1
|
Ren Y, Guo F, Wang L. Imaging Findings and Toxicological Mechanisms of Nervous System Injury Caused by Diquat. Mol Neurobiol 2024; 61:9272-9283. [PMID: 38619744 PMCID: PMC11496334 DOI: 10.1007/s12035-024-04172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Diquat (DQ) is a nonselective bipyridine herbicide with a structure resembling paraquat (PQ). In recent years, the utilization of DQ as a substitute for PQ has grown, leading to an increase in DQ poisoning cases. While the toxicity mechanism of DQ remains unclear, it is primarily attributed to the intracellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the process of reduction oxidation. This results in oxidative stress, leading to a cascade of clinical symptoms. Notably, recent reports on DQ poisoning have highlighted a concerning trend: an upsurge in cases involving neurological damage caused by DQ poisoning. These patients often present with severe illness and a high mortality rate, with no effective treatment available thus far. Imaging findings from these cases have shown that neurological damage tends to concentrate on the brainstem. However, the specific mechanisms behind this poisoning remain unclear, and no specific antidote exists. This review summarizes the research progress on DQ poisoning and explores potential mechanisms. By shedding light on the nerve damage associated with DQ poisoning, we hope to raise awareness, propose new avenues for investigating the mechanisms of DQ poisoning, and lay the groundwork for the development of treatment strategies for DQ poisoning. Trial registration number: 2024PS174K.
Collapse
Affiliation(s)
- Yanguang Ren
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Jiménez-Barbosa IA, Grajales Herrera D, Rodríguez Alvarez MF, Khuu SK. Pupil size change in agricultural workers exposed to pesticides. Clin Exp Optom 2024; 107:795-800. [PMID: 38194492 DOI: 10.1080/08164622.2023.2294810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
CLINICAL RELEVANCE Pupil size evaluation using clinical examination may be important for detecting and monitoring individuals at risk of neurotoxic effects from chemical exposure, as it may enable early intervention and the implementation of preventive measures. BACKGROUND This work aimed to investigate the association between pesticide exposure and pupil size. Pupil size is regulated by muscarinic and nicotinic receptors, and it is well-established that common pesticide chemicals disrupt this regulation. METHODS Twenty agricultural workers exposed to pesticides, and twenty participants not exposed, underwent visual screening, and pupil size evaluation under mesopic and photopic conditions. Additionally, signs of neurotoxicity and pesticide exposure in both groups were evaluated using the modified version of the neurotoxic symptoms questionnaire (Q16) and measuring cholinesterase (AChE) levels in blood, respectively. RESULTS Agricultural workers exposed to pesticides had a score indicating medium-high level of neurotoxicity (49.85 (SD ± 8.94)) which was significantly higher (t (36) = 7.659, p ≤ 0.0001) than non-exposed participants who had low levels of neurotoxicity (27.25 SD ± 8.86). There was a significant difference in pupil size (mm) under mesopic (t (19) 4.42 p = 0.003) and scotopic (t (19) 4.63, p = 0.0002) conditions between the two groups. Additionally, there was a significant difference in AChE blood levels (t (19) 2.94 p = 0.008) between exposed and non-exposed participants, indicating that exposed workers had low levels of this enzyme (average exposed group 3381 U/L (SD ± 1306)) compared to the non-exposed group (average non-exposed group 4765 U/L (SD ± 1300)). A significant negative correlation between AChE levels, years of exposure, and pupil size was found. The latter finding importantly showed that smaller pupils are associated with the accumulation of acetylcholine or a decrease in the activity of the enzyme AChE. CONCLUSION Pupil size of agricultural workers exposed to pesticides can be abnormal and is associated with neurotoxicity as indicated by symptomatology and cholinesterase levels. Evaluation of pupil size may be useful for clinically detecting neurotoxicity.
Collapse
Affiliation(s)
- Ingrid Astrid Jiménez-Barbosa
- Health Sciences Faculty, Universidad de La Salle, Bogotá, Colombia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | | | | | - Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. Toxicol Sci 2024; 201:263-281. [PMID: 38995845 PMCID: PMC11424889 DOI: 10.1093/toxsci/kfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with an increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 wk of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points-birth, 6, 12, and 36 wk old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of differential modification of cytosines with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late-life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
4
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590998. [PMID: 38746441 PMCID: PMC11092502 DOI: 10.1101/2024.04.26.590998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C. Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Sierra L. Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
7
|
Boyd SL, Kuhn NC, Patterson JR, Stoll AC, Zimmerman SA, Kolanowski MR, Neubecker JJ, Luk KC, Ramsson ES, Sortwell CE, Bernstein AI. Developmental exposure to the Parkinson's disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice. Toxicol Sci 2023; 196:99-111. [PMID: 37607008 PMCID: PMC10613968 DOI: 10.1093/toxsci/kfad086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Collapse
Affiliation(s)
- Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sydney A Zimmerman
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Mason R Kolanowski
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Joseph J Neubecker
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Ramsson
- Biomedical Sciences Department, Grand Valley State University, Allendale, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Liu Z, Kang K, Shan S, Wang S, Li X, Yong H, Huang Z, Yang Y, Liu Z, Sun Y, Bai Y, Song F. Chronic carbon disulfide exposure induces parkinsonian pathology via α-synuclein aggregation and necrosome complex interaction. iScience 2023; 26:107787. [PMID: 37731606 PMCID: PMC10507234 DOI: 10.1016/j.isci.2023.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Exposure to carbon disulfide (CS2) has been associated with an increased incidence of parkinsonism in workers, but the mechanism underlying this association remains unclear. Using a rat model, we investigated the effects of chronic CS2 exposure on parkinsonian pathology. Our results showed that CS2 exposure leads to significant motor impairment and neuronal damage, including loss of dopaminergic neurons and degeneration of the substantia nigra pars compacta (SNpc). The immunoassays revealed that exposure to CS2 induces aggregation of α-synuclein and phosphorylated α-synuclein, as well as activation of necroptosis in the SNpc. Furthermore, in vitro and in vivo experiments demonstrated that the interaction between α-synuclein and the necrosome complex (RIP1, RIP3, and MLKL) is responsible for the loss of neuronal cells after CS2 exposure. Taken together, our results demonstrate that CS2-mediated α-synuclein aggregation can induce dopaminergic neuron damage and parkinsonian behavior through interaction with the necrosome complex.
Collapse
Affiliation(s)
- Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Kang
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao, Shandong 266033, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xianjie Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, China
| | - Hui Yong
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao, Shandong 266033, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanan Sun
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
9
|
Ückert AK, Rütschlin S, Gutbier S, Wörz NC, Miah MR, Martins AC, Hauer I, Holzer AK, Meyburg B, Mix AK, Hauck C, Aschner M, Böttcher T, Leist M. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration. ENVIRONMENT INTERNATIONAL 2023; 180:108229. [PMID: 37797477 PMCID: PMC10666548 DOI: 10.1016/j.envint.2023.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The causes of nigrostriatal cell death in idiopathic Parkinson's disease are unknown, but exposure to toxic chemicals may play some role. We followed up here on suggestions that bacterial secondary metabolites might be selectively cytotoxic to dopaminergic neurons. Extracts from Streptomyces venezuelae were found to kill human dopaminergic neurons (LUHMES cells). Utilizing this model system as a bioassay, we identified a bacterial metabolite known as aerugine (C10H11NO2S; 2-[4-(hydroxymethyl)-4,5-dihydro-1,3-thiazol-2-yl]phenol) and confirmed this finding by chemical re-synthesis. This 2-hydroxyphenyl-thiazoline compound was previously shown to be a product of a wide-spread biosynthetic cluster also found in the human microbiome and in several pathogens. Aerugine triggered half-maximal dopaminergic neurotoxicity at 3-4 µM. It was less toxic for other neurons (10-20 µM), and non-toxic (at <100 µM) for common human cell lines. Neurotoxicity was completely prevented by several iron chelators, by distinct anti-oxidants and by a caspase inhibitor. In the Caenorhabditis elegans model organism, general survival was not affected by aerugine concentrations up to 100 µM. When transgenic worms, expressing green fluorescent protein only in their dopamine neurons, were exposed to aerugine, specific neurodegeneration was observed. The toxicant also exerted functional dopaminergic toxicity in nematodes as determined by the "basal slowing response" assay. Thus, our research has unveiled a bacterial metabolite with a remarkably selective toxicity toward human dopaminergic neurons in vitro and for the dopaminergic nervous system of Caenorhabditis elegans in vivo. These findings suggest that microbe-derived environmental chemicals should be further investigated for their role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Christine Wörz
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria; Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Isa Hauer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Birthe Meyburg
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kathrin Mix
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Christof Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany; Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria.
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Intui K, Nuchniyom P, Laoung-on J, Jaikang C, Quiggins R, Sudwan P. Neuroprotective Effect of White Nelumbo nucifera Gaertn. Petal Tea in Rats Poisoned with Mancozeb. Foods 2023; 12:2175. [PMID: 37297420 PMCID: PMC10252518 DOI: 10.3390/foods12112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Nelumbo nucifera Gaertn. (N. nucifera) tea is used as food and folk medicine to reduce toxicity in Southeast Asia. Mancozeb (Mz) is used for controlling fungi in agriculture and contains heavy metals. This study aimed to examine the effect of white N. nucifera petal tea on cognitive behavior, hippocampus histology, oxidative stress, and amino acid metabolism in rats poisoned with mancozeb. Seventy-two male Wistar rats were divided into nine groups (n = 8 in each). Y-maze spontaneous alternation test was used to assess cognitive behavior, and amino acid metabolism was investigated by nuclear magnetic resonance spectroscopy (1H-NMR) from blood. There was a significant increase in relative brain weight in the Mz co-administered with the highest dose (2.20 mg/kg bw) of white N. nucifera group. The levels of tryptophan, kynurenine, picolinic acid, and serotonin in blood showed a significant decrease in the Mz group and a significant increase in the Mz co-administered with low dose (0.55 mg/kg bw) of white N. nucifera group. However, there was no significant difference in cognitive behavior, hippocampus histology, oxidative stress, and corticosterone. This study demonstrated that a low dose of white N. nucifera petal tea has a neuroprotective effect against mancozeb.
Collapse
Affiliation(s)
- Ketsarin Intui
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.I.)
| | - Pimchanok Nuchniyom
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.I.)
| | - Jiraporn Laoung-on
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.I.)
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ranida Quiggins
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.I.)
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.I.)
| |
Collapse
|
11
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
12
|
Antonangeli LM, Kenzhebekova S, Colosio C. Neurobehavioral Effects of Low-Dose Chronic Exposure to Insecticides: A Review. TOXICS 2023; 11:192. [PMID: 36851066 PMCID: PMC9963921 DOI: 10.3390/toxics11020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The modes of action of insecticides frequently involve a neurotoxic effect; therefore, the study of neurotoxic effects caused by long-term and low-dose insecticide exposure is of particular interest. This study looks at whether or not new studies conducted after 2009 and up to 2021 have provided new evidence for a better understanding of the actual neurobehavioral risk associated with long-term insecticide exposure. We selected and reviewed studies carried out on the neurobehavioral effects of neurotoxic insecticides (organophosphates and/or carbamates, pyrethroids, multiple or undefined insecticides, and organochlorines) considering occupational and non-occupational exposures. The articles were also scored and ranked based on seven parameters. Eighty-six studies were chosen for a final review process from among the 950 scientific papers identified. Twenty-six addressed occupational exposure and six environmental exposure. Among the latter group of studies, 17 focused on rural residents, to be assumed exposed because of living in rural areas, and 43 on the general population. Pending doubts have not been resolved in the last ten years due to the presence of contradictory and hardly comparable results and the fact that in most of the studies showing an evident neurobehavioral impairment the frequent presence of a previous episode of poisoning and hospitalization, with severe brain hypoxia, impaired the possibility of confirming the presence of a causal association with insecticide exposure. Interestingly, the most severely exposed groups, such as applicators who did not wear personal protective equipment, performed worse on neurobehavioral tests. As for residential exposure, there is sufficient evidence to suggest that prenatal OP exposure may increase the risk of ADHD in children.
Collapse
Affiliation(s)
| | - Saniya Kenzhebekova
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| | - Claudio Colosio
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| |
Collapse
|
13
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Vellingiri B, Chandrasekhar M, Sri Sabari S, Gopalakrishnan AV, Narayanasamy A, Venkatesan D, Iyer M, Kesari K, Dey A. Neurotoxicity of pesticides - A link to neurodegeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113972. [PMID: 36029574 DOI: 10.1016/j.ecoenv.2022.113972] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which mainly targets motor symptoms such as tremor, rigidity, bradykinesia and postural instability. The physiological changes occur due to dopamine depletion in basal ganglia region of the brain. PD aetiology is not yet elucidated clearly but genetic and environmental factors play a prominent role in disease occurrence. Despite of various environmental factors, pesticides exposure has been convicted as major candidate in PD pathogenesis. Among various pesticides 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely investigated in PD following with paraquat (PQ), maneb (MB), organochlorines (OC) and rotenone. Effect of these pesticides has been suggested to be involved in oxidative stress, alterations in dopamine transporters, mitochondrial dysfunction, α-synuclein (αSyn) fibrillation, and neuroinflammation in PD. The present review discusses the influence of pesticides in neurodegeneration and its related epidemiological studies conducted in PD. Furthermore, we have deliberated the common pesticides involved in PD and its associated genetic alterations and the probable mechanism of them behind PD pathogenesis. Hence, we conclude that pesticides play a prominent role in PD pathogenesis and advance research is needed to investigate the alterations in genetic and mechanistic aspects of PD.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Mamatha Chandrasekhar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S Sri Sabari
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| |
Collapse
|
15
|
Risk Factors for Brain Health in Agricultural Work: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063373. [PMID: 35329061 PMCID: PMC8954905 DOI: 10.3390/ijerph19063373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Certain exposures related to agricultural work have been associated with neurological disorders. To date, few studies have included brain health measurements to link specific risk factors with possible neural mechanisms. Moreover, a synthesis of agricultural risk factors associated with poorer brain health outcomes is missing. In this systematic review, we identified 106 articles using keywords related to agriculture, occupational exposure, and the brain. We identified seven major risk factors: non-specific factors that are associated with agricultural work itself, toluene, pesticides, heavy metal or dust exposure, work with farm animals, and nicotine exposure from plants. Of these, pesticides are the most highly studied. The majority of qualifying studies were epidemiological studies. Nigral striatal regions were the most well studied brain area impacted. Of the three human neuroimaging studies we found, two focused on functional networks and the third focused on gray matter. We identified two major directions for future studies that will help inform preventative strategies for brain health in vulnerable agricultural workers: (1) the effects of moderators such as type of work, sex, migrant status, race, and age; and (2) more comprehensive brain imaging studies, both observational and experimental, involving several imaging techniques.
Collapse
|
16
|
Yu G, Su Q, Chen Y, Wu L, Wu S, Li H. Epigenetics in neurodegenerative disorders induced by pesticides. Genes Environ 2021; 43:55. [PMID: 34893084 PMCID: PMC8662853 DOI: 10.1186/s41021-021-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are becoming major socio-economic burdens. However, most of them still have no effective treatment. Growing evidence indicates excess exposure to pesticides are involved in the development of various forms of neurodegenerative and neurological diseases through trigger epigenetic changes and inducing disruption of the epigenome. This review summaries studies on epigenetics alterations in nervous systems in relation to different kinds of pesticides, highlighting potential mechanism in the etiology, precision prevention and target therapy of various neurodegenerative diseases. In addition, the current gaps in research and future areas for study were also discussed.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingyan Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
17
|
Martins FCOL, Batista AD, Melchert WR. Current overview and perspectives in environmentally friendly microextractions of carbamates and dithiocarbamates. Compr Rev Food Sci Food Saf 2021; 20:6116-6145. [PMID: 34564942 DOI: 10.1111/1541-4337.12821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Carbamates and dithiocarbamates are two classes of pesticides widely employed in the agriculture practice to control and avoid pests and weeds, hence, the monitoring of the residue of those pesticides in different foodstuff samples is important. Thus, this review presents the classification, chemical structure, use, and toxicology of them. Moreover, it was shown the evolution of liquid- and solid-phase microextractions employed in the extraction of carbamates and dithiocarbamates in water and foodstuff samples. The classification, operation mode, and application of the microextractions of liquid-phase and solid-phase used in their extraction were discussed and related to the analytical parameters and guidelines of green analytical chemistry.
Collapse
Affiliation(s)
| | - Alex D Batista
- Institute of Chemistry, University of Uberlândia, Uberlândia, Brazil
| | - Wanessa R Melchert
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
18
|
Augusto-Oliveira M, Arrifano GDP, Lopes-Araújo A, Santos-Sacramento L, Lima RR, Lamers ML, Le Blond J, Crespo-Lopez ME. Salivary biomarkers and neuropsychological outcomes: A non-invasive approach to investigate pollutants-associated neurotoxicity and its effects on cognition in vulnerable populations. ENVIRONMENTAL RESEARCH 2021; 200:111432. [PMID: 34062204 DOI: 10.1016/j.envres.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of neurotoxicity caused by xenobiotics such as pesticides (dichlorodiphenyltrichloroethane, organophosphates, pyrethroids, etc.) or metals (mercury, lead, aluminum, arsenic, etc.) is a growing concern around the world, particularly in vulnerable populations with difficulties on both detection and symptoms treatment, due to low economic status, remote access, poor infrastructure, and low educational level, among others features. Despite the numerous molecular markers and questionnaires/clinical evaluations, studying neurotoxicity and its effects on cognition in these populations faces problems with samples collection and processing, and information accuracy. Assessing cognitive changes caused by neurotoxicity, especially those that are subtle in the initial stages, is fundamentally challenging. Finding accurate, non-invasive, and low-cost strategies to detect the first signals of brain injury has the potential to support an accelerated development of the research with these populations. Saliva emerges as an ideal pool of biomarkers (with interleukins and neural damage-related proteins, among others) and potential alternative diagnostic fluid to molecularly investigate neurotoxicity. As a source of numerous neurological biomarkers, saliva has several advantages compared to blood, such as easier storage, requires less manipulation, and the procedure is cheaper, safer and well accepted by patients compared with drawing blood. Regarding cognitive dysfunction, neuropsychological batteries represent, with their friendly interface, a feasible and accurate method to evaluate the eventual cognitive deficits associated with neurotoxicity in people from diverse cultural and educational backgrounds. The association of these two tools, saliva and neuropsychological batteries, to cover the molecular and cognitive aspects of neurotoxicity in vulnerable populations, could potentially increase the prevalence of early intervention and successful treatment.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Rafael Rodrigues Lima
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
| | | | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
19
|
Ghasemnejad-Berenji M, Nemati M, Pourheydar B, Gholizadeh S, Karimipour M, Mohebbi I, Jafari A. Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: Biochemical, histological, and neurobehavioral evaluations. CHEMOSPHERE 2021; 264:128464. [PMID: 33049502 DOI: 10.1016/j.chemosphere.2020.128464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Humans are usually exposed to multiple pesticides in real life, but little is known as yet about the safety of low-dose pesticides mixtures. This study was conducted to evaluate the effects of long-term exposure to very low doses of pesticide mixtures on biochemical, histological, and neurobehavioral alterations in the rat model. For 90 days, four groups of male Wistar rats were given a mixture of five pesticides (in drinking water) in doses of 0, 0.25, 1 and 5 times the legally permitted levels (mg/kg body weight/day). After three-month exposure, the neurobehavioral effects of pesticide mixtures were evaluated by the Morris water maze, elevated plus maze and the open field tests. Then the biochemical and histopathological alterations in the hippocampus of studied animals were evaluated. Results showed that long-term exposure to a combination of five pesticides affected the nervous system in dose-dependent manner. As expected, nearly all of the parameters determined in this study were adversely changed in the high dose group. Exposure to medium dose (permitted level of pesticides mixture) was also able to induce oxidative stress and impaired memory and learning ability, although not all parameters were significantly changed in this group. It means that pesticides may behave differently when mixed. Interestingly, the administration of low doses of these chemicals induced an adaptive response by stimulating the redox system. In conclusion, it seems that the prolonged exposure to pesticide mixtures may cause adverse neurobehavioral effects, even at permitted levels.
Collapse
Affiliation(s)
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Department of Anatomical Sciences and Neurophysiology Research Center, School of Medicine, Iran
| | - Saber Gholizadeh
- Department of Medical Entomology and Cellular and Molecular Research Center, School of Health, Urmia University of Medical Sciences, Iran
| | - Mojtaba Karimipour
- Department of Anatomy and Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Department of Toxicology and Neurophysiology Research Center, Faculty of Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
20
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
21
|
Dalui S, Chatterjee S, Sinha P, Bhattacharyya A. Reduced Dpp expression accelerates inflammation-mediated neurodegeneration through activated glial cells during altered innate immune response in Drosophila. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104680. [PMID: 32980059 DOI: 10.1016/j.pestbp.2020.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The progression of neurodegenerative disease is very complex biological process and the molecular crosstalk of inflammatory cytokines during neurodegeneration is associated with multiple cascade signalling. Few evidences suggest that environmental toxin, Paraquat (PQ) administration activates the microglia and intensify the release of proinflamatory cytokines during progression of Parkinson''s disease (PD) but the proper aetiology remained unknown. However, the fundamental role of anti-inflammatory molecule Decapentaplegic (Dpp), homologue of the secreted mammalian Transforming growth factor-β (TGF-β) signalling molecule during neurodegeneration of invertebrate fly model is yet to establish. To elucidate the molecular processes during early stage of Parkinson's disease, we observed neuro-toxin plays a determining role in the increased vulnerability to a particular PQ exposure that is attended by decreased lifespan, severe locomotor deficits, and more loss of dopaminergic (DA) neuron in PQ-treated Dpp deficient fly than wild type (WT). Simultaneously, activated microglia induced the inflammatory response with the release of pro-inflammatory and anti-inflammatory cytokine in Drosophila during neurodegeneration. Moreover, neuro-toxin exposure altered the expression of innate immune genes in both WT and mutant fly compared to the respective PQ-treated flies. Interestingly, PQ exposure reduced the expression of innate immune genes in mutant fly compared to WT. It may indicate that PQ exposure had broken down the immune defence response in mutant fly than WT whereas, without PQ exposure the innate immune tolerance level was higher in fly with reduced Dpp expression than WT. Thus, we observed the conserve anti-inflammatory factor TGF-β may exhibit a crucial defensive role during inflammation mediated neurodegeneration in invertebrate Drosophila melanogaster.
Collapse
Affiliation(s)
- Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Soumya Chatterjee
- Immunology Lab, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, Kolkata, India.
| | | |
Collapse
|
22
|
Fernandes LC, Santos AG, Sampaio TB, Sborgi S, Prediger R, Ferro MM, Franco G, Lipinski L, Miyoshi E. Exposure to paraquat associated with periodontal disease causes motor damage and neurochemical changes in rats. Hum Exp Toxicol 2020; 40:81-89. [PMID: 32748713 DOI: 10.1177/0960327120938851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to paraquat is possibly involved with the development of several conditions, including neurodegenerative diseases, such as Parkinson's disease (PD). This condition is mainly characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and the development of classical motor symptoms. Etiology includes exposure to environmental factors, such as the paraquat exposure, and inflammatory diseases may exacerbate paraquat neurotoxicity. The aim of the study was to investigate whether the exposure to paraquat associated with the presence of periodontal disease is able to induce motor and biochemical changes in rats similar to that observed in PD. Adult male Wistar rats were sent to ligature. After 48 h, they were sent to daily treatment paraquat (1 mg/kg/day; 2 mL/kg; intragastric) or vehicle for 4 weeks. Twenty-four hours after the last administration, the open field test was performed. The rats were euthanized and the left hemimandibles and striatum were dissected for the analysis of dopaminergic and inflammatory markers. Only the combination of periodontal disease model plus paraquat exposure induced motor impairments. Remarkably, the paraquat exposure increased the ligature-induced alveolar bone loss in hemimandibles. Moreover, only the combination of periodontal disease and paraquat exposure induced the loss of dopaminergic neurons and astrocyte activation in the striatum.
Collapse
Affiliation(s)
- L C Fernandes
- 549253Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - A G Santos
- 549253Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - T B Sampaio
- Department of Pharmacology, 28117Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Sms Sborgi
- 549253Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Rds Prediger
- Department of Pharmacology, 28117Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - M M Ferro
- Department of Biology, 67883State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Gcn Franco
- Department of Odontology, 67883State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - L Lipinski
- Department of Medicine, 67883State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - E Miyoshi
- 549253Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| |
Collapse
|
23
|
Simulation of the environmental degradation of diuron (herbicide) using electrochemistry coupled to high resolution mass spectrometry. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, Van der Velden K, Scheepers PTJ, Pancetti F. Reduced neurobehavioral functioning in agricultural workers and rural inhabitants exposed to pesticides in northern Chile and its association with blood biomarkers inhibition. Environ Health 2020; 19:84. [PMID: 32698901 PMCID: PMC7374955 DOI: 10.1186/s12940-020-00634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/03/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Previous biomonitoring studies have shown that people in the rural population of Coquimbo, the major agricultural area in northern Chile are being occupationally and environmentally exposed to organophosphate/carbamate (OP/CB) pesticides. Given their harmful effects, this study had two aims; first, to evaluate the effect of cumulative or chronic exposure to OP/CB pesticides on the neurobehavioral performance of agricultural workers and rural inhabitants; second, to determine if changes in the neurobehavioral performance are associated to changes in blood biomarkers of OP/CB pesticides during the spray season, when exposure is higher. METHODS For the first aim, a cross sectional study of neurobehavioral performance in adult volunteers (men and women, 18-50 years-old, right-handed) was carried out in the pre-spray season. Sampling was done by convenience and a questionnaire was used to categorize participants depending on their level of chronic exposure, as either: occupationally exposed (OE, n = 87), environmentally exposed (EE, n = 81), or non-exposed controls or reference group (RG, n = 100). A neurobehavioral test battery consisting of 21 tests to measure cognitive, motor and emotional state was applied. For the second aim, neurobehavioral measures were taken a second time from EE and OE groups during the spray season, and their exposure corroborated by blood-based biomarker inhibition. RESULTS Lower neurobehavioral performance was observed in the pre-spray evaluation of EE and OE groups compared to the non-exposed, OE being the worst performing group. Seasonal exposure impaired performance in both exposure groups on all tests except those on attention and mood. Data modeling of the basal (pre-spray) measurements showed that the level of exposure was the best predictor of performance. During spraying, inhibition of BChE activity in the EE group was the best predictor of low performance in tests measuring logical, auditory and visual memory, inhibitory control of cognitive interference, constructional and planning abilities, executive functions, and motor speed and coordination. CONCLUSION Long-term occupational or environmental exposure to pesticides caused impairment in neurobehavioral functioning, which worsened during the spraying season, mainly in EE. BChE inhibition was the best predictor for seasonal neurobehavioral changes in EE.
Collapse
Affiliation(s)
- Muriel Ramírez-Santana
- Departemento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Radboud university medical center, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Liliana Zúñiga-Venegas
- Centro de Investigaciones y Estudios Avanzados de Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI), Universidad Católica del Maule, Talca, Chile
- Laboratorio de Neurotoxicología Ambiental, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, 1780000, Coquimbo, Chile
| | - Sebastián Corral
- Laboratorio de Neurotoxicología Ambiental, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, 1780000, Coquimbo, Chile
- Laboratorio de Psiquiatría Translacional, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Central de Chile, Santiago, Chile
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Hans Groenewoud
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Koos Van der Velden
- Department of Primary and Community Care, Radboud university medical center, Nijmegen, The Netherlands
| | - Paul T J Scheepers
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Floria Pancetti
- Laboratorio de Neurotoxicología Ambiental, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, 1780000, Coquimbo, Chile.
| |
Collapse
|
25
|
Go RCP, Corley MJ, Ross GW, Petrovitch H, Masaki KH, Maunakea AK, He Q, Tiirikainen MI. Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson's disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity. BMC Neurosci 2020; 21:31. [PMID: 32650713 PMCID: PMC7350633 DOI: 10.1186/s12868-020-00582-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Parkinson’s disease (PD) is a disease of the central nervous system that progressively affects the motor system. Epidemiological studies have provided evidence that exposure to agriculture-related occupations or agrichemicals elevate a person’s risk for PD. Here, we sought to examine the possible epigenetic changes associated with working on a plantation on Oahu, HI and/or exposure to organochlorines (OGC) in PD cases. Results We measured genome-wide DNA methylation using the Illumina Infinium HumanMethylation450K BeadChip array in matched peripheral blood and postmortem brain biospecimens in PD cases (n = 20) assessed for years of plantation work and presence of organochlorines in brain tissue. The comparison of 10+ to 0 years of plantation work exposure detected 7 and 123 differentially methylated loci (DML) in brain and blood DNA, respectively (p < 0.0001). The comparison of cases with 4+ to 0–2 detectable levels of OGCs, identified 8 and 18 DML in brain and blood DNA, respectively (p < 0.0001). Pathway analyses revealed links to key neurotoxic and neuropathologic pathways related to impaired immune and proinflammatory responses as well as impaired clearance of damaged proteins, as found in the predominantly glial cell population in these environmental exposure-related PD cases. Conclusions These results suggest that distinct DNA methylation biomarker profiles related to environmental exposures in PD cases with previous exposure can be found in both brain and blood.
Collapse
Affiliation(s)
- Rodney C P Go
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL, 35294, USA
| | - Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, 650 Ilalo St, Honolulu, HI, 96813, USA
| | - G Webster Ross
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Helen Petrovitch
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Kamal H Masaki
- Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI, 96817, USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, 650 Ilalo St, Honolulu, HI, 96813, USA
| | - Qimei He
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI, 96819, USA.,Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI, 96817, USA.,Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI, 96819, USA
| | - Maarit I Tiirikainen
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo St, Honolulu, HI, 96813, USA.
| |
Collapse
|
26
|
Gezer AO, Kochmanski J, VanOeveren SE, Cole-Strauss A, Kemp CJ, Patterson JR, Miller KM, Kuhn NC, Herman DE, McIntire A, Lipton JW, Luk KC, Fleming SM, Sortwell CE, Bernstein AI. Developmental exposure to the organochlorine pesticide dieldrin causes male-specific exacerbation of α-synuclein-preformed fibril-induced toxicity and motor deficits. Neurobiol Dis 2020; 141:104947. [PMID: 32422283 PMCID: PMC7343230 DOI: 10.1016/j.nbd.2020.104947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Previous work showed that developmental dieldrin exposure increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, possibly via changes in dopamine (DA) packaging and turnover. However, the relevance of the MPTP model to PD pathophysiology has been questioned. We therefore studied dieldrin-induced neurotoxicity in the α-synuclein (α-syn)-preformed fibril (PFF) model, which better reflects the α-syn pathology and toxicity observed in PD pathogenesis. Specifically, we used a "two-hit" model to determine whether developmental dieldrin exposure increases susceptibility to α-syn PFF-induced synucleinopathy. Dams were fed either dieldrin (0.3 mg/kg, every 3-4 days) or vehicle corn oil starting 1 month prior to breeding and continuing through weaning of pups at postnatal day 22. At 12 weeks of age, male and female offspring received intrastriatal α-syn PFF or control saline injections. Consistent with the male-specific increased susceptibility to MPTP, our results demonstrate that developmental dieldrin exposure exacerbates PFF-induced toxicity in male mice only. Specifically, in male offspring, dieldrin exacerbated PFF-induced motor deficits on the challenging beam and increased DA turnover in the striatum 6 months after PFF injection. However, male offspring showed neither exacerbation of phosphorylated α-syn aggregation (pSyn) in the substantia nigra (SN) at 1 or 2 months post-PFF injection, nor exacerbation of PFF-induced TH and NeuN loss in the SN 6 months post-PFF injection. Collectively, these data indicate that developmental dieldrin exposure produces a male-specific exacerbation of synucleinopathy-induced behavioral and biochemical deficits. This sex-specific result is consistent with both previous work in the MPTP model, our previously reported sex-specific effects of this exposure paradigm on the male and female epigenome, and the higher prevalence and more severe course of PD in males. The novel two-hit environmental toxicant/PFF exposure paradigm established in this project can be used to explore the mechanisms by which other PD-related exposures alter neuronal vulnerability to synucleinopathy in sporadic PD.
Collapse
Affiliation(s)
- Aysegul O Gezer
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America; Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, United States of America; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Sarah E VanOeveren
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Christopher J Kemp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Joseph R Patterson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Kathryn M Miller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Danielle E Herman
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, United States of America
| | - Alyssa McIntire
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, United States of America
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America; Mercy Health St. Mary's, Grand Rapids, MI, United States of America
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, United States of America
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America; Mercy Health St. Mary's, Grand Rapids, MI, United States of America
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America; Mercy Health St. Mary's, Grand Rapids, MI, United States of America.
| |
Collapse
|
27
|
Amoatey P, Al-Mayahi A, Omidvarborna H, Baawain MS, Sulaiman H. Occupational exposure to pesticides and associated health effects among greenhouse farm workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22251-22270. [PMID: 32333353 DOI: 10.1007/s11356-020-08754-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The number and production capacities of greenhouse farms have been increased across the globe, driven by an effort for addressing food security problems related to the rapid population growth and the effects of climate change. As a result, there was a large increase in the number of greenhouse farm workers who are typically involved in chemical preparations and pesticide sprayings, crop harvesting, and greenhouse maintenance activities. Considering the enclosed architecture of the greenhouse farm design and the frequent application of pesticides, the objective of this review was to characterize pesticide exposure levels and resultant health effects among greenhouse farm workers. While most health assessment studies were mainly based on self-reported symptoms, this review showed limited epidemiological and clinical studies on the assessment of the health effects of pesticide exposure on greenhouse workers' health. Reproductive disorders, respiratory symptoms, neurological symptoms, and skin irritations were the most reported health effects among greenhouse farm workers. Additionally, there were limited studies on respirable pesticide-borne fine and ultrafine particulate matters in greenhouse farms. Ventilation systems and indoor environmental conditions of greenhouse farms were not designed according to specifications of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Among recommendations provided, long-term exposure assessments of pesticide effects on children born by greenhouse farm workers should be considered in future research. Also, compliance with ASHRAE indoor ventilation and environmental standards will be very important in reducing pesticide exposure and health effects among greenhouse farm workers.
Collapse
Affiliation(s)
- Patrick Amoatey
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, P.C., 123, Muscat, Sultanate of Oman
| | - Ahmed Al-Mayahi
- Department of Soils, Water and Agricultural Engineering, College of Agriculture, Sultan Qaboos University, P.O. Box 34, Al-Khoudh, P.C., 123, Muscat, Sultanate of Oman
| | - Hamid Omidvarborna
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, P.C., 123, Muscat, Sultanate of Oman
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Mahad Said Baawain
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, P.C., 123, Muscat, Sultanate of Oman.
| | - Hameed Sulaiman
- Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoudh, P.C., 123, Muscat, Sultanate of Oman
| |
Collapse
|
28
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|
29
|
Wang YL, Zheng J, Zhang XF, Zhang Y. Attenuation of paraquat-induced inflammation by inhibitors of phosphorylation of mitogen-activated protein kinases in BV 2 microglial cells. J Neurol Sci 2020; 410:116679. [PMID: 31951835 DOI: 10.1016/j.jns.2020.116679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Paraquat has dopaminergic neurotoxicity and potentially contributes to Parkinson's disease (PD) as a risk factor. However, the cellular and molecular mechanisms of PQ-induced neurodegeneration have not been clearly elucidated. Studies have shown that PQ induces microglial neuroinflammation through toll-like receptor 4 (TLR4)-nuclear factor-κB pathway, resulting in neuronal cell loss. Mitogen-activated protein kinases (MAPKs) are involved in the production of pro-inflammatory cytokines in microglia, and in this study, the role of MAPKs in PQ-activated microglial inflammation was investigated. Murine BV2 microglial cells were treated with 40 μM of PQ following pretreatment of the cells with selective inhibitor of MAPKs phosphorylation for blockage of the phosphorylation of ERK, JNK and P38, or a specific TLR4 inhibitor for blocking the activation of TLR4. The protein expression of phosphorylated ERK, JNK and p38, and the transcription expression of pro-inflammatory mediators were assessed with Western blotting and qRT-PCR technique, respectively. The results indicated that PQ significantly induced the phosphorylation of ERK, JNK and P38 in microglia, while MAPKs inhibitors suppressed PQ-induced phosphorylation of ERK, JNK and P38, and reduced the transcription level of pro-inflammatory cytokines. PQ-stimulated phosphorylation of ERK, JNK and P38 was also reduced by TLR4 inhibitor. The inhibited intensity in the level of pro-inflammatory cytokine transcription was obviously greater in TLR4 inhibitor + PQ group than in each MAPK inhibitor + PQ group. Taken together, inhibition of MAPKs phosphorylation partially attenuates PQ-induced microglial inflammation, which may become a potential intervention strategy for PQ neurotoxicity.
Collapse
Affiliation(s)
- Yong-Ling Wang
- Department of Toxicology, Public Health School, Harbin Medical University, No 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, PR China
| | - Jing Zheng
- Department of Public Health Monitoring, Heilongjiang Center for Disease Control and Prevention, No 40, Youfang Street, Xiangfang District, Harbin City, Heilongjiang Province, 150030, PR China
| | - Xiao-Feng Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, No 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, PR China.
| | - Yang Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, No 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, PR China.
| |
Collapse
|
30
|
Highly efficient removal of paraquat pesticide from aqueous solutions using a novel nano Kaolin modified with sulfuric acid via host–guest interactions. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-019-00973-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Stavrovskaya A, Voronkov D, Kutukova K, Ivanov M, Gushchina A, Illarioshkin S. Paraquat-induced model of parkinson’s disease and detection of phosphorylated α-synuclein in the enteric nervous system of rats. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with a variety of motor and non-motor features. Non-motor symptoms, such as gastrointestinal dysfunction, usually set in 5 to 15 years earlier than motor manifestations. Cytoplasmic aggregates of phosphorylated α-synuclein are a typical marker of PD. They are observed not only in cerebral neurons but also in intramural plexuses of the intestine. Therefore, it is essential to investigate the peripheral component of the molecular pathogenesis of the disease using PD models, including those involving the use of parkinsonian neurotoxins, such as the well-known herbicide paraquat. The aim of this study was to identify a complex of early α-synuclein-related changes induced by long-term systemic administration of paraquat to rats at doses of 6 mg/kg. The open-field test revealed a decline in the motor activity of the experimental animals; the tapered beam walking test demonstrated a two-fold increase (р = 0.044) in the number of left paw slips. Besides, the intensity of staining for tyrosine hydroxylase (TH) in the substantia nigra and myenteric plexus fibers was 50% (р = 0.033) and 20% (р = 0.01) lower, respectively, in the main group than in the controls. Phosphorylated α-synuclein content was increased in the cell bodies of myenteric neurons and in TH-positive nervous fibers of the experimental animals. Changes indicating the development of peripheral α-synuclein pathology in the early stage of induced PD are similar to the changes observed in patients with PD at the onset of the disease. The proposed paraquat regimen could be very promising for PD modeling.
Collapse
Affiliation(s)
| | | | | | - M.V. Ivanov
- Research Center of Neurology, Moscow, Russia
| | | | | |
Collapse
|
32
|
Hendriks CMJ, Gibson HS, Trett A, Python A, Weiss DJ, Vrieling A, Coleman M, Gething PW, Hancock PA, Moyes CL. Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3523. [PMID: 31547208 PMCID: PMC6801543 DOI: 10.3390/ijerph16193523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
The application of agricultural pesticides in Africa can have negative effects on human health and the environment. The aim of this study was to identify African environments that are vulnerable to the accumulation of pesticides by mapping geospatial processes affecting pesticide fate. The study modelled processes associated with the environmental fate of agricultural pesticides using publicly available geospatial datasets. Key geospatial processes affecting the environmental fate of agricultural pesticides were selected after a review of pesticide fate models and maps for leaching, surface runoff, sedimentation, soil storage and filtering capacity, and volatilization were created. The potential and limitations of these maps are discussed. We then compiled a database of studies that measured pesticide residues in Africa. The database contains 10,076 observations, but only a limited number of observations remained when a standard dataset for one compound was extracted for validation. Despite the need for more in-situ data on pesticide residues and application, this study provides a first spatial overview of key processes affecting pesticide fate that can be used to identify areas potentially vulnerable to pesticide accumulation.
Collapse
Affiliation(s)
- Chantal M J Hendriks
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
- Team Sustainable Soil Use, Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Harry S Gibson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Anna Trett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - André Python
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Daniel J Weiss
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Anton Vrieling
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Peter W Gething
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Penny A Hancock
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| |
Collapse
|
33
|
Dos Santos Nunes RG, Pereira PS, Elekofehinti OO, Fidelis KR, da Silva CS, Ibrahim M, Barros LM, da Cunha FAB, Lukong KE, de Menezes IRA, Tsopmo A, Duarte AE, Kamdem JP. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:161-168. [PMID: 31153464 DOI: 10.1016/j.pestbp.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Paraquat (PQ) is a widely used herbicide with no antidote which is implicated in the pathogenesis of the Parkinson's disease. The present study then investigated the potential of caffeic acid (CA), a known antioxidant, cardioprotective and neuroprotective molecule to counteract oxidative stress mediated by PQ. In addition, molecular docking was performed to understand the mechanism underlying the inhibitory effect of CA against PQ poisoning. The fruit fly, Drosophila melanogaster, was exposed to PQ (0.44 mg/g of diet) in the absence or presence of CA (0.25, 0.5, 1 and 2 mg/g of died) for 7 days. Data showed that PQ-fed flies had higher incidence of mortality which was associated with mitochondrial dysfunction, increased free Fe(II) content and lipid peroxidation when compared to the control. Co-exposure with CA reduced mortality and markedly attenuated biochemical changes induced by PQ. The mechanism investigated using molecular docking revealed a strong interaction (-6.2 Kcal/mol) of CA with D. melanogaster transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2). This was characterized by the binding of CA to keap-1 domain of Nrf2. Taking together these results indicate the protective effect of CA against PQ-induced oxidative damage in D. melanogaster was likely through its coordination which hinders Nrf2-keap-1 binding leading to an increase of the antioxidant defense system.
Collapse
Affiliation(s)
- Ricardo Gomes Dos Santos Nunes
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Pedro Silvino Pereira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| | - Kleber Ribeiro Fidelis
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Cícera Simoni da Silva
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Luiz Marivando Barros
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Francisco Assis Bezerra da Cunha
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Irwin Rose Alencar de Menezes
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Antonia Eliene Duarte
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Jean Paul Kamdem
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil.
| |
Collapse
|
34
|
Kochmanski J, VanOeveren SE, Patterson JR, Bernstein AI. Developmental Dieldrin Exposure Alters DNA Methylation at Genes Related to Dopaminergic Neuron Development and Parkinson's Disease in Mouse Midbrain. Toxicol Sci 2019; 169:593-607. [PMID: 30859219 PMCID: PMC6542339 DOI: 10.1093/toxsci/kfz069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Despite previous work showing a link between developmental dieldrin exposure and increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, the mechanism mediating this effect has not been identified. Here, we tested the hypothesis that developmental exposure to dieldrin increases neuronal susceptibility via genome-wide changes in DNA methylation. Starting at 8 weeks of age and prior to mating, female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin by feeding (every 3 days) throughout breeding, gestation, and lactation. At 12 weeks of age, pups were sacrificed and ventral mesencephalon, containing primarily substantia nigra, was microdissected. DNA was isolated and dieldrin-related changes in DNA methylation were assessed via reduced representation bisulfite sequencing. We identified significant, sex-specific differentially methylated CpGs (DMCs) and regions (DMRs) by developmental dieldrin exposure (false discovery rate < 0.05), including DMCs at the Nr4a2 and Lmx1b genes, which are involved in dopaminergic neuron development and maintenance. Developmental dieldrin exposure had distinct effects on the male and female epigenome. Together, our data suggest that developmental dieldrin exposure establishes sex-specific poised epigenetic states early in life. These poised epigenomes may mediate sensitivity to subsequent toxic stimuli and contribute to the development of late-life neurodegenerative disease, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Sarah E VanOeveren
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Joseph R Patterson
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Alison I Bernstein
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
35
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
36
|
Wang QL, Guo C, Qi J, Ma JH, Liu FY, Lin SQ, Zhang CY, Xie WD, Zhuang JJ, Li X. Protective effects of 3β-angeloyloxy-8β, 10β-dihydroxyeremophila-7(11)-en-12, 8α-lactone on paraquat-induced oxidative injury in SH-SY5Y cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:364-376. [PMID: 29355039 DOI: 10.1080/10286020.2017.1423057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
3β-Angeloyloxy-8β,10β-dihydroxyeremophila-7(11)-en-12,8α-lactone (FJ1) inhibited effectively paraquat (PQ)-induced injury in SH-SY5Y cells. In this way, FJ1 was shown to reverse the PQ-induced activation of caspase-9 and caspase-3, the increase in Bax/Bcl-2 ratio, and the release of cytochrome c. The mechanism was associated with a reduction of oxidative stress, including the decrease in the levels of ROS and MDA and maintaining the activity of SOD and GSH. Taken together, findings revealed that FJ1 had protective effects against PQ-induced injury via attenuating the oxidative stress in SH-SY5Y cells, which suggested that FJ1 might be a candidate for further evaluation against neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Qi-Lin Wang
- a Marine College, Shandong University , Weihai 264209 , China
| | - Chao Guo
- a Marine College, Shandong University , Weihai 264209 , China
| | - Jie Qi
- a Marine College, Shandong University , Weihai 264209 , China
| | - Jia-Hui Ma
- a Marine College, Shandong University , Weihai 264209 , China
| | - Fang-Yuan Liu
- a Marine College, Shandong University , Weihai 264209 , China
| | - Shi-Qi Lin
- a Marine College, Shandong University , Weihai 264209 , China
| | - Cai-Yun Zhang
- a Marine College, Shandong University , Weihai 264209 , China
| | - Wei-Dong Xie
- a Marine College, Shandong University , Weihai 264209 , China
| | | | - Xia Li
- a Marine College, Shandong University , Weihai 264209 , China
- b School of Pharmaceutical Science , Shandong University , Jinan 250012 , China
| |
Collapse
|
37
|
Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int 2018; 121:98-107. [PMID: 30296463 DOI: 10.1016/j.neuint.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ) is an organic chemical compound and a member of redox active family of heterocycles. In spite of its high toxicities, it is used as one of the potent herbicide throughout the world. Though its toxic manifestations are observed in different organs, its principal toxic effect is manifested in the brain leading to the development of Parkinsonian symptoms. PQ exposure adversely affects dopaminergic (DA-ergic) neuron-rich region in the substantia nigra pars compacta (SNPC) of brain in the animal models of Parkinson's disease (PD), thereby mimicking PD like symptoms. Currently, lack of a potential drug to counter the toxic effect of PQ makes the management difficult. Bacopa monnieri extract (BME) has been shown to have promising effect against neurodegenerative disorders. Therefore, the present study evaluated the role of BME against PQ induced toxicity in Drosophila model of PD, the results of which are reproducible in higher animal models including human subjects. Here, we showed that BME treatment attenuates acute PQ induced toxicity in Drosophila by decreasing mortality and improving climbing ability. BME functions by optimizing redox equilibrium, mitochondrial function and depreciating apoptosis level. The underlying mechanisms were attributed to optimization of active JNK and cleaved Caspase-3 activity along with transcriptional stabilization of the genes regulating oxidative stress and apoptosis (jnk, caspase-3, damb and nrf-2). These results showed therapeutic efficacy of BME against PQ toxicity in the brain. Our results pave the way for further detailed analysis of BME to combat the development of Parkinson's like symptoms following exposure to PQ toxicity in the brain of higher animal models.
Collapse
|
38
|
Stavra E, Petrou PS, Koukouvinos G, Kiritsis C, Pirmettis I, Papadopoulos M, Goustouridis D, Economou A, Misiakos K, Raptis I, Kakabakos SE. Simultaneous determination of paraquat and atrazine in water samples with a white light reflectance spectroscopy biosensor. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:67-75. [PMID: 30014916 DOI: 10.1016/j.jhazmat.2018.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 05/27/2023]
Abstract
An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum due to reaction to effective biomolecular layer thickness. Dual-analyte determination is accomplished by functionalizing spatially distinct areas of the chip with protein conjugates of the two herbicides and scanning the surface with an optical reflection probe. A competitive immunoassay format was adopted, followed by reaction with secondary antibodies for signal enhancement. The sensor was highly sensitive with detection limits of 40 and 50 pg/mL for paraquat and atrazine, respectively, and the assay duration was 12 min. Recovery values ranging from 90.0 to 110% were determined for the two pesticides in spiked bottled and tap water samples, demonstrating the sensor accuracy. In addition, the sensor could be regenerated and re-used at least 20 times without significant effect on the assay characteristics. Its excellent analytical performance and short analysis time combined with the small sensor size should be helpful for fast on-site determinations of these analytes.
Collapse
Affiliation(s)
- Eleftheria Stavra
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece; Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
| | - Georgios Koukouvinos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Christos Kiritsis
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Ioannis Pirmettis
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Minas Papadopoulos
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Dimitrios Goustouridis
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece; Electronics Department, TEI of Piraeus, 12244 Egaleo, Greece
| | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
| |
Collapse
|
39
|
|
40
|
Magalhães N, Carvalho F, Dinis-Oliveira RJ. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum Exp Toxicol 2018; 37:1131-1160. [PMID: 29569487 DOI: 10.1177/0960327118765330] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diquat (1,1'-ethylene-2,2'-bipyridinium ion; DQ) is a nonselective quick-acting herbicide, which is used as contact and preharvest desiccant to control terrestrial and aquatic vegetation. Several cases of human poisoning were reported worldwide mainly due to intentional ingestion of the liquid formulations. Its toxic potential results from its ability to produce reactive oxygen and nitrogen species through redox cycling processes that can lead to oxidative stress and potentially cell death. Kidney is the main target organ due to DQ toxicokinetics and redox cycling. There is no antidote against DQ intoxications, and the efficacy of treatments currently applied is still unsatisfactory. The aim of this work was to review the most relevant human and experimental findings related to DQ, characterizing its chemistry, activity as herbicide, mechanisms of toxicity, consequences of poisoning, and potential therapeutic approaches taking into account previous experience in developing antidotes for paraquat, a more toxic bipyridinium herbicide.
Collapse
Affiliation(s)
- N Magalhães
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - F Carvalho
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - R J Dinis-Oliveira
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,2 IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal.,3 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 2018; 113:125-133. [DOI: 10.1016/j.fct.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
42
|
Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4904-4914. [PMID: 29204935 DOI: 10.1007/s11356-017-0842-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
In several epidemiological studies, an association between pesticide exposure and the incidence of Parkinson's disease (PD) has been reported. Increasing evidence showed that oxidative stress plays an important role in the pathogenesis of PD. The present study investigated the preventive effect of crocin, saffron active components, on malathion (an organophosphate pesticide (OP))-induced Parkinson-like behaviors in rat. Rats were divided into eight groups: control (normal saline), malathion (100 mg/kg/day, i.p), crocin (10, 20, or 40 mg/kg/day, i.p) plus malathion, levodopa (10 mg/kg/day, i.p) plus malathion, crocin (40 mg/kg/day, i.p), and PEG (vehicle of levodopa) groups. Treatments were continued for 28 days. The neurobehavioral tests which include open field, rotarod and catalepsy were performed on day 28. The activity of acetylcholinesterase (AChE) in serum, the levels of malondialdehyde (MDA), reduced glutathione (GSH), TNF-α, and IL-6 in striatum at the end of treatments were evaluated. Results showed that malathion induced neurobehavioral impairments together with elevation of MDA, TNF-α and IL-6 levels, reduction of GSH, and AChE activity. Crocin (10, 20, and 40 mg/kg) improved neurobehavioral impairments induced by malathion but not AChE activity. Crocin (10, 20, and 40 mg/kg) or levodopa plus malathion decreased MDA and increased GSH. Also crocin (10 mg/kg) decreased TNF-α and IL-6 levels in striatum. In summary, subchronic malathion exposure induced Parkinson-like behavior in rat. Crocin exhibited protective effects against malathion-induced Parkinson-like behavior through reducing lipid peroxidation, improvement of motor deficit and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Maher P. Protective effects of fisetin and other berry flavonoids in Parkinson's disease. Food Funct 2018; 8:3033-3042. [PMID: 28714503 DOI: 10.1039/c7fo00809k] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra. It initially presents as a movement disorder with cognitive and other behavioral problems appearing later in the progression of the disease. Current therapies for PD only delay the onset or reduce the motor symptoms. There are no treatments to stop the nerve cell death or to cure the disease. It is becoming increasingly clear that neurological diseases such as PD are multi-factorial involving disruptions in multiple cellular systems. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Flavonoids are polyphenolic compounds that are widely distributed in fruits and vegetables and therefore regularly consumed in the human diet. While flavonoids were historically characterized on the basis of their antioxidant and free radical scavenging effects, more recent studies have shown that flavonoids have a wide range of activities that could make them particularly effective as agents for the treatment of PD. In this article, the multiple physiological benefits of flavonoids in the context of PD are first reviewed. Then, the evidence for the beneficial effects of the flavonol fisetin in models of PD are discussed. These results, coupled with the known actions of fisetin, suggest that it could reduce the impact of PD on brain function.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Pouchieu C, Piel C, Carles C, Gruber A, Helmer C, Tual S, Marcotullio E, Lebailly P, Baldi I. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study. Int J Epidemiol 2017; 47:299-310. [DOI: 10.1093/ije/dyx225] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Camille Pouchieu
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR, Bordeaux, France
| | - Clément Piel
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR, Bordeaux, France
| | - Camille Carles
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR, Bordeaux, France
- CHU de Bordeaux, Service de Médecine du Travail, Bordeaux, France
| | - Anne Gruber
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR, Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team LEAH, UMR, Bordeaux, France
| | - Séverine Tual
- INSERM, UMR 1086 Cancers et Préventions, Caen, France
- Université de Caen Normandie, Caen, France
- Centre de Lutte Contre le Cancer François Baclesse, Caen, France
| | - Elisabeth Marcotullio
- Caisse Centrale de la Mutualité Sociale Agricole, Echelon National Santé Sécurité au Travail, Bagnolet, France
| | - Pierre Lebailly
- INSERM, UMR 1086 Cancers et Préventions, Caen, France
- Université de Caen Normandie, Caen, France
- Centre de Lutte Contre le Cancer François Baclesse, Caen, France
| | - Isabelle Baldi
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR, Bordeaux, France
- CHU de Bordeaux, Service de Médecine du Travail, Bordeaux, France
| |
Collapse
|
45
|
Watcharenwong A, Kaeokan A, Rammaroeng R, Upama P, Kajitvichyanukul P. Adsorption of Paraquat Dichloride by Graphitic Carbon Nitride Synthesized from Melamine Scraps. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/78/1/012012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Hayton S, Maker GL, Mullaney I, Trengove RD. Untargeted metabolomics of neuronal cell culture: A model system for the toxicity testing of insecticide chemical exposure. J Appl Toxicol 2017; 37:1481-1492. [DOI: 10.1002/jat.3498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah Hayton
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Garth L. Maker
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Ian Mullaney
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Robert D. Trengove
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
| |
Collapse
|
47
|
Bhaskar R, Mishra AK, Mohanty B. Neonatal Exposure to Endocrine Disrupting Chemicals Impairs Learning Behaviour by Disrupting Hippocampal Organization in Male Swiss Albino Mice. Basic Clin Pharmacol Toxicol 2017; 121:44-52. [DOI: 10.1111/bcpt.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Rakesh Bhaskar
- Department of Zoology; University of Allahabad; Allahabad India
| | | | | |
Collapse
|
48
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J 2017; 15:e04691. [PMID: 32625422 PMCID: PMC7233269 DOI: 10.2903/j.efsa.2017.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).
Collapse
|
49
|
Determination of Pesticide Residues in Mango Matrices by Ultra High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-016-0779-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017; 340:411-423. [DOI: 10.1016/j.neuroscience.2016.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/16/2023]
|