1
|
Michels L, O'Gorman-Tuura R, Bachmann D, Müller S, Studer S, Saake A, Gruber E, Rauen K, Buchmann A, Zuber I, Hock C, Gietl A, Treyer V. The links among age, sex, and glutathione: A cross-sectional magnetic resonance spectroscopy study. Neurobiol Aging 2024; 144:19-29. [PMID: 39255570 DOI: 10.1016/j.neurobiolaging.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Glutathione (GSH) is a brain marker for oxidative stress and has previously been associated with cerebral amyloid deposition and memory decline. However, to date, no study has examined the links among GSH, sex, age, amyloid, and Apolipoprotein E (APOE) genotype in a large non-clinical cohort of older adults. We performed APOE genotyping, magnetic resonance spectroscopy (MRS) as well as simultaneous positron emission tomography with the radiotracer Flutemetamol (Amyloid-PET), in a group of older adults. The final analysis set comprised 140 healthy older adults (mean age: 64.7 years) and 49 participants with mild cognitive impairment (mean age: 71.4 years). We recorded metabolites in the posterior cingulate cortex (PCC) by a GSH-edited MEGAPRESS sequence. Structural equation modeling revealed that higher GSH levels were associated with female sex, but neither APOE- epsilon 4 carrier status nor age showed significant associations with GSH. Conversely, older age and the presence of an APOE4 allele, but not sex, are linked to higher global amyloid load. Our results suggest that the PCC shows sex-specific GSH alterations in older adults.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland.
| | | | - Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Susanne Müller
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Neurimmune, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| |
Collapse
|
2
|
Pereira AC, Leonard A, Velthuis H, Wong NML, Ponteduro FM, Dimitrov M, Ellis CL, Kowalewski L, Lythgoe DJ, Rotaru DG, Edden RAE, Ivin G, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. Frontal and occipital brain glutathione levels are unchanged in autistic adults. PLoS One 2024; 19:e0308792. [PMID: 39146282 PMCID: PMC11326623 DOI: 10.1371/journal.pone.0308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.
Collapse
Affiliation(s)
- Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal, Coimbra, Portugal
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana-Georgina Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, United Kingdom
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Tuura RO, Buchmann A, Ritter C, Hase A, Haynes M, Noeske R, Hasler G. Prefrontal Glutathione Levels in Major Depressive Disorder Are Linked to a Lack of Positive Affect. Brain Sci 2023; 13:1475. [PMID: 37891842 PMCID: PMC10605149 DOI: 10.3390/brainsci13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders, with symptoms including persistent sadness and loss of interest. MDD is associated with neurochemical alterations in GABA, glutamate, and glutamine levels but, to date, few studies have examined changes in glutathione (GSH) in MDD. This study investigated changes in GSH in an unmedicated group of young adults, including 46 participants with current (n = 12) or past MDD (n = 34) and 20 healthy controls. Glutathione levels were assessed from GSH-edited magnetic resonance (MR) spectra, acquired from a voxel in the left prefrontal cortex, and depressive symptoms were evaluated with validated questionnaires and clinical assessments. Cortisol levels were also assessed as a marker for acute stress. Participants with current MDD demonstrated elevated GSH in comparison to participants with past MDD and controls, although the results could be influenced by differences in tissue composition within the MRS voxel. In addition, participants with both current and past MDD showed elevated cortisol levels in comparison to controls. No significant association was observed between GSH and cortisol levels, but elevated GSH levels were associated with a decrease in positive affect. These results demonstrate for the first time that elevated GSH in current but not past depression may reflect a state rather than a trait neurobiological change, related to a loss of positive affect.
Collapse
Affiliation(s)
- Ruth O’Gorman Tuura
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
| | - Andreas Buchmann
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Christopher Ritter
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Adrian Hase
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Melanie Haynes
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern, 3012 Bern, Switzerland
| | | | - Gregor Hasler
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Van Haren KP, Cunanan K, Awani A, Gu M, Peña D, Chromik LC, Považan M, Rossi NC, Goodman J, Sundaram V, Winterbottom J, Raymond GV, Cowan T, Enns GM, Waubant E, Steinman L, Barker PB, Spielman D, Fatemi A. A Phase 1 Study of Oral Vitamin D 3 in Boys and Young Men With X-Linked Adrenoleukodystrophy. Neurol Genet 2023; 9:e200061. [PMID: 37090939 PMCID: PMC10117697 DOI: 10.1212/nxg.0000000000200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/12/2023] [Indexed: 04/03/2023]
Abstract
Background and Objectives There are no therapies for preventing cerebral demyelination in X-linked adrenoleukodystrophy (ALD). Higher plasma vitamin D levels have been linked to lower risk of inflammatory brain lesions. We assessed the safety and pharmacokinetics of oral vitamin D dosing regimens in boys and young men with ALD. Methods In this open-label, multicenter, phase 1 study, we recruited boys and young men with ALD without brain lesions to a 12-month study of daily oral vitamin D3 supplementation. Our primary outcome was attainment of plasma 25-hydroxyvitamin D levels in target range (40-80 ng/mL) at 6 and 12 months. Secondary outcomes included safety and glutathione levels in the brain, measured with magnetic resonance spectroscopy, and blood, measured via mass spectrometry. Participants were initially assigned to a fixed dosing regimen starting at 2,000 IU daily, regardless of weight. After a midstudy safety assessment, we modified the dosing regimen, so all subsequent participants were assigned to a weight-stratified dosing regimen starting as low as 1,000 IU daily. Results Between October 2016 and June 2019, we enrolled 21 participants (n = 12, fixed-dose regimen; n = 9, weight-stratified regimen) with a median age of 6.7 years (range: 1.9-22 years) and median weight of 20 kg (range: 11.7-85.5 kg). The number of participants achieving target vitamin D levels was similar in both groups at 6 months (fixed dose: 92%; weight stratified: 78%) and 12 months (fixed dose: 67%; weight stratified: 67%). Among the 12 participants in the fixed-dose regimen, half had asymptomatic elevations in either urine calcium:creatinine or plasma 25-hydroxyvitamin D; no laboratory deviations occurred with the weight-stratified regimen. Glutathione levels in the brain, but not the blood, increased significantly between baseline and 12 months. Discussion Our vitamin D dosing regimens were well tolerated and achieved target 25-hydroxyvitamin D levels in most participants. Brain glutathione levels warrant further study as a biomarker for vitamin D and ALD. Classification of Evidence This study provides Class IV evidence that fixed or weight-stratified vitamin D supplementation achieved target levels of 25-hydroxyvitamin D in boys and young men with X-ALD without brain lesions.
Collapse
Affiliation(s)
- Keith P Van Haren
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristen Cunanan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Avni Awani
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Meng Gu
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dalia Peña
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lindsay C Chromik
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michal Považan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicole C Rossi
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jordan Goodman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vandana Sundaram
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jennifer Winterbottom
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald V Raymond
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tina Cowan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregory M Enns
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emmanuelle Waubant
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lawrence Steinman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter B Barker
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel Spielman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ali Fatemi
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Lin L, Chen D, Lu C, Wang X. Fluorescence and colorimetric dual-signal determination of Fe3+ and glutathione with MoSe2@Fe nanozyme. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
7
|
Bottino F, Lucignani M, Napolitano A, Dellepiane F, Visconti E, Rossi Espagnet MC, Pasquini L. In Vivo Brain GSH: MRS Methods and Clinical Applications. Antioxidants (Basel) 2021; 10:antiox10091407. [PMID: 34573039 PMCID: PMC8468877 DOI: 10.3390/antiox10091407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is an important antioxidant implicated in several physiological functions, including the oxidation−reduction reaction balance and brain antioxidant defense against endogenous and exogenous toxic agents. Altered brain GSH levels may reflect inflammatory processes associated with several neurologic disorders. An accurate and reliable estimation of cerebral GSH concentrations could give a clear and thorough understanding of its metabolism within the brain, thus providing a valuable benchmark for clinical applications. In this context, we aimed to provide an overview of the different magnetic resonance spectroscopy (MRS) technologies introduced for in vivo human brain GSH quantification both in healthy control (HC) volunteers and in subjects affected by different neurological disorders (e.g., brain tumors, and psychiatric and degenerative disorders). Additionally, we aimed to provide an exhaustive list of normal GSH concentrations within different brain areas. The definition of standard reference values for different brain areas could lead to a better interpretation of the altered GSH levels recorded in subjects with neurological disorders, with insights into the possible role of GSH as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Francesca Bottino
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
- Correspondence: ; Tel.: +39-333-3214614
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
| | - Emiliano Visconti
- Neuroradiology Unit, Surgery and Trauma Department, Maurizio Bufalini Hospital, 47521 Cesena, Italy;
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Choi IY, Andronesi OC, Barker P, Bogner W, Edden RAE, Kaiser LG, Lee P, Marjańska M, Terpstra M, de Graaf RA. Spectral editing in 1 H magnetic resonance spectroscopy: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4411. [PMID: 32946145 PMCID: PMC8557623 DOI: 10.1002/nbm.4411] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Neurology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F. M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, Maryland
| | - Wolfgang Bogner
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F. M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, Maryland
| | - Lana G Kaiser
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, California
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| |
Collapse
|
9
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
10
|
Xie J, Gonzalez-Carter D, Tockary TA, Nakamura N, Xue Y, Nakakido M, Akiba H, Dirisala A, Liu X, Toh K, Yang T, Wang Z, Fukushima S, Li J, Quader S, Tsumoto K, Yokota T, Anraku Y, Kataoka K. Dual-Sensitive Nanomicelles Enhancing Systemic Delivery of Therapeutically Active Antibodies Specifically into the Brain. ACS NANO 2020; 14:6729-6742. [PMID: 32431145 DOI: 10.1021/acsnano.9b09991] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Delivering therapeutic antibodies into the brain across the blood-brain barrier at a therapeutic level is a promising while challenging approach in the treatment of neurological disorders. Here, we present a polymeric nanomicelle (PM) system capable of delivering therapeutically effective levels of 3D6 antibody fragments (3D6-Fab) into the brain parenchyma for inhibiting Aβ aggregation. PM assembly was achieved by charge-converting 3D6-Fab through pH-sensitive citraconylation to allow complexation with reductive-sensitive cationic polymers. Brain targeting was achieved by functionalizing the PM surface with glucose molecules to allow interaction with recycling glucose transporter (Glut)-1 proteins. Consequently, 41-fold enhanced 3D6-Fab accumulation in the brain was achieved by using the PM system compared to free 3D6-Fab. Furthermore, therapeutic benefits were obtained by successfully inhibiting Aβ1-42 aggregation in Alzheimer's disease mice systemically treated with 3D6-Fab-loaded glucosylated PM. Hence, this nanocarrier system represents a promising method for effectively delivering functional antibody agents into the brain and treating neurological diseases.
Collapse
Affiliation(s)
- Jinbing Xie
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Daniel Gonzalez-Carter
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Theofilus A Tockary
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Noriko Nakamura
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yonger Xue
- Department of Pharmacy, Shanghai Jiaotong University, 800 Dongchun Road, Shanghai 200240, China
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Akiba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tao Yang
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Zengtao Wang
- Department of Pharmacy, Shanghai Jiaotong University, 800 Dongchun Road, Shanghai 200240, China
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasutaka Anraku
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Saleh MG, Papantoni A, Mikkelsen M, Hui SCN, Oeltzschner G, Puts NA, Edden RAE, Carnell S. Effect of Age on GABA+ and Glutathione in a Pediatric Sample. AJNR Am J Neuroradiol 2020; 41:1099-1104. [PMID: 32381543 DOI: 10.3174/ajnr.a6543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the human brain and is implicated in several neuropathologies. Glutathione is a major antioxidant in the brain and is considered a marker of oxidative stress. Several studies have reported age-related declines in GABA levels in adulthood, but the trajectory of both GABA and glutathione during childhood has not been well explored. The aim of this study is to establish how GABA and glutathione vary with age during early development. MATERIALS AND METHODS Twenty-three healthy children (5.6-13.9 years of age) were recruited for this study. MR imaging/MR spectroscopy experiments were conducted on a 3T MR scanner. A 27-mL MR spectroscopy voxel was positioned in the frontal lobe. J-difference edited MR spectroscopy was used to spectrally edit GABA and glutathione. Data were analyzed using the Gannet software, and GABA+ (GABA + macromolecules/homocarnosine) and glutathione were quantified using water (GABA+H2O and GlutathioneH2O) and Cr (GABA+/Cr and glutathione/Cr) as concentration references. Also, the relative gray matter contribution to the voxel volume (GMratio) was estimated from structural images. Pearson correlation coefficients were used to examine the association between age and GABA+H2O (and glutathioneH2O), between age and GABA+/Cr (and glutathione/Cr), and between age and GMratio. RESULTS Both GABA+H2O (r = 0.63, P = .002) and GABA+/Cr (r = 0.48, P = .026) significantly correlated with age, whereas glutathione measurements and GMratio did not. CONCLUSIONS We demonstrate increases in GABA and no differences in glutathione with age in a healthy pediatric sample. This study provides insight into neuronal maturation in children and may facilitate better understanding of normative behavioral development and the pathophysiology of developmental disorders.
Collapse
Affiliation(s)
- M G Saleh
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.) .,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - A Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry (A.P., S.C.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Mikkelsen
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - S C N Hui
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - G Oeltzschner
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - N A Puts
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland.,Department of Forensic and Neurodevelopmental Sciences (N.A.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - R A E Edden
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - S Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry (A.P., S.C.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Li Y, Lang J, Ye Z, Wang M, Yang Y, Guo X, Zhuang J, Zhang J, Xu F, Li F. Effect of Substrate Stiffness on Redox State of Single Cardiomyocyte: A Scanning Electrochemical Microscopy Study. Anal Chem 2020; 92:4771-4779. [PMID: 32157867 DOI: 10.1021/acs.analchem.9b03178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical microenvironment plays a key role in the regulation of the phenotype and function of cardiac cells, which are strongly associated with the intracellular redox mechanism of cardiomyocytes. However, the relationship between the redox state of cardiomyocytes and their mechanical microenvironment remains elusive. In this work, we used polyacrylamide (PA) gels with varying stiffness (6.5-92.5 kPa) as the substrate to construct a mechanical microenvironment for cardiomyocytes. Then we employed scanning electrochemical microscopy (SECM) to in situ characterize the redox state of a single cardiomyocyte in terms of the apparent rate constant (kf) of the regeneration rate of ferrocenecarboxylic by glutathione (GSH) released from cardiomyocyte, which is the most abundant reactant of intracellular reductive-oxidative metabolic cycles in cells and can represent the redox level of cardiomyocytes. The obtained SECM results show that the cardiomyocytes cultured on the stiffer substrates present lower kf values than those on the softer ones, that is, the more oxidative state of cardiomyocytes on the stiffer substrates compared to those on the softer ones. It proves the relationship between mechanical factors and the redox state of cardiomyocytes. This work can contribute to understanding the intracellular chemical process of cardiomyocytes during physiopathologic conditions. Besides, it also provides a new SECM method to in situ investigate the redox mechanism of cardiomyocytes at a single-cell level.
Collapse
|
13
|
Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia. Int J Mol Sci 2020; 21:ijms21041283. [PMID: 32074976 PMCID: PMC7072925 DOI: 10.3390/ijms21041283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition. The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS). This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia–ischemia (HI) in fetal lambs. Hypoxic–ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress. Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.
Collapse
|
14
|
Moss HG, Brown TR, Wiest DB, Jenkins DD. N-Acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 2018; 38:950-958. [PMID: 29561203 PMCID: PMC5999009 DOI: 10.1177/0271678x18765828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023]
Abstract
Persistent oxidative stress depletes reduced glutathione (GSH), an intracellular antioxidant and an important determinant of CNS injury after hypoxia ischemia. We used standard, short echo time Stimulated Echo Acquisition Mode (STEAM) to detect GSH by magnetic resonance spectroscopy (MRS) in 24 term neonates with hypoxic-ischemic encephalopathy (HIE), on day of life 5-6, after rewarming from therapeutic hypothermia. MRS demonstrated reliable, consistent GSH of 1·64 ± 0·20 mM in the basal ganglia immediately before intravenous infusion of N-acetylcysteine. N-acetylcysteine resulted in a rapid and significant GSH increase to 1·93 ± 0.23 mM within 12-30 min after completion of infusion ( n = 21, p < 0.0001, paired t-test), compared with those who did not receive N-acetylcysteine ( n = 3, GSH = 1.66 ± 0.06 mM and 1.64 ± 0.09 mM). In one perinatal stroke patient, GSH in the diffusion-restricted stroke area was 1.0 mM, indicating significant compromise of intracellular redox potential, which also improved after N-acetylcysteine. For comparison, GSH in healthy term neonates has been reported at 2.5 ± 0.9 mM in the thalamus. This is the first report to show persistent oxidative stress reflected in GSH during the subacute phase in neonates with HIE and rapid response to N-acetylcysteine, using a short echo MRS sequence that is available on all clinical scanners without spectral editing.
Collapse
MESH Headings
- Acetylcysteine/administration & dosage
- Adult
- Female
- Glutathione/metabolism
- Humans
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/diagnosis
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/therapy
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/therapy
- Magnetic Resonance Spectroscopy
- Male
- Oxidation-Reduction/drug effects
- Stroke/diagnosis
- Stroke/metabolism
- Stroke/therapy
Collapse
Affiliation(s)
- Hunter G Moss
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Truman R Brown
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Donald B Wiest
- Department of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Dorothea D Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 PMCID: PMC6756774 DOI: 10.1002/cmr.a.21426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
16
|
Rai S, Chowdhury A, Reniers RLEP, Wood SJ, Lucas SJE, Aldred S. A pilot study to assess the effect of acute exercise on brain glutathione. Free Radic Res 2017; 52:57-69. [PMID: 29237310 DOI: 10.1080/10715762.2017.1411594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain is highly susceptible to oxidative stress due to its high metabolic demand. Increased oxidative stress and depletion of glutathione (GSH) are observed with aging and many neurological diseases. Exercise training has the potential to reduce oxidative stress in the brain. In this study, nine healthy sedentary males (aged 25 ± 4 years) undertook a bout of continuous moderate intensity exercise and a high-intensity interval (HII) exercise bout on separate days. GSH concentration in the anterior cingulate was assessed by magnetic resonance spectroscopy (MRS) in four participants, before and after exercise. This was a pilot study to evaluate the ability of the MRS method to detect exercise-induced changes in brain GSH in humans for the first time. MRS is a non-invasive method based on nuclear magnetic resonance, which enables the quantification of metabolites, such as GSH, in the human brain in vivo. To add context to brain GSH data, other markers of oxidative stress were also assessed in the periphery (in blood) at three time points [pre-, immediately post-, and post (∼1 hour)-exercise]. Moderate exercise caused a significant decrease in brain GSH from 2.12 ± 0.64 mM/kg to 1.26 ± 0.36 mM/kg (p = .04). Blood GSH levels increased immediately post-HII exercise, 580 ± 101 µM to 692 ± 102 µM (n = 9, p = .006). The findings from this study show that brain GSH is altered in response to acute moderate exercise, suggesting that exercise may stimulate an adaptive response in the brain. Due to the challenges in MRS methodology, this pilot study should be followed up with a larger exercise intervention trial.
Collapse
Affiliation(s)
- Sahara Rai
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK
| | - Alimul Chowdhury
- b Medical Physics Department , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | | | - Stephen J Wood
- d Orygen , the National Centre of Excellence in Youth Mental Health , Parkville , Australia.,e Centre for Youth Mental Health, University of Melbourne , Parkville , Australia.,f School of Psychology , University of Birmingham , Birmingham , UK
| | - Samuel J E Lucas
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK.,g Centre for Human Brain Health, University of Birmingham and Birmingham Health Partners. , Birmingham , UK
| | - Sarah Aldred
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK.,g Centre for Human Brain Health, University of Birmingham and Birmingham Health Partners. , Birmingham , UK
| |
Collapse
|
17
|
Valdeolivas S, Sagredo O, Delgado M, Pozo MA, Fernández-Ruiz J. Effects of a Sativex-Like Combination of Phytocannabinoids on Disease Progression in R6/2 Mice, an Experimental Model of Huntington's Disease. Int J Mol Sci 2017; 18:ijms18040684. [PMID: 28333097 PMCID: PMC5412270 DOI: 10.3390/ijms18040684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Several cannabinoids afforded neuroprotection in experimental models of Huntington’s disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆9-tetrahydrocannabinol (∆9-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex®, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice. The mice were daily treated, starting at 4 weeks after birth, with a Sativex-like combination of phytocannabinoids (equivalent to 3 mg/kg weight of pure CBD + ∆9-THC) or vehicle. R6/2 mice exhibited the characteristic deterioration in rotarod performance that initiated at 6 weeks and progressed up to 10 weeks, and elevated clasping behavior reflecting dystonia. Treatment with the Sativex-like combination of phytocannabinoids did not recover rotarod performance, but markedly attenuated clasping behavior. The in vivo positron emission tomography (PET) analysis of R6/2 animals at 10 weeks revealed a reduced metabolic activity in the basal ganglia, which was partially attenuated by treatment with the Sativex-like combination of phytocannabinoids. Proton nuclear magnetic resonance spectroscopy (H+-MRS) analysis of the ex vivo striatum of R6/2 mice at 12 weeks revealed changes in various prognostic markers reflecting events typically found in HD patients and animal models, such as energy failure, mitochondrial dysfunction, and excitotoxicity. Some of these changes (taurine/creatine, taurine/N-acetylaspartate, and N-acetylaspartate/choline ratios) were completely reversed by treatment with the Sativex-like combination of phytocannabinoids. A Sativex-like combination of phytocannabinoids administered to R6/2 mice at the onset of motor symptoms produced certain benefits on the progression of striatal deterioration in these mice, which supports the interest of this cannabinoid-based medicine for the treatment of disease progression in HD patients.
Collapse
Affiliation(s)
- Sara Valdeolivas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Mercedes Delgado
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
18
|
Endres D, Tebartz van Elst L, Meyer SA, Feige B, Nickel K, Bubl A, Riedel A, Ebert D, Lange T, Glauche V, Biscaldi M, Philipsen A, Maier SJ, Perlov E. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol Autism 2017; 8:10. [PMID: 28316774 PMCID: PMC5351053 DOI: 10.1186/s13229-017-0122-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by difficulties in social communication, unusually restricted, repetitive behavior and interests, and specific abnormalities in language and perception. The precise etiology of ASD is still unknown and probably heterogeneous. In a subgroup of patients, toxic environmental exposure might lead to an imbalance between oxidative stress and anti-oxidant systems. Previous serum and postmortem studies measuring levels of glutathione (GSH), the main cellular free radical scavenger in the brain, have supported the hypothesis that this compound might play a role in the pathophysiology of autism. Methods Using the method of single-voxel proton magnetic resonance spectroscopy (MRS), we analyzed the GSH signal in the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (DLPFC) of 24 ASD patients with normal or above average IQs and 18 matched control subjects. We hypothesized that we would find decreased GSH concentrations in both regions. Results We did not find overall group differences in neurometabolites including GSH, neither in the dorsal ACC (Wilks’ lambda test; p = 0.429) nor in the DLPFC (p = 0.288). In the dACC, we found a trend for decreased GSH signals in ASD patients (p = 0.076). Conclusions We were unable to confirm our working hypothesis regarding decreased GSH concentrations in the ASD group. Further studies combining MRS, serum, and cerebrospinal fluid measurements of GSH metabolism including other regions of interest or even whole brain spectroscopy are needed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Simon A Meyer
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Anna Bubl
- Department for Psychiatry and Psychotherapy, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Saar Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 60a, 79106 Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Monica Biscaldi
- Department for Child and Adolescent Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 8, 79104 Freiburg, Germany
| | - Alexandra Philipsen
- School of Medicine and Health Sciences, Psychiatry and Psychotherapy - University Hospital, Karl-Jaspers-Klinik, Medical Campus University of Oldenburg, Hermann-Ehlers-Str. 7, 26160 Bad Zwischenahn, Germany
| | - Simon J Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany.,Clinic for Psychiatry Luzern, Schafmattstrasse 1, 4915 St. Urban, Switzerland
| |
Collapse
|
19
|
Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem 2016; 529:127-143. [PMID: 28034792 DOI: 10.1016/j.ab.2016.12.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.
Collapse
|
20
|
Oeltzschner G, Butz M, Wickrath F, Wittsack HJ, Schnitzler A. Covert hepatic encephalopathy: elevated total glutathione and absence of brain water content changes. Metab Brain Dis 2016; 31:517-27. [PMID: 26563124 DOI: 10.1007/s11011-015-9760-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/06/2015] [Indexed: 01/20/2023]
Abstract
Recent pathophysiological models suggest that oxidative stress and hyperammonemia lead to a mild brain oedema in hepatic encephalopathy (HE). Glutathione (GSx) is a major cellular antioxidant and known to be involved in the interception of both. The aim of this work was to study total glutathione levels in covert HE (minimal HE and HE grade 1) and to investigate their relationship with local brain water content, levels of glutamine (Gln), myo-inositol (mI), neurotransmitter levels, critical flicker frequency (CFF), and blood ammonia. Proton magnetic resonance spectroscopy ((1)H MRS) data were analysed from visual and sensorimotor cortices of thirty patients with covert HE and 16 age-matched healthy controls. Total glutathione levels (GSx/Cr) were quantified with respect to creatine. Furthermore, quantitative MRI brain water content measures were evaluated. Data were tested for links with the CFF and blood ammonia. GSx/Cr was elevated in the visual (mHE) and sensorimotor (mHE, HE 1) MRS volumes and correlated with blood ammonia levels (both P < 0.001). It was further linked to Gln/Cr and mI/Cr (P < 0.01 in visual, P < 0.001 in sensorimotor) and to GABA/Cr (P < 0.01 in visual). Visual GSx/Cr correlated with brain water content in the thalamus, nucleus caudatus, and visual cortex (P < 0.01). Brain water measures did neither show group effects nor correlations with CFF or blood ammonia. Elevated total glutathione levels in covert HE (< HE 2) correlate with blood ammonia and may be a regional-specific reaction to hyperammonemia and oxidative stress. Brain water content is locally linked to visual glutathione levels, but appears not to be associated with changes of clinical parameters. This might suggest that cerebral oedema is only marginally responsible for the symptoms of covert HE.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany.
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany.
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Frithjof Wickrath
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
21
|
Masaki C, Sharpley AL, Godlewska BR, Berrington A, Hashimoto T, Singh N, Vasudevan SR, Emir UE, Churchill GC, Cowen PJ. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: a magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology (Berl) 2016; 233:1097-104. [PMID: 26758281 PMCID: PMC4759215 DOI: 10.1007/s00213-015-4189-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/13/2015] [Indexed: 11/27/2022]
Abstract
RATIONALE Lithium is an effective treatment for bipolar disorder, but safety issues complicate its clinical use. The antioxidant drug, ebselen, may be a possible lithium-mimetic based on its ability to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. OBJECTIVES Our primary aim was to determine whether ebselen lowered levels of inositol in the human brain. We also assessed the effect of ebselen on other brain neurometabolites, including glutathione, glutamate, glutamine, and glutamate + glutamine (Glx) METHODS Twenty healthy volunteers were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, random-order, crossover design. Two hours after the final dose of ebselen/placebo, participants underwent proton magnetic resonance spectroscopy ((1)H MRS) at 7 tesla (T) with voxels placed in the anterior cingulate and occipital cortex. Neurometabolite levels were calculated using an unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid content in the voxel. RESULTS Ebselen produced no effect on neurometabolite levels in the occipital cortex. In the anterior cingulate cortex, ebselen lowered concentrations of inositol (p = 0.028, Cohen's d = 0.60) as well as those of glutathione (p = 0.033, d = 0.58), glutamine (p = 0.024, d = 0.62), glutamate (p = 0.01, d = 0.73), and Glx (p = 0.001, d = 1.0). CONCLUSIONS The study suggests that ebselen produces a functional inhibition of IMPase in the human brain. The effect of ebselen to lower glutamate is consistent with its reported ability to inhibit the enzyme, glutaminase. Ebselen may have potential as a repurposed treatment for bipolar disorder.
Collapse
Affiliation(s)
- Charles Masaki
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Ann L Sharpley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Beata R Godlewska
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Adam Berrington
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tasuku Hashimoto
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Nisha Singh
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Current Address: Centre for Neuroimaging Studies, PO 089, De Crespigny Park, London, SE5 8AF, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Uzay E Emir
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| |
Collapse
|
22
|
Chan KL, Puts NAJ, Snoussi K, Harris AD, Barker PB, Edden RAE. Echo time optimization for J-difference editing of glutathione at 3T. Magn Reson Med 2016; 77:498-504. [PMID: 26918659 DOI: 10.1002/mrm.26122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the echo time (TE) dependence of J-difference editing of glutathione and to determine the optimal TE for in vivo measurements at 3T. METHODS Spatially resolved density-matrix simulations and phantom experiments were performed at a range of TEs to establish the spatial and TE modulation of glutathione signals in editing-on, editing-off, and difference spectra at 3T. In vivo data were acquired in five healthy subjects to compare a TE of 68 ms and a TE of 120 ms. At the longer TE, high-bandwidth, frequency-modulated, slice-selective refocusing pulses were also compared with conventional amplitude-modulated pulses. RESULTS Simulations and relaxation-corrected phantom experiments suggest that the maximum edited signal occurs at TE 160 ms, ignoring transverse relaxation. Considering in vivo T2 relaxation times of 67-89 ms, the optimal in vivo TE is estimated to be 120 ms. In vivo measurements showed that this TE yielded 15% more signal than TE 68 ms. A further gain of 57% resulted from using improved slice-selective refocusing pulses. CONCLUSION J-difference editing of glutathione using TE 120 ms delivers increased signal due to improved editing efficiency that more than offsets T2 losses. The additional TE also allows for use of improved slice-selective refocusing pulses, which results in additional signal gains. Magn Reson Med 77:498-504, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Kimberly L Chan
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karim Snoussi
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley D Harris
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter B Barker
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard A E Edden
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Mischley LK, Conley KE, Shankland EG, Kavanagh TJ, Rosenfeld ME, Duda JE, White CC, Wilbur TK, De La Torre PU, Padowski JM. Central nervous system uptake of intranasal glutathione in Parkinson's disease. NPJ Parkinsons Dis 2016; 2:16002. [PMID: 28725693 PMCID: PMC5516583 DOI: 10.1038/npjparkd.2016.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022] Open
Abstract
Glutathione (GSH) is depleted early in the course of Parkinson's disease (PD), and deficiency has been shown to perpetuate oxidative stress, mitochondrial dysfunction, impaired autophagy, and cell death. GSH repletion has been proposed as a therapeutic intervention. The objective of this study was to evaluate whether intranasally administered reduced GSH, (in)GSH, is capable of augmenting central nervous system GSH concentrations, as determined by magnetic resonance spectroscopy in 15 participants with mid-stage PD. After baseline GSH measurement, 200 mg (in)GSH was self-administered inside the scanner without repositioning, then serial GSH levels were obtained over ~1 h. Statistical significance was determined by one-way repeated measures analysis of variance. Overall, (in)GSH increased brain GSH relative to baseline (P<0.001). There was no increase in GSH 8 min after administration, although it was significantly higher than baseline at all of the remaining time points (P<0.01). This study is the first to demonstrate that intranasal administration of GSH elevates brain GSH levels. This increase persists at least 1 h in subjects with PD. Further dose-response and steady-state administration studies will be required to optimize the dosing schedule for future trials to evaluate therapeutic efficacy.
Collapse
Affiliation(s)
- Laurie K Mischley
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
- Graduate Program in Nutritional Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- School of Naturopathic Medicine, Bastyr University Research Institute, Kenmore, WA, USA
| | - Kevin E Conley
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Michael E Rosenfeld
- Graduate Program in Nutritional Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - John E Duda
- Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Collin C White
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Timothy K Wilbur
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Prysilla U De La Torre
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
- School of Naturopathic Medicine, Bastyr University Research Institute, Kenmore, WA, USA
| | - Jeannie M Padowski
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| |
Collapse
|
24
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
25
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
26
|
Mori Y, Murakami M, Arima Y, Zhu D, Terayama Y, Komai Y, Nakatsuji Y, Kamimura D, Yoshioka Y. Early pathological alterations of lower lumbar cords detected by ultrahigh-field MRI in a mouse multiple sclerosis model. Int Immunol 2013; 26:93-101. [DOI: 10.1093/intimm/dxt044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Pazos MR, Mohammed N, Lafuente H, Santos M, Martínez-Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martínez-Orgado J. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 2013; 71:282-91. [PMID: 23587650 DOI: 10.1016/j.neuropharm.2013.03.027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects.
Collapse
Affiliation(s)
- M Ruth Pazos
- Experimental Unit, Pediatric Department, University Hospital Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pazos MR, Cinquina V, Gómez A, Layunta R, Santos M, Fernández-Ruiz J, Martínez-Orgado J. Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 2012; 63:776-83. [PMID: 22659086 DOI: 10.1016/j.neuropharm.2012.05.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/19/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022]
Abstract
Cannabidiol (CBD) demonstrated short-term neuroprotective effects in the immature brain following hypoxia-ischemia (HI). We examined whether CBD neuroprotection is sustained over a prolonged period. Newborn Wistar rats underwent HI injury (10% oxygen for 120 min after left carotid artery electrocoagulation) and then received vehicle (HV, n = 22) or 1 mg/kg CBD (HC, n = 23). Sham animals were similarly treated (SV, n = 16 and SC, n = 16). The extent of brain damage was determined by magnetic resonance imaging, histological evaluation (neuropathological score, 0-5), magnetic resonance spectroscopy and Western blotting. Several neurobehavioral tests (RotaRod, cylinder rear test[CRT],and novel object recognition[NOR]) were carried out 30 days after HI (P37). CBD modulated brain excitotoxicity, oxidative stress and inflammation seven days after HI. We observed that HI led to long-lasting functional impairment, as observed in all neurobehavioral tests at P37, whereas the results of HC animals were similar to those of sham animals (all p < 0.05 vs. HV). CBD reduced brain infarct volume by 17% (p < 0.05) and lessened the extent of histological damage. No differences were observed between the SV and SC groups in any of the experiments. In conclusion, CBD administration after HI injury to newborn rats led to long-lasting neuroprotection, with the overall effect of promoting greater functional rather than histological recovery. These effects of CBD were not associated with any side effects. These results emphasize the interest in CBD as a neuroprotective agent for neonatal HI.
Collapse
Affiliation(s)
- M R Pazos
- Experimental Unit, Foundation for Biomedical Research, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Hackett MJ, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN. X-ray absorption spectroscopy at the sulfur K-edge: a new tool to investigate the biochemical mechanisms of neurodegeneration. ACS Chem Neurosci 2012; 3:178-85. [PMID: 22860187 PMCID: PMC3369794 DOI: 10.1021/cn200097s] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/02/2011] [Indexed: 12/12/2022] Open
Abstract
Sulfur containing molecules such as thiols, disulfides, sulfoxides, sulfonic acids, and sulfates may contribute to neurodegenerative processes. However, previous study in this field has been limited by the lack of in situ analytical techniques. This limitation may now be largely overcome following the development of synchrotron radiation X-ray absorption spectroscopy at the sulfur K-edge, which has been validated as a novel tool to investigate and image the speciation of sulfur in situ. In this investigation, we build the foundation required for future application of this technique to study and image the speciation of sulfur in situ within brain tissue. This study has determined the effect of sample preparation and fixation methods on the speciation of sulfur in thin sections of rat brain tissue, determined the speciation of sulfur within specific brain regions (brain stem and cerebellum), and identified sulfur specific markers of peroxidative stress following metal catalyzed reactive oxygen species production. X-ray absorption spectroscopy at the sulfur K-edge is now poised for an exciting new range of applications to study thiol redox, methionine oxidation, and the role of taurine and sulfatides during neurodegeneration.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatchewan S7NSE2, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. Imaging mass spectrometry reveals changes of metabolites distribution in mouse testis during testicular maturation. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naoko Goto-Inoue
- Graduate School of Human Health Sciences; Tokyo Metropolitan University; 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1 Handayama, Higashi-Ku Hamamatsu Shizuoka 431-3192 Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture; Kinki University; 3327-204 Nakamachi Nara Nara 631-8505 Japan
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1 Handayama, Higashi-Ku Hamamatsu Shizuoka 431-3192 Japan
| |
Collapse
|
31
|
Brain oxidative stress: detection and mapping of anti-oxidant marker 'Glutathione' in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem Biophys Res Commun 2011; 417:43-8. [PMID: 22120629 DOI: 10.1016/j.bbrc.2011.11.047] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/10/2011] [Indexed: 11/23/2022]
Abstract
Glutathione (GSH) serves as an important anti-oxidant in the brain by scavenging harmful reactive oxygen species that are generated during different molecular processes. The GSH level in the brain provides indirect information on oxidative stress of the brain. We report in vivo detection of GSH non-invasively from various brain regions (frontal cortex, parietal cortex, hippocampus and cerebellum) in bilateral hemispheres of healthy male and female subjects and from bi-lateral frontal cortices in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All AD patients who participated in this study were on medication with cholinesterase inhibitors. Healthy young male (age 26.4±3.0) and healthy young female (age 23.6±2.1) subjects have higher amount of GSH in the parietal cortical region and a specific GSH distribution pattern (parietal cortex>frontal cortex>hippocampus ~ cerebellum) has been found. Overall mean GSH content is higher in healthy young female compared to healthy young male subjects and GSH is distributed differently in two hemispheres among male and female subjects. In both young female and male subjects, statistically significant (p=0.02 for young female and p=0.001 for young male) difference in mean GSH content is found when compared between left frontal cortex (LFC) and right frontal cortex (RFC). In healthy young female subjects, we report statistically significant positive correlation of GSH content between RFC and LFC (r=0.641, p=0.004) as well as right parietal cortex (RPC) and left parietal cortex (LPC) (r=0.797, p=0.000) regions. In healthy young male subjects, statistically significant positive correlation of GSH content was observed between LFC and LPC (r=0.481, p=0.032) regions. This statistical analysis implicates that in case of a high GSH content in LPC of a young male, his LFC region would also contain high GSH and vice versa. The difference in mean of GSH content between healthy young female control and female AD patients in RFC region (p=0.003) and difference in mean of GSH content between healthy young male control and male AD patients (p=0.05) in LFC region is found to be statistically significant. It is the first scientific report correlating alteration (in selective brain regions) of GSH level with clinical status of male and female subjects using non-invasive imaging technique.
Collapse
|
32
|
Matsuzawa D, Hashimoto K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal 2011; 15:2057-65. [PMID: 20712400 DOI: 10.1089/ars.2010.3453] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that oxidative stress associated with impaired metabolism of the antioxidant glutathione (GSH) plays a key role in the pathophysiology of schizophrenia. Magnetic resonance spectroscopy (MRS) is one of the brain-imaging techniques that can quantitatively measure bioactive substances such as GSH in the intact human brain. Four different measurement sequences including double quantum coherence (DQC) filtering, MEscher-GArwood Point-RESolved Spectroscopy (MEGA-PRESS), Stimulated Echo Acquisition Mode (STEAM), and PRESS have been used to evaluate the (1)H-MRS measurement of GSH in the brains of patients with schizophrenia. Although the results of these studies were somewhat diverse, a negative correlation between brain GSH levels and the severity of negative symptoms in schizophrenia patients suggests that increasing the brain GSH levels might be beneficial for schizophrenia patients with negative symptoms. Moreover, a recent double-blind, placebo-controlled study demonstrated that add-on of N-acetyl-l-cysteine (NAC), a precursor of GSH, to antipsychotics improved the negative symptoms and reduced the side effects (akathisia) in patients with chronic schizophrenia. MRS study of the antioxidant defense system in schizophrenia still remains in the infantile stage; future studies are needed to examine the brain GSH level before and after NAC treatment, and thereby to provide direct evidence of the induced production of GSH in the living brain.
Collapse
Affiliation(s)
- Daisuke Matsuzawa
- Department of Integrative Neurophysiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | |
Collapse
|
33
|
Sezgintürk MK, Dinçkaya E. Glutathione (GSH) Determination by a Very Simple Electrochemical Method. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9243-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Dmitriev LF, Titov VN. Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res Rev 2010; 9:200-10. [PMID: 19800421 DOI: 10.1016/j.arr.2009.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 02/05/2023]
Abstract
Lipid intermediates which are generated by ROS have drawn more attention after it was found that lipid peroxidation and lipid-radical cycles are two alternative processes. In biological membranes alpha-tocopherol and cytochrome b5, as known, act synergistically to overcome free radical injury and to form lipid-radical cycles. These cycles activate membrane proteins, protect membrane lipids from oxidation and prevent from formation of endogenous aldehydes. Experimental and clinical evidence accumulated for 5-6 years suggests that endogenous aldehydes, such as malonic dialdehyde (MDA) and methylglyoxal (MG), are the major initiators of the metabolic disorders. The age-related diseases emerge when cells cannot control formation of aldehydes and/or cannot abolish the negative effect of methylglyoxal on their metabolism. If the efficiency of the glyoxalase system is insufficient toxic aldehydes cause cumulative damage over a lifetime. In this paper, we provide evidence to consider ageing as a process in which lipid-radical cycles gradually substitute for lipid peroxidation. There are always two opposing tendencies or actions which counteract each other - actions of melatonin, lipid-radical cycles and the glyoxalase system (anti-ageing effect) and negative actions of the toxic aldehydes (pro-ageing effect). Life span is determined by the balance of two opposing processes.
Collapse
Affiliation(s)
- L F Dmitriev
- Group of Neurobiology, Cardiology Research Center, 121552 Moscow, Russia.
| | | |
Collapse
|
35
|
Tiwari DK, Tanaka SI, Inouye Y, Yoshizawa K, Watanabe TM, Jin T. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells. SENSORS (BASEL, SWITZERLAND) 2009; 9:9332-64. [PMID: 22291567 PMCID: PMC3260644 DOI: 10.3390/s91109332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/03/2009] [Accepted: 11/12/2009] [Indexed: 01/01/2023]
Abstract
The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23∼0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission) on the fluorescence image of KPL-4 cells.
Collapse
Affiliation(s)
- Dhermendra K. Tiwari
- WPI Immunology Frontier Research Center, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan; E-Mails: (D.T.); (K.Y.); (T.W.)
| | - Shin-Ichi Tanaka
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871, Japan; E-Mails: (S.T.); (Y.I.)
| | - Yasushi Inouye
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871, Japan; E-Mails: (S.T.); (Y.I.)
| | - Keiko Yoshizawa
- WPI Immunology Frontier Research Center, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan; E-Mails: (D.T.); (K.Y.); (T.W.)
| | - Tomonobu M. Watanabe
- WPI Immunology Frontier Research Center, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan; E-Mails: (D.T.); (K.Y.); (T.W.)
| | - Takashi Jin
- WPI Immunology Frontier Research Center, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan; E-Mails: (D.T.); (K.Y.); (T.W.)
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871, Japan; E-Mails: (S.T.); (Y.I.)
| |
Collapse
|
36
|
Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3331-46. [DOI: 10.1016/j.jchromb.2009.06.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/02/2009] [Accepted: 06/10/2009] [Indexed: 12/13/2022]
|
37
|
An L, Zhang Y, Thomasson DM, Latour LL, Baker EH, Shen J, Warach S. Measurement of glutathione in normal volunteers and stroke patients at 3T using J-difference spectroscopy with minimized subtraction errors. J Magn Reson Imaging 2009; 30:263-70. [PMID: 19629994 DOI: 10.1002/jmri.21832] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop and optimize a (1)H magnetic resonance spectroscopy (MRS) method for measuring brain glutathione (GSH) levels. MATERIALS AND METHODS Phantom experiments and density operator simulations were performed to determine the optimal TE for measuring GSH at 3T using J-difference spectral editing. In vivo data collected from 11 normal volunteers (43 measurements) and five stroke patients (10 measurements) were processed using a new spectral alignment method (adaptive spectral registration). RESULTS In phantom experiments and density operator simulations where relaxation effects were ignored, close to maximum GSH signal (2.95 ppm) was obtained at TE approximately 131 msec with minimum N-acetyl-aspartate (NAA) signal interference. Using adaptive spectral registration, GSH levels in healthy volunteers were found to be 1.20 +/- 0.14 mM (mean +/- standard deviation [SD]). GSH levels in stroke patients were found to be 1.19 +/- 0.24 mM in lesion and 1.25 +/- 0.19 mM in contralateral normal tissue. In comparison, the SDs were significantly larger when only the NAA singlet (2.01 ppm) was used as a navigator for spectral alignment. CONCLUSION Spectral editing using J-differences is a reliable method for measuring GSH levels in volunteers and stroke patients.
Collapse
Affiliation(s)
- Li An
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Park HA, Khanna S, Rink C, Gnyawali S, Roy S, Sen CK. Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway. Cell Death Differ 2009; 16:1167-79. [PMID: 19373248 PMCID: PMC2990696 DOI: 10.1038/cdd.2009.37] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The pathophysiological significance of GSSG per se remains poorly understood. Adopting a microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox)-dependent mechanism. In vivo, stereotaxic injection of GSSG into the brain caused lesion in wild-type mice but less so in 12-Lox knockout mice. Microinjection of graded amounts identified 0.5 mM as the lethal [GSSG]i in resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-deficient cells. This is important because tissue GSH lowering is commonly noted in the context of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result in GSSG accumulation and caused cell death in a 12-Lox-sensitive manner. GSSG S-glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies directed at improving or arresting cellular GSSG clearance may be effective in minimizing oxidative stress-related tissue injury or potentiating the killing of tumor cells, respectively.
Collapse
Affiliation(s)
- H-A Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int J Mol Sci 2008; 9:2044-2061. [PMID: 19325735 PMCID: PMC2635605 DOI: 10.3390/ijms9102044] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/16/2022] Open
Abstract
Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm) region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs) have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH)-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs) were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell) QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4). The GSH-QDs (800 nm emission) were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer), and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM), the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIR-fluorescence imaging of a lymph node in a mouse is presented.
Collapse
|
40
|
Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One 2008; 3:e1944. [PMID: 18398470 PMCID: PMC2275307 DOI: 10.1371/journal.pone.0001944] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 02/27/2008] [Indexed: 01/08/2023] Open
Abstract
Background Glutathione (GSH), a major intracellular antioxidant, plays a role in NMDA receptor-mediated neurotransmission, which is involved in the pathophysiology of schizophrenia. In the present study, we aimed to investigate whether GSH levels are altered in the posterior medial frontal cortex of schizophrenic patients. Furthermore, we examined correlations between GSH levels and clinical variables in patients. Methods and Findings Twenty schizophrenia patients and 16 age- and gender-matched normal controls were enrolled to examine the levels of GSH in the posterior medial frontal cortex by using 3T SIGNA EXCITE 1H-MRS with the spectral editing technique, MEGA-PRESS. Clinical variables of patients were assessed by the Global Assessment of Functioning (GAF), Scale for the Assessment of Negative Symptoms (SANS), Brief Psychiatric Rating Scale (BPRS), Drug-Induced Extra-Pyramidal Symptoms Scale (DIEPSS), and five cognitive performance tests (Word Fluency Test, Stroop Test, Trail Making Test, Wisconsin Card Sorting Test and Digit Span Distractibility Test). Levels of GSH in the posterior medial frontal cortex of schizophrenic patients were not different from those of normal controls. However, we found a significant negative correlation between GSH levels and the severity of negative symptoms (SANS total score and negative symptom subscore on BPRS) in patients. There were no correlations between brain GSH levels and scores on any cognitive performance test except Trail Making Test part A. Conclusion These results suggest that GSH levels in the posterior medial frontal cortex may be related to negative symptoms in schizophrenic patients. Therefore, agents that increase GSH levels in the brain could be potential therapeutic drugs for negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Matsuzawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
- Department of Integrative Neurophysiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Obata
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroi Nonaka
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
| | - Yoko Kanazawa
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
| | - Eiji Yoshitome
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
| | | | - Tsuyoshi Matsuda
- Imaging Application Technical Center, GE Yokogawa Medical Systems Ltd., Tokyo, Japan
| | - Eiji Shimizu
- Department of Integrative Neurophysiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroo Ikehira
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Science, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|