1
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Kubens L, Weishaupt AK, Michaelis V, Rohn I, Mohr F, Bornhorst J. Exposure to the environmentally relevant fungicide Maneb: Studying toxicity in the soil nematode Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 183:108372. [PMID: 38071851 DOI: 10.1016/j.envint.2023.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Maneb is a manganese-containing ethylene bisdithiocarbamate fungicide and is still commonly used as no cases of resistance have been documented. However, studies have shown that Maneb exposure has neurodegenerative potential in mammals, resulting in symptoms affecting the motor system. Despite its extensive use, structural elucidation of Maneb has only recently been accomplished by our group. This study aimed to examine the bioavailability of Maneb, the quantification of oxidative stress-related endpoints and neurotransmitters employing pure Maneb, its metabolites and structural analogues, in the model organism Caenorhabditis elegans. Exposure to Maneb did not increase the bioavailability of Mn compared to manganese chloride, although Maneb was about 8 times more toxic with regard to lethality. Maneb generated not significantly reactive oxygen and nitrogen species (RONS) but decreased the ATP level while increasing the amount of glutathione and its oxidized form in a dose-dependent manner. Nevertheless, an alteration in the neurotransmitter homeostasis of dopamine, acetylcholine, and gamma-butyric acid (GABA) was observed as well as morphological changes in the dopaminergic neurons upon Maneb exposure, which underlines the assumption of the neurotoxic potential of Maneb. This study showed that Maneb exhibits effects based on a combined interaction of the ligand and manganese.
Collapse
Affiliation(s)
- Laura Kubens
- Food Chemistry, University of Wuppertal, Germany; Inorganic Chemistry, University of Wuppertal, Germany
| | - Ann-Kathrin Weishaupt
- Food Chemistry, University of Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | | | | | - Fabian Mohr
- Inorganic Chemistry, University of Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, University of Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| |
Collapse
|
3
|
Paganotto Leandro L, Vitória Takemura Mariano M, Kich Gomes K, Beatriz Dos Santos A, Sousa Dos Anjos J, Rodrigues de Carvalho N, Eugênio Medina Nunes M, Farina M, Posser T, Luis Franco J. Permissible concentration of mancozeb in Brazilian drinking water elicits oxidative stress and bioenergetic impairments in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122013. [PMID: 37369298 DOI: 10.1016/j.envpol.2023.122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Mancozeb (MZ) is widely used as a fungicide in Brazil due to its effectiveness in combating fungal infections in plantations. However, its toxicity to non-target organisms, including aquatic organisms, has been reported in the literature. Recently, Brazilian legislation was updated to allow a concentration of 8 μg/L of MZ in drinking water (Ordinance GM/MS nº 888, of May 4, 2021). However, the safety of this concentration for aquatic organisms has not yet been put to the test. To address this gap, we conducted a study using zebrafish (Danio rerio) embryos at 4 hpf exposed to MZ at the concentration allowed by law, as well as slightly higher sublethal concentrations (24, 72, and 180 μg/L), alongside a control group. We evaluated various morphophysiological markers of toxicity, including survival, spontaneous movements, heart rate, hatching rate, body axis distortion, total body length, total yolk sac area, and total eye area. Additionally, we measured biochemical biomarkers such as reactive oxygen species (ROS) levels, lipid peroxidation, non-protein thiols (NPSH), and mitochondrial bioenergetic parameters. Our results showed that the concentration of 8 μg/L, currently permitted in drinking water according to Brazilian legislation, increased ROS production levels and caused alterations in mitochondrial physiology. Among the markers assessed, mitochondrial bioenergetic function appeared to be the most sensitive indicator of MZ embryotoxicity, as a decrease in complex I activity was observed at concentrations of 8 and 180 μg/L. Furthermore, concentrations higher than 8 μg/L impaired morphophysiological markers. Based on these findings, we can infer that the concentration of MZ allowed in drinking water by Brazilian environmental legislation is not safe for aquatic organisms. Our study provides evidence that this fungicide is a potent embryotoxic agent, highlighting the potential risks associated with its exposure.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil; Department of Molecular Biology and Biochemistry. Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | | | - Mauro Eugênio Medina Nunes
- Department of Genetics and Exercise Metabolism. Graduate Program in Molecular Biology, Federal University of Sao Paulo, 1500 Sena Madureira St, São Paulo, SP, 04021-001, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
4
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
5
|
Ziech CC, Rodrigues NR, Macedo GE, Gomes KK, Martins IK, Franco JL, Posser T. Pre-imaginal exposure to mancozeb induces morphological and behavioral deficits and oxidative damage in Drosophila melanogaster. Drug Chem Toxicol 2023; 46:575-587. [PMID: 35502483 DOI: 10.1080/01480545.2022.2069802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mancozeb (MZ), a manganese/zinc containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Chronic exposure to MZ has been related to several organisms' neurological, hormonal, and developmental disorders. However, little is known about the post-natal effects of developmental exposure to MZ. In this study, Drosophila melanogaster was subjected to a pre-imaginal (eggs-larvae-pupae stage) model of exposure to MZ at 0.1 and 0.5 mg/mL. The emergence rate, body size, locomotor performance, sleep patterns, and molecular and biochemical parameters were evaluated in post-emerged flies. Results demonstrate that pre-imaginal exposure to MZ significantly impacted early emerged flies. Additionally, reduced progeny viability, smaller body size and delaying in emergence period, locomotor impairment, and prolonged sleep time were observed. Content of glucose, proteins, and triglycerides were altered, and the bioenergetics efficiency and oxidative phosphorylation at complex I were inhibited. mRNA stade state levels of genes responsive to stress, metabolism, and regulation of circadian cycle (Nrf2, p38, Hsp83, Akt1, GPDH, tor, per, tim, dILP2, and dILP6) were augmented, pointing out to stimulation of antioxidant defenses, insulin-dependent signaling pathway activation, and disruption of sleep regulation. These data were followed by increased lipid peroxidation and lower glutathione levels. In addition, the activity of catalase and glutathione-S-transferase were induced, whereas superoxide dismutase was inhibited. Together, these results demonstrate that developmental exposure to MZ formulation led to phenotype and behavioral alterations in young flies, possibly related to disruption of energetic metabolism, oxidative stress, and deregulation of genes implied in growth, sleep, and metabolism.
Collapse
Affiliation(s)
- Cynthia Camila Ziech
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil.,Biochemistry Post-Graduation Program, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil.,Biochemistry Post-Graduation Program, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| |
Collapse
|
6
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|
7
|
Pezzini MF, Rampelotto PH, Dall'Agnol J, Guerreiro GTS, Longo L, Suarez Uribe ND, Lange EC, Álvares-da-Silva MR, Joveleviths D. Changes in the gut microbiota of rats after exposure to the fungicide Mancozeb. Toxicol Appl Pharmacol 2023; 466:116480. [PMID: 36963522 DOI: 10.1016/j.taap.2023.116480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Mancozeb is a fungicide commonly used in pest control programs, especially to protect vineyards. Its toxicity has already been evidenced in several studies. However, its influence on the composition and diversity of the gut microbiota remains unknown. In this work, the adverse impact of Mancozeb on the intestinal microbiota was investigated using a rodent model. Adult male Sprague Dawley rats were randomized into three groups: Control (standard diet), MZ1 (Mancozeb dose: 250 mg/kg bw/day), and MZ2 (Mancozeb dose: 500 mg/kg bw/day). After 12 weeks of experiment, animals were euthanized, and feces present in the intestine were collected. After fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ System. Alpha and beta diversity analysis showed significant differences between Control and Mancozeb groups (MZ1 e MZ2), but no difference between MZ1 and MZ2 was observed. Seven genera significantly increased in abundance following Mancozeb exposure, while five genera decreased. Co-occurrence analyses revealed that the topological properties of the microbial networks, which can be used to infer co-occurrence interaction patterns among microorganisms, were significantly lower in both groups exposed to Mancozeb when compared to Control. In addition, 23 differentially abundant microbial metabolic pathways were identified in Mancozeb-treated groups mainly related to a change in energy metabolism, LPS biosynthesis, and nucleotide biosynthesis. In conclusion, the exposure to Mancozeb presented side effects by changing the composition of the microbiota in rats, increasing bacterial diversity regardless of the dose used, reducing the interaction patterns of the microbial communities, and changing microbial metabolic pathways.
Collapse
Affiliation(s)
- Marina Ferri Pezzini
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
| | - Juliana Dall'Agnol
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Nelson D Suarez Uribe
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Elisa Carolina Lange
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Dvora Joveleviths
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Zhao X, Fu K, Xiang KP, Wang LY, Zhang YF, Luo YP. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and l-glufosinate to Caenorhabditis elegans at environmental concentrations. CHEMOSPHERE 2023; 316:137863. [PMID: 36649895 DOI: 10.1016/j.chemosphere.2023.137863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Glufosinate-ammonium, the second largest transgene crop resistant herbicide, is classified as a mobile persistent pollutant by the U.S. Environmental Protection Agencybecause of its slow decomposition and easy mobile transfer in a water environment. The chronic and multigeneration toxicity of this compound to environmental organisms are alarming. In this study, racemic glufosinate-ammonium and the effective isomer, l-glufosinate-ammonium, were used as the test agents. The developmental, neurotoxic and reproductive toxicities of Caenorhabditis elegans to their parents and progeny were studied by continuous exposure in water at concentrations of 0.1, 1, 10 and 100 μg/L. The causes of toxicity differences were analysed from oxidative stress and transcription levels. Through oxidative stress of C. elegans, racemic glufosinate-ammonium and l-glufosinate-ammonium both mediated the developmental toxicity (shortened developmental cycle, reduced body length and width, promoted ageingand decreased longevity), neurotoxicity (inhibited head swinging, body bending frequency and acetylcholinesterase [AchE] activity) and reproductive toxicity (significant reductions in the number of eggs and offspring in vivo and induced apoptosis of gonadal cells). These phenomena caused oxidative damage (protein and membrane lipid peroxidation) and further induced apoptosis. The changes in various indicators caused by racemic glufosinate-ammonium exposure were more significant than those caused by l-glufosinate-ammonium exposure, and the reproduction-related indicators were more significant than the developmental and neurological indicators. A continuous accumulation of toxicity was observed after multiple generations of continuous exposure. These research results provide a data reference for the ecotoxicological evaluation and risk assessment of glufosinate-ammonium and contribute to the revision and improvement of the related environmental policies of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xu Zhao
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kan Fu
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Radiation Environmental Monitoring Station, Haikou, 571126, China
| | - Kai-Ping Xiang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Lan-Ying Wang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yun-Fei Zhang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yan-Ping Luo
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Thosapornvichai T, Huangteerakul C, Jensen AN, Jensen LT. Mitochondrial dysfunction from malathion and chlorpyrifos exposure is associated with degeneration of GABAergic neurons in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104000. [PMID: 36252730 DOI: 10.1016/j.etap.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Toxicity resulting from off-target effects, beyond acetylcholine esterase inhibition, for the commonly used organophosphate (OP) insecticides chlorpyrifos (CPS) and malathion (MA) was investigated using Saccharomyces cerevisiae and Caenorhabditis elegans model systems. Mitochondrial damage and dysfunction were observed in yeast following exposure to CPS and MA, suggesting this organelle is a major target. In the C. elegans model, the mitochondrial unfolded protein response pathway showed the most robust induction from CPS and MA treatment among stress responses examined. GABAergic neurodegeneration was observed with CPS and MA exposure. Impaired movement observed in C. elegans exposed to CPS and MA may be the result of motor neuron damage. Our analysis suggests that stress from CPS and MA results in mitochondrial dysfunction, with GABAergic neurons sensitized to these effects. These findings may aid in the understanding of toxicity from CPS and MA from high concentration exposure leading to insecticide poisoning.
Collapse
Affiliation(s)
| | | | | | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
10
|
Höss S, Reiff N, Asekunowo J, Helder J. Nematode Community of a Natural Grassland Responds Sensitively to the Broad-Spectrum Fungicide Mancozeb in Soil Microcosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2420-2430. [PMID: 35815477 DOI: 10.1002/etc.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fungicides make up the largest part of total pesticide use, with the dithiocarbamate mancozeb being widely applied as a nonsystemic contact pesticide to protect a wide range of field crops against fungal diseases. Although nematodes are key drivers of soil functioning, data on effects of fungicides, and especially mancozeb, on these nontarget organisms are scarce. Therefore, the effects of mancozeb on a soil nematode community from a natural grassland were assessed in small-scale soil microcosms. Nematodes were exposed to mancozeb-spiked soil in six nominal concentrations (7-133 mg/kg dry soil) and analyzed after 14, 56, and 84 days in terms of densities, genus composition, and functional traits. Because this fungicide is known to quickly degrade in soils (50% degradation time <1 day), mancozeb concentrations were analyzed for all sampling occasions. Chemical analysis revealed considerably lower measured concentrations compared with the aimed nominal soil concentrations at the beginning of the exposure (1-18 mg/kg dry soil), suggesting fast degradation during the spiking process. Nevertheless, the native nematode community responded sensitively to the fungicide mancozeb, revealing lower no-observed-effect concentration and 10% effect concentration (EC10) values than reported for other soil invertebrates such as springtails and earthworms. Using the EC10 for the most sensitive nematode community endpoint (percentage of predators and omnivores: 1.2 mg/kg dry soil), the risk assessment exhibited a toxicity exposure ratio of 0.66 and, thus, a high risk of mancozeb for soil nematodes. Keeping in mind their abundance and their central roles in soil food-web functioning, the demonstrated sensitivity to a widely applied fungicide underscores the relevance of the inclusion of nematodes into routine risk-assessment programs for pesticides. Environ Toxicol Chem 2022;41:2420-2430. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
Naraine AS, Aker R, Sweeney I, Kalvey M, Surtel A, Shanbhag V, Dawson-Scully K. Roundup and glyphosate's impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegans. Sci Rep 2022; 12:13655. [PMID: 35999230 PMCID: PMC9399239 DOI: 10.1038/s41598-022-17537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
As 3 billion pounds of herbicides are sprayed over farmlands every year, it is essential to advance our understanding how pesticides may influence neurological health and physiology of both humans and other animals. Studies are often one-dimensional as the majority examine glyphosate by itself. Farmers and the public use commercial products, like Roundup, containing a myriad of chemicals in addition to glyphosate. Currently, there are no neurological targets proposed for glyphosate and little comparison to Roundup. To investigate this, we compared how glyphosate and Roundup affect convulsant behavior in C.elegans and found that glyphosate and Roundup increased seizure-like behavior. Key to our initial hypothesis, we found that treatment with an antiepileptic drug rescued the prolonged convulsions. We also discovered over a third of nematodes exposed to Roundup did not recover from their convulsions, but drug treatment resulted in full recovery. Notably, these effects were found at concentrations that are 1,000-fold dilutions of previous findings of neurotoxicity, using over 300-fold less herbicide than the lowest concentration recommended for consumer use. Exploring mechanisms behind our observations, we found significant evidence that glyphosate targets GABA-A receptors. Pharmacological experiments which paired subeffective dosages of glyphosate and a GABA-A antagonist yielded a 24% increase in non-recovery compared to the antagonist alone. GABA mutant strain experiments showed no effect in a GABA-A depleted strain, but a significant, increased effect in a glutamic acid decarboxylase depleted strain. Our findings characterize glyphosate’s exacerbation of convulsions and propose the GABA-A receptor as a neurological target for the observed physiological changes. It also highlights glyphosate’s potential to dysregulate inhibitory neurological circuits.
Collapse
Affiliation(s)
- Akshay S Naraine
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA. .,IMPRS for Synapses and Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Rebecca Aker
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Isis Sweeney
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Meghan Kalvey
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Alexis Surtel
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Venkatesh Shanbhag
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Davie, FL, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA.,Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
12
|
Schmitt F, Babylon L, Dieter F, Eckert GP. Effects of Pesticides on Longevity and Bioenergetics in Invertebrates-The Impact of Polyphenolic Metabolites. Int J Mol Sci 2021; 22:ijms222413478. [PMID: 34948274 PMCID: PMC8707434 DOI: 10.3390/ijms222413478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Environmentally hazardous substances such as pesticides are gaining increasing interest in agricultural and nutritional research. This study aims to investigate the impact of these compounds on the healthspan and mitochondrial functions in an invertebrate in vivo model and in vitro in SH-SY5Y neuroblastoma cells, and to investigate the potential of polyphenolic metabolites to compensate for potential impacts. Wild-type nematodes (Caenorhabditis elegans, N2) were treated with pesticides such as pyraclostrobin (Pyr), glyphosate (Gly), or fluopyram (Fluo). The lifespans of the nematodes under heat stress conditions (37 °C) were determined, and the chemotaxis was assayed. Energetic metabolites, including adenosine triphosphate (ATP), lactate, and pyruvate, were analyzed in lysates of nematodes and cells. Genetic expression patterns of several genes associated with lifespan determination and mitochondrial parameters were assessed via qRT-PCR. After incubation with environmentally hazardous substances, nematodes were incubated with a pre-fermented polyphenol mixture (Rechtsregulat®Bio, RR) or protocatechuic acid (PCA) to determine heat stress resistance. Treatment with Pyr, Glyph and Fluo leads to dose-dependently decreased heat stress resistance, which was significantly improved by RR and PCA. The chemotaxes of the nematodes were not affected by pesticides. ATP levels were not significantly altered by the pesticides, except for Pyr, which increased ATP levels after 48 h leads. The gene expression of healthspan and mitochondria-associated genes were diversely affected by the pesticides, while Pyr led to an overall decrease of mRNA levels. Over time, the treatment of nematodes leads to a recovery of the nematodes on the mitochondrial level but not on stress resistance on gene expression. Fermented extracts of fruits and vegetables and phenolic metabolites such as PCA seem to have the potential to recover the vitality of C. elegans after damage caused by pesticides.
Collapse
|
13
|
Kanabar M, Bauer S, Ezedum ZM, Dwyer IP, Moore WS, Rodriguez G, Mall A, Littleton AT, Yudell M, Kanabar J, Tucker WJ, Daniels ER, Iqbal M, Khan H, Mirza A, Yu JC, O'Neal M, Volkenborn N, Pochron ST. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13021-6. [PMID: 33635453 DOI: 10.1007/s11356-021-13021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is the active ingredient in Roundup formulations. Glyphosate-based herbicides are used globally in agriculture, forestry, horticulture, and in urban settings. Glyphosate can persist for years in our soil, potentially impacting the soil-dwelling arthropods that are primary drivers of a suite of ecosystem services. Furthermore, although glyphosate is not generally classified as neurotoxic to insects, evidence suggests that it may cause nerve damage in other organisms. In a series of experiments, we used food to deliver environmentally realistic amounts of Roundup ready-to-use III, a common 2% glyphosate-based herbicide formulation that lists isopropylamine salt as its active ingredient, to Madagascar hissing cockroaches. We then assessed the impact of contamination on body mass, nerve health, and behavior. Contaminated food contained both 30.6 mg glyphosate and so-called inert ingredients. Food was refreshed weekly for 26-60 days, depending on the experiment. We found that consumption of contaminated food did not impact adult and juvenile survivorship or body weight. However, consumption of contaminated food decreased ventral nerve cord action-potential velocity by 32%, caused a 29% increase in respiration rate, and caused a 74.4% decrease in time spent on a motorized exercise wheel. Such changes in behavior may make cockroaches less capable of fulfilling their ecological service, such as pollinating or decomposing litter. Furthermore, their lack of coordination may make them more susceptible to predation, putting their population at risk. Given the decline of terrestrial insect abundance, understanding common risks to terrestrial insect populations has never been more critical. Results from our experiments add to the growing body of literature suggesting that this popular herbicide can act as a neurotoxin.
Collapse
Affiliation(s)
- Megha Kanabar
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Samuel Bauer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Zimuzo M Ezedum
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ian P Dwyer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - William S Moore
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Gabriella Rodriguez
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Aditya Mall
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Anne T Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | | | - Wade J Tucker
- Miller Place High School, Miller Place, NY, 11764, USA
| | - Emily R Daniels
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Mohima Iqbal
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Hira Khan
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Joshua C Yu
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Marvin O'Neal
- Department of Biology, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Nils Volkenborn
- Marine Sciences Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Sharon T Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA.
| |
Collapse
|
14
|
Queirós L, Martins AC, Krum BN, Ke T, Aschner M, Pereira JL, Gonçalves FJM, Milne GL, Pereira P. Assessing the neurotoxicity of the carbamate methomyl in Caenorhabditis elegans with a multi-level approach. Toxicology 2021; 451:152684. [PMID: 33508380 DOI: 10.1016/j.tox.2021.152684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
The neurotoxicity and developmental effects of a widely applied insecticide (methomyl) was investigated by a multi-level approach (behavior and biometry, biochemical alterations and neurodegeneration) in Caenorhabditis elegans upon a short-term exposure (1 h) and a post-exposure period (48 h). The 1-h exposure to sub-lethal concentrations of methomyl (lower than 0.320 g L-1; i.e. below the estimated LC10) triggered significant changes on motor behavior and development impairment. The type of movement was significantly altered in methomyl-exposed worms, as well as biometric parameters (worms frequently idle and moving more backwards than controls; small body area, length and wavelength). These effects were followed by an increase of acetylcholine levels. Interestingly, after the 48-h recovery period, movement of previously exposed worms was similar to controls, and a concentration-dependent reversion of biometric endpoints was recorded, pointing out the transient action of the carbamate in line with an apparent absence of cholinergic neurons damage. This study provided new insight on the neurotoxicity of methomyl by showing that effects on movement and development were transient, and apparently did not result in neurodegeneration in cholinergic neurons. Moreover, these findings reinforced the advantages of using C. elegans in a multi-level approach for pesticide effects assessment.
Collapse
Affiliation(s)
- L Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - A C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - B N Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Physiology and Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - T Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - J L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - G L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - P Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
16
|
Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019; 138:343-362. [PMID: 31197504 PMCID: PMC6826260 DOI: 10.1007/s00401-019-02033-9] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Pesticides are unique environmental contaminants that are specifically introduced into the environment to control pests, often by killing them. Although pesticide application serves many important purposes, including protection against crop loss and against vector-borne diseases, there are significant concerns over the potential toxic effects of pesticides to non-target organisms, including humans. In many cases, the molecular target of a pesticide is shared by non-target species, leading to the potential for untoward effects. Here, we review the history of pesticide usage and the neurotoxicity of selected classes of pesticides, including insecticides, herbicides, and fungicides, to humans and experimental animals. Specific emphasis is given to linkages between exposure to pesticides and risk of neurological disease and dysfunction in humans coupled with mechanistic findings in humans and animal models. Finally, we discuss emerging techniques and strategies to improve translation from animal models to humans.
Collapse
Affiliation(s)
- Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| | - Vanessa Fitsanakis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences and Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, USA
| |
Collapse
|
17
|
Jacques MT, Bornhorst J, Soares MV, Schwerdtle T, Garcia S, Ávila DS. Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1854-1862. [PMID: 31326750 DOI: 10.1016/j.envpol.2019.06.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Collapse
Affiliation(s)
- Mauricio Tavares Jacques
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis Elegans, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil; Laboratório de Experimentação em Neuropatologia, Department of Biochemistry, CCB, Federal University of Santa Catarina, Block C, Trindade, Florianópolis, SC, CEP 88040-900, Brazil
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany; Department of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Marcell Valandro Soares
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis Elegans, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Solange Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, 90610-000, Brazil
| | - Daiana Silva Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis Elegans, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil.
| |
Collapse
|
18
|
Queirós L, Pereira JL, Gonçalves FJ, Pacheco M, Aschner M, Pereira P. Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a "nobelized worm". Crit Rev Toxicol 2019; 49:411-429. [PMID: 31268799 PMCID: PMC6823147 DOI: 10.1080/10408444.2019.1626801] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Caenorhabditis elegans has been an invaluable model organism in research fields such as developmental biology and neurobiology. Neurotoxicity is one of the subfields greatly profiting from the C. elegans model within biomedical context, while the corresponding potential of the organism applied to environmental studies is relevant but has been largely underexplored. Within the biomedical scope, the implication of metals and organic chemicals with pesticide activity (hereinafter designated as pesticides) in the etiology of several neurodegenerative diseases has been extensively investigated using this nematode as a primary model organism. Additionally, as a well-known experimental model bearing high sensitivity to different contaminants and representing important functional levels in soil and aquatic ecosystems, C. elegans has high potential to be extensively integrated within Environmental Risk Assessment (ERA) routines. In spite of the recognition of some regulatory agencies, this actual step has yet to be made. The purpose of this review is to discuss the major advantages supporting the inclusion of C. elegans in lower tiers of ERA. Special emphasis was given to its sensitivity to metals and pesticides, which is similar to that of other model organisms commonly used in ERA (e.g. Daphnia magna and Eisenia sp.), and to the large array of endpoints that can be tested with the species, both concerning the aquatic and the soil compartments. The inclusion of C. elegans testing may hence represent a relevant advance in ERA, providing ecologically relevant insights toward improvement of the regulatory capacity for establishing appropriate environmental protection benchmarks.
Collapse
Affiliation(s)
- L. Queirós
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - J. L. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - F. J.M. Gonçalves
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
20
|
Burchfield SL, Bailey DC, Todt CE, Denney RD, Negga R, Fitsanakis VA. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:36-42. [PMID: 30594848 PMCID: PMC6360103 DOI: 10.1016/j.etap.2018.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 05/20/2023]
Abstract
Glyphosate-based herbicides, such as Touchdown (TD) and Roundup, are among the most heavily-used herbicides in the world. While the active ingredient is generally considered non-toxic, the toxicity resulting from exposure to commercially-sold formulations is less clear. In many cases, cell cultures or various model organisms exposed to glyphosate formulations show toxicity and, in some cases, lethality. Using Caenorhabditis elegans, we assessed potential toxic mechanisms through which a highly-concentrated commercial formulation of TD promotes neurodegeneration. Following a 30-min treatment, we assayed mitochondrial electron transport chain function and reactive oxygen species (ROS) production. Initial oxygen consumption studies indicated general mitochondrial inhibition compared to controls (*p < 0.05). When Complex II activity was further assessed, inhibition was observed in all TD-treated groups (*p < 0.05). Complex IV activity, however, was not adversely affected by TD. This electron transport chain inhibition also resulted in reduced ATP levels (*p < 0.05). Furthermore, hydrogen peroxide levels, but not other ROS, were increased (*p < 0.05). Taken together, these data indicate that commercially-available formulations of TD may exert neurotoxicity through Complex II (succinate dehydrogenase) inhibition, decreased ATP levels, and increased hydrogen peroxide production.
Collapse
Affiliation(s)
- Shelbie L Burchfield
- Northeast Ohio Medical University Department of Pharmaceutical Sciences, 4209 State Route 44, PO Box 95 Rootstown, OH 44272, USA.
| | - Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- Northeast Ohio Medical University Department of Pharmaceutical Sciences, 4209 State Route 44, PO Box 95 Rootstown, OH 44272, USA.
| |
Collapse
|
21
|
Yang Z, Xue KS, Sun X, Williams PL, Wang JS, Tang L. Toxicogenomic responses to zearalenone in Caenorhabditis elegans reveal possible molecular mechanisms of reproductive toxicity. Food Chem Toxicol 2018; 122:49-58. [DOI: 10.1016/j.fct.2018.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
|
22
|
Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D, Pagano E, Munarriz E. Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:1-8. [PMID: 30142450 DOI: 10.1016/j.cbpc.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
Glyphosate-based formulation is used as non-selective and post-emergent herbicides in urban and rural activities. In view of its recurring applications in agricultural producing countries, the increase of glyphosate concentration in the environment stresses the need to test the adverse effects on non-target organisms and assess the risk of its use. This paper analyzes the toxicological and oxidative stress and modulatory effects of a glyphosate commercial formulation (glyphosate F) on the nematode Caenorhabditis elegans. We detected ROS production and enhancement of oxidative stress response in glyphosate F-treated nematodes. Particularly, we found an increased ctl-1 catalase gene expression of a catalase specific activity. In addition, we showed that glyphosate F treatment activated the FOXO transcription factor DAF-16, a critical target of the insulin/IGF-1 signaling pathway, which modulates the transcription of a broad range of genes involved in stress resistance, reproductive development, dauer formation, and longevity. In summary, the exposure of glyphosate F induces an oxidative imbalance in C. elegans that leads to the DAF-16 activation and consequently to the expression of genes that boost the antioxidant defense system. In this regard, clt-1 gene and catalase activity proved to be excellent biomarkers to develop more sensitive protocols to assess the environmental risk of glyphosate use.
Collapse
Affiliation(s)
- María Florencia Kronberg
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Araceli Clavijo
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Aldana Moya
- Cátedra de Protección vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Daniel Calvo
- Dirección de Servicios Hidrológicos, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Eduardo Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eliana Munarriz
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Salim C, Thadathil N, Muralidhara M, Rajini PS. Insights on the age dependent neurodegeneration induced by Monocrotophos, (an organophosphorous insecticide) in Caenorhabditis elegans fed high glucose: Evidence in wild and transgenic strains. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:15-24. [PMID: 29763691 DOI: 10.1016/j.cbpc.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The higher susceptibility of high glucose fed C. elegans to Monocrotophos (MCP, an organophosphorus insecticide) - induced dopaminergic (DA) neuronal degeneration was recently demonstrated. Employing this acute exposure model, the impact of MCP on DA degeneration among worms of two age groups (8 and 13 d old) fed control (CO) and high glucose (GF) diet with specific focus on phenotypic alterations, oxidative impairments and associated molecular perturbations employing both wild (N2) and transgenic strains(BZ555 and NL5901) was investigated. In general, 13 d worms exhibited higher susceptibility to MCP intoxication compared to 8 d old worms. Further, MCP-exposure caused an enhanced degree of DA degeneration among glucose fed (GF) worms as evidenced by lower chemotaxis index, reduced long-term memory and increased nonanone repulsion. Biochemical analysis of 13 d GF worms also revealed a significant increase in ROS, protein carbonyls and reduced ADP/ATP ratio. Interestingly, marked increase in degeneration of dopaminergic neurons and increased in α-synuclein content was evident among 13 d GF worms exposed to MCP. Significant alterations in the mRNA expression levels of daf-2, age-1, sir 2.1 and aak-2 among 13 d GF worms was evident. Collectively these findings suggest that high intake of glucose diet aggravates MCP associated dopaminergic neuronal degeneration and the impact of increasing age under such a condition. Moreover it provides an experimental paradigm to explore the molecular targets and mechanism/s underlying the possible relationship between insecticide exposure-associated dopaminergic degeneration in humans under hyperglycemic conditions.
Collapse
Affiliation(s)
- Chinnu Salim
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Department of Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Nidheesh Thadathil
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Meat and Marine Science Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - M Muralidhara
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - P S Rajini
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Department of Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
24
|
Costa-Silva DGD, Leandro LP, Vieira PDB, de Carvalho NR, Lopes AR, Schimith LE, Nunes MEM, de Mello RS, Martins IK, de Paula AA, Cañedo AD, Moreira JCF, Posser T, Franco JL. N -acetylcysteine inhibits Mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol Teratol 2018; 68:1-12. [DOI: 10.1016/j.ntt.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023]
|
25
|
Montgomery K, Corona C, Frye R, Barnett R, Bailey A, Fitsanakis VA. Transport of a manganese/zinc ethylene-bis-dithiocarbamate fungicide may involve pre-synaptic dopaminergic transporters. Neurotoxicol Teratol 2018; 68:66-71. [PMID: 29807111 DOI: 10.1016/j.ntt.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022]
Abstract
Mancozeb (MZ), an organic-metal fungicide used predominantly on vegetables and fruits, has been linked to neurodegeneration and behavioral disruptions in a variety of organisms, including humans. Both γ-aminobutyric acid and dopamine neurons appear to be more vulnerable to MZ exposure than other neuronal populations. Based on these observations, we hypothesized that MZ may be differentially transported into these cells through their presynaptic neurotransmitter transporters. To test this, we pretreated Caenorhabditis elegans with transporter antagonists followed by exposure to various concentrations of MZ. Potential neuroprotection was monitored via green fluorescence associated with various neuron populations in transgenic worm strains. Neurodegeneration associated with subacute MZ treatment (30 min) was not altered by transporter antagonist pretreatment. On the other hand, pretreatment with a dopamine transporter antagonist (GBR12909) appeared to protect dopaminergic neurons from chronic (24 h) MZ treatment. These results are consistent with other reports that dopamine transporter levels or activity may modulate toxicity for neurotoxicants.
Collapse
Affiliation(s)
- Kara Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Caleb Corona
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rebekah Frye
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Reid Barnett
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
26
|
Schlotterer A, Pfisterer F, Kukudov G, Heckmann B, Henriquez D, Morath C, Krämer BK, Hammes HP, Schwenger V, Morcos M. Neuronal damage and shortening of lifespan in C. elegans by peritoneal dialysis fluid: Protection by glyoxalase-1. Biomed Rep 2018; 8:540-546. [PMID: 29805788 DOI: 10.3892/br.2018.1085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Glucose and glucose degradation products (GDPs), contained in peritoneal dialysis (PD) fluids, contribute to the formation of advanced glycation end-products (AGEs). Local damaging effects, resulting in functional impairment of the peritoneal membrane, are well studied. It is also supposed that detoxification of AGE precursors by glyoxalase-1 (GLO1) has beneficial effects on GDP-mediated toxicity. The aim of the current study was to analyze systemic detrimental effects of PD fluids and their prevention by glyoxlase-1. Wild-type and GLO1-overexpressing Caenorhabditis elegans (C. elegans) were cultivated in the presence of low- and high-GDP PD fluids containing 1.5 or 4% glucose. Lifespan, neuronal integrity and neuronal functions were subsequently studied. The higher concentrations of glucose and GDP content resulted in a decrease of maximum lifespan by 2 (P<0.01) and 9 days (P<0.001), respectively. Exposure to low- and high-GDP fluids caused reduction of neuronal integrity by 34 (P<0.05) and 41% (P<0.05). Cultivation of animals in the presence of low-GDP fluid containing 4% glucose caused significant impairment of neuronal function, reducing relative and absolute head motility by 58.5 (P<0.01) and 56.7% (P<0.01), respectively; and relative and absolute tail motility by 55.1 (P<0.05) and 55.0% (P<0.05), respectively. Taken together, GLO1 overexpression protected from glucose-induced lifespan reduction, neurostructural damage and neurofunctional damage under low-GDP-conditions. In conclusion, both glucose and GDP content in PD fluids have systemic impact on the lifespan and neuronal integrity of C. elegans. Detoxification of reactive metabolites by GLO1 overexpression was sufficient to protect lifespan, neuronal integrity and neuronal function in a low-GDP environment. These data emphasize the relevance of the GLO1 detoxifying pathway as a potential therapeutic target in the treatment of reactive metabolite-mediated pathologies.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Friederike Pfisterer
- Department of Medicine I and Clinical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Georgi Kukudov
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Britta Heckmann
- Department of Dermatology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Daniel Henriquez
- Department of Nephrology, Centre Hospitalier du Nord, 9080 Ettelbruck, Luxembourg, Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Bernhard K Krämer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Vedat Schwenger
- Klinik für Nieren-, Hochdruck- und Autoimmunerkrankungen, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Michael Morcos
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| |
Collapse
|
27
|
C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 2018; 354:126-135. [PMID: 29550512 DOI: 10.1016/j.taap.2018.03.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants.
Collapse
|
28
|
Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Snapp IB, Negga R, Traynor WL, Fitsanakis VA. Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:46-52. [PMID: 29190595 PMCID: PMC5803312 DOI: 10.1016/j.etap.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Glyphosate-containing herbicides are among the most widely-used in the world. Although glyphosate itself is relatively non-toxic, growing evidence suggests that commercial herbicide formulations may lead to increased oxidative stress and mitochondrial inhibition. In order to assess these mechanisms in vivo, we chronically (24h) exposed Caenorhabditis elegans to various concentrations of the glyphosate-containing herbicide TouchDown (TD). Following TD exposure, we evaluated the function of specific mitochondrial electron transport chain complexes. Initial oxygen consumption studies demonstrated inhibition in mid- and high-TD concentration treatment groups compared to controls. Results from tetramethylrhodamine ethyl ester and ATP assays indicated reductions in the proton gradient and ATP levels, respectively. Additional studies were designed to determine whether TD exposure resulted in increased reactive oxygen species (ROS) production. Data from hydrogen peroxide, but not superoxide or hydroxyl radical, assays showed statistically significant increases in this specific ROS. Taken together, these data indicate that exposure of Caenorhabditis elegans to TD leads to mitochondrial inhibition and hydrogen peroxide production.
Collapse
Affiliation(s)
- Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Shelbie L Burchfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
30
|
Bridi D, Altenhofen S, Gonzalez JB, Reolon GK, Bonan CD. Glyphosate and Roundup ® alter morphology and behavior in zebrafish. Toxicology 2017; 392:32-39. [PMID: 29032223 DOI: 10.1016/j.tox.2017.10.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023]
Abstract
Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup®. This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup®-treated adult zebrafish demonstrated a significant impairment in memory. Both glyphosate and Roundup® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup®, altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response.
Collapse
Affiliation(s)
- Daiane Bridi
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonas Brum Gonzalez
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Kellermann Reolon
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Jacques MT, Oliveira JL, Campos EVR, Fraceto LF, Ávila DS. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:245-253. [PMID: 28160702 DOI: 10.1016/j.ecoenv.2017.01.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 05/25/2023]
Abstract
The extensive use of pesticides is causing environmental pollution, affecting animal organisms in different habitats and also leading human health at risk. In this study, we present as an alternative the use of nanoparticles loaded with pesticides and report their toxicological assessment to a soil organism, Caenorhabditis elegans. Three nanoparticle formulations were analyzed: solid lipid nanoparticles loaded or not with atrazine and simazine, SLN; polymeric nanoparticles, NC_PCL loaded with atrazine; and chitosan/tripolyphosphate, CS/TPP, loaded or not with paraquat. All formulations, loaded or not with pesticides, increased lethality in a dose- dependent manner with similar LC50. Both loaded and unloaded NC_PCL were the most toxic formulations to developmental rate, significantly reducing worms length, even at low concentrations. In contrast, both CS/TPP nanoparticles were the least toxic, not affecting reproduction and body length at higher concentrations, probably due to the biocompatibility of chitosan. The physico-chemical characterization of nanoparticles after incubation in saline solution (used in exposure of organisms) has shown that these colloidal systems are stable and remain with the same initial characteristics, even in the presence of saline environment. Notably, our results indicate that the observed effects were caused by the nanoparticles per se. These results suggest that the development of nanoparticles aiming agriculture applications needs more studies in order to optimize the composition and then reduce their toxicity to non-target organisms.
Collapse
Affiliation(s)
- Mauricio T Jacques
- Federal University of Pampa- UNIPAMPA- Uruguaiana, Rio Grande do Sul, Brazil
| | - Jhones L Oliveira
- São Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, Brazil
| | - Estefânia V R Campos
- São Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, Brazil; State University of Campinas, Campinas, SP, Brazil
| | - Leonardo F Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, Brazil; State University of Campinas, Campinas, SP, Brazil
| | - Daiana Silva Ávila
- Federal University of Pampa- UNIPAMPA- Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Bhaskar R, Mishra AK, Mohanty B. Neonatal Exposure to Endocrine Disrupting Chemicals Impairs Learning Behaviour by Disrupting Hippocampal Organization in Male Swiss Albino Mice. Basic Clin Pharmacol Toxicol 2017; 121:44-52. [DOI: 10.1111/bcpt.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Rakesh Bhaskar
- Department of Zoology; University of Allahabad; Allahabad India
| | | | | |
Collapse
|
33
|
Kern JK, Geier DA, Homme KG, King PG, Bjørklund G, Chirumbolo S, Geier MR. Developmental neurotoxicants and the vulnerable male brain: a systematic review of suspected neurotoxicants that disproportionally affect males. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-061] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Todt CE, Bailey DC, Pressley AS, Orfield SE, Denney RD, Snapp IB, Negga R, Bailey AC, Montgomery KM, Traynor WL, Fitsanakis VA. Acute exposure to a Mn/Zn ethylene-bis-dithiocarbamate fungicide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Neurotoxicology 2016; 57:112-120. [PMID: 27663847 PMCID: PMC5123952 DOI: 10.1016/j.neuro.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 02/08/2023]
Abstract
Mn/Zn ethylene-bis-dithiocarbamate (Mn/Zn-EBDC) fungicides are among some the most widely-used fungicides in the world. Although they have been available for over 50 years, little is known about their mechanism of action in fungi, or their potentially toxic mechanisms in humans. To determine if exposure of Caenorhabditis elegans (C. elegans) to a representative fungicide (Manzate; MZ) from this group inhibits mitochondria or produces reactive oxygen species (ROS), we acutely (30min) exposed worms to various MZ concentrations. Initial oxygen consumption studies showed an overall statistically significant decrease in oxygen consumption associated with addition of Complex I- and/or II-substrate in treatment groups compared to controls (*p<0.05). In order to better characterize the individual complex activity, further studies were completed that specifically assessed Complex II or Complex IV. Data indicated that neither of these two complexes were targets of MZ treatment. Results from tetramethylrhodamine ethyl ester (proton gradient) and ATP assays showed statistically significant reductions in both endpoints (*p<0.05, **p<0.01, respectively). Additional studies were completed to determine if MZ treatment also resulted in increased ROS production. These assays provided evidence that hydrogen peroxide, but not superoxide or hydroxyl radical levels were statistically significantly increased (*p<0.05). Taken together, these data indicate exposure of C. elegans to MZ concentrations to which humans are exposed leads to mitochondrial inhibition and concomitant hydrogen peroxide production. Since mitochondrial inhibition and increased ROS are associated with numerous neurodegenerative diseases, we suggest further studies to determine if MZ catalyzes similar toxic processes in mammals.
Collapse
Affiliation(s)
- Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Sarah E Orfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Kara M Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
35
|
Clavijo A, Kronberg MF, Rossen A, Moya A, Calvo D, Salatino SE, Pagano EA, Morábito JA, Munarriz ER. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:252-261. [PMID: 27343944 DOI: 10.1016/j.scitotenv.2016.06.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 05/14/2023]
Abstract
Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring.
Collapse
Affiliation(s)
- Araceli Clavijo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - María Florencia Kronberg
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua, Av. Ezeiza-Cañuelas, tramo Jorge Newbery Km 1,620 Pcia, Buenos Aires, Argentina
| | - Aldana Moya
- Cátedra de Protección Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - Daniel Calvo
- Dirección de Servicios Hidrológicos, Instituto Nacional del Agua, Av. Ezeiza-Cañuelas, tramo Jorge Newbery Km 1,620 Pcia, Buenos Aires, Argentina
| | | | - Eduardo Antonio Pagano
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina
| | - José Antonio Morábito
- Centro Regional Andino, Instituto Nacional del Agua, Belgrano 210 (M5500FIF) Mendoza, Argentina; Facultad de Ciencias Agrarias (UNCuyo), Alte. Brown 500, Chacras de Coria, Luján de Cuyo, Mendoza, Argentina
| | - Eliana Rosa Munarriz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET-Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 C1417DSE, CABA, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 C1417DSE, CABA, Argentina.
| |
Collapse
|
36
|
Bailey DC, Todt CE, Orfield SE, Denney RD, Snapp IB, Negga R, Montgomery KM, Bailey AC, Pressley AS, Traynor WL, Fitsanakis VA. Caenorhabditis elegans chronically exposed to a Mn/Zn ethylene-bis-dithiocarbamate fungicide show mitochondrial Complex I inhibition and increased reactive oxygen species. Neurotoxicology 2016; 56:170-179. [PMID: 27502893 DOI: 10.1016/j.neuro.2016.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023]
Abstract
Reports have linked human exposure to Mn/Zn ethylene-bis-dithiocarbamate (Mn/Zn-EBDC) fungicides with multiple pathologies, from dermatitis to central nervous system dysfunction. Although members of this family of agrochemicals have been available for over 50 years, their mechanism of toxicity in humans is still unclear. Since mitochondrial inhibition and oxidative stress are implicated in a wide variety of diseases, we hypothesized that Caenorhabditis elegans (C. elegans) exposed to a commercially-available formulation of an Mn/Zn-EBDC-containing fungicide (Manzate; MZ) would also show these endpoints. Thus, worms were treated chronically (24h) with various MZ concentrations and assayed for reduced mitochondrial function and increased levels of reactive oxygen species (ROS). Oxygen consumption studies suggested Complex I inhibition in all treatment groups compared to controls (**p<0.01). In order to verify these findings, assays specific for Complex II or Complex IV activity were also completed. Data analysis from these studies indicated that neither complex was adversely affected by MZ treatment. Additional data from ATP assays indicated a statistically significant decrease (***p<0.001) in ATP levels in all treatment groups when compared to control worms. Further studies were completed to determine if exposure of C. elegans to MZ also resulted in increased ROS concentrations. Studies demonstrated that hydrogen peroxide, but not superoxide or hydroxyl radical, levels were statistically significantly increased (*p<0.05). Since hydrogen peroxide is known to up-regulate glutathione-S-transferase (GST), we used a GST:green fluorescent protein transgenic worm strain to test this hypothesis. Results from these studies indicated a statistically significant increase (***p<0.001) in green pixel number following MZ exposure. Taken together, these data indicate that C. elegans treated with MZ concentrations to which humans are exposed show mitochondrial Complex I inhibition with concomitant hydrogen peroxide production. Since these mechanisms are associated with numerous human diseases, we suggest further studies to determine if MZ exposure induces similar toxic mechanisms in mammals.
Collapse
Affiliation(s)
- Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Sarah E Orfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Kara M Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
37
|
Subaraja M, Vanisree AJ. Rotenone causing dysfunctional mitochondria and lysosomes in cerebral ganglions of Lumbricus terrestris degenerate giant fibers and neuromuscular junctions. CHEMOSPHERE 2016; 152:468-480. [PMID: 27003369 DOI: 10.1016/j.chemosphere.2016.02.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Rotenone is well-documented to cause neurodegenerative condition such as Parkinson's, in the exposed systems. However, its detrimental effect on particular sites of neuronal pathway is still under investigation. We aimed at elucidating the impact of rotenone on cerebral ganglions (CG) of Lumbricus terrestris which control movement and behaviour of the worms. Worms were exposed to 0-0.4 ppm/mL of rotenone. Mitochondrial and lysosomal integrities were found to be affected beyond 0.2 ppm/mL of rotenone. Activities of cholinergic enzymes and the expression of tyrosine hydroxylase showed an impaired neuronal transmission in CGs at the dose of 0.2 ppm/mL of rotenone. Histopathological and immunoflourescent analyses showed neuronal apoptosis, reduced nucleic acid content and inhibited of neurosecretion at 0.3 ppm/mL. Electron microscopy showed that the neurons and neuromuscular junctions were affected at 0.2 ppm/mL. Dose-dependent changes were also observed in the motor function such as burrowing behaviours and locomotion. Conduction velocity (CV) and locomotion assessment showed that the CV of lateral giant fiber (LGF) was reduced while that of MGF remains unaffected at 0.2 ppm, the dose at which the burrowing behaviour was also not affected. LGF, cholinergic enzymes and tyrosine hydroxylase are primarily targeted by rotenone affecting locomotion at 0.2 ppm/mL while MGF, neuropile and the burrowing behaviour were affected at 0.3 ppm/mL. We demonstrate, in addition to dose-dependent effects, that the bioaccumulation factors range 0.28-0.32 ppm/μg of rotenone cause degenerative impact on giant fibers affecting neuronal behaviors/locomotion of worms. We also propose worms for studying mechanisms of neuronal pathology caused by chemicals prevailing in earth's atmosphere.
Collapse
Affiliation(s)
- Mamangam Subaraja
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | |
Collapse
|
38
|
McVey KA, Snapp IB, Johnson MB, Negga R, Pressley AS, Fitsanakis VA. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol Teratol 2016; 55:23-31. [PMID: 27019975 PMCID: PMC4884470 DOI: 10.1016/j.ntt.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/20/2016] [Accepted: 03/20/2016] [Indexed: 12/21/2022]
Abstract
Recent data demonstrate that chronic exposure of Caenorhabditis elegans (C. elegans) to a high-use glyphosate-containing herbicide, Touchdown (TD), potentially damages the adult nervous system. It is unknown, however, whether unhatched worms exposed to TD during the egg stage show abnormal neurodevelopment post-hatching. Therefore, we investigated whether early treatment with TD leads to aberrant neuronal or neurite development in C. elegans. Studies were completed in three different worm strains with green fluorescent protein (GFP)-tagged neurons to facilitate visual neuronal assessment. Initially, eggs from C. elegans with all neurons tagged with GFP were chronically exposed to TD. Visual inspection suggested decreased neurite projections associated with ventral nerve cord neurons. Data analysis showed a statistically significant decrease in overall green pixel numbers at the fourth larval (L4) stage (*p<0.05). We further investigated whether specific neuronal populations were preferentially vulnerable to TD by treating eggs from worms that had all dopaminergic (DAergic) or γ-aminobutyric acid (GABAergic) neurons tagged with GFP. As before, green pixel number associated with these discrete neuronal populations was analyzed at multiple larval stages. Data analysis indicated statistically significant decreases in pixel number associated with DAergic, but not GABAergic, neurons (***p<0.001) at all larval stages. Finally, statistically significant decreases (at the first larval stage, L1) or increases (at the fourth larval stage, L4) in superoxide levels, a developmental signaling molecule, were detected (*p<0.05). These data suggest that early exposure to TD may impair neuronal development, perhaps through superoxide perturbation. Since toxic insults during development may late render individuals more vulnerable to neurodegenerative diseases in adulthood, these studies provide some of the first evidence in this model organism that early exposure to TD may adversely affect the developing nervous system.
Collapse
Affiliation(s)
- Kenneth A McVey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Liberty University College of Osteopathic Medicine, 306 Liberty View Lane, Lynchburg, VA 24502, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Medical University of South Carolina, Physician Assistant Studies, 151B Rutledge Avenue, Charleston, SC 29425, USA.
| | - Megan B Johnson
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Lincoln Memorial University, Debusk College of Osteopathic Medicine, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; The University of Tennessee Institute of Agriculture, Department of Animal Science, 366 Brehm Animal Science Building, 2506 River Drive, Knoxville, TN 37996, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
39
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Tejeda-Benitez L, Olivero-Verbel J. Caenorhabditis elegans, a Biological Model for Research in Toxicology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 237:1-35. [PMID: 26613986 DOI: 10.1007/978-3-319-23573-8_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode. Overall, almost every type of known toxicant has been tested with this animal model. In the near future, the available knowledge on the life cycle of C. elegans should allow more studies on reproduction and transgenerational toxicity for newly developed chemicals and materials, facilitating their introduction in the market. The great diversity of endpoints and possibilities of this animal makes it an easy first-choice for rapid toxicity screening or to detail signaling pathways involved in mechanisms of toxicity.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
41
|
Gardiner J. Use of Arabidopsis to Model Hereditary Spastic Paraplegia and Other Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 2014; 9:e114459. [PMID: 25486066 PMCID: PMC4259338 DOI: 10.1371/journal.pone.0114459] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
Collapse
Affiliation(s)
- Claudia P. González-Hunt
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Rakesh K. Bodhicharla
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Madeline G. McKeever
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Andrew E. Arrant
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Kathleen M. Margillo
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Technology, Duke University, Durham, North Carolina, United States of America
| | - Sara G. Kosmaczewski
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail: mailto:
| |
Collapse
|
43
|
Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, Domingues JT, Dal-Cim T, Tasca CI, Mena Barreto Silva FR, Zamoner A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 2014; 320:34-45. [PMID: 24636977 DOI: 10.1016/j.tox.2014.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 12/28/2022]
Abstract
Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup(®) (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup(®) (0.00005-0.1%) during 30min and experiments were carried out to determine whether glyphosate affects (45)Ca(2+) influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup(®) (30min) increases (45)Ca(2+) influx by activating NMDA receptors and voltage-dependent Ca(2+) channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup(®)-induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup(®) increased (3)H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup(®) decreased (3)H-glutamate uptake and metabolism, while induced (45)Ca(2+) uptake and (14)C-MeAIB accumulation in immature rat hippocampus. Taken together, these results demonstrated that Roundup(®) might lead to excessive extracellular glutamate levels and consequently to glutamate excitotoxicity and oxidative stress in rat hippocampus.
Collapse
Affiliation(s)
- Daiane Cattani
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vera Lúcia de Liz Oliveira Cavalli
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla Elise Heinz Rieg
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
44
|
Meyer D, Williams PL. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:284-306. [PMID: 25205216 DOI: 10.1080/10937404.2014.933722] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The use of pesticides is ubiquitous worldwide, and these chemicals exert adverse effects on both target and nontarget species. Understanding the modes of action of pesticides, as well as quantifying exposure concentration and duration, is an important goal of clinicians and environmental health scientists. Some chemical exposures result in adverse effects on the nervous system. The nematode Caenorhabditis elegans (C. elegans) is a model lab organism well established for studying neurotoxicity, since the components of its nervous system are mapped and known, and most of its neurotransmitters correspond to human homologs. This review encompasses published studies in which C. elegans nematodes were exposed to pesticides with known neurotoxic actions. Endpoints measured include changes in locomotion, feeding behavior, brood size, growth, life span, and cell death. From data presented, evidence indicates that C. elegans can serve a role in assessing the effects of neurotoxic pesticides at the sublethal cellular level, thereby advancing our understanding of the mechanisms underlying toxicity induced by these chemicals. A proposed toxicity testing scheme for water-soluble chemicals is also included.
Collapse
Affiliation(s)
- Dean Meyer
- a Department of Environmental Health Science , College of Public Health, The University of Georgia , Athens , Georgia , USA
| | | |
Collapse
|
45
|
Caito SW, Valentine WM, Aschner M. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans. J Neurochem 2013; 127:837-51. [PMID: 23786526 DOI: 10.1111/jnc.12349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.
Collapse
Affiliation(s)
- Samuel W Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
46
|
Li P, Zhu J, Kong Q, Jiang B, Wan X, Yue J, Li M, Jiang H, Li J, Gao Z. The ethylene bis-dithiocarbamate fungicide Mancozeb activates voltage-gated KCNQ2 potassium channel. Toxicol Lett 2013; 219:211-7. [DOI: 10.1016/j.toxlet.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
47
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
48
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Mancozeb-induced behavioral deficits precede structural neural degeneration. Neurotoxicology 2013; 34:74-81. [DOI: 10.1016/j.neuro.2012.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 01/03/2023]
|
50
|
Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:72-85. [PMID: 23081760 DOI: 10.1007/s10646-012-1004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We conclude that the main toxicants present in these soil pore water samples are organic rather than metallic in nature. Organic extracts from a control standard soil (Lufa 2.2) had negligible effects on expression of these genes, and similarly several pesticides had little effect on the expression of a constitutive myo-3::GFP transgene. Both the P73 and P74 sites have been treated regularly with (undisclosed) pesticides, as permitted under EU regulations, though other (e.g. industrial) organic residues may also be present.
Collapse
Affiliation(s)
- Charumathi Anbalagan
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|