1
|
Feng Y, Huang X, Zhao W, Ming Y, Zhou Y, Feng R, Xiao J, Shan X, Kang X, Duan X, Chen H. Association among internalizing problems, white matter integrity, and social difficulties in children with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111109. [PMID: 39074528 DOI: 10.1016/j.pnpbp.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social difficulties and often accompanied by internalizing and externalizing problems, which are frequently overlooked. Here, we examined and compared fractional anisotropy (FA) between 79 children with ASD (aged 4-7.8 years) and 70 age-, gender-, and handedness- matched typically developing controls (TDCs, aged 3-7.2 years). We aimed to explore the relationship among social difficulties, internalizing and externalizing problems, and brain structural foundation (characterized by white matter integrity). Compared with the TDCs, the children with ASD exhibited more severe internalizing and externalizing problems, which were positively correlated with social difficulties. Reduced FA values were observed in specific white matter tracts that integrate a fronto-temporal-occipital circuit. In particular, the FA values within this circuit were negatively correlated with internalizing problems and SRS-TOTAL scores. Mediation analysis revealed that internalizing problems mediated the relationship between the FA values in the left middle longitudinal fasciculus (L-MdLF) and corpus callosum forceps major (CCM) and social difficulties in children with ASD. These findings contribute to our understanding of social difficulties, internalizing and externalizing problems, and white matter integrity in children with ASD and highlight internalizing problems as a mediator between social difficulties and white matter integrity.
Collapse
Affiliation(s)
- Yu Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Weixin Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, Bayi Rehabilitation Center, Chengdu 611135, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
2
|
Zhang H, Kuang Q, Li R, Song Z, She S, Zheng Y. Association between homotopic connectivity and clinical symptoms in first-episode schizophrenia. Heliyon 2024; 10:e30347. [PMID: 38707391 PMCID: PMC11066690 DOI: 10.1016/j.heliyon.2024.e30347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Abnormal functional connectivity (FC) in the brain has been observed in schizophrenia patients. However, studies on FC between homotopic brain regions are limited, and the results of these studies are inconsistent. The aim of this study was to compare homotopic connectivity between first-episode schizophrenia (FES) patients and healthy subjects and assess its correlation with clinical symptoms. Methods Thirty-one FES patients and thirty-three healthy controls (HC) were included in the study. The voxel-mirrored homotopic connectivity (VMHC) method of resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyse the changes in homotopic connectivity between the two groups. The 5-factor PANSS model was used to quantitatively evaluate the severity of symptoms in FES patients. Partial correlation analysis was used to assess the correlation between homotopic connectivity changes and clinical symptoms. Results Compared to those in the HC group, VMHC values were decreased in the paracentral lobule (PL), thalamus, and superior temporal gyrus (STG) in the FES group (P < 0.05, FDR correction). No significant differences in white matter volume (WMV) within the subregion of the corpus callosum or in brain regions associated with reduced VMHC were observed between the two groups. Partial correlation analyses revealed that VMHC in the bilateral STG of FES patients was positively correlated with negative symptoms (rleft = 0.46, p < 0.05; rright = 0.47, p < 0.05), and VMHC in the right thalamus was negatively correlated with disorganized/concrete symptoms (rright = 0.45, p < 0.05). Conclusion Our study revealed that homotopic connectivity is altered in the resting-state brain of FES patients and correlates with the severity of negative symptoms; this change may be independent of structural changes in white matter. These findings may contribute to the development of the abnormal connectivity hypothesis in schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Ruikeng Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Zhen Song
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| |
Collapse
|
3
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
4
|
Sun Z, Shi C, Jin L. Mechanisms by Which SARS-CoV-2 Invades and Damages the Central Nervous System: Apart from the Immune Response and Inflammatory Storm, What Else Do We Know? Viruses 2024; 16:663. [PMID: 38793545 PMCID: PMC11125732 DOI: 10.3390/v16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.
Collapse
Affiliation(s)
- Zihan Sun
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lixin Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Li R, Liu G, Zhang X, Zhang M, Lu J, Li H. Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect Dis 2023; 23:521. [PMID: 37553613 PMCID: PMC10410836 DOI: 10.1186/s12879-023-08331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/15/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Although most patients can recover from SARS-CoV-2 infection during the short-term, the long-term effects of COVID-19 on the brain remain explored. Functional MRI (fMRI) could potentially elucidate or otherwise contribute to the investigation of the long COVID syndrome. A lower fMRI response would be translated into decreased brain activity or delayed signal transferring reflecting decreased connectivity. This research aimed to investigate the long-term alterations in the local (regional) brain activity and remote (interregional) functional connection in recovered COVID-19. METHODS Thirty-five previously hospitalized COVID-19 patients underwent 3D T1weighed imaging and resting-state fMRI at 6-month follow-up, and 36 demographic-matched healthy controls (HCs) were recruited accordingly. The amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) was used to assess the regional intrinsic brain activity and the influence of regional disturbances on FC with other brain regions. Spearman correlation analyses were performed to evaluate the association between brain function changes and clinical variables. RESULTS The incidence of neurosymptoms (6/35, 17.14%) decreased significantly at 6-month follow-up, compared with COVID-19 hospitalization stage (21/35, 60%). Compared with HCs, recovered COVID-19 exhibited higher ALFF in right precuneus, middle temporal gyrus, middle and inferior occipital gyrus, lower ALFF in right middle frontal gyrus and bilateral inferior temporal gyrus. Furthermore, setting seven abnormal activity regions as seeds, we found increased FC between right middle occipital gyrus and left inferior occipital gyrus, and reduced FC between right inferior occipital gyrus and right inferior temporal gyrus/bilateral fusiform gyrus, and between right middle frontal gyrus and right middle frontal gyrus/ supplementary motor cortex/ precuneus. Additionally, abnormal ALFF and FC were associated with clinical variables. CONCLUSIONS COVID-19 related neurological symptoms can self heal over time. Recovered COVID-19 presented functional alterations in right frontal, temporal and occipital lobe at 6-month follow-up. Most regional disturbances in ALFF were related to the weakening of short-range regional interactions in the same brain function.
Collapse
Affiliation(s)
- Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Guangxue Liu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodong Zhang
- Department of Radiology, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Miao Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
6
|
Chen Q, Wang M, Wu GW, Li WH, Ren XD, Wang YL, Wei X, Wang JN, Yang Z, Li XH, Li ZJ, Tang LR, Zhang P, Wang Z. Characteristics of white matter alterations along fibres in patients with bulimia nervosa: A combined voxelwise and tractography study. Eur J Neurosci 2023; 58:2874-2887. [PMID: 37423618 DOI: 10.1111/ejn.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Accumulating evidence supports the hypothesis that white matter (WM) abnormalities are involved in the pathophysiology of bulimia nervosa (BN); however, findings from in vivo neuroimaging studies have been inconsistent. We aimed to investigate the possible brain WM alterations, including WM volume and microstructure, in patients with BN. We recruited 43 BN patients and 31 healthy controls (HCs). All participants underwent structural and diffusion tensor imaging. Differences in WM volume and microstructure were evaluated using voxel-based morphometry, tract-based spatial statistics, and automated fibre quantification analysis. Compared with HCs, BN patients showed significantly decreased fractional anisotropy in the middle part of the corpus callosum (nodes 31-32) and increased mean diffusivity in the right cranial nerve V (CN V) (nodes 27-33 and nodes 55-88) and vertical occipital fasciculus (VOF) (nodes 58-85). Moreover, we found decreased axial diffusivity in the right inferior fronto-occipital fasciculus (node 67) and increased radial diffusivity in the CN V (nodes 22-34 and nodes 52-89) and left VOF (nodes 60-66 and nodes 81-85). Meanwhile, WM microstructural changes were correlated with patients' clinical manifestations. We did not find any significant differences in WM volume and the main WM fibre bundle properties between BN patients and HCs. Taken together, these findings provide that BN shows significant brain WM reorganization, but primarily in microstructure (part of WM fibre bundle), which is not sufficient to cause changes in WM volume. The automated fibre quantification analysis could be more sensitive to detect the subtle pathological changes in a point or segment of the WM fibre bundle.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Guo-Wei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dan Ren
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Yi-Ling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Ni Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hong Li
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Zhan-Jiang Li
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Li-Rong Tang
- Beijing Anding Hospital Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zoghbi AW, Lieberman JA, Girgis RR. The neurobiology of duration of untreated psychosis: a comprehensive review. Mol Psychiatry 2023; 28:168-190. [PMID: 35931757 PMCID: PMC10979514 DOI: 10.1038/s41380-022-01718-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Duration of untreated psychosis (DUP) is defined as the time from the onset of psychotic symptoms until the first treatment. Studies have shown that longer DUP is associated with poorer response rates to antipsychotic medications and impaired cognition, yet the neurobiologic correlates of DUP are poorly understood. Moreover, it has been hypothesized that untreated psychosis may be neurotoxic. Here, we conducted a comprehensive review of studies that have examined the neurobiology of DUP. Specifically, we included studies that evaluated DUP using a range of neurobiologic and imaging techniques and identified 83 articles that met inclusion and exclusion criteria. Overall, 27 out of the total 83 studies (32.5%) reported a significant neurobiological correlate with DUP. These results provide evidence against the notion of psychosis as structurally or functionally neurotoxic on a global scale and suggest that specific regions of the brain, such as temporal regions, may be more vulnerable to the effects of DUP. It is also possible that current methodologies lack the resolution needed to more accurately examine the effects of DUP on the brain, such as effects on synaptic density. Newer methodologies, such as MR scanners with stronger magnets, PET imaging with newer ligands capable of measuring subcellular structures (e.g., the PET ligand [11C]UCB-J) may be better able to capture these limited neuropathologic processes. Lastly, to ensure robust and replicable results, future studies of DUP should be adequately powered and specifically designed to test for the effects of DUP on localized brain structure and function with careful attention paid to potential confounds and methodological issues.
Collapse
Affiliation(s)
- Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Ragy R Girgis
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Li L, Rami FZ, Lee BM, Kim WS, Kim SW, Lee BJ, Yu JC, Lee KY, Won SH, Lee SH, Kim SH, Kang SH, Kim E, Chung YC. Three-year outcomes and predictors for full recovery in patients with early-stage psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:87. [PMID: 36302861 PMCID: PMC9613771 DOI: 10.1038/s41537-022-00301-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/15/2022] [Indexed: 05/19/2023]
Abstract
In the present study, various outcomes over 3-year period in patients with early stage psychosis including remission, recovery, relapse and medication adherence were investigated. Predictor for full recovery at year 3 was also examined. Three-year follow-up data in 534 patients with schizophrenia spectrum disorders (SSD) and psychotic disorder not otherwise specified (PNOS) were examined for overall outcome trajectories. The data of completers at year 3 (n = 157) were used to identify predictors for recovery using logistic regression. The rates of symptomatic remission and full recovery at 6-, 12-, 24-, and 36-month follow-up were 76.10, 69.20, 79.50, and 79.10%, and 22.80, 26.40, 28.60, and 39.60%, respectively. The rates of drop-out and relapse at 6-, 12-, 24-, and 36-month follow-up were 25.4, 29.5, 38.6, and 51.1%, and 3.7, 8.9, 19.0, and 38.9%, respectively. The rates of good adherence and prescription of Long-Acting Injectable Antipsychotics (LAIA) at 6-, 12-, 24- and 36-month follow-up were 87.8, 88.0, 91.9, and 93.9%, and 18.3, 21.7, 22.0, and 25.5%, respectively. Significant predictors for full recovery were duration of untreated psychosis (DUP), family intimacy and physical activity. We observed similar or better results on remission, recovery, and relapse rates compared to other previous studies. Effective psychosocial intervention should be provided to shorten the gap between remission and recovery rates and to address DUP, family issues, and exercise to enhance recovery.
Collapse
Affiliation(s)
- Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Bo Mi Lee
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Bong Ju Lee
- Department of Psychiatry, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Je-Chun Yu
- Department of Psychiatry, Eulji University School of Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Kyu Young Lee
- Department of Psychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | - Seung-Hee Won
- Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University College of Medicine, Goyang, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University College of Medicine, Guro Hospital, Seoul, Republic of Korea
| | - Shi Hyun Kang
- Department of Social Psychiatry and Rehabilitation, National Center for Mental Health, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
9
|
Ma J, Liu F, Wang Y, Ma L, Niu Y, Wang J, Ye Z, Zhang J. Frequency-dependent white-matter functional network changes associated with cognitive deficits in subcortical vascular cognitive impairment. Neuroimage Clin 2022; 36:103245. [PMID: 36451351 PMCID: PMC9668649 DOI: 10.1016/j.nicl.2022.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive decline associated with cerebrovascular diseases, in which white matter (WM) is highly vulnerable. Although previous studies have shown that blood oxygen level-dependent (BOLD) signals inside WM can effectively reflect neural activities, whether WM BOLD signal alterations are present and their roles underlying cognitive impairment in VCI remain largely unknown. In this study, 36 subcortical VCI (SVCI) patients and 36 healthy controls were enrolled to evaluate WM dysfunction. Specifically, fourteen distinct WM networks were identified from resting-state functional MRI using K-means clustering analysis. Subsequently, between-network functional connectivity (FC) and within-network BOLD signal amplitude of WM networks were calculated in three frequency bands (band A: 0.01-0.15 Hz, band B: 0.08-0.15 Hz, and band C: 0.01-0.08 Hz). Patients with SVCI manifested decreased FC mainly in bilateral parietal WM regions, forceps major, superior and inferior longitudinal fasciculi. These connections extensively linked with distinct WM networks and with gray-matter networks such as frontoparietal control, dorsal and ventral attention networks, which exhibited frequency-specific alterations in SVCI. Additionally, extensive amplitude reductions were found in SVCI, showing frequency-dependent properties in parietal, anterior corona radiate, pre/post central, superior and inferior longitudinal fasciculus networks. Furthermore, these decreased FC and amplitudes showed significant positive correlations with cognitive performances in SVCI, and high diagnostic performances for SVCI especially combining all bands. Our study indicated that VCI-related cognitive deficits were characterized by frequency-dependent WM functional abnormalities, which offered novel applicable neuromarkers for VCI.
Collapse
Affiliation(s)
- Juanwei Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yali Niu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Shah R, Ghosh A, Avasthi A, Ahuja CK, Khandelwal N, Nehra R. White Matter Microstructure and Gray Matter Volume in Cannabis-Induced Psychosis and Schizophrenia With Cannabis Use. J Neuropsychiatry Clin Neurosci 2022; 34:406-413. [PMID: 35872614 DOI: 10.1176/appi.neuropsych.21070172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study explored the differences in white matter (WM) microstructural integrity and gray matter (GM) volume between cannabis-induced psychosis (CIP) and schizophrenia with cannabis use (SZC). METHODS This cross-sectional study with convenience sampling involved three groups of 20 participants each (CIP, SZC, and a control group without substance use), matched on age, handedness, and education. CIP and SZC were diagnosed with the Psychiatric Research Interview for Substance and Mental Disorders. Diffusion tensor and kurtosis imaging were done, and fractional anisotropy (FA), mean diffusivity, and mean kurtosis were estimated. GM volume was measured with voxel-based morphometry. RESULTS Group comparisons revealed comparable age at initiation and duration and frequency of cannabis use between participants in the SZC and CIP groups. Participants with SZC had lower FA than controls in the anterior and retrolenticular internal capsule limbs, cingulate gyrus hippocampal formation, fornix, and superior fronto-occipital fasciculus (all p<0.05). Participants with CIP had lower FA than controls in the left fornix and right superior fronto-occipital fasciculus but higher FA than those with SZC in the left corticospinal tract (all p<0.05). On morphometry, participants with CIP had greater cerebellar GM volume than those with SZC and greater inferior frontal gyrus volumes than controls (all p<0.05). CONCLUSIONS Widespread WM microstructural abnormalities were observed in participants with SZC, and fewer but significant WM disruptions were observed in those with CIP. Better WM integrity in some WM fiber tracts and greater GM volumes in crucial brain areas among those with CIP may have prevented the transition to schizophrenia.
Collapse
Affiliation(s)
- Raghav Shah
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Abhishek Ghosh
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajit Avasthi
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Chirag K Ahuja
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Niranjan Khandelwal
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritu Nehra
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Ma J, Wu JJ, Hua XY, Zheng MX, Huo BB, Xing XX, Feng SY, Li B, Xu J. Alterations in brain structure and function in patients with osteonecrosis of the femoral head: a multimodal MRI study. PeerJ 2021; 9:e11759. [PMID: 34484979 PMCID: PMC8381875 DOI: 10.7717/peerj.11759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pain, a major symptom of osteonecrosis of the femoral head (ONFH), is a complex sensory and emotional experience that presents therapeutic challenges. Pain can cause neuroplastic changes at the cortical level, leading to central sensitization and difficulties with curative treatments; however, whether changes in structural and functional plasticity occur in patients with ONFH remains unclear. Methods A total of 23 ONFH inpatients who did not undergo surgery (14 males, nine females; aged 55.61 ± 13.79 years) and 20 controls (12 males, eight females; aged 47.25 ± 19.35 years) were enrolled. Functional indices of the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and a structural index of tract-based spatial statistics (TBSS) were calculated for each participant. The probability distribution of fiber direction was determined according to the ALFF results. Results ONFH patients demonstrated increased ALFF in the bilateral dorsolateral superior frontal gyrus, right medial superior frontal gyrus, right middle frontal gyrus, and right supplementary motor area. In contrast, ONFH patients showed decreased ReHo in the left superior parietal gyrus and right inferior temporal gyrus. There were no significant differences in TBSS or probabilistic tractography. Conclusion These results indicate cerebral pain processing in ONFH patients. It is advantageous to use functional magnetic resonance imaging to better understand pain pathogenesis and identify new therapeutic targets in ONFH patients.
Collapse
Affiliation(s)
- Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China.,Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-Yi Feng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Li
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Disrupted frontostriatal connectivity in primary insomnia: a DTI study. Brain Imaging Behav 2021; 15:2524-2531. [PMID: 33651331 DOI: 10.1007/s11682-021-00454-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the sleep-wake transition is considered to be associated with the pathology of patients with primary insomnia (PI). Previous animal study had reported that brain circuits between the striatum and cortex can regulate sleep-wake transitions. So far, few studies have systematically explored the structural connectivity of the striatum-centered circuits and their potential roles in patients with PI. In this study, we chosen the striatum as the seed and 10 priori target regions as masks to assess the structural connectivity by using seed-based classification with a diffusion tensor imaging (DTI) probabilistic tractography method. Track strengths of the striatum-centered circuits were compared between 22 patients with PI (41.27 ± 9.21 years) and 30 healthy controls (HC) (35.2 ± 8.14 years). Pittsburgh Sleep Quality Index (PSQI) was used to measure the sleep quality in all participants. Lower track strengths (left striatum- anterior cingulate cortex (ACC), left striatum- dorsal anterior cingulate cortex (dACC), left striatum-Hippocampus, and right striatum-Hippocampus) were observed in patients with PI compared to HC. Additionally, the lower track strengths of brain circuits mentioned above were negatively correlated with PSQI. Taken together, our findings revealed the lower tract strength of frontostriatal circuits in patients with PI and HC, which provided the implications of the system-level structural connections of frontostriatal circuits in the pathology of PI. We suggested that the track strengths of the frontostriatal circuits calculated from DTI can be the potential neuroimaging biomarkers of the sleep quality in patients with PI.
Collapse
|
14
|
Ning Y, Fang M, Zhang Y, Feng S, Feng Z, Liu X, Li K, Jia H. Attention Performance Correlated With White Matter Structural Brain Networks in Shift Work Disorder. Front Psychiatry 2021; 12:802830. [PMID: 35177998 PMCID: PMC8843848 DOI: 10.3389/fpsyt.2021.802830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
Neuroimaging studies have revealed that shift work disorder (SWD) affected the functional connectivity in specific brain regions and networks. However, topological disruptions in the structural connectivity of the white matter (WM) networks associated with attention function remain poorly understood. In the current study, we recruited 33 patients with SWD and 29 matched healthy subjects. The attention network test (ANT) was employed to investigate the efficiency of alerting, orienting, and executive control networks. The diffusion tensor imaging (DTI) tractography was used to construct the WM structural networks. The graph theory analysis was applied to detect the alterations of topological properties of structural networks. Our results showed lower alerting effect and higher executive effect for patients with SWD. Using the link-based analysis, 15 altered connectivity matrices (lower fiber numbers) were found between the two groups. Meanwhile, the graph theoretical analysis showed that the global efficiency and characteristic path length within SWD patients declined in contrast with the healthy controls. Furthermore, a significantly negative correlation was found between the executive effect and global network efficiency. Our findings provide the new insights into the fundamental architecture of interregional structural connectivity underlying attention deficits in SWD, which may be a potential biomarker for SWD.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meng Fang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yong Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhengtian Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xinzi Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Kuangshi Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Abdolalizadeh A, Ostadrahimi H, Mohajer B, Darvishi A, Sattarian M, Bayani Ershadi AS, Abbasi N. White Matter Microstructural Properties Associated with Impaired Attention in Chronic Schizophrenia: A Multi-Center Study. Psychiatry Res Neuroimaging 2020; 302:111105. [PMID: 32498000 DOI: 10.1016/j.pscychresns.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Attention as a key cognitive function is impaired in schizophrenia, interfering with the normal daily life of the patients. Previous studies on the microstructural correlates of attention in schizophrenia were limited to single fibers, did not include a control group, or did not adjust for drug dosage. In the current study, we investigated the association between microstructural properties of the white matter fibers and attention tests in 81 patients and 79 healthy controls from the Mind Clinical Imaging Consortium database. Integrity measures of superior longitudinal fasciculus, cingulum, genu, and splenium were extracted after tractography. Using an interaction model between diagnosis and microstructural properties, and adjusting for age, gender, acquisition site, education, and cumulative drug usage dose, and after correcting for family-wise error, we showed decreased integrity in the patients and a significant negative association between fractional anisotropy of the tracts and trail making test part A with a greater expected decrease in the attention per unit of decrease of integrity in the patients compared to the healthy controls. Our findings suggest that decreased integrity of the bilateral cingulum, and splenium, are independent of the cumulative drug dosage, age, gender, and site, and may underlie the impaired attention in the schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Darvishi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Sattarian
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Bergé D, Mané A, Lesh TA, Bioque M, Barcones F, Gonzalez-Pinto AM, Parellada M, Vieta E, Castro-Fornieles J, Rodriguez-Jimenez R, García-Portilla MP, Usall J, Carter CS, Cabrera B, Bernardo M, Janssen J. Elevated Extracellular Free-Water in a Multicentric First-Episode Psychosis Sample, Decrease During the First 2 Years of Illness. Schizophr Bull 2020; 46:846-856. [PMID: 31915835 PMCID: PMC7342177 DOI: 10.1093/schbul/sbz132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent diffusion imaging studies using free-water (FW) elimination have shown increased FW in gray matter (GM) and white matter (WM) in first-episode psychosis (FEP) and lower corrected fractional anisotropy (FAt) in WM in chronic schizophrenia. However, little is known about the longitudinal stability and clinical significance of these findings. To determine tissue-specific FW and FAt abnormalities in FEP, as part of a multicenter Spanish study, 132 FEP and 108 healthy controls (HC) were clinically characterized and underwent structural and diffusion-weighted MRI scanning. FEP subjects were classified as schizophrenia spectrum disorder (SSD) or non-SSD. Of these subjects, 45 FEP and 41 HC were longitudinally assessed and rescanned after 2 years. FA and FW tissue-specific measurements were cross-sectional and longitudinally compared between groups using voxel-wise analyses in the skeletonized WM and vertex-wise analyses in the GM surface. SSD and non-SSD subjects showed (a) higher baseline FW in temporal regions and in whole GM average (P.adj(SSD vs HC) = .003, P.adj(Non-SSD vs HC) = .040) and (b) lower baseline FAt in several WM tracts. SSD, but not non-SSD, showed (a) higher FW in several WM tracts and in whole WM (P.adj(SSD vs HC)= .049) and (b) a significant FW decrease over time in temporal cortical regions and in whole GM average (P.adj = .011). Increased extracellular FW in the brain is a reliable finding in FEP, and in SSD appears to decrease over the early course of the illness. FAt abnormalities are stable during the first years of psychosis.
Collapse
Affiliation(s)
- Daniel Bergé
- Neuroscience Department, Neuroimaging Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain,Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Bellaterra, Spain,CIBERSAM, Madrid, Spain,To whom correspondence should be addressed; IMIM, Neuroimaging group. c/ Doctor Aiguader 88, 08003, Barcelona, Spain; tel: +34-932483175, fax: 0034 93 248 3445, e-mail:
| | - Anna Mané
- Neuroscience Department, Neuroimaging Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain,Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Bellaterra, Spain,CIBERSAM, Madrid, Spain
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California at Davis (UCDAVIS), Sacramento, CA
| | - Miquel Bioque
- Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Fe Barcones
- Department of Psychiatry, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain,Department of Family Medicine, Hospital Universitario Miguel Servet, Zaragoza, Spain,Department of Medicine and Psychiatry, University of Zaragoza, Zaragoza, Spain
| | - Ana Maria Gonzalez-Pinto
- CIBERSAM, Madrid, Spain,BioAraba Health Research Institute, Vitoria-Gasteiz, Spain,Department of Neuroscience, University of the Basque Country, Leioa, Spain
| | - Mara Parellada
- CIBERSAM, Madrid, Spain,Child and Adolescent Psychiatry, Hospital Gregorio Marañon, Madrid, Spain
| | - Eduard Vieta
- CIBERSAM, Madrid, Spain,Bipolar and Depressive Disorders Unit, Hospital Clínic Barcelona, University of Barcelona, Barcelona, Spain
| | - Josefina Castro-Fornieles
- CIBERSAM, Madrid, Spain,Department of Child and Adolescent Psychiatry and Psychology, IDIBAPS, Hospital Clínic Barcelona, Barcelona, Spain
| | - Roberto Rodriguez-Jimenez
- CIBERSAM, Madrid, Spain,Department of Cognition and Psychosis, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | | | - Judith Usall
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California at Davis (UCDAVIS), Sacramento, CA
| | - Bibiana Cabrera
- CIBERSAM, Madrid, Spain,Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miguel Bernardo
- CIBERSAM, Madrid, Spain,Schizophrenia Unit, Hospital Clínic Barcelona, Barcelona, Spain
| | - Joost Janssen
- CIBERSAM, Madrid, Spain,Child and Adolescent Psychiatry, Hospital Universitario Gregorio Marañon, Madrid, Spain,Brain Center Rudolf Magnus, UMC Ultrecht, Ultrecht, The Netherlands
| | | |
Collapse
|
18
|
Jin M, Wang L, Wang H, Han X, Diao Z, Guo W, Yang Z, Ding H, Wang Z, Zhang P, Zhao P, Lv H, Liu W, Wang Z. Structural and Functional Alterations in Hemodialysis Patients: A Voxel-Based Morphometry and Functional Connectivity Study. Front Hum Neurosci 2020; 14:80. [PMID: 32218727 PMCID: PMC7078368 DOI: 10.3389/fnhum.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/24/2020] [Indexed: 01/23/2023] Open
Abstract
Structural and functional brain alterations have been always observed in end-stage renal disease (ESRD) patients undergoing hemodialysis. The present study aimed to investigate the gray matter volume (GMV) changes in hemodialysis patients compared with those noted in healthy subjects, as well as explore the associated functional connectivity alterations based on the abnormal GMV regions. The experiments revealed the effects of regional morphometry aberrance on the brain functional integrity. A total of 46 hemodialysis patients (53.11 ± 1.58 years, 28 males) and 47 healthy subjects (55.57 ± 0.86 years, 22 males) were enrolled in the present study. All subjects underwent high-resolution T1-weighted imaging, resting-state functional MR imaging, and laboratory examinations were performed in hemodialysis patients. The GMV deficits were analyzed using voxel-based morphometry (VBM) and regions with GMV alteration were defined as seeds for functional connectivity analysis. Correlation analyses between significantly different regions and the results of the blood examination were further performed. We found that bilateral thalamus exhibited significantly increased volumes in the hemodialysis patients compared with those of the healthy subjects. However, the bilateral rectus, bilateral caudate, and bilateral temporal gyrus demonstrated significantly decreased volumes. When the regions with GMV alterations were defined as seeds, the hemodialysis patients exhibited decreased integrations in the thalamo-cortical network and within the basal-ganglia connection. The present study revealed the presence of different types of structural and functional brain impairments in hemodialysis patients.
Collapse
Affiliation(s)
- Mei Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Wang
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Han
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zongli Diao
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wang Guo
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Zhu F, Liu Y, Liu F, Yang R, Li H, Chen J, Kennedy DN, Zhao J, Guo W. Functional asymmetry of thalamocortical networks in subjects at ultra-high risk for psychosis and first-episode schizophrenia. Eur Neuropsychopharmacol 2019; 29:519-528. [PMID: 30770234 DOI: 10.1016/j.euroneuro.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 01/18/2023]
Abstract
Disrupted functional asymmetry has been implicated in schizophrenia. However, it remains unknown whether disrupted functional asymmetry originates from intra-hemispheric and/or inter-hemispheric functional connectivity (FC) in the patients, and whether it starts at very early stage of psychosis. Seventy-six patients with first-episode, drug-naive schizophrenia, 74 subjects at ultra-high risk for psychosis (UHR), and 71 healthy controls underwent resting-state functional magnetic resonance imaging. The 'Parameter of asymmetry' (PAS) metric was calculated and support vector machine (SVM) classification analysis was applied to analyze the data. Compared with healthy controls, patients exhibited decreased PAS in the left thalamus/pallidum, right hippocampus/parahippocampus, right inferior frontal gyrus/insula, right thalamus, and left inferior parietal lobule, and increased PAS in the left calcarine, right superior occipital gyrus/middle occipital gyrus, and right precentral gyrus/postcentral gyrus. By contrast, UHR subjects showed decreased PAS in the left thalamus relative to healthy controls. A negative correlation was observed between decreased PAS in the right hippocampus/parahippocampus and Brief Visuospatial Memory Test-Revised (BVMT-R) scores in the patients (r = -0.364, p = 0.002). Moreover, the PAS values in the left thalamus could discriminate the patients/UHR subjects from the controls with acceptable sensitivities (68.42%/81.08%). First-episode patients and UHR subjects shared decreased PAS in the left thalamus. This observed pattern of functional asymmetry highlights the involvement of the thalamus in the pathophysiology of psychosis and may also be applied as a very early marker for psychosis.
Collapse
Affiliation(s)
- Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - David N Kennedy
- Department of Psychiatry, Division of Neuroinformatics, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA 01605, United States
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
20
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Liang Y, Zhang H, Tan X, Liu J, Qin C, Zeng H, Zheng Y, Liu Y, Chen J, Leng X, Qiu S, Shen D. Local Diffusion Homogeneity Provides Supplementary Information in T2DM-Related WM Microstructural Abnormality Detection. Front Neurosci 2019; 13:63. [PMID: 30792623 PMCID: PMC6374310 DOI: 10.3389/fnins.2019.00063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
Abstract
Objectives: We aimed to investigate whether an inter-voxel diffusivity metric (local diffusion homogeneity, LDH), can provide supplementary information to traditional intra-voxel metrics (i.e., fractional anisotropy, FA) in white matter (WM) abnormality detection for type 2 diabetes mellitus (T2DM). Methods: Diffusion tensor imaging was acquired from 34 T2DM patients and 32 healthy controls. Voxel-based group-difference comparisons based on LDH and FA, as well as the association between the diffusion metrics and T2DM risk factors [i.e., body mass index (BMI) and systolic blood pressure (SBP)], were conducted, with age, gender and education level controlled. Results: Compared to the controls, T2DM patients had higher LDH in the pons and left temporal pole, as well as lower FA in the left superior corona radiation (p < 0.05, corrected). In T2DM, there were several overlapping WM areas associated with BMI as revealed by both LDH and FA, including right temporal lobe and left inferior parietal lobe; but the unique areas revealed only by using LDH included left inferior temporal lobe, right supramarginal gyrus, left pre- and post-central gyrus (at the semiovale center), and right superior radiation. Overlapping WM areas that associated with SBP were found with both LDH and FA, including right temporal pole, bilateral orbitofrontal area (rectus gyrus), the media cingulum bundle, and the right cerebellum crus I. However, the unique areas revealed only by LDH included right inferior temporal lobe, right inferior occipital lobe, and splenium of corpus callosum. Conclusion: Inter- and intra-voxel diffusivity metrics may have different sensitivity in the detection of T2DM-related WM abnormality. We suggested that LDH could provide supplementary information and reveal additional underlying brain changes due to diabetes.
Collapse
Affiliation(s)
- Yi Liang
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xin Tan
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarui Liu
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zeng
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanting Zheng
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxian Chen
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Leng
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- Medical Imaging Research Office, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
22
|
Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res 2019; 204:238-244. [PMID: 30177343 DOI: 10.1016/j.schres.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Potential effects of initiating acute antipsychotic treatment on white matter (WM) microstructure in schizophrenia patients remain poorly characterized. Thirty-five drug-naïve first-episode schizophrenia patients were scanned before and after six weeks of treatment with second-generation antipsychotic medications. Nineteen demographically matched healthy subjects were scanned twice over the same time interval. Tract-based spatial statistics was used to test for changes in WM microstructural integrity after treatment. Widespread fractional anisotropy (FA) decrease was found in patients after antipsychotic treatment in bilateral posterior corona radiata, anterior corona radiata, superior corona radiata and posterior thalamic radiation, left posterior limb of the internal capsule, and mid-body of the corpus callosum. These effects appeared to result primarily from decreased axial diffusivity. These findings suggest an effect on brain white matter from acute antipsychotic therapy in schizophrenia.
Collapse
|
23
|
Mamah D, Ji A, Rutlin J, Shimony JS. White matter integrity in schizophrenia and bipolar disorder: Tract- and voxel-based analyses of diffusion data from the Connectom scanner. NEUROIMAGE-CLINICAL 2018; 21:101649. [PMID: 30639179 PMCID: PMC6411967 DOI: 10.1016/j.nicl.2018.101649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 11/22/2022]
Abstract
Background Diffusion imaging abnormalities have been associated with schizophrenia (SZ) and bipolar disorder (BD), indicating impaired structural connectivity. Newer methods permit the automated reconstruction of major white matter tracts from diffusion-weighted MR images in each individual's native space. Using high-definition diffusion data from SZ and BP subjects, we investigated brain white matter integrity using both an automated tract-based and voxel-based methods. Methods Using a protocol matched to the NIH (Young-Adult) Human Connectome Project (and collected on the same customized ‘Connectom’ scanner), diffusion scans were acquired from 87 total participants (aged 18–30), grouped as SZ (n = 24), BD (n = 33) and healthy controls (n = 30). Fractional anisotropy (FA) of eighteen white matter tracks were analyzed using the TRACULA software. Voxel-wise statistical analyses of diffusion data was carried out using the tract-based spatial statistics (TBSS) software. TRACULA group effects and clinical correlations were investigated using analyses of variance and multiple regression. Results TRACULA analysis identified a trend towards lower tract FA in SZ patients, most significantly in the left anterior thalamic radiation (ATR; p = .04). TBSS results showed significantly lower FA voxels bilaterally within the cerebellum and unilaterally within the left ATR, posterior thalamic radiation, corticospinal tract, and superior longitudinal fasciculus in SZ patients compared to controls (FDR corrected p < .05). FA in BD patients did not significantly differ from controls using either TRACULA or TBSS. Multiple regression showed FA of the ATR as predicting chronic mania (p = .0005) and the cingulum-angular bundle as predicting recent mania (p = .02) in patients. TBSS showed chronic mania correlating with FA voxels within the left ATR and corpus callosum. Conclusions White matter abnormality in SZ varies in severity across different white matter tract regions. Our results indicate that voxel-based analysis of diffusion data is more sensitive than tract-based analysis in identifying such abnormalities. Absence of white matter abnormality in BD may be related to medication effects and age. Our study investigated white matter integrity in 87 young schizophrenia, bipolar disorder and control subjects with a tract-based (TRACULA) and a voxel-based (TBSS) approach, using high-definition diffusion imaging data obtained from the Human Connectome Project ‘Connectom’ scanner. TRACULA evaluated fractional anisotropy (FA) from 18 white matter tracts. TBSS evaluated regional white matter FA. TRACULA identified a trend towards lower tract FA in schizophrenia subjects across multiple tracts. TBSS results showed mainly unilaterally decreased FA voxels in schizophrenia subjects. FA in bipolar patients did not significantly differ from controls with either method. With TRACULA, multiple regression showed that anterior thalamic radiation FA predicted chronic affectivity and cingulum-angular bundle FA predicted recent mania in patients. With TBSS, chronic mania correlated with FA voxels within the left anterior thalamic radiation and corpus callosum.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - Andrew Ji
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Department Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Hegarty CE, Jolles DD, Mennigen E, Jalbrzikowski M, Bearden CE, Karlsgodt KH. Disruptions in White Matter Maturation and Mediation of Cognitive Development in Youths on the Psychosis Spectrum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:423-433. [PMID: 30745004 DOI: 10.1016/j.bpsc.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Psychosis onset typically occurs in adolescence, and subclinical psychotic experiences peak in adolescence. Adolescence is also a time of critical neural and cognitive maturation. Using cross-sectional data from the Philadelphia Neurodevelopmental Cohort, we examined whether regional white matter (WM) development is disrupted in youths with psychosis spectrum (PS) features and whether WM maturation mediates the relationship between age and cognition in typically developing (TD) youths and youths with PS features. METHODS We examined WM microstructure, as assessed via diffusion tensor imaging, in 670 individuals (age 10-22 years; 499 TD group, 171 PS group) by using tract-based spatial statistics. Multiple regressions were used to evaluate age × group interactions on regional WM indices. Mediation analyses were conducted on four cognitive domains-executive control, complex cognition, episodic memory, and social cognition-using a bootstrapping approach. RESULTS There were age × group interactions on fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF) and retrolenticular internal capsule. Follow-up analyses revealed these effects were significant in both hemispheres. Bilateral SLF FA mediated the relationship between age and complex cognition in the TD group, but not the PS group. Regional FA did not mediate the age-associated increase in any of the other cognitive domains. CONCLUSIONS Our results showed aberrant age-related effects in SLF and retrolenticular internal capsule FA in youths with PS features. SLF development supports emergence of specific higher-order cognitive functions in TD youths, but not in youths with PS features. Future mechanistic explanations for these relationships could facilitate development of earlier and refined targets for therapeutic interventions.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Dietsje D Jolles
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Eva Mennigen
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carrie E Bearden
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California
| | - Katherine H Karlsgodt
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
25
|
Sex difference in association of symptoms and white matter deficits in first-episode and drug-naive schizophrenia. Transl Psychiatry 2018; 8:281. [PMID: 30563964 PMCID: PMC6298972 DOI: 10.1038/s41398-018-0346-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/10/2018] [Accepted: 11/25/2018] [Indexed: 11/10/2022] Open
Abstract
Accumulating evidence shows that disruption of white matter (WM) may be involved in the pathophysiology of schizophrenia, even at the onset of psychosis. However, very few studies have explored sex difference in its association with psychopathology in schizophrenia. This study aims to compare sex differences in clinical features and WM abnormalities in first-episode and drug-naive (FEDN) schizophrenia among Han Chinese inpatients. The WM fractional anisotropy (FA) values of the whole-brain were determined using voxel-based diffusion tensor imaging (DTI) in 39 (16 males and 23 females) FEDN patients with schizophrenia and 30 healthy controls (13 males and 17 females) matched for gender, age, and education. Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS).Our results showed that compared with the controls, the patients showed widespread areas of lower FA, including corpus callosum, brainstem, internal capsule, cingulate, and cerebellum (all adjusted p < 0.01). Further, male patients showed lower FA values in left cingulate (F = 4.92, p = 0.033), but higher scores on the PANSS total, positive, and general psychopathology subscale scores (all p < 0.01) than female patients. Multivariate regression analysis showed that for male patients, FA values in right corpus callosum were positively associated with the PANSS total (beta = 0.785, t = 3.76, p = 0.002) and the negative symptom scores (beta = 0.494, t = 2.20, p = 0.044), while for female patients, FA values in left cingulate were negatively associated with the PANSS positive symptom score (beta = -0.717, t = -2.25, p = 0.041). Our findings indicate sex difference in white matter disconnectivity and its association with psychopathological symptoms in an early course of schizophrenia onset.
Collapse
|
26
|
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect. PLoS One 2018; 13:e0205369. [PMID: 30300425 PMCID: PMC6177186 DOI: 10.1371/journal.pone.0205369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have produced extensive evidence on white matter abnormalities in schizophrenia (SZ). However, optimum consistency and reproducibility have not been achieved, and reported low white matter tract integrity in patients with SZ varies between studies. A whole-brain imaging study with a large sample size is needed. This study aimed to investigate white matter integrity in the corpus callosum and connections between regions of interests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI), two-tensor full-brain tractography was performed; DWIs were parcellated by processing and registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter query language was used to extract white matter fiber tracts. We evaluated group differences in means of diffusion measures between the patients and controls, and correlations of diffusion measures with the severity of clinical symptoms and cognitive impairment in the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05 was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace (TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a significant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longitudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive subscale score. However, these correlations were not significant after correction for multiple comparisons. These results indicated widespread white matter fiber tract abnormalities in patients with SZ, contributing to SZ pathophysiology.
Collapse
|
27
|
Zhao W, Guo S, He N, Yang AC, Lin CP, Tsai SJ. Callosal and subcortical white matter alterations in schizophrenia: A diffusion tensor imaging study at multiple levels. Neuroimage Clin 2018; 20:594-602. [PMID: 30186763 PMCID: PMC6120601 DOI: 10.1016/j.nicl.2018.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging and its distinct capability to detect micro-structural changes in vivo allows the exploration of white matter (WM) abnormalities in patients who have been diagnosed with schizophrenia; however, the results regarding the anatomical positions and degree of abnormalities are inconsistent. In order to obtain more robust and stable findings, we conducted a multi-level analysis to investigate WM disruption in a relatively large sample size (142 schizophrenia patients and 163 healthy subjects). Specifically, we evaluated the univariate fractional anisotropy (FA) in voxel level; the bivariate pairwise structural connectivity between regions using deterministic tractography as the network node defined by the Human Brainnetome Atlas; and the multivariate network topological properties, including the network hub, efficiency, small-worldness, and strength. Our data demonstrated callosal and subcortical WM alterations in patients with schizophrenia. These disruptions were evident in both voxel and connectivity levels and further supported by associations between FA values and illness duration. Based on the findings regarding topological properties, the structural network showed weaker global integration in patients with schizophrenia than in healthy subjects, while brain network hubs showed decreased functionality. We replicated these findings using an automated anatomical labeling atlas to define the network node. Our study indicates that callosal and subcortical WM disruptions are biomarkers for chronic schizophrenia.
Collapse
Affiliation(s)
- Wei Zhao
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China
| | - Shuixia Guo
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, PR China.
| | - Ningning He
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, USA; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Xu SW, Xi JH, Lin C, Wang XY, Fu LY, Kralik SF, Chen ZQ. Cognitive decline and white matter changes in mesial temporal lobe epilepsy. Medicine (Baltimore) 2018; 97:e11803. [PMID: 30113469 PMCID: PMC6113048 DOI: 10.1097/md.0000000000011803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Noninvasive imaging plays a pivotal role in assessing the brain structural and functional changes in presurgical mesial temporal lobe epilepsy (MTLE) patients. Our goal was to study the relationship between the changes of cerebral white matter (WM) and cognitive functions in MTLE patients.Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) MRI were performed on 24 right-handed MTLE patients (12 with left MTLE and 12 with right MTLE) and 12 matching healthy controls. Gray matter (GM), WM, and whole brain (WB) volumes were measured with VBM while fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured with TBSS. All patients and controls also underwent Montreal Cognitive Assessment (MoCA) before MRI.WM volume and the ratio of WM volume versus WB volume were significantly lower in MTLE patients compared with controls. WM volume in MTLE patients had a positive correlation with MoCA score (r = 0.71, P < .001) and a negative correlation with the duration of epilepsy (r = -0.693, P < .001). Volumetric differences were mainly located in the corpus callosum, uncinate fasciculus, inferior longitudinal fasciculus, and superior longitudinal fasciculus. FA of both left MTLE and right MTLE groups was significantly decreased, while MD, AD, and RD were significantly increased. Most left MTLE patients showed bilateral WM fiber tract changes versus ipsilateral changes for right MTLE patients.Changes in DTI parameters and WM volume were found in MTLE patients and more ipsilateral changes were seen with right-sided MTLE. Cognitive changes of MTLE patients were found to be correlated with the changes in WM structure. These findings not only provide useful information for lateralization of the seizure focus but can also be used to explain functional connectivity disorders which may be an important physiological basis for cognitive changes in patients with MTLE.
Collapse
Affiliation(s)
- Shang-wen Xu
- Department of Medical Imaging, Fuzhou General Hospital, Xi’erhuan Beilu, Fuzhou, Fujian, PR China
| | - Ji-hui Xi
- Department of Medical Imaging, Fuzhou General Hospital, Xi’erhuan Beilu, Fuzhou, Fujian, PR China
| | - Chen Lin
- DABR Department of Radiology Mayo Clinic
| | - Xiao-yang Wang
- Department of Medical Imaging, Fuzhou General Hospital, Xi’erhuan Beilu, Fuzhou, Fujian, PR China
| | - Li-yuan Fu
- Department of Medical Imaging, Fuzhou General Hospital, Xi’erhuan Beilu, Fuzhou, Fujian, PR China
| | - Stephen Francis Kralik
- Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN
| | - Zi-qian Chen
- Department of Medical Imaging, Fuzhou General Hospital, Xi’erhuan Beilu, Fuzhou, Fujian, PR China
| |
Collapse
|
29
|
Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, Semeralul M, Daskalakis ZJ. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain Imaging Behav 2018; 11:1836-1848. [PMID: 27915397 DOI: 10.1007/s11682-016-9657-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) and obsessive-compulsive disorder (OCD) are psychiatric disorders with abnormalities in white matter structure. These disorders share high comorbidity and family history of OCD is a risk factor for SCZ which suggests some shared neurobiology. White matter was examined using diffusion tensor imaging in relativity large samples of SCZ (N = 48), OCD (N = 38) and non-psychiatric controls (N = 45). Fractional anisotropy (FA) was calculated and tract based spatial statistics were used to compare groups. In a whole brain analysis, SCZ and OCD both showed small FA reductions relative to controls in the corpus callosum. Both SCZ and OCD showed accelerated reductions in FA with age; specifically in the left superior longitudinal fasciculus in OCD, while the SCZ group demonstrated a more widespread pattern of FA reduction. Patient groups did not differ from each other in total FA or age effects in any regions. A general linear model using 13 a-priori regions of interest showed marginal group, group*gender, and group*age interactions. When OCD and SCZ groups were analyzed together, these marginal effects became significant (p < 0.05), suggesting commonalities exist between these patient groups. Overall, our results demonstrate a similar pattern of accelerated white matter decline with age and greater white matter deficit in females in OCD and SCZ, with overlap in the spatial pattern of deficits. There was no evidence for statistical differences in overall white matter between OCD and SCZ. Taken together, the results support the notion of shared neurobiology in SCZ and OCD.
Collapse
Affiliation(s)
- Colin Hawco
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada. .,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natasha Radhu
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - David Rotenberg
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Felicity A Backhouse
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mawahib Semeralul
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Kikinis Z, Cho KIK, Coman IL, Radoeva PD, Bouix S, Tang Y, Eckbo R, Makris N, Kwon JS, Kubicki M, Antshel KM, Fremont W, Shenton ME, Kates WR. Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav 2018; 11:1353-1364. [PMID: 27730479 DOI: 10.1007/s11682-016-9602-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) is considered to be a promising cohort to explore biomarkers of schizophrenia risk based on a 30 % probability of developing schizophrenia in adulthood. In this study, we investigated abnormalities in the microstructure of white matter in adolescents with 22q11DS and their specificity to prodromal symptoms of schizophrenia. METHODS Diffusion Magnetic Resonance Imaging (dMRI) data were acquired from 50 subjects with 22q11DS (9 with and 41 without prodromal psychotic symptoms), and 47 matched healthy controls (mean age 18 +/-2 years). DMRI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and compared between groups using the Tract Based Spatial Statistics (TBSS) method. Additionally, correlations between dMRI measures and scores on positive symptoms were performed. RESULTS Reductions in MD, AD and RD (but not FA) were found in the corpus callosum (CC), left and right superior longitudinal fasciculus (SLF), and left and right corona radiata in the entire 22q11DS group. In addition, the 22q11DS subgroup with prodromal symptoms showed reductions in AD and MD, but no changes in RD when compared to the non-prodromal subgroup, in CC, right SLF, right corona radiata and right internal capsule. Finally, AD values in these tracts correlated with the scores on the psychosis subscale. CONCLUSION Microstructural abnormalities in brain white matter are present in adolescent subjects with prodromal psychotic symptoms.
Collapse
Affiliation(s)
- Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.
| | - Kang Ik K Cho
- Brain and Cognitive Sciences, Department of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Petya D Radoeva
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA
| | - Yingying Tang
- Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan Eckbo
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Psychiatry and Neurology Departments, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Soo Kwon
- Brain and Cognitive Sciences, Department of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin M Antshel
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
31
|
Zhang X, Gao J, Zhu F, Wang W, Fan Y, Ma Q, Ma X, Yang J. Reduced white matter connectivity associated with auditory verbal hallucinations in first-episode and chronic schizophrenia: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2018; 273:63-70. [PMID: 29395749 DOI: 10.1016/j.pscychresns.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 01/10/2023]
Abstract
This study aims to explore whether auditory verbal hallucinations (AVH) in schizophrenia are associated with the white matter abnormalities in tracts connecting language, auditory and memory/limbic networks in first-episode and chronic schizophrenia patients. 21 first-episode (FE-AVH) and 12 chronic (chronic-AVH group) patients who suffered from auditory verbal hallucinations and 26 healthy controls (HC group) were enrolled. Diffusion tensor imaging with tract-based spatial statistics was performed to assess the white matter changes between the two patient groups and HC group. Decreased fractional anisotropy and increased radial diffusivity were found in the patient groups compared to the HC group in multiple white matter tracts including the corpus callosum, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, cingulum, external capsule and anterior limb of the internal capsule. The chronic-AVH group showed more widespread white matter impairment than the FE-AVH group. Furthermore, increased axial diffusivity was also observed in some discrete regions of the chronic-AVH group. Auditory verbal hallucinations in schizophrenia are accompanied by white matter abnormalities in tracts connecting the language, auditory and memory/limbic networks. Chronic-AVH schizophrenia patients may present with more severe neurodegeneration relative to first-episode patients.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, PR China; Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, PR China
| | - Jie Gao
- Department of MRI Diagnosis, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, PR China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, PR China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, PR China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, PR China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, PR China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, PR China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, PR China.
| |
Collapse
|
32
|
Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando' A, Zennaro A. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2017; 270:8-21. [PMID: 28988022 DOI: 10.1016/j.pscychresns.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
Collapse
Affiliation(s)
- Enrico Vitolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Mona Karina Tatu
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Claudia Pignolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Franco Cauda
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy; GCS-fMRI, Koelliker Hospital, Corso Galileo Ferraris 247/255, 10134 Turin, TO, Italy.
| | - Tommaso Costa
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Agata Ando'
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Alessandro Zennaro
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| |
Collapse
|
33
|
Zouraraki C, Karamaouna P, Karagiannopoulou L, Giakoumaki SG. Schizotypy-Independent and Schizotypy-Modulated Cognitive Impairments in Unaffected First-Degree Relatives of Schizophrenia-spectrum Patients. Arch Clin Neuropsychol 2017; 32:1010-1025. [PMID: 28383650 DOI: 10.1093/arclin/acx029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/27/2017] [Indexed: 11/14/2022] Open
Abstract
Objective The aim of the study was to compare the neurocognitive profile of unaffected first-degree relatives of schizophrenia patients with control individuals, controlling for different schizotypal traits. Method One hundred and fifteen adult unaffected first-degree relatives of schizophrenia-spectrum patients and 122 controls were tested for schizotypy with the Schizotypal Personality Questionnaire. They also underwent a thorough neurocognitive assessment with a range of tasks covering several aspects of executive functioning. Between-group differences in cognition were examined first with multivariate analysis of variance and then with a series of multivariate analyses of covariance, including the schizotypal dimensions as covariates. Results The relatives had higher scores on all schizotypal dimensions compared with controls and poorer planning, problem solving, strategy formation and working memory, irrespective of schizotypal traits. They also scored lower in executive working memory and verbal fluency. The difference in executive working memory was sensitive to the effects of paranoid and negative schizotypy (both dimensions abolished the between-group difference) whereas the difference in verbal fluency was sensitive only to the effects of paranoid schizotypy. Neither cognitive-perceptual nor disorganized schizotypy accounted for any differences in neurocognition between relatives and the controls. Conclusions Impairments in planning, problem solving, strategy formation and working memory are "core" impairments in the schizophrenia-spectrum, possibly due to high heritability effects in these functions. Impairments in executive working memory and verbal fluency are associated with paranoid and negative schizotypy, possibly due to alterations in a common fronto-temporo-parietal neural network.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | - Penny Karamaouna
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | - Leda Karagiannopoulou
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece
| | | |
Collapse
|
34
|
Lu FM, Dai J, Couto TA, Liu CH, Chen H, Lu SL, Tang LR, Tie CL, Chen HF, He MX, Xiang YT, Yuan Z. Diffusion Tensor Imaging Tractography Reveals Disrupted White Matter Structural Connectivity Network in Healthy Adults with Insomnia Symptoms. Front Hum Neurosci 2017; 11:583. [PMID: 29249951 PMCID: PMC5715269 DOI: 10.3389/fnhum.2017.00583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal connectivity in specific brain regions, but the topological disruptions in the white matter (WM) structural connectivity networks remain largely unknown in insomnia. The current study uses diffusion tensor imaging (DTI) tractography to construct the WM structural networks and graph theory analysis to detect alterations of the brain structural networks. The study participants comprised 30 healthy subjects with insomnia symptoms (IS) and 62 healthy subjects without IS. Both the two groups showed small-world properties regarding their WM structural connectivity networks. By contrast, increased local efficiency and decreased global efficiency were identified in the IS group, indicating an insomnia-related shift in topology away from regular networks. In addition, the IS group exhibited disrupted nodal topological characteristics in regions involving the fronto-limbic and the default-mode systems. To our knowledge, this is the first study to explore the topological organization of WM structural network connectivity in insomnia. More importantly, the dysfunctions of large-scale brain systems including the fronto-limbic pathways, salience network and default-mode network in insomnia were identified, which provides new insights into the insomnia connectome. Topology-based brain network analysis thus could be a potential biomarker for IS.
Collapse
Affiliation(s)
- Feng-Mei Lu
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jing Dai
- Chengdu Mental Health Center, Chengdu, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tania A Couto
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chun-Hong Liu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Heng Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shun-Li Lu
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Tang
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chang-Le Tie
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hua-Fu Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Man-Xi He
- Chengdu Mental Health Center, Chengdu, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu-Tao Xiang
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
35
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
36
|
Sun J, Sun X, Zhang N, Wang Q, Cai H, Qi Y, Li T, Qin W, Yu C. Analysis of brain and spinal cord lesions to occult brain damage in seropositive and seronegative neuromyelitis optica. Eur J Radiol 2017; 94:25-30. [PMID: 28941756 DOI: 10.1016/j.ejrad.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES According to aquaporin-4 antibody (AQP4-Ab), neuromyelitis optica (NMO) can be divided into seropositive and seronegative subgroups. The purpose of this study was to a) compare the distribution of spinal cord and brain magnetic resonance imaging (MRI) lesions between seropositive and seronegative NMO patients; b) explore occult brain damage in seropositive and seronegative NMO patients; and c) explore the contribution of visible lesions to occult grey and white matter damage in seropositive and seronegative NMO patients. MATERIALS AND METHODS Twenty-two AQP4-Ab seropositive and 14 seronegative NMO patients and 30 healthy controls were included in the study. Two neuroradiologists independently measured the brain lesion volume (BLV) and the length of spinal cord lesion (LSCL) and recorded the region of brain lesions. The normal-appearing grey matter volume (NAGM-GMV) and white matter fractional anisotropy (NAWM-FA) were calculated for each subject to evaluate occult brain damage. RESULTS The seropositive patients displayed more extensive damage in the spinal cord than the seronegative patients, and the seronegative group had a higher proportion of patients with brainstem lesions (28.57%) than the seropositive group (4.55%, P=0.064). Both NMO subgroups exhibited reduced NAGM-GMV and NAWM-FA compared with the healthy controls. NAGM-GMV was negatively correlated with LSCL in the seropositive group (rs=-0.444, P=0.044) and with BLV in the seronegative group (rs=-0.768, P=0.002). NAWM-FA was also negatively correlated with BLV in the seropositive group (rs=-0.682, P<0.001). CONCLUSION Our findings suggest that the occult brain damage in these two NMO subgroups may be due to different mechanisms, which need to be further clarified.
Collapse
Affiliation(s)
- Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xianting Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiuhui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huanhuan Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Qi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ting Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
37
|
Wang S, Zuo L, Jiang T, Peng P, Chu S, Xiao D. Abnormal white matter microstructure among early adulthood smokers: a tract-based spatial statistics study. Neurol Res 2017; 39:1094-1102. [PMID: 28934078 DOI: 10.1080/01616412.2017.1379277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives Cigarette smoking is an important risk factor of central nervous system diseases. However, the white matter (WM) integrity of early adulthood chronic smokers has not been attached enough importance to as it deserves, and the relationship between the chronic smoking effect and the WM is still unclear. The purpose of this study was to investigate whole - brain WM microstructure of early adulthood smokers and explore the structural correlates of behaviorally relevant features of the disorder. Methods We compared multiple DTI-derived indices, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), between early adulthood smokers (n = 19) and age-, education- and gender-matched controls (n = 23) using a whole-brain tract-based spatial statistics approach. We also explored the correlations of the mean DTI index values with pack-years and Fagerström Test for Nicotine Dependence. Results The smokers showed increased FA in left superior longitudinal fasciculus (SLF), left anterior corona radiate, left superior corona radiate, left posterior corona radiate, left external capsule (EC), left inferior fronto-occipital fasciculus and sagittal stratum (SS), and decreased RD in left SLF. There were significant negative correlations among the average FA in the left external capsule and pack-years in smokers. In addition, significant positive correlation was found between RD values in the left SLF and pack-years. Discussion These findings indicate that smokers show microstructural changes in several white-matter regions. The correlation between the cumulative effect and microstructural WM alternations suggests that WM properties may become the new biomarkers in practice.
Collapse
Affiliation(s)
- Shuangkun Wang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Long Zuo
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Tao Jiang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Peng Peng
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Shuilian Chu
- b Clinical Research Center, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Dan Xiao
- c Tobacco Medicine and Tobacco Cessation Center , China-Japan Friendship Hospital , Beijing , China.,d WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention , China-Japan Friendship Hospital , Beijing , China
| |
Collapse
|
38
|
Du X, Liu L, Yang Y, Qi X, Gao P, Zhang Y, Zhu J, Du G, Dai S, Li X, Zhang Q. Diffusion tensor imaging of the structural integrity of white matter correlates with impulsivity in adolescents with internet gaming disorder. Brain Behav 2017; 7:e00753. [PMID: 28828214 PMCID: PMC5561314 DOI: 10.1002/brb3.753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 05/14/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Internet gaming disorder (IGD) is usually defined as the inability of an individual to control internet gaming resulting in serious negative consequences, and trait impulsivity has been viewed as a hallmark feature of IGD. Recent studies have suggested that the structural integrity of the white matter (WM) plays an important role in the neuromediation of an individual's impulsivity. However, no study has examined the association between WM integrity and impulsivity in IGD adolescents. METHODS In this study, 33 adolescents with IGD and 32 healthy controls (HCs) were recruited, and the intergroup differences in the relationships between impulsivity and fractional anisotropy (FA) values across the whole brain WM were investigated using voxel-wise correlation analyses. RESULTS Our results revealed significant intergroup differences in the correlations between impulsivity and the FA values of the right corticospinal tract (CST) and the right occipital WM. Region of interest-based tests revealed that the FA values of these clusters were positive or insignificantly correlated with impulsivity in the IGD adolescents contrasted to the significantly negative correlation in the HCs. CONCLUSIONS This altered correlations in the IGD adolescents might reflect potential WM microstructural changes which may be associated with the greater impulsivity of IGD adolescents and provide possible therapeutic targets for interventions in this population.
Collapse
Affiliation(s)
- Xin Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Linlin Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Yongxin Yang
- Department of Psychology Linyi Fourth People's Hospital Linyi Shandong China
| | - Xin Qi
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Peihong Gao
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Jiyu Zhu
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Guijin Du
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Shouping Dai
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Xiaodong Li
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
39
|
Zhao X, Sui Y, Yao J, Lv Y, Zhang X, Jin Z, Chen L, Zhang X. Reduced white matter integrity and facial emotion perception in never-medicated patients with first-episode schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:57-64. [PMID: 28385492 DOI: 10.1016/j.pnpbp.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Facial emotion perception is impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve abnormality in white matter (WM), few studies have examined the correlation between facial emotion perception and WM abnormalities in never-medicated patients with first-episode schizophrenia. The present study tested associations between facial emotion perception and WM integrity in order to investigate the neural basis of impaired facial emotion perception in schizophrenia. METHODS Sixty-three schizophrenic patients and thirty control subjects underwent facial emotion categorization (FEC). The FEC data was inserted into a logistic function model with subsequent analysis by independent-samples T test and the shift point and slope as outcome measurements. Severity of symptoms was measured using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). Voxelwise group comparison of WM fractional anisotropy (FA) was operated using tract-based spatial statistics (TBSS). The correlation between impaired facial emotion perception and FA reduction was examined in patients using simple regression analysis within brain areas that showed a significant FA reduction in patients compared with controls. The same correlation analysis was also performed for control subjects in the whole brain. RESULTS The patients with schizophrenia reported a higher shift point and a steeper slope than control subjects in FEC. The patients showed a significant FA reduction in left deep WM in the parietal, temporal and occipital lobes, a small portion of the corpus callosum (CC), and the corona radiata. In voxelwise correlation analysis, we found that facial emotion perception significantly correlated with reduced FA in various WM regions, including left forceps major (FM), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), Left splenium of CC, and left ILF. The correlation analyses in healthy controls revealed no significant correlation of FA with FEC task. CONCLUSIONS These results showed disrupted WM integrity in these regions constitutes a potential neural basis for the facial emotion perception impairments in schizophrenia.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yuxiu Sui
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China..
| | - Jingjing Yao
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yiding Lv
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xinyue Zhang
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhuma Jin
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Lijun Chen
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiangrong Zhang
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr Res 2017; 185:41-50. [PMID: 28082140 DOI: 10.1016/j.schres.2017.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
Patients with schizophrenia and bipolar disorder (BD) shared a significant overlap in genetic susceptibility, pharmacological treatment responses, neuropsychological deficits, and epidemiological features. However, it remains unknown whether these clinical overlaps are mediated by shared or disorder-specific abnormalities of white matter integrity. In this voxel-based meta-analytic comparison of whole-brain white matter integrity, we aimed to identify the shared or disorder-specific structural abnormalities between schizophrenia and BD. A comprehensive literature search was conducted up to February 2016 to identify studies that compared between patients and healthy controls (HC) by using whole-brain diffusion approach (schizophrenia: 24 datasets with 754 patients vs. 775 HC; BD: 23 datasets with 705 patients vs. 679 HC). Voxel-wise meta-analyses were conducted and restricted to unified template using seed-based d-Mapping. Abnormal white matter integrity was calculated within each condition and a direct comparison of effect size was performed of alterations between two conditions. Two regions with significant reductions of fractional anisotropy (FA) characterized abnormal water diffusion in both disorders: the genu of the corpus callosum (CC) and posterior cingulum fibers. There was no significant difference found between the two disorders. Our results highlighted shared impairments of FA at genu of the CC and left posterior cingulum fibers, which suggests that, phenotypic overlap between schizophrenia and BD could be related to common brain circuit dysfunction.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
41
|
Li Q, Shi L, Lu G, Yu HL, Yeung FK, Wong NK, Sun L, Liu K, Yew D, Pan F, Wang DF, Sham PC. Chronic Ketamine Exposure Causes White Matter Microstructural Abnormalities in Adolescent Cynomolgus Monkeys. Front Neurosci 2017; 11:285. [PMID: 28579941 PMCID: PMC5437169 DOI: 10.3389/fnins.2017.00285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023] Open
Abstract
Acute and repeated exposures to ketamine mimic aspects of positive, negative, and cognitive symptoms of schizophrenia in humans. Recent studies by our group and others have shown that chronicity of ketamine use may be a key element for establishing a more valid model of cognitive symptoms of schizophrenia. However, current understanding on the long-term consequences of ketamine exposure on brain circuits has remained incomplete, particularly with regard to microstructural changes of white matter tracts that underpin the neuropathology of schizophrenia. Thus, the present study aimed to expand on previous investigations by examining causal effects of repeated ketamine exposure on white matter integrity in a non-human primate model. Ketamine or saline (control) was administered intravenously for 3 months to male adolescent cynomolgus monkeys (n = 5/group). Diffusion tensor imaging (DTI) experiments were performed and tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA) was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule (RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support to similar findings from DTI studies on schizophrenia in humans. This study suggests that chronic ketamine exposure is a useful pharmacological paradigm that might provide translational insights into the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong KongHong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong KongHong Kong, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, Chinese University of Hong KongHong Kong, Hong Kong.,Chow Yuk Ho Center of Innovative Technology for Medicine, Chinese University of Hong KongHong Kong, Hong Kong
| | - Gang Lu
- School of Biomedical Sciences, Chinese University of Hong KongHong Kong, Hong Kong
| | - Hong-Luan Yu
- Department of Psychology, Qilu Hospital of Shandong UniversityJinan, China
| | - Fu-Ki Yeung
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - Nai-Kei Wong
- Chemical Biology Laboratory for Infectious Diseases, Shenzhen Institute of Hepatology, The Third People's Hospital of ShenzhenShenzhen, China
| | - Lin Sun
- Department of Psychology, Weifang Medical UniversityWeifang, China
| | - Kai Liu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - David Yew
- School of Chinese Medicine, Chinese University of Hong KongHong Kong, Hong Kong
| | - Fang Pan
- Department of Medical Psychology, Shandong University School of MedicineJinan, China
| | - De-Feng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong KongHong Kong, Hong Kong.,Genome Research Centre, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
42
|
Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry 2017; 22:4-12. [PMID: 27646261 PMCID: PMC5414080 DOI: 10.1038/mp.2016.147] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30-120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- J Stedehouder
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Xi YB, Guo F, Li H, Chang X, Sun JB, Zhu YQ, Liu WM, Cui LB, Chen G, Wang HN, Yin H. The structural connectivity pathology of first-episode schizophrenia based on the cardinal symptom of auditory verbal hallucinations. Psychiatry Res Neuroimaging 2016; 257:25-30. [PMID: 27744190 DOI: 10.1016/j.pscychresns.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/17/2022]
Abstract
Heterogeneous findings across studies of structural abnormality in schizophrenia (SZ) have impeded the development a unified theory of white matter pathology. As a cardinal symptom of SZ, auditory verbal hallucination (AVH) has been suspected to be associated with improper communication among several brain regions, which might indicated white matter pathology. Participants comprised 25 first-episode (FE) patients with AVH, 25 patients without AVH and 25 healthy subjects. Diffusion tensor imaging (DTI) measures were calculated using the TBSS of FSL. Voxel-based ANOVA tests were performed among the three groups and threshold-free cluster enhancement (TFCE) method correction was used for multiple comparisons. Voxel-based one-way ANOVA showed significant group effects for fractional anisotropy (FA) and radial diffusivity (RD) values. Post-hoc t-tests indicated that schizophrenia patients had lower FA and higher RD values in the internal capsule and anterior corona radiata than control subjects. Post-hoc analyses exhibited more widespread fiber disruptions in AVH patients than non-AVH patients. These results hinted on the important role of projection fiber disruption in schizophrenia patients. In addition, the current study also suggested that direct comparison between studies using patients with different symptom profiles should be interpreted with caution.
Collapse
Affiliation(s)
- Yi-Bin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hua Li
- Department of Radiology, The Second Hospital, Yulin, Shaanxi, China
| | - Xiao Chang
- Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Bo Sun
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yuan-Qiang Zhu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Wen-Ming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Long-Biao Cui
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Chen
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
44
|
The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatr Genet 2016; 26:193-202. [DOI: 10.1097/ypg.0000000000000130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Lee JS, Kim CY, Joo YH, Newell D, Bouix S, Shenton ME, Kubicki M. Increased diffusivity in gray matter in recent onset schizophrenia is associated with clinical symptoms and social cognition. Schizophr Res 2016; 176:144-150. [PMID: 27554199 PMCID: PMC5392041 DOI: 10.1016/j.schres.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Diffusion weighted MRI (dMRI) is a method sensitive to pathological changes affecting tissue microstructure. Most dMRI studies in schizophrenia, however, have focused solely on white matter. There is a possibility, however, that subtle changes in diffusivity exist in gray matter (GM). Accordingly, we investigated diffusivity in GM in patients with recent onset schizophrenia. METHODS We enrolled 45 patients and 21 age and sex-matched healthy controls. All subjects were evaluated using the short form of the Wechsler Adult Intelligence Scale, the Positive and Negative Syndrome Scale (PANSS), and the video based social cognition scale. DMRI and T1W images were acquired on a 3 Tesla magnet, and mean Fractional Anisotropy (FA), Trace (TR) and volume were calculated for each of the 68 cortical GM Regions of Interest parcellated using FreeSurfer. RESULTS There was no significant difference of FA and GM volume between groups after Bonferroni correction. For the dMRI measures, however, patients evinced increased TR in the left bank of the superior temporal sulcus, the right inferior parietal, the right inferior temporal, and the right middle temporal gyri. In addition, higher TR in the right middle temporal gyrus and the right inferior temporal gyrus, respectively, was associated with decreased social function and higher PANSS score in patients with schizophrenia. CONCLUSION This study demonstrates high sensitivity of dMRI to subtle pathology in GM in recent onset schizophrenia, as well as an association between increased diffusivity in temporal GM regions and abnormalities in social cognition and exacerbation of psychiatric symptoms.
Collapse
Affiliation(s)
- Jung Sun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chang-Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon Ho Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dominick Newell
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Sun Y, Zhang L, Ancharaz SS, Cheng S, Sun W, Wang H, Sun Y. Decreased fractional anisotropy values in two clusters of white matter in patients with schizotypal personality disorder: A DTI study. Behav Brain Res 2016; 310:68-75. [DOI: 10.1016/j.bbr.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
|
47
|
Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, Pasternak O, Fredman E, Duskin J, Goldstein JM, Petryshen TL, Mesholam-Gately RI, Wojcik J, McCarley RW, Seidman LJ, Shenton ME, Koerte IK, Kubicki M. Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophr Bull 2016; 42:762-71. [PMID: 27009248 PMCID: PMC4838095 DOI: 10.1093/schbul/sbv171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Tractography is the most anatomically accurate method for delineating white matter tracts in the brain, yet few studies have examined multiple tracts using tractography in patients with schizophrenia (SCZ). We analyze 5 white matter connections important in the pathophysiology of SCZ: uncinate fasciculus, cingulum bundle (CB), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus, and arcuate fasciculus (AF). Additionally, we investigate the relationship between diffusion tensor imaging (DTI) markers and neuropsychological measures. METHODS High-resolution DTI data were acquired on a 3 Tesla scanner in 30 patients with early-course SCZ and 30 healthy controls (HC) from the Boston Center for Intervention Development and Applied Research study. After manually guided tracts delineation, fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD) were calculated and averaged along each tract. The association of DTI measures with the Scales for the Assessment of Negative and Positive Symptoms and neuropsychological measures was evaluated. RESULTS Compared to HC, patients exhibited reduced FA and increased trace and RD in the right AF, CB, and ILF. A discriminant analysis showed the possible use of FA of these tracts for better future group membership classifications. FA and RD of the right ILF and AF were associated with positive symptoms while FA and RD of the right CB were associated with memory performance and processing speed. CONCLUSION We observed white matter alterations in the right CB, ILF, and AF, possibly caused by myelin disruptions. The structural abnormalities interact with cognitive performance, and are linked to clinical symptoms.
Collapse
Affiliation(s)
- Johanna Seitz
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jessica X. Zuo
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Amanda E. Lyall
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Eli Fredman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan Duskin
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Medicine, Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tracey L. Petryshen
- Department of Psychiatry and Center for Human Genetic Research, Psychiatric and Neurodevelopmental Genetic Unit, Massachusetts General Hospital, Boston, MA;,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raquelle I. Mesholam-Gately
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joanne Wojcik
- Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W. McCarley
- Department of Psychiatry, Laboratory of Neuroscience, Clinical Neuroscience Division, VA Boston Healthcare System, Brockton, MA
| | - Larry J. Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA;,Department of Psychiatry, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Martha E. Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
48
|
Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res 2016; 172:1-8. [PMID: 26852402 DOI: 10.1016/j.schres.2016.01.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Abnormal white matter integrity has been reported among first episode schizophrenia patients. However, findings on whether it can be reversed by short-term antipsychotic medications are inconsistent. METHOD Diffusion tensor imaging (DTI) was obtained from 55 drug-naive first episode schizophrenia patients and 61 healthy controls, and was repeated among 25 patients and 31 controls after 8 weeks during which patients were medicated with antipsychotics. White matter integrity is measured using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). These measures showing a group difference by Tract-based spatial statistics (TBSS) at baseline were extracted for longitudinal comparisons. RESULTS At baseline, patients exhibited lower FA, higher MD and higher RD versus controls in forceps, left superior longitudinal fasciculus, inferior fronto-occipital fasciculus, left corticospinal tract, left uncinate fasciculus, left anterior thalamic radiation, and bilateral inferior longitudinal fasciculi. FA values of schizophrenia patients correlated with their negative symptoms (r=-0.412, P=0.002), working memory (r=0.377, P=0.005) and visual learning (r=0.281, P=0.038). The longitudinal changes in DTI indices in these tracts did not differ between patients and controls. However, among the patients the longitudinal changes in FA values in left superior longitudinal fasciculus correlated with the change of positive symptoms (r=-0.560, p=0.004), and the change of processing speed (r=0.469, p=0.018). CONCLUSIONS White matter deficits were validated in the present study by a relatively large sample of medication naïve and first episode schizophrenia patients. They could be associated with negative symptoms and cognitive impairment, whereas improvement in white matter integrity of left superior longitudinal fasciculus correlated with improvement in psychosis and processing speed. Further examination of treatment-related changes in white matter integrity may provide clues to the mechanism of antipsychotic response and provide a biomarker for clinical studies.
Collapse
|
49
|
Ebdrup BH, Raghava JM, Nielsen MØ, Rostrup E, Glenthøj B. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci 2016; 41:133-41. [PMID: 26599135 PMCID: PMC4764482 DOI: 10.1503/jpn.150030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Psychotic symptoms are core clinical features of schizophrenia. We tested recent hypotheses proposing that psychotic, or positive, symptoms stem from irregularities in long-range white matter tracts projecting into the frontal cortex, and we predicted that selective dopamine D2/3 receptor blockade would restore white matter. METHODS Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences of fractional anisotropy (FA) using voxelwise tract-based spatial statistics (TBSS) and anatomic region of interest (ROI)-based analyses. Subsequently, patients underwent 6 weeks of antipsychotic monotherapy with amisulpride. We repeated the examinations after 6 weeks. RESULTS We included 38 patients with first-episode schizophrenia and 38 controls in our analysis, and 28 individuals in each group completed the study. At baseline, whole brain TBSS analyses revealed lower FA in patients in the right anterior thalamic radiation (ATR), right cingulum, right inferior longitudinal fasciculus and right corticospinal tract (CT). Fractional anisotropy in the right ATR correlated with positive symptoms (z = 2.64, p= 0.008). The ROI analyses showed significant associations between positive symptoms and FA of the frontal fasciculi, specifically the right arcuate fasciculus (z = 2.83, p= 0.005) and right superior longitudinal fasciculus (z = -3.31, p= 0.001). At re-examination, all correlations between positive symptoms and frontal fasciculi had resolved. Fractional anisotropy in the ATR increased more in patients than in controls (z = -4.92, p< 0.001). The amisulpride dose correlated positively with FA changes in the right CT (t= 2.52, p= 0.019). LIMITATIONS Smoking and a previous diagnosis of substance abuse were potential confounders. Long-term effects of amisulpride on white matter were not evaluated. CONCLUSION Antipsychotic-naive patients with schizophrenia displayed subtle deficits in white matter, and psychotic symptoms appeared specifically associated with frontal fasciculi integrity. Six weeks of amisulpride treatment normalized white matter. Potential remyelinating effects of dopamine D2/3 receptor antagonism warrant further clarification.
Collapse
Affiliation(s)
- Bjørn H. Ebdrup
- Correspondence to: B.H. Ebdrup, Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Copenhagen University Hospital, Mental Health Centre, Glostrup, Nordre Ringvej 29-67, DK-2600 Glostrup, Denmark;
| | | | | | | | | |
Collapse
|
50
|
Liu K, Li B, Qian S, Jiang Q, Li L, Sun G. Altered interhemispheric resting state functional connectivity during passive hyperthermia. Int J Hyperthermia 2015; 31:840-9. [PMID: 26608616 DOI: 10.3109/02656736.2015.1058977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This study examines the effect of passive hyperthermia on interhemispheric resting state functional connectivity and the correlation between interhemispheric resting state functional connectivity and efficiency of a succedent working memory task. MATERIALS AND METHODS We performed voxel-mirrored homotopic connectivity (VMHC) analyses on resting state MRI data and a one-back task from 14 healthy subjects in both HT (hyperthermia, 50 °C) conditions and normal control (NC, 25 °C) conditions. The group analyses of the differences for VMHC between the two conditions and the correlation analysis between the VMHC and the reaction time (RT) of the one-back task were performed with the statistical parametric mapping software package and the software REST. RESULTS Compared with NC conditions, HT conditions increased VMHC in the cuneus, the postcentral gyrus, and the fusiform gyrus. No region showed decreased VMHC in the HT group in comparison with the NC group. For NC conditions, negative correlations were demonstrated between RT of the one-back task and VMHC in bilateral superior temporal gyrus, and bilateral middle frontal gyrus; for HT conditions, negative correlations were demonstrated between RT and VMHC in bilateral inferior frontal gyrus, bilateral middle frontal gyrus, as well as cerebellum posterior lobe. CONCLUSION Passive heat stress can impact the interhemispheric information interactions at resting state and the VMHC deficits may play an important role in cognitive dysfunction.
Collapse
Affiliation(s)
- Kai Liu
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Bo Li
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Shaowen Qian
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Qingjun Jiang
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Li Li
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Gang Sun
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| |
Collapse
|