between heat production and heat dissipation, and MDMA affects both aspects of this homeostatic equation. Cellular metabolic heat output is increased, and heat dissipation mechanisms are stressed, with the onset of sweating delayed. Subjective responses of 'feeling hot' or 'hot-cold flushes' are frequent, but can show individual variation. Some recreational users report that heat increases or reinstates the positive mood effects of Ecstasy/MDMA. The dangers of acute hyperthermia can include rare fatalities. It is unclear why moderate hyperthermia can occasionally progress to severe hyperpyrexia, although it may reflect a combination or cascade of events. In chronic terms, the bioenergetic stress model notes that the adverse psychobiological effects of MDMA are heightened by various co-stimulatory factors, including heat stress. CONCLUSIONS MDMA increases core body temperature and thermal stress in humans.
Collapse
Affiliation(s)
- A C Parrott
- Department of Psychology, Swansea University, Swansea SA2 8PP, United Kingdom.
| |
Collapse
|
34
|
Nagashima K, Tokizawa K, Uchida Y, Nakamura-Matsuda M, Lin CH. Exercise and thermoregulation. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Fotopoulou A, Jenkinson PM, Tsakiris M, Haggard P, Rudd A, Kopelman MD. Mirror-view reverses somatoparaphrenia: Dissociation between first- and third-person perspectives on body ownership. Neuropsychologia 2011; 49:3946-55. [DOI: 10.1016/j.neuropsychologia.2011.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/25/2022]
|
36
|
Michael GA, Relland S, Galich H. Interhemispheric balance sets nostril differences in color-induced nasal thermal judgments. Behav Brain Res 2011; 224:369-75. [PMID: 21722675 DOI: 10.1016/j.bbr.2011.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
Abstract
Sniffing out of sight always the same colorless and odorless solution containing no thermal agents while viewing a bottle with colored water increases sensitivity of the left nostril/right hemisphere (RH) for warming sensations and sensitivity of the right nostril/left hemisphere (LH) for cooling sensations. It is likely that engagement in a temperature judgment task and the development of specific expectancies due to the presence of color cues alter and enhance processing in brain areas involved in thermosensory processing. The lateralized patterns thus intimate hemispheric specialization for thermosensory processing probably originating in reciprocal inhibition that confers balance between the hemispheres. If the inhibition-balance hypothesis were correct then the more the left nostril proves sensitive to warming the more the right nostril would prove sensitive to cooling. One hundred and ninety one healthy volunteers were tested here. The left nostril dominance for warming and the right dominance for cooling were replicated once more. The dominance of the left nostril for warming (left minus right nostril) correlated highly with the dominance of the left nostril to cooling (right minus left nostril) and the individual patterns of results were distributed along an axis starting from the expected left nostril/warming - right nostril/cooling pattern and ending at the opposite left nostril/cooling - right nostril/warming pattern. Furthermore, the point where the left nostril dominance for warming responses dropped and inverted perfectly coincided with the point where the right nostril dominance for cooling responses inverted too. Such a good continuum between the expected and the opposite patterns supports the inhibition-balance hypothesis. Finally, 66% of subjects exhibited the expected left-warming/right-cooling pattern suggesting, therefore, that, despite this continuum, there is a dominant lateral specialization for temperature processing.
Collapse
Affiliation(s)
- George A Michael
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lyon 2, Lyon, France.
| | | | | |
Collapse
|
37
|
Cauda F, D'Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. Neuroimage 2010; 55:8-23. [PMID: 21111053 DOI: 10.1016/j.neuroimage.2010.11.049] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 01/01/2023] Open
Abstract
The human insula is hidden in the depth of the cerebral hemisphere by the overlying frontal and temporal opercula, and consists of three cytoarchitectonically distinct regions: the anterior agranular area, posterior granular area, and the transitional dysgranular zone; each has distinct histochemical staining patterns and specific connectivity. Even though there are several studies reporting the functional connectivity of the insula with the cingulated cortex, its relationships with other brain areas remain elusive in humans. Therefore, we decided to use resting state functional connectivity to elucidate in details its connectivity, in terms of cortical and subcortical areas, and also of lateralization. We investigated correlations in BOLD fluctuations between specific regions of interest of the insula and other brain areas of right-handed healthy volunteers, on both sides of the brain. Our findings document two major complementary networks involving the ventral-anterior and dorsal-posterior insula: one network links the anterior insula to the middle and inferior temporal cortex and anterior cingulate cortex, and is primarily related to limbic regions which play a role in emotional aspects; the second links the middle-posterior insula to premotor, sensorimotor, supplementary motor and middle-posterior cingulate cortices, indicating a role for the insula in sensorimotor integration. The clear bipartition of the insula was confirmed by negative correlation analysis. Correlation maps are partially lateralized: the salience network, related to the ventral anterior insula, displays stronger connections with the anterior cingulate cortex on the right side, and with the frontal cortex on the left side; the posterior network has stronger connections with the superior temporal cortex and the occipital cortex on the right side. These results are in agreement with connectivity studies in primates, and support the use of resting state functional analysis to investigate connectivity in the living human brain.
Collapse
|
38
|
Fotopoulou A, Pernigo S, Maeda R, Rudd A, Kopelman MA. Implicit awareness in anosognosia for hemiplegia: unconscious interference without conscious re-representation. ACTA ACUST UNITED AC 2010; 133:3564-77. [PMID: 20823084 DOI: 10.1093/brain/awq233] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Some patients with anosognosia for hemiplegia, i.e. apparent unawareness of hemiplegia, have been clinically observed to show 'tacit' or 'implicit' awareness of their deficits. Here we have experimentally examined whether implicit and explicit responses to the same deficit-related material can dissociate. Fourteen stroke patients with right hemisphere lesions and contralesional paralysis were tested for implicit and explicit responses to brief sentences with deficit-related themes. These responses were elicited using: (i) a verbal inhibition test in which patients had to inhibit completing each sentence with an automatic response (implicit task) and (ii) a rating procedure in which patients rated the self-relevance of the same sentences (explicit task). A group of anosognosic hemiplegic patients was significantly slower than a control group of aware hemiplegic patients in performing the inhibition task with deficit-related sentences than with other emotionally negative themes (relative to neutral themes). This occurred despite their explicit denial of the self-relevance of the former sentences. Individual patient analysis showed that six of the seven anosognosic patients significantly differed from the control group in this dissociation. Using lesion mapping procedures, we found that the lesions of the anosognosic patients differed from those of the 'aware' controls mainly by involving the anterior parts of the insula, inferior motor areas, basal ganglia structures, limbic structures and deep white matter. In contrast, the anosognosic patient without implicit awareness had more cortical lesions, mostly in frontal areas, including lateral premotor regions, and also in the parietal and occipital lobes. These results provide strong experimental support for a specific dissociation between implicit and explicit awareness of deficits. More generally, the combination of our behavioural and neural findings suggests that an explicit, affectively personalized sensorimotor awareness requires the re-representation of sensorimotor information in the insular cortex, with possible involvement of limbic areas and basal ganglia circuits. The delusional features of anosognosia for hemiplegia can be explained as a failure of this re-representation.
Collapse
|
39
|
Kang Y, Williams LE, Clark MS, Gray JR, Bargh JA. Physical temperature effects on trust behavior: the role of insula. Soc Cogn Affect Neurosci 2010; 6:507-15. [PMID: 20802090 DOI: 10.1093/scan/nsq077] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trust lies at the heart of person perception and interpersonal decision making. In two studies, we investigated physical temperature as one factor that can influence human trust behavior, and the insula as a possible neural substrate. Participants briefly touched either a cold or warm pack, and then played an economic trust game. Those primed with cold invested less with an anonymous partner, revealing lesser interpersonal trust, as compared to those who touched a warm pack. In Study 2, we examined neural activity during trust-related processes after a temperature manipulation using functional magnetic resonance imaging. The left-anterior insular region activated more strongly than baseline only when the trust decision was preceded by touching a cold pack, and not a warm pack. In addition, greater activation within bilateral insula was identified during the decision phase followed by a cold manipulation, contrasted to warm. These results suggest that the insula may be a key shared neural substrate that mediates the influence of temperature on trust processes.
Collapse
Affiliation(s)
- Yoona Kang
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
40
|
Villemure C, Schweinhardt P. Supraspinal pain processing: distinct roles of emotion and attention. Neuroscientist 2010; 16:276-84. [PMID: 20360603 DOI: 10.1177/1073858409359200] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Attentional and emotional states alter the way we perceive pain. Recent findings suggest that the mechanisms underlying these two forms of pain modulation are at least partially separable. This concept is supported by the observation that attention and emotions differentially alter the sensory and affective dimensions of pain perception and apparently implicate different brain circuits. In this review, we will examine those recent findings within the broader cognitive neuroscience conceptualization of human attention and emotion and the corresponding functional neuroanatomy.
Collapse
Affiliation(s)
- Chantal Villemure
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
41
|
Taylor KS, Seminowicz DA, Davis KD. Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 2009; 30:2731-45. [PMID: 19072897 PMCID: PMC6871122 DOI: 10.1002/hbm.20705] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 09/16/2008] [Accepted: 10/25/2008] [Indexed: 12/30/2022] Open
Abstract
The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non-human primates have specific anatomical connections between sub-divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid-cingulate cortex (aMCC and pMCC); the mid-posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid-posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low-frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula-pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation.
Collapse
Affiliation(s)
- Keri S. Taylor
- Division of Brain, Imaging and Behavior—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - David A. Seminowicz
- Division of Brain, Imaging and Behavior—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behavior—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Craig ADB. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 2009; 364:1933-42. [PMID: 19487195 DOI: 10.1098/rstb.2009.0008] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A model of awareness based on interoceptive salience is described, which has an endogenous time base that might provide a basis for the human capacity to perceive and estimate time intervals in the range of seconds to subseconds. The model posits that the neural substrate for awareness across time is located in the anterior insular cortex, which fits with recent functional imaging evidence relevant to awareness and time perception. The time base in this model is adaptive and emotional, and thus it offers an explanation for some aspects of the subjective nature of time perception. This model does not describe the mechanism of the time base, but it suggests a possible relationship with interoceptive afferent activity, such as heartbeat-related inputs.
Collapse
Affiliation(s)
- A D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, AZ 85041, USA.
| |
Collapse
|
43
|
Green BG, Akirav C. Individual differences in temperature perception: Evidence of common processing of sensation intensity of warmth and cold. Somatosens Mot Res 2009; 24:71-84. [PMID: 17558924 DOI: 10.1080/08990220701388117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p < 0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.
Collapse
Affiliation(s)
- Barry G Green
- The John B. Pierce Laboratory, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | |
Collapse
|
44
|
Rosenkranz MA, Davidson RJ. Affective neural circuitry and mind-body influences in asthma. Neuroimage 2009; 47:972-80. [PMID: 19465136 DOI: 10.1016/j.neuroimage.2009.05.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/29/2022] Open
Abstract
Individuals with asthma have twice the risk of developing mood and anxiety disorders as individuals without asthma and these psychological factors are associated with worse outcomes and greater need for medical intervention. Similarly, asthma symptom onset and exacerbation often occur during times of increased psychological stress. Remission from depression, on the other hand, is associated with improvement in asthma symptoms and decreased usage of asthma medication. Yet research aimed at understanding the biological underpinnings of asthma has focused almost exclusively on the periphery. An extensive literature documents the relationship between emotion and asthma, but little work has explored the function of affective neural circuitry in asthma symptom expression. Therefore, the following review integrates neuroimaging research related to factors that may impact symptom expression in asthma, such as individual differences in sensitivity to visceral signals, the influence of expectation and emotion on symptom perception, and changes related to disease chronicity, such as conditioning and plasticity. The synthesis of these literatures suggests that the insular and anterior cingulate cortices, in addition to other brain regions previously implicated in the regulation of emotion, may be both responsive to asthma-related bodily changes and important in influencing the appearance and persistence of symptom expression in asthma.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- University of Wisconsin-Madison, Waisman Laboratory for Brain Imaging and Behavior, 1500 Highland Ave., Madison, WI 53705, USA.
| | | |
Collapse
|
45
|
Abstract
Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.
Collapse
|
46
|
Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, Ball T. Functional organization of the human anterior insular cortex. Neurosci Lett 2009; 457:66-70. [PMID: 19429164 DOI: 10.1016/j.neulet.2009.03.101] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 01/03/2023]
Abstract
The human insular cortex is involved in a wide range of functions including motor control, language, and homeostatic regulation. Little is known, however, how these functions are topographically organized in the insular cortex and how they are functionally related to the amygdala, which is anatomically connected to the insular cortex. We have investigated these questions by conducting an activation likelihood estimate (ALE) meta-analysis of previously published neuroimaging studies reporting insula effects. We find auditory and language tasks to preferentially activate an area in the dorsal part of the anterior insular cortex (AIC). Motor tasks involving both the upper and lower extremity reproducibly activated a posterior AIC region, adjacent to the sulcus centralis insulae (SCI). Significant co-activation with the probabilistically defined amygdala was located in the ventral AIC where also responses related to peripheral physiological changes were repeatedly reported. These findings show that the human AIC is a functionally differentiated brain region. The dorsal region of the AIC may be involved in auditory-motor integration, while the ventral part of the AIC may interface the amygdala with insular regions involved in the regulation of physiological changes related to emotional states. Thus, the present findings provide insights into the organization of human AIC and a methodological approach that may be further used to refine the emerging functional map of the insular cortex.
Collapse
|
47
|
Abstract
A dor crônica caracteriza-se pela persistência do sintoma além do período fisiológico de recuperação do tecido lesado. Essas dores causam incapacidade física e redução da performance cognitiva, reduzem a qualidade de vida e o bem-estar dos pacientes, cujo tratamento proposto contradiz o clássico binômio da terapia da dor aguda (repouso e fármacos). Para a dor crônica prescrevem-se exercícios físicos e sugerem-se tratamentos multidisciplinares. Embora a atividade física seja prescrita há mais de 20 anos, os mecanismos neurofisiológicos envolvidos ainda não são compreendidos. Descrevemos brevemente os mecanismos endógenos de controle da dor crônica e evidências da literatura científica que defendem o sistema opioide como mecanismo de ação na analgesia induzida pelo exercício em indivíduos sadios e atletas. Esse mecanismo também parece agir na população com dor crônica, embora haja controvérsias. Finalizamos o artigo com considerações clínicas para a prescrição do exercício para a população com dor crônica.
Collapse
|
48
|
Abstract
The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Collapse
|
49
|
Nakamura M, Yoda T, Crawshaw LI, Yasuhara S, Saito Y, Kasuga M, Nagashima K, Kanosue K. Regional differences in temperature sensation and thermal comfort in humans. J Appl Physiol (1985) 2008; 105:1897-906. [DOI: 10.1152/japplphysiol.90466.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, “temperature sensation” and “thermal comfort.” Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.
Collapse
|
50
|
Krämer HH, Stenner C, Seddigh S, Bauermann T, Birklein F, Maihöfner C. Illusion of pain: pre-existing knowledge determines brain activation of 'imagined allodynia'. THE JOURNAL OF PAIN 2008; 9:543-51. [PMID: 18455481 DOI: 10.1016/j.jpain.2008.01.340] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 11/17/2022]
Abstract
UNLABELLED Allodynia means that innocuous tactile stimulation is felt as pain. Accordingly, cerebral activations during allodynia or touch should markedly differ. The aim of this study was to investigate whether the imagination of allodynia affects brain processing of touch in healthy subjects. Seventeen healthy subjects divided into 2 subgroups were investigated: The first group (n = 7) was familiar with allodynia, based on previous pain studies, whereas the second group (n = 10) had never knowingly experienced allodynia. Using functional magnetic resonance imaging, 2 experimental conditions were investigated. In one condition the subjects were simply touched at their left hand, whereas during the other condition they were asked to imagine pain (allodynia) during tactile stimulation of the right hand and to estimate the imagined pain on a numeric rating scale. Data processing and analysis were performed with the use of SPM5. The group analysis of all subjects revealed that tactile stimulation activated contralateral somatosensory cortices (S1 [primary] and S2 [secondary]), but the imagination of allodynia led to an additional activation of anterior cingulate cortex and bilateral activation of S2, insular cortex, and prefrontal cortices. Subgroup analysis using rating-weighted predictors revealed activation of the contralateral thalamus, anterior cingulate cortex, and amygdala and a bilateral activation of S1, S2, and insular cortex and prefrontal cortices in allodynia-experienced subjects. In contrast, allodynia-inexperienced subjects only activated contralateral S1 and bilateral S2. Just the imagination that touch is painful is able to partly activate the central pain system, but only when the subject has previous experience of this. According to our results, the medial pain system is involved in the encoding of imagined allodynia. PERSPECTIVE This article reports that pain experience is able to alter central processing of sensory stimuli. Pain knowledge appears to be able to shift "normal" tactile processing to a different quality, resulting in modified brain activity. Therefore, our study may contribute to the current understanding of human pain and will promote future research on this field.
Collapse
|