1
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Faris T Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Chandrashekar DV, Roules GC, Jagadeesan N, Panchal UR, Oyegbesan A, Imiruaye OE, Zhang H, Garcia J, Kaur K, Win S, Than TA, Kaplowitz N, Roosan MR, Han D, Sumbria RK. Hepatic LRP-1 plays an important role in amyloidosis in Alzheimer's disease mice: Potential role in chronic heavy alcohol feeding. Neurobiol Dis 2024; 199:106570. [PMID: 38885850 DOI: 10.1016/j.nbd.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aβ) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aβ were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aβ regulator), blood-brain barrier (BBB) function (vascular Aβ regulator), and microglia (major brain Aβ regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aβ were measured. RESULTS Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aβ (p < 0.05) by ELISA and 6E10-positive Aβ load by immunostaining (p < 0.05). Increased brain Aβ corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aβ and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aβ. The hepato-specific LRP-1 silencing similarly increased brain Aβ which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.
Collapse
Affiliation(s)
- Devaraj V Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - G Chuli Roules
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Urvashi R Panchal
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Adenike Oyegbesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Oghenetega E Imiruaye
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, United States
| | - Jerome Garcia
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Kamaljit Kaur
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Sanda Win
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tin A Than
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Moom R Roosan
- Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States.
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States; Department of Neurology, University of California, Irvine, CA, United States.
| |
Collapse
|
4
|
van Straten D, Sork H, van de Schepop L, Frunt R, Ezzat K, Schiffelers RM. Biofluid specific protein coronas affect lipid nanoparticle behavior in vitro. J Control Release 2024; 373:481-492. [PMID: 39032575 DOI: 10.1016/j.jconrel.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Lipid nanoparticles (LNPs) have successfully entered the clinic for the delivery of mRNA- and siRNA-based therapeutics, most recently as vaccines for COVID-19. Nevertheless, there is a lack of understanding regarding their in vivo behavior, in particular cell targeting. Part of this LNP tropism is based on the adherence of endogenous protein to the particle surface. This protein forms a so-called corona that can change, amongst other things, the circulation time, biodistribution and cellular uptake of these particles. The formation of this protein corona, in turn, is dependent on the nanoparticle properties (e.g., size, charge, surface chemistry and hydrophobicity) as well as the biological environment from which it is derived. With the potential of gene therapy to target virtually any disease, administration sites other than intravenous route are considered, resulting in tissue specific protein coronas. For neurological diseases, intracranial administration of LNPs results in a cerebral spinal fluid derived protein corona, possibly changing the properties of the lipid nanoparticle compared to intravenous administration. Here, the differences between plasma and CSF derived protein coronas on a clinically relevant LNP formulation were studied in vitro. Protein analysis showed that LNPs incubated in human CSF (C-LNPs) developed a protein corona composition that differed from that of LNPs incubated in plasma (P-LNPs). Lipoproteins as a whole, but in particular apolipoprotein E, represented a higher percentage of the total protein corona on C-LNPs than on P-LNPs. This resulted in improved cellular uptake of C-LNPs compared to P-LNPs, regardless of cell origin. Importantly, the higher LNP uptake did not directly translate into more efficient cargo delivery, underlining that further assessment of such mechanisms is necessary. These findings show that biofluid specific protein coronas alter LNP functionality, suggesting that the site of administration could affect LNP efficacy in vivo and needs to be considered during the development of the formulation.
Collapse
Affiliation(s)
- Demian van Straten
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Helena Sork
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | | | - Rowan Frunt
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | |
Collapse
|
5
|
Monnig M, Shah K. Linking alcohol use to Alzheimer's disease: Interactions with aging and APOE along immune pathways. MEDICAL RESEARCH ARCHIVES 2024; 12:10.18103/mra.v12i8.5228. [PMID: 39544182 PMCID: PMC11563488 DOI: 10.18103/mra.v12i8.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Although it is known that APOE genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, development is a multifactorial process. Alcohol use is a contributor to the epidemic of Alzheimer's disease and related dementias in the US and globally, yet mechanisms are not fully understood. Carriers of the APOE ε4 allele show elevated risk of dementia in relation to several lifestyle factors, including alcohol use. In this review, we describe how alcohol interacts with APOE genotype and aging with potential implications for Alzheimer's disease promotion. Age-related immune senescence and "inflammaging" (i.e., low-grade inflammation associated with aging) are increasingly recognized as contributors to age-related disease. We focus on three immune pathways that are likely contributors to Alzheimer's disease development, centering on alcohol and APOE genotype interactions, specifically: 1) microbial translocation and immune activation, 2) the senescence associated secretory phenotype, and 3) neuroinflammation. First, microbial translocation, the unphysiological movement of gut products into systemic circulation, elicits a proinflammatory response and increases with aging, with proposed links to Alzheimer's disease. Second, the senescence associated secretory phenotype is a set of intercellular signaling factors, e.g., proinflammatory cytokines and chemokines, growth regulators, and proteases, that drives cellular aging when senescent cells remain metabolically active. The senescence associated secretory phenotype can drive development of aging-diseases such as Alzheimer's disease. Third, neuroinflammation occurs via numerous mechanisms such as microglial activation and is gaining recognition as an etiological factor in the development of Alzheimer's disease. This review focuses on interactions of alcohol with APOE genotype and aging along these three pathways that may promote Alzheimer's disease. Further research on these processes may inform development of strategies to prevent onset and progression of Alzheimer's disease and to delay associated cognitive decline.
Collapse
Affiliation(s)
- Mollie Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| | - Krish Shah
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Han SW, Lee SH, Kim JH, Lee JJ, Park YH, Kim S, Nho K, Sohn JH. Association of liver function markers and apolipoprotein E ε4 with pathogenesis and cognitive decline in Alzheimer's disease. Front Aging Neurosci 2024; 16:1411466. [PMID: 39114318 PMCID: PMC11303325 DOI: 10.3389/fnagi.2024.1411466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Background Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various factors, including liver function, which may impact the clearance of amyloid-β (Aβ) in the brain. This study aimed to explore how the apolipoprotein E (APOE) ε4 allele affects the relationship of liver function markers with AD pathology and cognition. Methods We analyzed data from two independent cohorts, including 732 participants from the Hallym University Medical Center and 483 from the Alzheimer's Disease Neuroimaging Initiative, each group consisting of individuals with and without the APOE ε4 allele. Cross-sectional analyses evaluated the associations of liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], alkaline phosphatase, total bilirubin, and albumin) with AD diagnosis, amyloid positron emission tomography (PET) burden, and cerebrospinal fluid biomarkers for AD (Aβ42, total tau, and phosphorylated tau181) at baseline. Longitudinally, we investigated the associations between these liver enzymes and changes in cognitive performance over the course of a year. Logistic and linear regression models were used to analyze these associations and mediation analyses were conducted to assess whether age and amyloid PET burden mediated these associations. Results Only in the APOE ε4 carrier group, a high AST to ALT ratio and low ALT levels were significantly associated with AD diagnosis, increased amyloid PET burden, and faster longitudinal decline in cognitive function in both cohorts. In particular, the AST to ALT ratio was associated with cerebrospinal fluid Aβ42 levels exclusively in the APOE ε4 carrier group in the Alzheimer's Disease Neuroimaging Initiative cohort but not with phosphorylated tau181 or total tau levels. Moreover, mediation analyses from both cohorts revealed that in the APOE ε4 carriers group, age did not mediate the associations between liver enzymes and AD diagnosis or amyloid PET burden. However, amyloid PET burden partially mediated the association between liver enzymes and AD diagnosis exclusively in the APOE ε4 carriers group. Conclusion This study provides valuable insights into the significant association of the APOE ε4 allele with liver enzymes and their potential role in Aβ-related pathogenesis and cognition in AD. Further research is required to elucidate the underlying mechanisms and potential therapeutic implications of these findings.
Collapse
Affiliation(s)
- Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jong Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
Jackson RJ, Keiser MS, Meltzer JC, Fykstra DP, Dierksmeier SE, Hajizadeh S, Kreuzer J, Morris R, Melloni A, Nakajima T, Tecedor L, Ranum PT, Carrell E, Chen Y, Nishtar MA, Holtzman DM, Haas W, Davidson BL, Hyman BT. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. Mol Ther 2024; 32:1373-1386. [PMID: 38504517 PMCID: PMC11081918 DOI: 10.1016/j.ymthe.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonah C Meltzer
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Dustin P Fykstra
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Steven E Dierksmeier
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA; Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Soroush Hajizadeh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Johannes Kreuzer
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Morris
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK
| | - Alexandra Melloni
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Tsuneo Nakajima
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ellie Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - YongHong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maryam A Nishtar
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Nazeri Z, Abdeveiszadeh N, Zarezade V, Azizidoost S, Cheraghzadeh M, Aberumand M, Kheirollah A. Investigating the Effect of Aspirin on apoAI-Induced ATP Binding Cassette Transporter 1 Protein Expression and Cholesterol Efflux in Human Astrocytes. Adv Biomed Res 2024; 13:16. [PMID: 38525390 PMCID: PMC10958728 DOI: 10.4103/abr.abr_417_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 03/26/2024] Open
Abstract
Background Neurons need a high amount of cholesterol to maintain the stability of their membrane-rich structures. Astrocytes synthesize and distribute cholesterol to neurons, and ABCA1 is a key mediator of cholesterol efflux to generate HDL for cholesterol transport in the brain. Several studies imply the effect of aspirin on ABCA1 expression in peripheral cells such as macrophages. Here, we compared the effect of aspirin with apoA-I on ABCA1 protein expression and cholesterol efflux in human astrocytes. Materials and Methods Human astrocytes were cultured, and the effects of aspirin on the expression and protein levels of ABCA1 were investigated through RT-PCR and Western blot analysis. Additionally, the effect of co-treatment with apoA-I and aspirin on ABCA1 protein level and cholesterol efflux was evaluated. Results Dose and time-course experiments showed that the maximum effect of aspirin on ABCA1 expression occurred at a concentration of 0.5 mM after 12 h of incubation. RT-PCR and western blot data showed that aspirin upregulates ABCA1 expression by up to 4.7-fold and its protein level by 67%. Additionally, co-treatment with aspirin and apoA-I increased cholesterol release from astrocytes, indicating an additive effect of aspirin on apoAI-mediated cholesterol efflux. Conclusions The results suggest a potential role of aspirin in increasing ABCA1 expression and cholesterol efflux in astrocytes, similar to the effect of apoA-I. This indicates that aspirin could potentially regulate brain cholesterol balance and can be considered in certain neurological diseases, in particular in some neurological disorders related to cholesterol accumulation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Abdeveiszadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberumand
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
9
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
10
|
McLaren AMR, Kawaja MD. Olfactory Dysfunction and Alzheimer's Disease: A Review. J Alzheimers Dis 2024; 99:811-827. [PMID: 38728185 DOI: 10.3233/jad-231377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease is the most common cause of dementia, and it is one of the leading causes of death globally. Identification and validation of biomarkers that herald the onset and progression of Alzheimer's disease is of paramount importance for early reliable diagnosis and effective pharmacological therapy commencement. A substantial body of evidence has emerged demonstrating that olfactory dysfunction is a preclinical symptom of neurodegenerative diseases including Alzheimer's disease. While a correlation between olfactory dysfunction and Alzheimer's disease onset and progression in humans exists, the mechanism underlying this relationship remains unknown. The aim of this article is to review the current state of knowledge regarding the range of potential factors that may contribute to the development of Alzheimer's disease-related olfactory dysfunction. This review predominantly focuses on genetic mutations associated with Alzheimer's disease including amyloid-β protein precursor, presenilin 1 and 2, and apolipoprotein E mutations, that may (in varying ways) drive the cellular events that lead to and sustain olfactory dysfunction.
Collapse
Affiliation(s)
| | - Michael D Kawaja
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON, Canada
| |
Collapse
|
11
|
Liemisa B, Newbury SF, Novy MJ, Pasato JA, Morales-Corraliza J, Peng KY, Mathews PM. Brain apolipoprotein E levels in mice challenged by a Western diet increase in an allele-dependent manner. AGING BRAIN 2023; 4:100102. [PMID: 38058491 PMCID: PMC10696459 DOI: 10.1016/j.nbas.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Human apolipoprotein E (APOE) is the greatest determinant of genetic risk for memory deficits and Alzheimer's disease (AD). While APOE4 drives memory loss and high AD risk, APOE2 leads to healthy brain aging and reduced AD risk compared to the common APOE3 variant. We examined brain APOE protein levels in humanized mice homozygous for these alleles and found baseline levels to be age- and isoform-dependent: APOE2 levels were greater than APOE3, which were greater than APOE4. Despite the understanding that APOE lipoparticles do not traverse the blood-brain barrier, we show that brain APOE levels are responsive to dietary fat intake. Challenging mice for 6 months on a Western diet high in fat and cholesterol increased APOE protein levels in an allele-dependent fashion with a much greater increase within blood plasma than within the brain. In the brain, APOE2 levels responded most to the Western diet challenge, increasing by 20 % to 30 %. While increased lipoparticles are generally deleterious in the periphery, we propose that higher brain APOE2 levels may represent a readily available pool of beneficial lipid particles for neurons.
Collapse
Affiliation(s)
- Braison Liemisa
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Samantha F. Newbury
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Mariah J. Novy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jonathan A. Pasato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine Y. Peng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul M. Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Jackson RJ, Keiser MS, Meltzer JC, Fykstra DP, Dierksmeier SE, Melloni A, Nakajima T, Tecedor L, Ranum PT, Carrell E, Chen Y, Holtzman DM, Davidson BL, Hyman BT. APOE2 gene therapy reduces amyloid deposition, and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.552850. [PMID: 37645718 PMCID: PMC10461997 DOI: 10.1101/2023.08.14.552850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.
Collapse
|
13
|
Snellman A, Ekblad LL, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Pietilä E, Koivumäki M, Helin S, Karrasch M, Zetterberg H, Blennow K, Rinne JO. Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer's disease. Neurobiol Dis 2023; 183:106175. [PMID: 37268240 DOI: 10.1016/j.nbd.2023.106175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Plasma phosphorylated tau (p-tau) and glial fibrillary acidic protein (GFAP) both reflect early changes in Alzheimer's disease (AD) pathology. Here, we compared the biomarker levels and their association with regional β-amyloid (Aβ) pathology and cognitive performance head-to-head in clinically unimpaired elderly (n = 88) at three levels of APOE4-related genetic risk for sporadic AD (APOE4/4 n = 19, APOE3/4 n = 32 or non-carriers n = 37). Concentrations of plasma p-tau181, p-tau231 and GFAP were measured using Single molecule array (Simoa), regional Aβ deposition with 11C-PiB positron emission tomography (PET), and cognitive performance with a preclinical composite. Significant differences in plasma p-tau181 and p-tau231, but not plasma GFAP concentrations were present between the APOE4 gene doses, explained solely by brain Aβ load. All plasma biomarkers correlated positively with Aβ PET in the total study population. This correlation was driven by APOE3/3 carriers for plasma p-tau markers and APOE4/4 carriers for plasma GFAP. Voxel-wise associations with amyloid-PET revealed different spatial patterns for plasma p-tau markers and plasma GFAP. Only higher plasma GFAP correlated with lower cognitive scores. Our observations suggest that plasma p-tau and plasma GFAP are both early AD markers reflecting different Aβ-related processes.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Elina Pietilä
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
15
|
Lawler PE, Bollinger JG, Schindler SE, Hodge CR, Iglesias NJ, Krishnan V, Coulton JB, Li Y, Holtzman DM, Bateman RJ. Apolipoprotein E O-glycosylation is associated with amyloid plaques and APOE genotype. Anal Biochem 2023; 672:115156. [PMID: 37072097 DOI: 10.1016/j.ab.2023.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Although the APOE ε4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), the relationship between apolipoprotein (apoE) and AD pathophysiology is not yet fully understood. Relatively little is known about the apoE protein species, including post-translational modifications, that exist in the human periphery and CNS. To better understand these apoE species, we developed a LC-MS/MS assay that simultaneously quantifies both unmodified and O-glycosylated apoE peptides. The study cohort included 47 older individuals (age 75.6 ± 5.7 years [mean ± standard deviation]), including 23 individuals (49%) with cognitive impairment. Paired plasma and cerebrospinal fluid samples underwent analysis. We quantified O-glycosylation of two apoE protein residues - one in the hinge region and one in the C-terminal region - and found that glycosylation occupancy of the hinge region in the plasma was significantly correlated with plasma total apoE levels, APOE genotype and amyloid status as determined by CSF Aβ42/Aβ40. A model with plasma glycosylation occupancy, plasma total apoE concentration, and APOE genotype distinguished amyloid status with an AUROC of 0.89. These results suggest that plasma apoE glycosylation levels could be a marker of brain amyloidosis, and that apoE glycosylation may play a role in the pathophysiology of AD.
Collapse
Affiliation(s)
- Paige E Lawler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - James G Bollinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia R Hodge
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicolas J Iglesias
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Vishal Krishnan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John B Coulton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Abondio P, Bruno F, Luiselli D. Apolipoprotein E (APOE) Haplotypes in Healthy Subjects from Worldwide Macroareas: A Population Genetics Perspective for Cardiovascular Disease, Neurodegeneration, and Dementia. Curr Issues Mol Biol 2023; 45:2817-2831. [PMID: 37185708 PMCID: PMC10137191 DOI: 10.3390/cimb45040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Human APOE is a 299-amino acid long protein expressed and secreted in several tissues and body districts, where it exerts different functions mainly related to lipid metabolism, with specific activities around cholesterol transport and absorption/elimination. It has three main isoforms, determined by the pair of mutations rs7412-C/T and rs429358-C/T, which gives rise to the functionally different APOE variants ε2, ε3, and ε4. These have a distinct impact on lipid metabolism and are differentially implicated in Alzheimer’s disease and neurodegeneration, cardiovascular disease, and dyslipidemia. A plethora of other single nucleotide variants along the sequence of the APOE gene have been studied in cohorts of affected individuals, where they also modulate the influence of the three main isoforms to determine the risk of developing the disease. However, no contextual analysis of gene-long haplotypes has been carried out so far, and never extensively in cohorts of healthy individuals from different worldwide populations. Leveraging a rich population genomics dataset, this study elucidates the distribution of APOE variants and haplotypes that are shared across populations and to specific macroareas, revealing a variety of risk-allele associations that distinguish specific ancestral backgrounds and can be leveraged for specific ancestry-informed screenings in medicine and public health.
Collapse
|
17
|
de Frutos Lucas J, Sewell KR, García-Colomo A, Markovic S, Erickson KI, Brown BM. How does apolipoprotein E genotype influence the relationship between physical activity and Alzheimer's disease risk? A novel integrative model. Alzheimers Res Ther 2023; 15:22. [PMID: 36707869 PMCID: PMC9881295 DOI: 10.1186/s13195-023-01170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Wide evidence suggests that physical activity (PA) confers protection against Alzheimer's disease (AD). On the other hand, the apolipoprotein E gene (APOE) ε4 allele represents the greatest genetic risk factor for developing AD. Extensive research has been conducted to determine whether frequent PA can mitigate the increased AD risk associated with APOE ε4. However, thus far, these attempts have produced inconclusive results. In this context, one possible explanation could be that the influence of the combined effect of PA and APOE ε4 carriage might be dependent on the specific outcome measure utilised. MAIN BODY In order to bridge these discrepancies, the aim of this theoretical article is to propose a novel model on the interactive effects of PA and APOE ε4 carriage on well-established mechanisms underlying AD. Available literature was searched to investigate how PA and APOE ε4 carriage, independently and in combination, may alter several molecular pathways involved in AD pathogenesis. The reviewed mechanisms include amyloid beta (Aβ) and tau deposition and clearance, neuronal resilience and neurogenesis, lipid function and cerebrovascular alterations, brain immune response and glucose metabolism. Finally, combining all this information, we have built an integrative model, which includes evidence-based and theoretical synergistic interactions across mechanisms. Moreover, we have identified key knowledge gaps in the literature, providing a list of testable hypotheses that future studies need to address. CONCLUSIONS We conclude that PA influences a wide array of molecular targets involved in AD neuropathology. A deeper understanding of where, when and, most importantly, how PA decreases AD risk even in the presence of the APOE ε4 allele will enable the creation of new protocols using exercise along pharmaceuticals in combined therapeutic approaches.
Collapse
Affiliation(s)
- Jaisalmer de Frutos Lucas
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain.
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- Departamento de PsicologíaFacultad de Ciencias de la Vida y de la Naturaleza, Universidad Antonio de Nebrija, 28015, Madrid, Spain.
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Alejandra García-Colomo
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Shaun Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
- AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Belinda M Brown
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
18
|
Nakamura T, Kawarabayashi T, Ueda T, Shimomura S, Hoshino M, Itoh K, Ihara K, Nakaji S, Takatama M, Ikeda Y, Shoji M. Plasma ApoE4 Levels Are Lower than ApoE2 and ApoE3 Levels, and Not Associated with Plasma Aβ40/42 Ratio as a Biomarker of Amyloid-β Amyloidosis in Alzheimer's Disease. J Alzheimers Dis 2023; 93:333-348. [PMID: 36970894 DOI: 10.3233/jad-220996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND APOE4 is the strongest risk factor for Alzheimer's disease (AD). However, limited information is currently available on APOE4 and the pathological role of plasma apolipoprotein E (ApoE) 4 remains unclear. OBJECTIVE The aims of the present study were to measure plasma levels of total ApoE (tE), ApoE2, ApoE3, and ApoE4 using mass spectrometry and elucidate the relationships between plasma ApoE and blood test items. METHODS We herein examined plasma levels of tE, ApoE2, ApoE3, and ApoE4 in 498 subjects using liquid chromatograph-mass spectrometry (LC-MS/MS). RESULTS Among 498 subjects, mean age was 60 years and 309 were female. tE levels were distributed as ApoE2/E3 = ApoE2/E4 >ApoE3/E3 = ApoE3/E4 >ApoE4/E4. In the heterozygous group, ApoE isoform levels were distributed as ApoE2 >ApoE3 >ApoE4. ApoE levels were not associated with aging, the plasma amyloid-β (Aβ) 40/42 ratio, or the clinical diagnosis of AD. Total cholesterol levels correlated with the level of each ApoE isoform. ApoE2 levels were associated with renal function, ApoE3 levels with low-density lipoprotein cholesterol and liver function, and ApoE4 levels with triglycerides, high-density lipoprotein cholesterol, body weight, erythropoiesis, and insulin metabolism. CONCLUSION The present results suggest the potential of LC-MS/MS for the phenotyping and quantitation of plasma ApoE. Plasma ApoE levels are regulated in the order of ApoE2 >ApoE3 >ApoE4 and are associated with lipids and multiple metabolic pathways, but not directly with aging or AD biomarkers. The present results provide insights into the multiple pathways by which peripheral ApoE4 influences the progression of AD and atherosclerosis.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Sachiko Shimomura
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masaki Hoshino
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
19
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
20
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
21
|
de Oliveira FF, de Almeida SS, Chen ES, Smith MC, Bertolucci PHF. APOE ε4 Carrier Status as Mediator of Effects of Psychotropic Drugs on Clinical Changes in Patients With Alzheimer's Disease. J Neuropsychiatry Clin Neurosci 2022; 34:351-360. [PMID: 35272493 DOI: 10.1176/appi.neuropsych.21060160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Neuropsychiatric syndromes have been associated with memory dysfunction and risk of and earlier onset of dementia, but how psychotropic drugs affect clinical changes in Alzheimer's disease is not entirely clear. This study aimed to assess the prospective effects of psychotropic drugs on cognitive and functional changes in Alzheimer's disease according to APOE ε4 carrier status. METHODS The study included consecutive outpatients with late-onset Alzheimer's disease (N=193) and examined score variations at 1 year on the following tests: Clinical Dementia Rating sum of boxes, Mini-Mental State Examination, Severe Mini-Mental State Examination (SMMSE), Brazilian version of the Zarit Caregiver Burden Interview, Index of Independence in Activities of Daily Living, and Lawton's Instrumental Activities of Daily Living Scale. Analyses of score variations accounted for the use of psychotropic drugs or the number of different medications in use, as well as APOE ε4 carrier status, with significance at p<0.05. RESULTS For APOE ε4 noncarriers (N=90), cholinesterase inhibitors were beneficial regarding caregiver burden (p=0.030) and basic functionality (p=0.046), memantine was harmful regarding SMMSE score changes (p=0.032), second-generation antipsychotics had nonsignificant harmful effects on SMMSE score changes (p=0.070), and antiepileptic therapy (p=0.001) and the number of different medications in use (p=0.006) were harmful in terms of basic functionality. APOE ε4 carriers (N=103) did not experience any effects of isolated psychotropic drugs on clinical changes, including antidepressants. CONCLUSIONS Results support the harmful prospective effects of second-generation antipsychotics and antiepileptic drugs on cognitive and functional changes in Alzheimer's disease, particularly for APOE ε4 noncarriers, whereas antidepressants may be safer options for behavioral enhancement.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery (de Oliveira, Bertolucci), Department of Biophysics (de Almeida), Department of Morphology and Genetics (Chen, Smith), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sandro Soares de Almeida
- Department of Neurology and Neurosurgery (de Oliveira, Bertolucci), Department of Biophysics (de Almeida), Department of Morphology and Genetics (Chen, Smith), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Department of Neurology and Neurosurgery (de Oliveira, Bertolucci), Department of Biophysics (de Almeida), Department of Morphology and Genetics (Chen, Smith), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marilia Cardoso Smith
- Department of Neurology and Neurosurgery (de Oliveira, Bertolucci), Department of Biophysics (de Almeida), Department of Morphology and Genetics (Chen, Smith), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo Henrique Ferreira Bertolucci
- Department of Neurology and Neurosurgery (de Oliveira, Bertolucci), Department of Biophysics (de Almeida), Department of Morphology and Genetics (Chen, Smith), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Liver-ing in your head rent free: peripheral ApoE4 drives CNS pathology. Mol Neurodegener 2022; 17:65. [PMID: 36195891 PMCID: PMC9531445 DOI: 10.1186/s13024-022-00569-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
|
23
|
Traylor MK, Bauman AJ, Saiyasit N, Frizell CA, Hill BD, Nelson AR, Keller JL. An examination of the relationship among plasma brain derived neurotropic factor, peripheral vascular function, and body composition with cognition in midlife African Americans/Black individuals. Front Aging Neurosci 2022; 14:980561. [PMID: 36092801 PMCID: PMC9453229 DOI: 10.3389/fnagi.2022.980561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.
Collapse
Affiliation(s)
- Miranda K. Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| | - Allison J. Bauman
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Physician Assistant Sciences Program, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Benjamin D. Hill
- Department of Psychology, College of Arts and Sciences, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
24
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
25
|
Rhea EM, Banks WA, Raber J. Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines 2022; 10:1582. [PMID: 35884888 PMCID: PMC9312939 DOI: 10.3390/biomedicines10071582] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The concept of insulin resistance has been around since a few decades after the discovery of insulin itself. To allude to the classic Charles Dicken's novel published 62 years before the discovery of insulin, in some ways, this is the best of times, as the concept of insulin resistance has expanded to include the brain, with the realization that insulin has a life beyond the regulation of glucose. In other ways, it is the worst of times as insulin resistance is implicated in devastating diseases, including diabetes mellitus, obesity, and Alzheimer's disease (AD) that affect the brain. Peripheral insulin resistance affects nearly a quarter of the United States population in adults over age 20. More recently, it has been implicated in AD, with the degree of brain insulin resistance correlating with cognitive decline. This has led to the investigation of brain or central nervous system (CNS) insulin resistance and the question of the relation between CNS and peripheral insulin resistance. While both may involve dysregulated insulin signaling, the two conditions are not identical and not always interlinked. In this review, we compare and contrast the similarities and differences between peripheral and CNS insulin resistance. We also discuss how an apolipoprotein involved in insulin signaling and related to AD, apolipoprotein E (apoE), has distinct pools in the periphery and CNS and can indirectly affect each system. As these systems are both separated but also linked via the blood-brain barrier (BBB), we discuss the role of the BBB in mediating some of the connections between insulin resistance in the brain and in the peripheral tissues.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
Foley KE, Hewes AA, Garceau DT, Kotredes KP, Carter GW, Sasner M, Howell GR. The APOEε3/ε4 Genotype Drives Distinct Gene Signatures in the Cortex of Young Mice. Front Aging Neurosci 2022; 14:838436. [PMID: 35370604 PMCID: PMC8967347 DOI: 10.3389/fnagi.2022.838436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
IntroductionRestrictions on existing APOE mouse models have impacted research toward understanding the strongest genetic risk factor contributing to Alzheimer’s disease (AD) and dementia, APOEε4, by hindering observation of a key, common genotype in humans – APOEε3/ε4. Human studies are typically underpowered to address APOEε4 allele risk as the APOEε4/ε4 genotype is rare, which leaves human and mouse research unsupported to evaluate the APOEε3/ε4 genotype on molecular and pathological risk for AD and dementia.MethodsAs a part of MODEL-AD, we created and validated new versions of humanized APOEε3/ε3 and APOEε4/ε4 mouse strains that, due to unrestricted breeding, allow for the evaluation of the APOEε3/ε4 genotype. As biometric measures are often translatable between mouse and human, we profiled circulating lipid concentrations. We also performed transcriptional profiling of the cerebral cortex at 2 and 4 months (mos), comparing APOEε3/ε4 and APOEε4/ε4 to the reference APOEε3/ε3 using linear modeling and WGCNA. Further, APOE mice were exercised and compared to litter-matched sedentary controls, to evaluate the interaction between APOEε4 and exercise at a young age.ResultsExpression of human APOE isoforms were confirmed in APOEε3/ε3, APOEε3/ε4 and APOEε4/ε4 mouse brains. At two mos, cholesterol composition was influenced by sex, but not APOE genotype. Results show that the APOEε3/ε4 and APOEε4/ε4 genotype exert differential effects on cortical gene expression. APOEε3/ε4 uniquely impacts ‘hormone regulation’ and ‘insulin signaling,’ terms absent in APOEε4/ε4 data. At four mos, cholesterol and triglyceride levels were affected by sex and activity, with only triglyceride levels influenced by APOE genotype. Linear modeling revealed APOEε3/ε4, but not APOEε4/ε4, affected ‘extracellular matrix’ and ‘blood coagulation’ related terms. We confirmed these results using WGCNA, indicating robust, yet subtle, transcriptional patterns. While there was little evidence of APOE genotype by exercise interaction on the cortical transcriptome at this young age, running was predicted to affect myelination and gliogenesis, independent of APOE genotype with few APOE genotype-specific affects identified.DiscussionAPOEε4 allele dosage-specific effects were observed in circulating lipid levels and cortical transcriptional profiles. Future studies are needed to establish how these data may contribute to therapeutic development in APOEε3/ε4 and APOEε4/ε4 dementia patients.
Collapse
Affiliation(s)
- Kate E. Foley
- The Jackson Laboratory, Bar Harbor, ME, United States
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Amanda A. Hewes
- The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Psychology, University of Maine, Orono, ME, United States
| | | | | | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, ME, United States
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME, United States
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Gareth R. Howell,
| |
Collapse
|
27
|
Moon HJ, Haroutunian V, Zhao L. Human apolipoprotein E isoforms are differentially sialylated and the sialic acid moiety in ApoE2 attenuates ApoE2-Aβ interaction and Aβ fibrillation. Neurobiol Dis 2022; 164:105631. [PMID: 35041991 PMCID: PMC9809161 DOI: 10.1016/j.nbd.2022.105631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
The APOE genotype is the most prominent genetic risk factor for the development of late-onset Alzheimer''s disease (LOAD); however, the underlying mechanisms remain unclear. In the present study, we found that the sialylation profiles of ApoE protein in the human brain are significantly different among the three isoforms, with ApoE2 exhibiting the most abundant sialic acid modification whereas ApoE4 had the least. We further observed that the sialic acid moiety in ApoE2 significantly affected the interaction between ApoE2 and Aβ peptides. The removal of sialic acid in ApoE2 increased the ApoE2 binding affinity for the Aβ17-24 region of Aβ and promoted Aβ fibrillation. These findings provide a plausible explanation for the well-documented differential roles of ApoE isoforms in Aβ pathogenesis. Specifically, compared to the other two isotypes, the higher expression of sialic acid in ApoE2 may contribute to the less potent interaction between ApoE2 and Aβ and ultimately the slower rate of brain Aβ deposition, a mechanism thought to underlie ApoE2-mediated decreased risk for AD. Future studies are warranted to determine whether the differential sialylation in ApoE isoforms may also contribute to some of their other distinct properties, such as their divergent preferences in associations with lipids and lipoproteins, as well as their potential impact on neuroinflammation through modulation of microglial Siglec activity. Overall, our findings lead to the insight that the sialic acid structure is an important posttranslational modification (PTM) that alters ApoE protein functions with relevance for AD.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Vahram Haroutunian
- The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 100029, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
28
|
Tan JS, Hu MJ, Yang YM, Yang YJ. Genetic Predisposition to Low-Density Lipoprotein Cholesterol May Increase Risks of Both Individual and Familial Alzheimer's Disease. Front Med (Lausanne) 2022; 8:798334. [PMID: 35087849 PMCID: PMC8787049 DOI: 10.3389/fmed.2021.798334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Previous observational studies provided conflicting results on the association between low-density lipoprotein cholesterol (LDL-C) level and the risk of Alzheimer's disease (AD). Objective: We used two-sample Mendelian randomization (MR) study to explore the causal associations between LDL-C level and the risks of individual, paternal, maternal, and family history of AD. Methods: Summary-level genetic data for LDL-C were acquired from results of the UK Biobank GWAS. Corresponding data for paternal, maternal, and family history of AD were obtained from the NHGRI-EBI Catalog of human genome-wide association studies. Data for individual AD were obtained from the MR-Base platform. A two-sample MR study was performed to explore the causal association between LDL-C level and the risks of individual, paternal, maternal, and family history of AD. Results: Genetically predicted LDL-C was positively associated with individual [Odds ratio (OR) = 1.509, 95% confidence interval (CI) = 1.140-1.999; P = 4.0 × 10-3], paternal [OR = 1.109, 95% CI = 1.053-1.168; P = 9.5 × 10-5], maternal [OR = 1.132, 95% CI = 1.070-1.199; P = 2.0 × 10-5], and family history of AD [OR = 1.124, 95% CI = 1.070-1.181; P = 3.7 × 10-6] in inverse variance weighted analysis. After performing weighted median and MR-Egger analysis, consistent results were observed. There was no horizontal pleiotropy in the two-sample MR analysis. Conclusions: High level of LDL-C may increase the risks of both individual and familial AD. Decreasing the LDL-C to a reasonable level may help to reduce the related risk.
Collapse
Affiliation(s)
| | | | - Yan-Min Yang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Jackson RJ, Meltzer JC, Nguyen H, Commins C, Bennett RE, Hudry E, Hyman BT. APOE4 derived from astrocytes leads to blood-brain barrier impairment. Brain 2021; 145:3582-3593. [PMID: 34957486 PMCID: PMC9586546 DOI: 10.1093/brain/awab478] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023] Open
Abstract
Apolipoprotein E (ApoE) is a multifaceted secreted molecule synthesized in the CNS by astrocytes and microglia, and in the periphery largely by the liver. ApoE has been shown to impact the integrity of the blood-brain barrier, and, in humans, the APOE4 allele of the gene is reported to lead to a leaky blood-brain barrier. We used allele specific knock-in mice expressing each of the common (human) ApoE alleles, and longitudinal multiphoton intravital microscopy, to directly monitor the impact of various ApoE isoforms on blood-brain barrier integrity. We found that humanized APOE4, but not APOE2 or APOE3, mice show a leaky blood-brain barrier, increased MMP9, impaired tight junctions, and reduced astrocyte end-foot coverage of blood vessels. Removal of astrocyte-produced ApoE4 led to the amelioration of all phenotypes while the removal of astrocyte-produced ApoE3 had no effect on blood-brain barrier integrity. This work shows a cell specific gain of function effect of ApoE4 in the dysfunction of the BBB and implicates astrocyte production of ApoE4, possibly as a function of astrocytic end foot interactions with vessels, as a key regulator of the integrity of the blood-brain barrier.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA,Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Caitlin Commins
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA,Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Rachel E Bennett
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA,Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA,Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA,Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Bradley T Hyman
- Correspondence to: Bradley Hyman Massachusetts General Hospital MIND Institute 114 16th Street, Charlestown, 02129 MA, USA E-mail:
| |
Collapse
|
30
|
Chai AB, Lam HHJ, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158980. [PMID: 34044125 DOI: 10.1016/j.bbalip.2021.158980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.
Collapse
Affiliation(s)
- Amanda B Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Hin Hei Julian Lam
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2139, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
31
|
Schwahn C, Frenzel S, Holtfreter B, Van der Auwera S, Pink C, Bülow R, Friedrich N, Völzke H, Biffar R, Kocher T, Grabe HJ. Effect of periodontal treatment on preclinical Alzheimer's disease-Results of a trial emulation approach. Alzheimers Dement 2021; 18:127-141. [PMID: 34050719 DOI: 10.1002/alz.12378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We investigated the relationship between periodontal treatment and pre-clinical Alzheimer's disease (AD). METHODS In this quasi-experimental design, 177 periodontally treated patients from the "Greifswald Approach to Individualized Medicine" cohort, which used the same protocols as the population-based Study of Health in Pomerania TREND (SHIP-TREND), and 409 untreated subjects from SHIP-TREND were analyzed. Subjects were younger than 60 years at the magnetic resonance imaging examination, with a median observation period of 7.3 years. Imaging markers for brain atrophy in late-onset AD and brain aging were used as the outcomes. RESULTS Robust to sensitivity analyses, periodontal treatment had a favorable effect on AD-related brain atrophy (-0.41; 95% confidence interval: -0.70 to -0.12; P = .0051), which corresponds to a shift from the 50th to the 37th percentile of the outcome distribution. For brain aging, the treatment effect was uncertain. CONCLUSION Periodontitis is related to pre-clinical AD in our population.
Collapse
Affiliation(s)
- Christian Schwahn
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Birte Holtfreter
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Christiane Pink
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), Greifswald, Germany.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | | |
Collapse
|
32
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
33
|
Husain MA, Laurent B, Plourde M. APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Front Neurosci 2021; 15:630502. [PMID: 33679311 PMCID: PMC7925634 DOI: 10.3389/fnins.2021.630502] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by extracellular amyloid β (Aβ) and intraneuronal tau protein aggregations. One risk factor for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE). Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid (CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system (CNS). ApoE is a major lipid transporter that plays a pivotal role in the development, maintenance, and repair of the CNS, and that regulates multiple important signaling pathways. This review will focus on the critical role of apoE in AD pathogenesis and some of the currently apoE-based therapeutics developed in the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Liu YJ, Xing F, Zong K, Wang MY, Ji DM, Zhao YH, Xia YH, Wang A, Shi LG, Ding SM, Wei ZL, Qiao JP, Du X, Cao YX. Increased ApoE Expression in Follicular Fluid and the ApoE Genotype Are Associated With Endometriosis in Chinese Women. Front Endocrinol (Lausanne) 2021; 12:779183. [PMID: 34867826 PMCID: PMC8638081 DOI: 10.3389/fendo.2021.779183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
More than 10% of women suffer from endometriosis (EMT) during their reproductive years. EMT can cause pain and infertility and requires further study from multiple perspectives. Previous reports have indicated that an increase inapolipoprotein E (ApoE) may be associated with a lower number of retrieved mature oocytes in older women, and an association between ApoE and spontaneous pregnancy loss may exist in patients with EMT. The purpose of this study was to investigate the existence of an increase in ApoE in follicular fluid (FF) and the possible relationship between ApoE and EMT in Chinese women. In the current study, 217 Chinese women (111 control subjects and 106 EMT patients) were included. The ApoE genotypes were identified by Sanger sequencing. We found that ApoE expression in FF was higher in patients with EMT than in the control group. In addition, a significant difference in ApoE4 carriers (ϵ3/ϵ4, ϵ4/ϵ4) was found between the control subjects and the patients with EMT. Furthermore, a nonparametric test revealed significant differences in the numbers of blastocysts and high-quality blastocysts, but not the hormone levels of FSH, LH, and E2, between the two groups. We also established a multifactor (BMI, high-quality blastocysts, and ϵ4) prediction model with good sensitivity for identifying patients who may suffer from EMT. Our results demonstrate that ApoE expression in FF is increased in EMT, the ApoE-ϵ4 allele is significantly linked to EMT, and a combined analysis of three factors (BMI, high-quality blastocysts, and ϵ4) could be used as a predictor of EMT.
Collapse
Affiliation(s)
- Ya-Jing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Ya-Jing Liu, ; Jin-Ping Qiao, ; Xin Du, ; Yun-Xia Cao,
| | - Fen Xing
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Kai Zong
- Technical Center of Hefei Customs District, Hefei, China
| | - Meng-Yao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Dong-Mei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yu-Hang Zhao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yun-He Xia
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - An Wang
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ling-Ge Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Si-Min Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhao-Lian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Jin-Ping Qiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ya-Jing Liu, ; Jin-Ping Qiao, ; Xin Du, ; Yun-Xia Cao,
| | - Xin Du
- 901st Hospital of People’s Liberation Army (PLA) Joint Logistic Support Force, Hefei, China
- *Correspondence: Ya-Jing Liu, ; Jin-Ping Qiao, ; Xin Du, ; Yun-Xia Cao,
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Ya-Jing Liu, ; Jin-Ping Qiao, ; Xin Du, ; Yun-Xia Cao,
| |
Collapse
|
35
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
36
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
37
|
Steroids and Alzheimer's Disease: Changes Associated with Pathology and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21134812. [PMID: 32646017 PMCID: PMC7370115 DOI: 10.3390/ijms21134812] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial age-related neurodegenerative disease that today has no effective treatment to prevent or slow its progression. Neuroactive steroids, including neurosteroids and sex steroids, have attracted attention as potential suitable candidates to alleviate AD pathology. Accumulating evidence shows that they exhibit pleiotropic neuroprotective properties that are relevant for AD. This review focuses on the relationship between selected neuroactive steroids and the main aspects of AD disease, pointing out contributions and gaps with reference to sex differences. We take into account the regulation of brain steroid concentrations associated with human AD pathology. Consideration is given to preclinical studies in AD models providing current knowledge on the neuroprotection offered by neuroactive (neuro)steroids on major AD pathogenic factors, such as amyloid-β (Aβ) and tau pathology, mitochondrial impairment, neuroinflammation, neurogenesis and memory loss. Stimulating endogenous steroid production opens a new steroid-based strategy to potentially overcome AD pathology. This article is part of a Special Issue entitled Steroids and the Nervous System.
Collapse
|
38
|
Studies of ApoD -/- and ApoD -/-ApoE -/- mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels. Cell Mol Life Sci 2020; 78:963-983. [PMID: 32440710 DOI: 10.1007/s00018-020-03546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD-/- and ApoD-/-ApoE-/- mice. ApoD-/- mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD-/-ApoE-/- mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD-/- and ApoD-/-ApoE-/- retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD-/- and ApoD-/-ApoE-/- mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.
Collapse
|
39
|
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiol Dis 2020; 137:104755. [PMID: 31978603 PMCID: PMC7050417 DOI: 10.1016/j.nbd.2020.104755] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system (CNS) insulin resistance is associated with Alzheimer's disease (AD). In addition, the apolipoprotein E4 (apoE4) isoform is a risk factor for AD. The connection between these two factors in relation to AD is being actively explored. We summarize this literature with a focus on the transport of insulin and apoE across the blood-brain barrier (BBB) and into the CNS, the impact of apoE and insulin on the BBB, and the interactions between apoE, insulin, and the insulin receptor once present in the CNS. We highlight how CNS insulin resistance is apparent in AD and potential ways to overcome this resistance by repurposing currently approved drugs, with apoE genotype taken into consideration as the treatment response following most interventions is apoE isoform-dependent. This review is part of a special issue focusing on apoE in AD and neurodegeneration.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States of America; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - William A Banks
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
40
|
Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiol Dis 2020; 139:104811. [PMID: 32087290 DOI: 10.1016/j.nbd.2020.104811] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the final universal biological variable of AD, as females develop AD at almost twice the rate of males and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive decline. Therefore, this review evaluates the importance of context for understanding the role of APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored in current transgenic mouse models ("What") and describe the critical need for introducing human APOE into these mouse models ("Who"). We next outline different methods for introducing human APOE into mice ("How") and highlight efforts to develop temporally defined and location-specific human apoE expression models ("When" and "Where"). We conclude with the importance of choosing the human APOE mouse model relevant to the question being addressed, using the selection of transgenic models for testing apoE-targeted therapeutics as an example ("Why").
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Beyond the CNS: The many peripheral roles of APOE. Neurobiol Dis 2020; 138:104809. [PMID: 32087284 DOI: 10.1016/j.nbd.2020.104809] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (APOE) is a multifunctional protein synthesized and secreted by multiple mammalian tissues. Although hepatocytes contribute about 75% of the peripheral pool, APOE can also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues. High levels of APOE production also occur in the brain, where it is primarily synthesized by glia, and peripheral and brain APOE pools are thought to be distinct. In humans, APOE is polymorphic, with three major alleles (ε2, ε3, and ε4). These allelic forms dramatically alter APOE structure and function. Historically, the vast majority of research on APOE has centered on the important role it plays in modulating risk for cardiovascular disease and Alzheimer's disease. However, the established effects of this pleiotropic protein extend well beyond these two critical health challenges, with demonstrated roles across a wide spectrum of biological conditions, including adipose tissue function and obesity, metabolic syndrome and diabetes, fertility and longevity, and immune function. While the spectrum of biological systems in which APOE plays a role seems implausibly wide at first glance, there are some potential unifying mechanisms that could tie these seemingly disparate disorders together. In the current review, we aim to concisely summarize a wide breadth of APOE-associated pathologies and to analyze the influence of APOE in the development of several distinct disorders in order to provide insight into potential shared mechanisms implied in these various pathophysiological processes.
Collapse
|
42
|
Tang Q, Wang F, Yang J, Peng H, Li Y, Li B, Wang S. Revealing a Novel Landscape of the Association Between Blood Lipid Levels and Alzheimer's Disease: A Meta-Analysis of a Case-Control Study. Front Aging Neurosci 2020; 11:370. [PMID: 32116643 PMCID: PMC7025526 DOI: 10.3389/fnagi.2019.00370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Objectives: Blood lipid profiles have been ambiguously reported as biomarkers of AD in recent years. This study was conducted to evaluate the correlation between blood lipid levels and AD in later-life and to explore the effectiveness and reliability of blood lipid profiles as biomarkers of AD. Methods: Database searching was conducted using PubMed, the Cochrane Library, EMBASE, and Medline. This study was designed following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) criteria. Review Manager 5.3 (RevMan 5.3) software was adopted to perform meta-analysis evaluating the standard mean difference (SMD) with its 95% confidence intervals (CI). Results: A total of 5,286 participants were enrolled from 27 case-control studies in this meta-analysis. The pooled results demonstrated that total cholesterol (TC) level was significantly associated with AD in late-life (SMD = 0.17, 95% CI: [0.01, 0.32], P = 0.03), especially in the subgroup under 70 years old (SMD: 0.45, 95% CI: [0.11, 0.79], P = 0.01) and the subgroup of Western population (SMD: 0.29, 95% CI: [0.04, 0.53], P = 0.02). In the subgroup under 70 years old, the high-density lipoprotein cholesterol (HDL-C) level (SMD = -0.50, 95% CI: [-0.76, -0.25], P = 0.0001) and the low-density lipoprotein cholesterol (LDL-C) level (SMD = 0.59, 95% CI: [0.02, 1.16], P = 0.04) in the AD group were significantly lower and higher than in the control group, respectively. In the subgroup with a sample size larger than 100 subjects, the LDL-C level was significantly higher in AD patients than in the control elderly group (SMD = 0.31, 95% CI: [0.05, 0.56], P = 0.02). There was no significant association between triglyceride (TG) levels and AD in later-life (SMD = -0.00, 95% CI: [-0.12, 0.12], P = 1.00). Conclusion: TC can be a new predictive biomarker of AD or cognitive decline in later-life. Increased TC levels are found to be associated with an elevated risk of AD. Decreased HDL-C levels and increased LDL-C levels may relate to an elevated risk of AD in subjects aged 60-70. Further comprehensive researches will be necessary in the future.
Collapse
Affiliation(s)
- Qianyun Tang
- Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Fengling Wang
- Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Jingjing Yang
- Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Hua Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Geriatric Department, Xiangya Hospital, Central South University, Changsha, China
| | - Shuhong Wang
- Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Nursing, Central South University, Changsha, China
| |
Collapse
|