1
|
He R, Shi X, Jiang L, Zhu Y, Pei Z, Zhu L, Su X, Yao D, Xu P, Guo Y, Li F. Prediction of rTMS Efficacy in Patients With Essential Tremor: Biomarkers From Individual Resting-State EEG Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3719-3728. [PMID: 39331541 DOI: 10.1109/tnsre.2024.3469576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.
Collapse
|
2
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
3
|
Parkkinen S, Radua J, Andrews DS, Murphy D, Dell'Acqua F, Parlatini V. Cerebellar network alterations in adult attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2024; 49:E233-E241. [PMID: 38960626 PMCID: PMC11230668 DOI: 10.1503/jpn.230146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults. METHODS We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we analyzed the association between the tract metrics and cliniconeuropsychological profiles. RESULTS We included 60 participants with ADHD (including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional anisotropy (FA; t 78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t 78 = 3.01, p = 0.004) were reduced, and radial diffusivity (RD) in the right ICP was increased (t 78 = -2.84, p = 0.006), compared with controls. Although case-control differences in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only responders significantly differed from controls in right ICP RD, which relates to myelination (t 60 = 3.14, p = 0.003). Hindrance modulated orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. LIMITATIONS This study included only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. CONCLUSION These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage further investigation. CLINICAL TRIAL REGISTRATION NCT03709940.
Collapse
Affiliation(s)
- Salla Parkkinen
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Joaquim Radua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Derek S Andrews
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Declan Murphy
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Flavio Dell'Acqua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Valeria Parlatini
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| |
Collapse
|
4
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Roelens R, Peigneur ANF, Voets T, Vriens J. Neurodevelopmental disorders caused by variants in TRPM3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119709. [PMID: 38522727 DOI: 10.1016/j.bbamcr.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases. However, in around 25 % of patients, rare nonsynonymous coding variants in genes encoding ion channels, cell-surface receptors, and other neuronally expressed proteins are identified. This review focuses on a subgroup of DEE patients carrying variations in the gene encoding the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel, where recent data indicate that gain-of-function of TRPM3 channel activity underlies a spectrum of dominant neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robbe Roelens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Ana Nogueira Freitas Peigneur
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Matsuda T, Morigaki R, Hayasawa H, Koyama H, Oda T, Miyake K, Takagi Y. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia. Dis Model Mech 2024; 17:dmm050338. [PMID: 38616770 PMCID: PMC11128288 DOI: 10.1242/dmm.050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
Collapse
Affiliation(s)
- Taku Matsuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Hiroaki Hayasawa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Koyama
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Hou C, Zhang A, Jin Y, Ye C, Li R, Liu Z, Gao J. Role of LGL1 in cerebellar primordium of embryonic mice. Neuroreport 2024; 35:374-379. [PMID: 38526932 DOI: 10.1097/wnr.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and β-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.
Collapse
Affiliation(s)
- Congzhe Hou
- Experimental Center, Shandong University of Traditional Chinese Medicine
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine
| | - Aizhen Zhang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University
| | - Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical - Genetics, School of Basic Medical Sciences, Affiliations Cheeloo College of Medicine, Shandong University
| | - Chao Ye
- College of Life Science, Shandong University
| | - Runze Li
- School of Laboratory Animal Science, Shandong First Medical University
| | - Zhenhua Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University
| |
Collapse
|
8
|
Sun H, Yan R, Hua L, Xia Y, Huang Y, Wang X, Yao Z, Lu Q. Based on white matter microstructure to early identify bipolar disorder from patients with depressive episode. J Affect Disord 2024; 350:428-434. [PMID: 38244786 DOI: 10.1016/j.jad.2024.01.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Because of similar clinical manifestations, bipolar disorder (BD) patients are often misdiagnosed as major depressive disorder (MDD). This study aimed to compare the difference between depressed patients later converting to BD and unipolar depression (UD) according to diffusion tensor imaging (DTI). METHOD Patients with MDD (562 participants) in depressive episode states and healthy controls (HCs) (145 participants) were recruited over 10 years. Demographic and magnetic resonance imaging (MRI) data were collected at the time of recruitment. All patients with MDD were followed up for 5 years and classified into the transfer to BD (tBD) group (83 participants) and UD group (160 participants) according to the follow-up results. DTI and functional magnetic resonance imaging at baseline were compared. RESULTS Common abnormalities were found in both tBD and UD groups, including left superior cerebellar peduncle (SCP.L), right anterior limb of the internal capsule (ALIC.R), right superior fronto-occipital fasciculus (SFOF.R), and right inferior fronto-occipital fasciculus (IFOF.R). The tBD showed more extensive abnormalities than the UD in the body of corpus callosum, fornix, left superior corona radiata, left posterior corona radiata, left superior longitudinal fasciculus, and left superior fronto-occipital fasciculus. CONCLUSION The study demonstrated the common and distinct abnormalities of tBD and UD when compared to HC. The tBD group showed more extensive disruptions of white matter integrity, which could be a potential biomarker for the early identification of BD.
Collapse
Affiliation(s)
- Hao Sun
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Rui Yan
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Lingling Hua
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Zhijian Yao
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China; School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
9
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
10
|
Chen X, Zhang Y. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease. Neural Regen Res 2024; 19:324-330. [PMID: 37488885 PMCID: PMC10503617 DOI: 10.4103/1673-5374.379042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
The dichotomized brain system is a concept that was generalized from the 'dual syndrome hypothesis' to explain the heterogeneity of cognitive impairment, in which anterior and posterior brain systems are independent but partially overlap. The dopaminergic system acts on the anterior brain and is responsible for executive function, working memory, and planning. In contrast, the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function. Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson's disease. Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections. However, whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated. Furthermore, the precise role of the cerebellum in patients with Parkinson's disease and cognitive impairment remains unclear. Therefore, in this review, we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition, as reported by previous studies, and investigated the role of the cerebellum in patients with Parkinson's disease and cognitive impairment, as determined by functional neuroimaging. Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
van der Heijden ME, Sillitoe RV. Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia. DYSTONIA 2023; 2:11515. [PMID: 38105800 PMCID: PMC10722573 DOI: 10.3389/dyst.2023.11515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dystonia is a movement disorder characterized by involuntary co- or over-contractions of the muscles, which results in abnormal postures and movements. These symptoms arise from the pathophysiology of a brain-wide dystonia network. There is mounting evidence suggesting that the cerebellum is a central node in this network. For example, manipulations that target the cerebellum cause dystonic symptoms in mice, and cerebellar neuromodulation reduces these symptoms. Although numerous findings provide insight into dystonia pathophysiology, they also raise further questions. Namely, how does cerebellar pathophysiology cause the diverse motor abnormalities in dystonia, tremor, and ataxia? Here, we describe recent work in rodents showing that distinct cerebellar circuit abnormalities could define different disorders and we discuss potential mechanisms that determine the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Cook KM, De Asis-Cruz J, Kim JH, Basu SK, Andescavage N, Murnick J, Spoehr E, Liggett M, du Plessis AJ, Limperopoulos C. Experience of early-life pain in premature infants is associated with atypical cerebellar development and later neurodevelopmental deficits. BMC Med 2023; 21:435. [PMID: 37957651 PMCID: PMC10644599 DOI: 10.1186/s12916-023-03141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Infants born very and extremely premature (V/EPT) are at a significantly elevated risk for neurodevelopmental disorders and delays even in the absence of structural brain injuries. These risks may be due to earlier-than-typical exposure to the extrauterine environment, and its bright lights, loud noises, and exposures to painful procedures. Given the relative underdeveloped pain modulatory responses in these infants, frequent pain exposures may confer risk for later deficits. METHODS Resting-state fMRI scans were collected at term equivalent age from 148 (45% male) infants born V/EPT and 99 infants (56% male) born at term age. Functional connectivity analyses were performed between functional regions correlating connectivity to the number of painful skin break procedures in the NICU, including heel lances, venipunctures, and IV placements. Subsequently, preterm infants returned at 18 months, for neurodevelopmental follow-up and completed assessments for autism risk and general neurodevelopment. RESULTS We observed that V/EPT infants exhibit pronounced hyperconnectivity within the cerebellum and between the cerebellum and both limbic and paralimbic regions correlating with the number of skin break procedures. Moreover, skin breaks were strongly associated with autism risk, motor, and language scores at 18 months. Subsample analyses revealed that the same cerebellar connections strongly correlating with breaks at term age were associated with language dysfunction at 18 months. CONCLUSIONS These results have significant implications for the clinical care of preterm infants undergoing painful exposures during routine NICU care, which typically occurs without anesthesia. Repeated pain exposures appear to have an increasingly detrimental effect on brain development during a critical period, and effects continue to be seen even 18 months later.
Collapse
Affiliation(s)
- Kevin M Cook
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Jung-Hoon Kim
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Sudeepta K Basu
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Jonathan Murnick
- Dept. of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, D.C, 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Melissa Liggett
- Division of Psychology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Adré J du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
13
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Pimentel JM, Moioli RC, De Araujo MFP, Vargas PA. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry. Int J Neural Syst 2023; 33:2350059. [PMID: 37791495 DOI: 10.1142/s0129065723500594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This work presents a neurorobotics model of the brain that integrates the cerebellum and the basal ganglia regions to coordinate movements in a humanoid robot. This cerebellar-basal ganglia circuitry is well known for its relevance to the motor control used by most mammals. Other computational models have been designed for similar applications in the robotics field. However, most of them completely ignore the interplay between neurons from the basal ganglia and cerebellum. Recently, neuroscientists indicated that neurons from both regions communicate not only at the level of the cerebral cortex but also at the subcortical level. In this work, we built an integrated neurorobotics model to assess the capacity of the network to predict and adjust the motion of the hands of a robot in real time. Our model was capable of performing different movements in a humanoid robot by respecting the sensorimotor loop of the robot and the biophysical features of the neuronal circuitry. The experiments were executed in simulation and the real world. We believe that our proposed neurorobotics model can be an important tool for new studies on the brain and a reference toward new robot motor controllers.
Collapse
Affiliation(s)
- Jhielson M Pimentel
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Renan C Moioli
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Patricia A Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
15
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
16
|
Li C, Zhang H, Tong K, Cai M, Gao F, Yang J, Xu Y, Wang H, Chen H, Hu Y, He W, Zhang J. Genetic Deletion of Thorase Causes Purkinje Cell Loss and Impaired Motor Coordination Behavior. Cells 2023; 12:2032. [PMID: 37626842 PMCID: PMC10453921 DOI: 10.3390/cells12162032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Thorase belongs to the AAA+ ATPase family, which plays a critical role in maintaining cellular homeostasis. Our previous work reported that Thorase was highly expressed in brain tissue, especially in the cerebellum. However, the roles of Thorase in the cerebellum have still not been characterized. In this study, we generated conditional knockout mice (cKO) with Thorase deletion in Purkinje cells. Thorase cKO mice exhibited cerebellar degenerative diseases-like behavior and significant impairment in motor coordination. Thorase deletion resulted in more Purkinje neuron apoptosis, leading to Purkinje cell loss in the cerebellum of Thorase cKO mice. We also found enhanced expression of the inflammatory protein ASC, IL-1β, IL-6 and TNF-α in the Thorase cKO cerebellum, which contributed to the pathogenesis of cerebellar degenerative disease. Our findings provide a better understanding of the role of Thorase in the cerebellum, which is a theoretical basis for Thorase as a therapeutic drug target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chao Li
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Han Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Kexin Tong
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Menghua Cai
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Fei Gao
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Jia Yang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Yi Xu
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Huaishan Wang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| | - Yu Hu
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (C.L.); (H.Z.); (K.T.); (M.C.); (F.G.); (J.Y.); (Y.X.); (H.W.); (H.C.); (Y.H.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300010, China
| |
Collapse
|
17
|
Jeon I, Kim T. Distinctive properties of biological neural networks and recent advances in bottom-up approaches toward a better biologically plausible neural network. Front Comput Neurosci 2023; 17:1092185. [PMID: 37449083 PMCID: PMC10336230 DOI: 10.3389/fncom.2023.1092185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Although it may appear infeasible and impractical, building artificial intelligence (AI) using a bottom-up approach based on the understanding of neuroscience is straightforward. The lack of a generalized governing principle for biological neural networks (BNNs) forces us to address this problem by converting piecemeal information on the diverse features of neurons, synapses, and neural circuits into AI. In this review, we described recent attempts to build a biologically plausible neural network by following neuroscientifically similar strategies of neural network optimization or by implanting the outcome of the optimization, such as the properties of single computational units and the characteristics of the network architecture. In addition, we proposed a formalism of the relationship between the set of objectives that neural networks attempt to achieve, and neural network classes categorized by how closely their architectural features resemble those of BNN. This formalism is expected to define the potential roles of top-down and bottom-up approaches for building a biologically plausible neural network and offer a map helping the navigation of the gap between neuroscience and AI engineering.
Collapse
Affiliation(s)
| | - Taegon Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
18
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
19
|
Scheveig F, Bucci MP. Postural and Proprioceptive Deficits Clinically Assessed in Children with Reading Disabilities: A Case-Control Study. Vision (Basel) 2023; 7:vision7020037. [PMID: 37218955 DOI: 10.3390/vision7020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Several studies have reported motor deficiencies in children with dyslexia, in line with the cerebellar deficit theory. In the present study, we explored whether tests used by physiotherapists during clinical evaluation were able to report motor deficits in a group of fifty-six dyslexic children (mean age 10.9 ± 0.2 years old) compared to a group of thirty-eight non-dyslexic children (mean age 11.2 ± 0.4 years old). The occurrence of instability on an unstable support; spinal instability in the sagittal, frontal and horizontal plane; head-eye discoordination; and poor eye stability were clinically assessed in the two groups of children. All such measures were found to be significantly more frequent in dyslexic than in non-dyslexic children (p < 0.001, p < 0.05, p < 0.001 and p < 0.001, respectively, for occurrence of instability on an unstable support, spinal instability, head-eye discoordination and poor eye stability). These results, firstly, confirmed the poor motor control of dyslexic children, suggesting deficient cerebellar integration. Secondly, for the first time, we reported that simple tests that can be done by pediatricians and/or during a clinical routine evaluation could be useful to discriminate children with reading difficulties. The tests used in this study could be a reference for a first exploration of motor deficiencies in children with dyslexia that can be easily assessed by clinicians and/or physiotherapists.
Collapse
Affiliation(s)
- Franck Scheveig
- Clinique de Posturologie, 66100 Perpignan, France
- MoDyCo, UMR 7114 CNRS Université Paris Nanterre, 92000 Nanterre, France
| | - Maria Pia Bucci
- MoDyCo, UMR 7114 CNRS Université Paris Nanterre, 92000 Nanterre, France
| |
Collapse
|
20
|
Puls R, von Haefen C, Bührer C, Endesfelder S. Protective Effect of Dexmedetomidine against Hyperoxia-Damaged Cerebellar Neurodevelopment in the Juvenile Rat. Antioxidants (Basel) 2023; 12:antiox12040980. [PMID: 37107355 PMCID: PMC10136028 DOI: 10.3390/antiox12040980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Impaired cerebellar development of premature infants and the associated impairment of cerebellar functions in cognitive development could be crucial factors for neurodevelopmental disorders. Anesthetic- and hyperoxia-induced neurotoxicity of the immature brain can lead to learning and behavioral disorders. Dexmedetomidine (DEX), which is associated with neuroprotective properties, is increasingly being studied for off-label use in the NICU. For this purpose, six-day-old Wistar rats (P6) were exposed to hyperoxia (80% O2) or normoxia (21% O2) for 24 h after DEX (5 µg/kg, i.p.) or vehicle (0.9% NaCl) application. An initial detection in the immature rat cerebellum was performed after the termination of hyperoxia at P7 and then after recovery in room air at P9, P11, and P14. Hyperoxia reduced the proportion of Calb1+-Purkinje cells and affected the dendrite length at P7 and/or P9/P11. Proliferating Pax6+-granule progenitors remained reduced after hyperoxia and until P14. The expression of neurotrophins and neuronal transcription factors/markers of proliferation, migration, and survival were also reduced by oxidative stress in different manners. DEX demonstrated protective effects on hyperoxia-injured Purkinje cells, and DEX without hyperoxia modulated neuronal transcription in the short term without any effects at the cellular level. DEX protects hyperoxia-damaged Purkinje cells and appears to differentially affect cerebellar granular cell neurogenesis following oxidative stress.
Collapse
Affiliation(s)
- Robert Puls
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
21
|
Fidler Y, Gomes JR. Effects of a Single Dose of X-Ray Irradiation on MMP-9 Expression and Morphology of the Cerebellum Cortex of Adult Rats. CEREBELLUM (LONDON, ENGLAND) 2023; 22:240-248. [PMID: 35262839 DOI: 10.1007/s12311-022-01386-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Although radiation is a strategy widely used to inhibit cancer progression, which includes those of the neck and head, there are still few experimental reports on radiation effects in the cerebellum, particularly on the morphology of its cortex layers and on the Matrix metalloproteinases' (MMPs') expression, which, recently, seems to be involved in the progression of some mental disorders. Therefore, in the present study, we evaluated the morphology of the cerebellum close to the expression of MMP-9 from 4 up to 60 days after a 15-Gy X-ray single dose of X-ray irradiation had been applied to the heads of healthy adult male rats. The cerebellum of the control and irradiated groups was submitted for an analysis of cell Purkinje count, nuclear perimeter, and chromatin density using morphometric estimatives obtained from the Feulgen histochemistry reaction. In addition, immunolocalization and estimative for MMP-9 expression were determined in the cerebellar cortex on days 4, 9, 14, 25, and 60 after the irradiation procedure. Results demonstrated that irradiation produced a significant reduction in the total number of Purkinje cells and a reduction in their nuclear perimeter, along with an increase in chromatin condensation and visible nuclear fragmentation, which was also detected in the granular layer. MMP-9 expression was significantly increased on 4, 9, and 14 days, being detected around the Purkinje cells and in parallel fibres at the molecular layer. We conclude that the effects of a single dose of 15-Gy X-ray irradiation in the cerebellum were an increase in MMP-9 expression in the first 2 weeks after irradiation, especially surrounding the Purkinje cells and in the molecular layers, with morphological changes in the Purkinje cell and granular cell layers, suggesting a continuous cell loss throughout the days evaluated after irradiation.
Collapse
Affiliation(s)
- Yasmin Fidler
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil
| | - Jose Rosa Gomes
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil.
| |
Collapse
|
22
|
Zhang J, Yang Y, Al-Ahmady ZS, Du W, Duan J, Liao Z, Sun Q, Wei Z, Hua J. Maternal exposure to PM 2.5 induces cognitive impairment in offspring via cerebellar neuroinflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114425. [PMID: 38321695 DOI: 10.1016/j.ecoenv.2022.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 09/02/2023]
Abstract
Available evidence suggest that exposure to PM2.5 during pregnancy is associated with reduced cognitive function in offspring. This study aimed to investigate the effects of maternal exposure to PM2.5 on offspring cognitive function and to elucidate the underlying mechanisms. In this work, pregnant C57BL/6 female mice were exposed to concentrated ambient PM2.5 or filtered air from day 0.5 (=vaginal plug) to day 15.5 in the Shanghai Meteorological and Environmental Animal Exposure System, and offspring cerebellar tissues were collected on embryonic day 15.5, as well as postnatal days 0, 10 and 42. The mean PM2.5 concentrations exposed to the pregnant mice were 73.06 ± 4.90 μg/m3 and 11.15 ± 2.71 μg/m3 in the concentrated ambient PM2.5 and filtered air chambers, respectively. Maternal concentrated PM2.5 exposure was negatively correlated with offspring spatial memory significantly as assessed by the Morris water maze. Compared with the filtered air group, PM2.5-exposed offspring mice had reduced cerebellar microglia. Both RNA and protein levels of IL-8 and TNF-α were elevated in the concentrated ambient PM2.5 group. PM2.5 exposure increased the level of 8-OHG in miRNA of microglia and Purkinje cells in 6-week-old offspring. The level of prostaglandin F2α (8-iso-PGF2Aα) in the cerebellum was increased at different growing stages of offspring after gestational exposure of PM2.5. These results suggested that maternal air pollution exposure might cause inflammatory damage and oxidative stress to the cerebellum, contributing to reduced cognitive performance in mice offspring.
Collapse
Affiliation(s)
- Jiajia Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Yang
- Clinical Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zahraa S Al-Ahmady
- Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wenchong Du
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 1BU, United Kingdom
| | - Jinjin Duan
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Jing Hua
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, Takeshita E, Shimizu-Motohashi Y, Haginoya K, Kobayashi T, Goto T, Tsuyusaki Y, Iai M, Kurosawa K, Osaka H, Tohyama J, Kobayashi Y, Okamoto N, Suzuki Y, Kumada S, Inoue K, Mashimo H, Arisaka A, Kuki I, Saijo H, Yokochi K, Kato M, Inaba Y, Gomi Y, Saitoh S, Shirai K, Morimoto M, Izumi Y, Watanabe Y, Nagamitsu SI, Sakai Y, Fukumura S, Muramatsu K, Ogata T, Yamada K, Ishigaki K, Hirasawa K, Shimoda K, Akasaka M, Kohashi K, Sakakibara T, Ikuno M, Sugino N, Yonekawa T, Gürsoy S, Cinleti T, Kim CA, Teik KW, Yan CM, Haniffa M, Ohba C, Ito S, Saitsu H, Saida K, Tsuchida N, Uchiyama Y, Koshimizu E, Fujita A, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic and clinical landscape of childhood cerebellar hypoplasia and atrophy. Genet Med 2022; 24:2453-2463. [PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects. METHODS Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated. RESULTS Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments. CONCLUSION A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University Hospital, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hitoshi Osaka
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Yu Kobayashi
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yume Suzuki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Inoue
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Atsuko Arisaka
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ichiro Kuki
- Department of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Harumi Saijo
- Department of Pediatrics, Tokyo Metropolitan Higashiyamato Medical Center for Developmental/Multiple Disabilities, Tokyo, Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology, Seirei-Mikatahara General Hospital, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Inaba
- Division of Neurology, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Yuko Gomi
- Division of Rehabilitation, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | | | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, School of Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Muramatsu
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan; Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tomomi Ogata
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kosuke Kohashi
- Department of Pediatrics, Matsudo City General Hospital, Matsudo, Japan
| | | | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriko Sugino
- Department of Neonatology, Mie Chuo Medical Center, National Hospital Organization, Tsu, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University School of Medicine, Mie, Japan
| | - Semra Gürsoy
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chong Ae Kim
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chan Mei Yan
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
24
|
van der Heijden ME, Brown AM, Sillitoe RV. Influence of data sampling methods on the representation of neural spiking activity in vivo. iScience 2022; 25:105429. [PMID: 36388953 PMCID: PMC9641233 DOI: 10.1016/j.isci.2022.105429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In vivo single-unit recordings distinguish the basal spiking properties of neurons in different experimental settings and disease states. Here, we examined over 300 spike trains recorded from Purkinje cells and cerebellar nuclei neurons to test whether data sampling approaches influence the extraction of rich descriptors of firing properties. Our analyses included neurons recorded in awake and anesthetized control mice, and disease models of ataxia, dystonia, and tremor. We find that recording duration circumscribes overall representations of firing rate and pattern. Notably, shorter recording durations skew estimates for global firing rate variability toward lower values. We also find that only some populations of neurons in the same mouse are more similar to each other than to neurons recorded in different mice. These data reveal that recording duration and approach are primary considerations when interpreting task-independent single neuron firing properties. If not accounted for, group differences may be concealed or exaggerated.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Jinling D, Liyuan F, Wenying F, Yuting H, Xiangyu T, Xiuning H, Yu T, Qianliang M, Linming G, Ning G, Peng L. Parthenolide promotes expansion of Nestin+ progenitor cells via Shh modulation and contributes to post-injury cerebellar replenishment. Front Pharmacol 2022; 13:1051103. [PMID: 36386224 PMCID: PMC9651157 DOI: 10.3389/fphar.2022.1051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Background: Regeneration of injuries occurring in the central nervous system is extremely difficult. Studies have shown that the developing cerebellum can be repopulated by a group of Nestin-expressing progenitors (NEPs) after irradiation injury, suggesting that modulating the mobilization of NEPs is beneficial to promoting nerve regeneration. To date, however, effect of exogenous pharmaceutical agonist on NEPs mobilization remains unknown. Parthenolide (PTL), a sesquiterpene lactone isolated from shoots of feverfew. Although it has been shown to possess several pharmacological activities and is considered to have potential therapeutic effects on the regeneration of peripheral nerve injury, its efficacy in promoting central nervous system (CNS) regeneration is unclear. In this study, we aimed to elucidate the role and possible mechanism of PTL on regeneration in injured CNS after irradiation using a developing cerebellum model. Methods: We investigated the radioprotective effects of PTL on the developing cerebellum by immunoblotting as well as immunofluorescence staining and ROS detection in vivo and in vitro experiments, and then determined the effects of PTL on NEPs in Nestin CFP and Nestin GFP fluorescent mice. Inducible lineage tracing analysis was used in Nestin-CreERT2×ROSA26-LSL YFP mice to label and track the fate of NEPs in the cerebellum after irradiation. Combined with cell biology and molecular biology techniques to determine changes in various cellular components in the cerebellum and possible mechanisms of PTL on NEPs mobilization in the injured developing cerebellum. Results: We found that PTL could attenuate radiation-induced acute injury of granule neuron progenitors (GNPs) in irradiated cerebellar external granule layer (EGL) by alleviating apoptosis through regulation of the cells' redox state. Moreover, PTL increased cerebellar Shh production and secretion by inhibiting the PI3K/AKT pathway, thus promoting expansion of NEPs, which is the compensatory replenishment of granule neurons after radiation damage. Conclusion: Collectively, our results indicate that activation and expansion of NEPs are critical for regeneration of the injured cerebellum, and that PTL is a promising drug candidate to influence this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Peng
- Department of Pharmacognosy and Traditional Chinese Medicine, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Martí-Clua J. Times of neuron origin and neurogenetic gradients in mice Purkinje cells and deep cerebellar nuclei neurons during the development of the cerebellum. A review. Tissue Cell 2022; 78:101897. [DOI: 10.1016/j.tice.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
|
27
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
28
|
Yadav SK, Yadav P, Maharjan G, Dahal S, Khati N. Status Dystonicus with Atypical Presentation in Developmentally Delay Child: A Case Report. JNMA J Nepal Med Assoc 2022; 60:739-742. [PMID: 36705216 PMCID: PMC9446494 DOI: 10.31729/jnma.7614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/28/2022] [Indexed: 01/31/2023] Open
Abstract
Status dystonicus is characterised by involuntary sustained or intermittent muscle contractions of muscles causing repetitive twisting movements, abnormal postures of the body, or both is a rare but life-threatening movement disorder. Early diagnosis and management of status dystonicus prevent serious complications. We report a 2 years old previously developmental delay diagnosed girl who presented with generalised contractions of the whole body. Tightening of limbs is aggravated by touching her backside which is a very unique feature. Dystonia is associated with severe sweating and was confused with a seizure event. The patient was treated with midazolam, clonidine, phenytoin, gabapentin, pyridoxine, baclofen, and trihexyphenidyl. She was admitted to the intensive care unit for monitoring. The patient partially recovered after 10 days of treatment. Keywords aspiration; children; dystonia; epilepsy; pneumonia.
Collapse
Affiliation(s)
- Shailendra Kumar Yadav
- Department of Pediatrics, Ishan Children and Women's Hospital, Basundhara, Kathmandu, Nepal,Correspondence: Dr Shailendra Kumar Yadav, Department of Paediatrics, Ishan Children and Women's Hospital, Basundhara, Kathmandu, Nepal. , Phone: +977-9843165951
| | - Pratibha Yadav
- Department of Pediatrics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Gyabina Maharjan
- Department of Pediatrics, Kirtipur Hospital, Kirtipur, Kathmandu, Nepal
| | - Sujata Dahal
- Department of Medicine, Patan Academy of Health Sciences, Lagankhel, Lalitpur, Nepal
| | - Nirajan Khati
- Department of Paediatrics, Vayodha Hospitals, Balkhu, Kathmandu, Nepal
| |
Collapse
|
29
|
Chen Y, Guo L, Han M, Zhang S, Chen Y, Zou J, Bai S, Cheng G, Zeng Y. Cerebellum Neuropathology and Motor Skill Deficits in Fragile X Syndrome. Int J Dev Neurosci 2022; 82:557-568. [DOI: 10.1002/jdn.10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yu‐shan Chen
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Liu Guo
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Man Han
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Si‐ming Zhang
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Yi‐qi Chen
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Jia Zou
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Shu‐yuan Bai
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Gui‐rong Cheng
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| |
Collapse
|
30
|
Haldipur P, Millen KJ, Aldinger KA. Human Cerebellar Development and Transcriptomics: Implications for Neurodevelopmental Disorders. Annu Rev Neurosci 2022; 45:515-531. [PMID: 35440142 PMCID: PMC9271632 DOI: 10.1146/annurev-neuro-111020-091953] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; .,Department of Pediatrics, Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
31
|
Iftimovici A, Chaumette B, Duchesnay E, Krebs MO. Brain anomalies in early psychosis: From secondary to primary psychosis. Neurosci Biobehav Rev 2022; 138:104716. [PMID: 35661683 DOI: 10.1016/j.neubiorev.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Brain anomalies are frequently found in early psychoses. Although they may remain undetected for many years, their interpretation is critical for differential diagnosis. In secondary psychoses, their identification may allow specific management. They may also shed light on various pathophysiological aspects of primary psychoses. Here we reviewed cases of secondary psychoses associated with brain anomalies, reported over a 20-year period in adolescents and young adults aged 13-30 years old. We considered age at first psychotic symptoms, relevant medical history, the nature of psychiatric symptoms, clinical red flags, the nature of the brain anomaly reported, and the underlying disease. We discuss the relevance of each brain area in light of normal brain function, recent case-control studies, and postulated pathophysiology. We show that anomalies in all regions, whether diffuse, multifocal, or highly localized, may lead to psychosis, without necessarily being associated with non-psychiatric symptoms. This underlines the interest of neuroimaging in the initial workup, and supports the hypothesis of psychosis as a global network dysfunction that involves many different regions.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France; GHU Paris Psychiatrie et Neurosciences, Paris, France.
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
32
|
Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning. J Neurosci 2022; 42:5130-5143. [PMID: 35589396 PMCID: PMC9236294 DOI: 10.1523/jneurosci.2073-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cerebellar inhibitory interneurons are important regulators of neural circuit activity for diverse motor and nonmotor functions. The molecular layer interneurons (MLIs), consisting of basket cells (BCs) and stellate cells (SCs), provide dendritic and somatic inhibitory synapses onto Purkinje cells, respectively. They are sequentially generated in an inside-out pattern from Pax2+ immature interneurons, which migrate from the prospective white matter to the ML of the cortex. However, little is known about how MLI subtype identities and pool sizes are determined, nor are their contributions to motor learning well understood. Here, we show that GABAergic progenitors fated to generate both BCs and SCs respond to the Sonic hedgehog (Shh) signal. Conditional abrogation of Shh signaling of either sex inhibited proliferation of GABAergic progenitors and reduced the number of Pax2+ cells, whereas persistent Shh pathway activation increased their numbers. These changes, however, did not affect early born BC numbers but selectively altered the SC pool size. Moreover, genetic depletion of GABAergic progenitors when BCs are actively generated also resulted in a specific reduction of SCs, suggesting that the specification of MLI subtypes is independent of Shh signaling and their birth order and likely occurs after Pax2+ cells settle into their laminar positions in an inside-out sequence. Mutant mice with reduced SC numbers displayed decreased dendritic inhibitory synapses and neurotransmission onto Purkinje cells, resulting in an impaired acquisition of eyeblink conditioning. These findings also reveal an essential role of Shh signaling-dependent SCs in regulating inhibitory dendritic synapses and motor learning.SIGNIFICANCE STATEMENT The cerebellar circuit that enables fine motor learning involves MLIs of BCs and SCs, which provide dendritic and somatic inhibitory synapses onto Purkinje cells. Little is known about how their identities and numbers are determined, nor are their specific contributions to motor learning well understood. We show that MLI subtypes are specified independent of Shh signaling and their birth orders but appear to occur in their terminal laminar positions according to the inside-out sequence. This finding challenges the current view that MLI subtypes are specified sequentially at the progenitor level. We also demonstrate that dendritic inhibition by Shh signaling-dependent SC pool is necessary for motor learning.
Collapse
|
33
|
Baeriswyl T, Schaettin M, Leoni S, Dumoulin A, Stoeckli ET. Endoglycan Regulates Purkinje Cell Migration by Balancing Cell-Cell Adhesion. Front Neurosci 2022; 16:894962. [PMID: 35794952 PMCID: PMC9251411 DOI: 10.3389/fnins.2022.894962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.
Collapse
|
34
|
Ma H, Huang G, Li M, Han Y, Sun J, Zhan L, Wang Q, Jia X, Han X, Li H, Song Y, Lv Y. The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack. Front Aging Neurosci 2022; 13:808094. [PMID: 35221984 PMCID: PMC8868122 DOI: 10.3389/fnagi.2021.808094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transient ischemic attack (TIA) is known as "small stroke." However, the diagnosis of TIA is currently difficult due to the transient symptoms. Therefore, objective and reliable biomarkers are urgently needed in clinical practice. OBJECTIVE The purpose of this study was to investigate whether dynamic alterations in resting-state local metrics could differentiate patients with TIA from healthy controls (HCs) using the support-vector machine (SVM) classification method. METHODS By analyzing resting-state functional MRI (rs-fMRI) data from 48 patients with and 41 demographically matched HCs, we compared the group differences in three dynamic local metrics: dynamic amplitude of low-frequency fluctuation (d-ALFF), dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), and dynamic regional homogeneity (d-ReHo). Furthermore, we selected the observed alterations in three dynamic local metrics as classification features to distinguish patients with TIA from HCs through SVM classifier. RESULTS We found that TIA was associated with disruptions in dynamic local intrinsic brain activities. Compared with HCs, the patients with TIA exhibited increased d-fALFF, d-fALFF, and d-ReHo in vermis, right calcarine, right middle temporal gyrus, opercular part of right inferior frontal gyrus, left calcarine, left occipital, and left temporal and cerebellum. These alternations in the dynamic local metrics exhibited an accuracy of 80.90%, sensitivity of 77.08%, specificity of 85.37%, precision of 86.05%, and area under curve of 0.8501 for distinguishing the patients from HCs. CONCLUSION Our findings may provide important evidence for understanding the neuropathology underlying TIA and strong support for the hypothesis that these local metrics have potential value in clinical diagnosis.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Integrated Medical School, Jiamusi University, Jiamusi, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiujie Han
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
35
|
Stevens SR, van der Heijden ME, Ogawa Y, Lin T, Sillitoe RV, Rasband MN. Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival. J Neurosci 2022; 42:2-15. [PMID: 34785580 PMCID: PMC8741159 DOI: 10.1523/jneurosci.1132-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
Ankyrin scaffolding proteins are critical for membrane domain organization and protein stabilization in many different cell types including neurons. In the cerebellum, Ankyrin-R (AnkR) is highly enriched in Purkinje neurons, granule cells, and in the cerebellar nuclei (CN). Using male and female mice with a floxed allele for Ank1 in combination with Nestin-Cre and Pcp2-Cre mice, we found that ablation of AnkR from Purkinje neurons caused ataxia, regional and progressive neurodegeneration, and altered cerebellar output. We show that AnkR interacts with the cytoskeletal protein β3 spectrin and the potassium channel Kv3.3. Loss of AnkR reduced somatic membrane levels of β3 spectrin and Kv3.3 in Purkinje neurons. Thus, AnkR links Kv3.3 channels to the β3 spectrin-based cytoskeleton. Our results may help explain why mutations in β3 spectrin and Kv3.3 both cause spinocerebellar ataxia.SIGNIFICANCE STATEMENT Ankyrin scaffolding proteins localize and stabilize ion channels in the membrane by linking them to the spectrin-based cytoskeleton. Here, we show that Ankyrin-R (AnkR) links Kv3.3 K+ channels to the β3 spectrin-based cytoskeleton in Purkinje neurons. Loss of AnkR causes Purkinje neuron degeneration, altered cerebellar physiology, and ataxia, which is consistent with mutations in Kv3.3 and β3 spectrin causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Lin
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
36
|
Ariyani W, Miyazaki W, Amano I, Koibuchi N. Involvement of integrin αvβ3 in thyroid hormone-induced dendritogenesis. Front Endocrinol (Lausanne) 2022; 13:938596. [PMID: 36072926 PMCID: PMC9441609 DOI: 10.3389/fendo.2022.938596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Activation and/or modulation of the membrane-associated receptors plays a critical role in brain development. Thyroid hormone (TH) acts on both nuclear receptors (thyroid hormone receptor, TR) and membrane-associated receptors, particularly integrin αvβ3 in neurons and glia. Integrin αvβ3-mediated signal transduction mediates various cellular events during development including morphogenesis, migration, synaptogenesis, and intracellular metabolism. However, the involvement of integrin αvβ3-mediated TH action during brain development remains poorly understood. Thus, we examined the integrin αvβ3-mediated effects of TH (T3, T4, and rT3) in the neurons and astrocytes using primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture of neurons and astrocytes. We found that TH augments dendrite arborization of cerebellar Purkinje cells. This augmentation was suppressed by knockdown of integrin αvβ3, as well as TRα and TRβ. A selective integrin αvβ3 antagonist, LM609, was also found to suppress TH-induced arborization. However, whether this effect was a direct action of TH on Purkinje cells or due to indirect actions of other cells subset such as astrocytes was not clarified. To further study neuron-specific molecular mechanisms, we used Neuro-2A clonal cells and found TH also induces neurite growth. TH-induced neurite growth was reduced by co-exposure with LM609 or knockdown of TRα, but not TRβ. Moreover, co-culture of Neuro-2A and astrocytes also increased TH-induced neurite growth, indicating astrocytes may be involved in neuritogenesis. TH increased the localization of synapsin-1 and F-actin in filopodia tips. TH exposure also increased phosphorylation of FAK, Akt, and ERK1/2. Phosphorylation was suppressed by co-exposure with LM609 and TRα knockdown. These results indicate that TRs and integrin αvβ3 play essential roles in TH-induced dendritogenesis and neuritogenesis. Furthermore, astrocytes-neuron communication via TR-dependent and TR-independent signaling through membrane receptors and F-actin are required for TH-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- *Correspondence: Winda Ariyani, ; Noriyuki Koibuchi,
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki, Aomori, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- *Correspondence: Winda Ariyani, ; Noriyuki Koibuchi,
| |
Collapse
|
37
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
38
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
39
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Pérez-Serrano C, Bartolomé Á, Bargalló N, Sebastià C, Nadal A, Gómez O, Oleaga L. Perinatal post-mortem magnetic resonance imaging (MRI) of the central nervous system (CNS): a pictorial review. Insights Imaging 2021; 12:104. [PMID: 34292413 PMCID: PMC8298710 DOI: 10.1186/s13244-021-01051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Central nervous system (CNS) abnormalities cause approximately 32–37.7% of terminations of pregnancy (TOP). Autopsy is currently the gold standard for assessing dead foetuses and stillborn. However, it has limitations and is sometimes subject to parental rejection. Recent studies have described post-mortem foetal magnetic resonance imaging (MRI) as an alternative and even complementary to autopsy for CNS assessment. Radiologists now play a key role in the evaluation of perinatal deaths. Assessment of foetal CNS abnormalities is difficult, and interpretation of foetal studies requires familiarisation with normal and abnormal findings in post-mortem MRI studies as well as the strengths and limitations of the imaging studies. The purpose of this pictorial review is to report our experience in the post-mortem MRI evaluation of the CNS system, including a description of the protocol used, normal CNS findings related to post-mortem status, abnormal CNS findings in our sample, and the correlation of these findings with histopathological results.
Collapse
Affiliation(s)
- Carlos Pérez-Serrano
- Radiology Department, CDIC, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain.
| | - Álvaro Bartolomé
- Radiology Department, CDIC, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain
| | - Núria Bargalló
- Radiology Department, CDIC, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain
| | - Carmen Sebastià
- Radiology Department, CDIC, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain
| | - Alfons Nadal
- Pathology Department, CDB, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain
| | - Olga Gómez
- Gynecology Department, ICGON, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain
| | - Laura Oleaga
- Radiology Department, CDIC, Hospital Clínic de Barcelona, C/Villarroel no. 170, 08036, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Martí-Clúa J. Incorporation of 5-Bromo-2'-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells 2021; 10:cells10061453. [PMID: 34200598 PMCID: PMC8229392 DOI: 10.3390/cells10061453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The synthetic halogenated pyrimidine analog, 5-bromo-2'-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2'-deoxyuridine to label dividing cells.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
42
|
van der Heijden ME, Sillitoe RV. Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience 2021; 462:4-21. [PMID: 32554107 PMCID: PMC7736359 DOI: 10.1016/j.neuroscience.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
43
|
Molecular mechanisms of axo-axonic innervation. Curr Opin Neurobiol 2021; 69:105-112. [PMID: 33862423 DOI: 10.1016/j.conb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
One of the most intriguing features of inhibitory synapses is the precision by which they innervate their target, not only at the cellular level but also at the subcellular level (i.e. axo-dendritic, axo-somatic, or axo-axonic innervation). In particular, in the cerebellum, cortex, and spinal cord, distinct and highly specialized GABAergic interneurons, such as basket cells, chandelier cells, and GABApre interneurons, form precise axo-axonic synapses, allowing them to directly regulate neuronal output and circuit function. In this article, we summarize our latest knowledge of the cellular and molecular mechanisms that regulate the establishment and maintenance of axo-axonic synapses in these regions of the CNS. We also detail the key roles of the L1CAM family of cell adhesion molecules in such GABAergic subcellular target recognition.
Collapse
|
44
|
van der Heijden ME, Kizek DJ, Perez R, Ruff EK, Ehrlich ME, Sillitoe RV. Abnormal cerebellar function and tremor in a mouse model for non-manifesting partially penetrant dystonia type 6. J Physiol 2021; 599:2037-2054. [PMID: 33369735 PMCID: PMC8559601 DOI: 10.1113/jp280978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dominic J. Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Elena K. Ruff
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Michelle E. Ehrlich
- Department of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
45
|
Homa M, Loyens A, Eddarkaoui S, Faivre E, Deramecourt V, Maurage CA, Buée L, Huin V, Sablonnière B. The TMEM240 Protein, Mutated in SCA21, Is Expressed in Purkinje Cells and Synaptic Terminals. THE CEREBELLUM 2021; 19:358-369. [PMID: 32002801 DOI: 10.1007/s12311-020-01112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A variety of missense mutations and a stop mutation in the gene coding for transmembrane protein 240 (TMEM240) have been reported to be the causative mutations of spinocerebellar ataxia 21 (SCA21). We aimed to investigate the expression of TMEM240 protein in mouse brain at the tissue, cellular, and subcellular levels. Immunofluorescence labeling showed TMEM240 to be expressed in various areas of the brain, with the highest levels in the hippocampus, isocortex, and cerebellum. In the cerebellum, TMEM240 was detected in the deep nuclei and the cerebellar cortex. The protein was expressed in all three layers of the cortex and various cerebellar neurons. TMEM240 was localized to climbing, mossy, and parallel fiber afferents projecting to Purkinje cells, as shown by co-immunostaining with VGLUT1 and VGLUT2. Co-immunostaining with synaptophysin, post-synaptic fractionation, and confirmatory electron microscopy showed TMEM240 to be localized to the post-synaptic side of synapses near the Purkinje-cell soma. Similar results were obtained in human cerebellar sections. These data suggest that TMEM240 may be involved in the organization of the cerebellar network, particularly in synaptic inputs converging on Purkinje cells. This study is the first to describe TMEM240 expression in the normal mouse brain.
Collapse
Affiliation(s)
- Mégane Homa
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Anne Loyens
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Claude-Alain Maurage
- CHU Lille, Laboratoire d'Anatomopathologie, Centre de Biologie Pathologie et Génétique, F-59000, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Vincent Huin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, F-59000, Lille, France.
| | - Bernard Sablonnière
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France.,CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, F-59000, Lille, France
| |
Collapse
|
46
|
Martí-Clúa J. Developmental timetables and gradients of neurogenesis in cerebellar Purkinje cells and deep glutamatergic neurons: A comparative study between the mouse and the rat. Anat Rec (Hoboken) 2021; 304:2856-2864. [PMID: 33620144 DOI: 10.1002/ar.24607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
The aim of this report is to determine whether the times of neuron origin and neurogenetic gradients of PCs and Deep cerebellar nucli (DCN) glutamatergic neurons are different between mice and rats. Purkinje cells (PCs) were analyzed in each compartment of the cerebellar cortex (vermis, paravermis, medial, and lateral hemispheres), and deep glutamatergic neurons at the level of the medialis, interpositus, and lateralis nuclei. Tritiated thymidine ([3 H]TdR) autoradiography was applied on sections. The experimental rodents were the offspring of pregnant dams injected with [3 H]TdR on embryonic days (E) 11-12, E12-13, E13-14, E14-15, E15-16, and E16-17. Our results indicate that systematic differences exist in the pattern of neurogenesis and the spatial location of cerebellar PCs and deep glutamatergic neurons between mice and rats. In mice, PCs and deep glutamatergic neurons neurogenesis extend from E10 to E14, with a predominance of neurogenesis on E12 for PCs, and on E12, E11, and E10 for the medialis, interpositus, and lateralis neurons, respectively. When neurogenesis in rats was considered, the data reveal that PCs and deep glutamatergic neurons production extends from E12 to E16, with a peak of production on E14 for PCs, and on E14, E13, and E12 for the medialis, interpositus, and lateralis neurons, respectively. Current data also indicate that, both in mice and rats, both types of macroneurons are generated according to a lateral-to-medial gradient. Thus, the lateral hemisphere and the lateralis nucleus present more early-generated neurons than the vermis and the medialis nucleus, which in their turn have more late-produced neurons.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia. Facultad de Biociencias, Institut de Neurociències. Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
47
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
48
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
49
|
Ahmed AS. JAK-1/STAT-3 pathway mediated role in aging cerebellar cortex degenerative changes of albino wistar rats. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2020.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Developmental Maturation of the Cerebellar White Matter-an Instructive Environment for Cerebellar Inhibitory Interneurons. THE CEREBELLUM 2020; 19:286-308. [PMID: 32002802 PMCID: PMC7082410 DOI: 10.1007/s12311-020-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the developing cerebellum, the nascent white matter (WM) serves as an instructive niche for cerebellar cortical inhibitory interneurons. As their Pax2 expressing precursors transit the emerging WM, their laminar fate is programmed. The source(s) and nature of the signals involved remain unknown. Here, we used immunocytochemistry to follow the cellular maturation of the murine cerebellar WM during this critical period. During the first few days of postnatal development, when most Pax2 expressing cells are formed and many of them reach the cerebellar gray matter, only microglial cells can be identified in the territories through which Pax2 cells migrate. From p4 onward, cells expressing the oligodendrocytic or astrocyte markers, CNP-1, MBP or GFAP, started to appear in the nascent WM. Expression of macroglial markers increased with cerebellar differentiation, yet deep nuclei remained GFAP-negative at all ages. The progressive spread of maturing glia did not correlate with the exit of Pax2 cells from the WM, as indicated by the extensive mingling of these cells up to p15. Whereas sonic hedgehog-associated p75NTR expression could be verified in granule cell precursors, postmitotic Pax2 cells are p75NTR negative at all ages analyzed. Thus, if Pax2 cells, like their precursors, are sensitive to sonic hedgehog, this does not affect their expression of p75NTR. Our findings document that subsequently generated sets of Pax2 expressing precursors of inhibitory cerebellar interneurons are confronted with a dynamically changing complement of cerebellar glia. The eventual identification of fate-defining pathways should profit from the covariation with glial maturation predicted by the present findings.
Collapse
|