1
|
Zoppé H, Xavier J, Dupuis A, Migeot V, Bioulac S, Hary R, Bonnet-Brilhault F, Albouy M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci Biobehav Rev 2024; 167:105938. [PMID: 39551456 DOI: 10.1016/j.neubiorev.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Numerous studies have investigated environmental risk factors in ADHD, and Bisphenol A (BPA), an endocrine disruptor, is suspected by several reviews. However, the quality of the studies has never been carefully assessed, leading us to rigorously examine associations between BPA exposure and ADHD and associated symptoms in children. Using PRISMA criteria, we conducted a systematic review on the MEDLINE/PubMed, Web of Science, EBSCOhost, PsycINFO, PsycARTICLES and Cochrane databases. We used the ROBINS-E tool to assess the quality, and the GRADE Approach. This study was registered with PROSPERO, CRD42023377150. Out of 10446 screened articles, 46 were included. Unlike pre-existing reviews, most studies failed to find clear links with ADHD or associated symptoms, with a high risk of bias and a very low level of certainty. Our systematic review reveals insufficient evidence regarding the impact of BPA on ADHD, despite some behavioral results that cannot be generalized. Future studies will require improved consideration of confounding factors and more precise sampling methods. This study did not receive specific funding.
Collapse
Affiliation(s)
- Hugo Zoppé
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France.
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France; CNRS UMR 7295, Cognition and Learning Research Center, Poitiers, France
| | - Antoine Dupuis
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| | - Virginie Migeot
- Public Health Department, CHU Rennes, University of Rennes 1, Rennes 35000, France; INSERM UMR-S 1085, EHESP, Irset, F-35000 Rennes, France
| | - Stéphanie Bioulac
- Service de psychiatrie de l'enfant et l'adolescent, CHU Grenoble Alpes, Grenoble 38000, France; LPNC, UMR 5105 CNRS, Université Grenoble Alpes, France
| | - Richard Hary
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France
| | - Marion Albouy
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| |
Collapse
|
2
|
Chen X, Ge Y, Shi W, Yang M, Zhou Q, Pan Y. Estro-Androgenic Disrupting Effects of Halogenated Disinfection Byproducts: A Comprehensive Evaluation and Comparison. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20190-20200. [PMID: 39475525 DOI: 10.1021/acs.est.4c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Drinking water halogenated disinfection byproducts (DBPs) have become an increasing health concern. However, the endocrine-disrupting effects of DBPs have not been well evaluated, and the limited available data have inhibited a comprehensive understanding of their health risks. In this study, a total of 43 DBPs were evaluated for their estro-androgenic effects using two types of human breast cancer cells. Among the tested DBPs, 16 exhibited estrogenic/antiestrogenic/androgenic/antiandrogenic effects, and the effects could be observed even at concentrations typically detected in drinking water. Iodinated and polyhalogenated DBPs generally showed higher effects than other species. For a broader comparison, DBP endocrine-disrupting effect data from this study and previous studies were summarized. It was found that the endocrine disruption efficacy of DBPs followed the rank order of iodinated > brominated > chlorinated species, and halophenolic DBPs were potential endocrine-disrupting compounds. Moreover, molecular docking results demonstrated that the binding of DBPs to estro-androgenic receptors was dominated by hydrophobic bonding, hydrogen bonding, halogen bonding, and van der Waals forces. The force strength and molecular volume were related to the magnitude of the estro-androgenic effects. Iodinated DBPs and polyhalogenated DBPs tended to have larger binding forces than other analogues and thus exhibited stronger effects.
Collapse
Affiliation(s)
- Xueyao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yaoming Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
3
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
4
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Sotelo-Orozco J, Calafat AM, Cook Botelho J, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Exposure to endocrine disrupting chemicals including phthalates, phenols, and parabens in infancy: Associations with neurodevelopmental outcomes in the MARBLES study. Int J Hyg Environ Health 2024; 261:114425. [PMID: 39047380 PMCID: PMC11484599 DOI: 10.1016/j.ijheh.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are widely used compounds with the potential to affect child neurodevelopmental outcomes including autism spectrum disorders (ASD). We aimed to examine the urinary concentrations of biomarkers of EDCs, including phthalates, phenols, and parabens, and investigate whether exposure during early infancy was associated with increased risk of later ASD or other non-typical development (Non-TD) or adverse cognitive development. METHODS This analysis included infants from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) study, a high-risk ASD cohort (n = 148; corresponding to 188 urine samples). Thirty-two EDC biomarkers were quantified in urine among infants 3 and/or 6 months of age. Trends in EDC biomarker concentrations were calculated using least square geometric means. At 36 months of age, children were clinically classified as having ASD (n = 36), nontypical development (Non-TD; n = 18), or typical development (TD; n = 81) through a clinical evaluation. Trinomial logistic regression analysis was used to test the associations between biomarkers with ASD, or Non-TD, as compared to children with TD. In single analyte analysis, generalized estimating equations were used to investigate the association between each EDC biomarkers and longitudinal changes in cognitive development using the Mullen Scales of Early Learning (MSEL) over the four assessment time points (6, 12, 24, and 36 months of age). Additionally, quantile g-computation was used to test for a mixture effect. RESULTS EDC biomarker concentrations generally decreased over the study period, except for mono-2-ethyl-5-carboxypentyl terephthalate. Overall, EDC biomarkers at 3 and/or 6 months of age were not associated with an increased risk of ASD or Non-TD, and a few showed significant inverse associations. However, when assessing longitudinal changes in MSEL scores over the four assessment time points, elevated monoethyl phthalate (MEP) was significantly associated with reduced scores in the composite score (β = -0.16, 95% CI: 0.31, -0.02) and subscales of fine motor skills (β = -0.09, 95%CI: 0.17, 0.00), and visual reception (β = -0.11, 95% CI: 0.23, 0.01). Additionally, the sum of metabolites of di (2-ethylhexyl) terephthalate (ƩDEHTP) was associated with poorer visual reception (β = -0.09, 95% CI: 0.16, -0.02), and decreased composite scores (β = -0.11, 95% CI: 0.21, -0.01). Mixtures analyses using quantile g-computation analysis did not show a significant association between mixtures of EDC biomarkers and MSEL subscales or composite scores. CONCLUSION These findings highlight the potential importance of infant exposures on cognitive development. Future research can help further investigate whether early infant exposures are associated with longer-term deficits and place special attention on EDCs with increasing temporal trends and whether they may adversely affect neurodevelopment.
Collapse
Affiliation(s)
- Jennie Sotelo-Orozco
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Kaimal A, Hooversmith JM, Mansi MHA, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal Exposure to Bisphenol A and/or Diethylhexyl Phthalate Impacts Brain Monoamine Levels in Rat Offspring. J Xenobiot 2024; 14:1036-1050. [PMID: 39189173 PMCID: PMC11348251 DOI: 10.3390/jox14030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
This study examines the sex-specific effects of gestational exposure (days 6-21) to endocrine-disrupting chemicals such as bisphenol A (BPA), diethylhexyl phthalate (DEHP), or their combination on brain monoamine levels that play an important role in regulating behavior. Pregnant Sprague-Dawley rats were orally administered saline, low doses (5 µg/kg BW/day) of BPA or DEHP, and their combination or a high dose (7.5 mg/kg BW/day) of DEHP alone or in combination with BPA during pregnancy. The offspring were subjected to a behavioral test and sacrificed in adulthood, and the brains were analyzed for neurotransmitter levels. In the paraventricular nucleus, there was a marked reduction in dopamine levels (p < 0.01) in male offspring from the BPA, DEHP, and B + D (HD) groups, which correlated well with their shock probe defensive burying times. Neurotransmitter changes in all brain regions examined were significant in female offspring, with DEHP (HD) females being affected the most, followed by the B + D groups. BPA and/or DEHP (LD) increased monoamine turnover in a region-specific manner in male offspring (p < 0.05). Overall, prenatal exposure to BPA, DEHP, or their combination alters monoamine levels in a brain region-specific, sex-specific, and dose-dependent manner, which could have implications for their behavioral and neuroendocrine effects.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Hooversmith
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Maryam H Al Mansi
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Philip V Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA 30602, USA
| | - Puliyur S MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sheba M J MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Fu Z, Jin H, Mao W, Yin S, Xu L, Hu Z. Conjugated metabolites of bisphenol A and bisphenol S in indoor dust, outdoor dust, and human urine. CHEMOSPHERE 2024; 362:142617. [PMID: 38880259 DOI: 10.1016/j.chemosphere.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) have been widely spread in the global environment. However, for conjugated BPA and BPS metabolites, limited studies have investigated their occurrence in environmental matrices. We collected paired indoor and outdoor dust (n = 97), as well as human urine (n = 153) samples, from residential houses in Quzhou, China, and measured these samples for 8 conjugated BPA and BPS metabolites. Three BPA metabolites were found in collected indoor and outdoor dust, with BPA sulfate (mean 0.75 and 1.3 ng/g, respectively) and BPA glucuronide (0.13 and 0.26 ng/g) being more abundant. BPA conjugates accounted for a mean of 42 and 56% of total BPA (sum of conjugated BPA and BPA metabolites) in indoor and outdoor dust, respectively. BPS sulfate (mean 0.29 and 0.82 ng/g, respectively) had consistently higher concentrations than BPS glucuronide (0.13 and 0.27 ng/g) in indoor and outdoor samples. BPS conjugates contributed a mean 32% and 45% of total BPS (sum of BPS and BPS metabolites) in indoor and outdoor dust, respectively. Moreover, conjugated BPA and BPS metabolites in indoor or outdoor dust were not significantly correlated with those in urine from residents. Overall, this study first demonstrates the wide presence of conjugated BPA and BPS metabolites, besides BPA and BPS, in indoor and outdoor dust. These data are important for elucidating the sources of conjugated BPA and BPS metabolites in the human body.
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
8
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
9
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
10
|
Guo Y, Kang Y, Bai W, Liu Q, Zhang R, Wang Y, Wang C. Perinatal exposure to bisphenol A impairs cognitive function via the gamma-aminobutyric acid signaling pathway in male rat offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:1235-1244. [PMID: 37926988 DOI: 10.1002/tox.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Bisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three-week-old male rat offspring were selected for an open-field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real-time polymerase chain reaction (RT-PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA-T) and GABA transporter 1 (GAT-1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Kang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rongqiang Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
11
|
Vaghef-Mehrabani E, Bell RC, Field CJ, Jarman M, Evanchuk JL, Letourneau N, Dewey D, Giesbrecht GF. Maternal pre-pregnancy weight status and gestational weight gain in association with child behavior: The mediating role of prenatal systemic inflammation. Clin Nutr ESPEN 2024; 59:249-256. [PMID: 38220383 DOI: 10.1016/j.clnesp.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIMS Maternal pre-pregnancy obesity and excessive gestational weight gain (EGWG) may predispose children to behavioral problems through increased prenatal inflammation. We investigated the association between maternal body mass index (BMI) and gestational weight gain (GWG), and child behavioral problems (primary aim), and the mediating role of prenatal inflammation (secondary aim). METHODS We used self-reported pre-pregnancy BMI and estimated-GWG data (N = 1137) from a longitudinal cohort study. Maternal serum C-reactive protein (CRP) was measured in the 3rd-trimester. Parent-reported Child Behavior Checklist (CBCL) was used to assess child internalizing and externalizing behaviors at 3-years-of-age. We used analysis of covariance (ANCOVA), multiple linear regression, and mediation analyses for data analysis. RESULTS Maternal obesity (F = 21.98, df 3836), EGWG (F = 6.53, df 2764), and their combination (F = 18.51, df 3764) were associated with the 3rd trimester CRP, but not child behavior in the whole sample. Maternal underweight was associated with withdrawal problems in all children (β = 0.56, 95%CI, 0.11,1.00) and aggressive behaviors in female children (β = 2.59, 95%CI, 0.28,4.91). Obesity had a significant association with externalizing behaviors in female children after controlling for maternal CRP (β = 3.72, 95%CI, 0.12,7.32). Both inadequate and EGWG were associated with somatic complaints in male children (β = 0.50, 95%CI, 0.05,0.95; β = 0.36, 95%CI, 0.01,0.71, respectively). Combined obesity/EGWG was associated with externalizing (β = 6.12, 95%CI, 0.53,11.70) and aggressive (β = 4.23, 95%CI, 0.90,7.56) behaviors in female children. We found no significant effects through CRP. CONCLUSIONS Maternal pre-pregnancy BMI and GWG showed sex-specific associations with child behavioral problems. Prenatal CRP, although increased in obesity and EGWG, did not mediate these associations.
Collapse
Affiliation(s)
- Elnaz Vaghef-Mehrabani
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Megan Jarman
- School of Psychology, College of Health and Life Sciences, Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Jenna L Evanchuk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
12
|
Dou L, Sun S, Chen L, Lv L, Chen C, Huang Z, Zhang A, He H, Tao H, Yu M, Zhu M, Zhang C, Hao J. The association between prenatal bisphenol F exposure and infant neurodevelopment: The mediating role of placental estradiol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116009. [PMID: 38277971 DOI: 10.1016/j.ecoenv.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND There are limited population studies on the neurodevelopmental effects of bisphenol F (BPF), a substitute for bisphenol A. Furthermore, the role of placental estradiol as a potential mediator linking these two factors remains unclear. OBJECTIVE To examine the association between maternal prenatal BPF exposure and infant neurodevelopment in a prospective cohort study and to explore the mediating effects of placental estradiol between BPF exposure and neurodevelopment in a nested case-control study. METHODS The prospective cohort study included 1077 mother-neonate pairs from the Wuhu city cohort study in China. Maternal BPF was determined using the liquid/liquid extraction and Ultra-performance liquid chromatography tandem mass spectrometry method. Children's neurodevelopment was assessed at ages 3, 6, and 12 months using Ages and Stages Questionnaires. The nested case-control study included 150 neurodevelopmental delay cases and 150 healthy controls. Placental estradiol levels were measured using enzyme-linked immunosorbent assay kits. Generalized estimating equation models and robust Poisson regression models were used to examine the associations between BPF exposure and children's neurodevelopment. In the nested case-control study, causal mediation analysis was conducted to assess the role of placental estradiol as a mediator in multivariate models. RESULTS In the prospective cohort study, the pregnancy-average BPF concentration was positively associated with developmental delays in gross-motor, fine-motor, and problem-solving ( ORtotal ASQ: 1.14(1.05, 1.25), ORgross-motor: 1.22(1.10, 1.36), ORfine-motor: 1.19(1.07, 1.31), ORproblem-solving: 1.11(1.01, 1.23)). After sex-stratified analyses, pregnancy-average BPF concentration was associated with an increased risk of neurodevelopmental delays in the gross-motor (ORgross-motor:1.30(1.12, 1.51)) and fine-motor (ORfine-motor: 1.22(1.06, 1.40)) domains in boys. In the nested case-control study, placental estradiol mediated 16.6% (95%CI: 4.4%, 35.0%) of the effects of prenatal BPF exposure on developmental delay. CONCLUSIONS Our study supports an inverse relationship between prenatal BPF exposure and child neurodevelopment in infancy, particularly in boys. Decreased placental estradiol may be an underlying biological pathway linking prenatal BPF exposure to neurodevelopmental delay in offspring.
Collapse
Affiliation(s)
- Lianjie Dou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shu Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lan Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lanxing Lv
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhaohui Huang
- Anhui Provincial Center for Women and Children's Health, Hefei, Anhui Province, China
| | - Anhui Zhang
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Haiyan He
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Hong Tao
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Yu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Zhu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Chao Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
| | - Jiahu Hao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui Province, China.
| |
Collapse
|
13
|
Kaimal A, Hooversmith JM, Cherry AD, Garrity JT, Al Mansi MH, Martin NM, Buechter H, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal exposure to bisphenol A and/or diethylhexyl phthalate alters stress responses in rat offspring in a sex- and dose-dependent manner. FRONTIERS IN TOXICOLOGY 2023; 5:1264238. [PMID: 38152552 PMCID: PMC10751317 DOI: 10.3389/ftox.2023.1264238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Background: Prenatal exposures to endocrine disrupting chemicals (EDCs) are correlated with adverse behavioral outcomes, but the effects of combinations of these chemicals are unclear. The aim of this study was to determine the dose-dependent effects of prenatal exposure to EDCs on male and female behavior. Methods: Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 μg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 μg/kg BW/day), high-dose (HD) DEHP (7.5 mg/kg BW/day), a combination of BPA and LD-DEHP (B + D (LD)), or a combination of BPA and HD-DEHP (B + D (HD)) on gestational days 6-21. Adult offspring were subjected to the Open Field Test (OFT), Elevated Plus Maze (EPM), and Shock Probe Defensive Burying test (SPDB) in adulthood. Body, adrenal gland, and pituitary gland weights were collected at sacrifice. Corticosterone (CORT) was measured in the serum. Results: Female EDC-exposed offspring showed anxiolytic effects in the OFT, while male offspring were unaffected. DEHP (HD) male offspring demonstrated a feminization of behavior in the EPM. Most EDC-exposed male offspring buried less in the SPDB, while their female counterparts showed reduced shock reactivity, indicating sex-specific maladaptive alterations in defensive behaviors. Additionally, DEHP (LD) males and females and B + D (LD) females displayed increased immobility in this test. DEHP (LD) alone and in combination with BPA led to lower adrenal gland weights, but only in male offspring. Finally, females treated with a mixture of B + D (HD) had elevated CORT levels. Conclusion: Prenatal exposure to BPA, DEHP, or a mixture of the two, affects behavior, CORT levels, and adrenal gland weights in a sex- and dose-dependent manner.
Collapse
Affiliation(s)
- Amrita Kaimal
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Jessica M. Hooversmith
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Ariana D. Cherry
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Jillian T. Garrity
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Maryam H. Al Mansi
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Nicholas M. Martin
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Hannah Buechter
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Philip V. Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Puliyur S. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Sheba M. J. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Krajnak K, Farcas M, McKinney W, Waugh S, Mandler K, Knepp A, Jackson M, Richardson D, Hammer M, Matheson J, Thomas T, Qian Y. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:575-596. [PMID: 37350301 PMCID: PMC10527863 DOI: 10.1080/15287394.2023.2226198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kyle Mandler
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - MaryAnne Hammer
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Yong Qian
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
15
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
16
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Liu J, Wang Q. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. CHEMOSPHERE 2023; 329:138650. [PMID: 37037349 DOI: 10.1016/j.chemosphere.2023.138650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junan Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Chen Y, Miao M, Wang Z, Ji H, Zhou Y, Liang H, He G, Yuan W. Prenatal bisphenol exposure and intelligence quotient in children at six years of age: A prospective cohort study. CHEMOSPHERE 2023; 334:139023. [PMID: 37230300 DOI: 10.1016/j.chemosphere.2023.139023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
The effects of prenatal bisphenol A (BPA) exposure on children's cognitive development have been reported; however, relevant evidence on BPA analogues was limited, with rare evidence of the joint effect of their mixture. Among 424 mother-offspring pairs from the Shanghai-Minhang Birth Cohort Study, maternal urinary concentrations of five bisphenols (BPs) were quantified, and children's cognitive function was assessed by the Wechsler Intelligence Scale at six years of age. We assessed the associations of prenatal exposure to individual BPs with children's intelligence quotient (IQ) and analyzed the joint effect of BPs mixture by the Quantile g-computation model (QGC) and Bayesian kernel machine regression model (BKMR). QGC models showed that higher maternal urinary BPs mixture concentrations were associated with lower scores among boys in a non-linear way; however, no association was observed in girls. For individual effects, BPA and BPF were associated with decreased IQ scores in boys and were identified as important contributors to the joint effect of BPs mixture. However, associations of BPA with increased IQ scores in girls, and TCBPA with increased IQ scores in both sexes were observed. Our findings suggested prenatal exposure to BPs mixture may affect children's cognitive function in a sex-specific pattern and provided evidence of the neurotoxicity of BPA and BPF.
Collapse
Affiliation(s)
- Yao Chen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China
| | - Maohua Miao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China
| | - Ziliang Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China
| | - Honglei Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Hong Liang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China.
| | - Gengsheng He
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, No.130, Dong An Road, Shanghai, 200032, China.
| | - Wei Yuan
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, No.779, Old Hu Min Road, Shanghai, 200237, China
| |
Collapse
|
18
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
19
|
Foreman AB, van Vliet-Ostaptchouk JV, van Faassen M, Kema IP, Wolffenbuttel BH, Sauer PJJ, Bos AF, Berghuis SA. Urinary concentrations of bisphenols and parabens and their association with attention, hyperactivity and impulsivity at adolescence. Neurotoxicology 2023; 95:66-74. [PMID: 36649891 DOI: 10.1016/j.neuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neurobehavioural disorder diagnoses have been increasing over the last decades, leading to heightened interest in the aetiological factors involved. Endocrine disrupting chemicals, such as parabens and bisphenols, have been suggested as one of those factors. It is unknown whether exposure during adolescence may affect neurobehavioural development. OBJECTIVE To determine whether urinary concentrations of parabens and bisphenols are associated with attention and concentration in adolescents, in general and sex-specific. METHODS We invited 188 adolescents (13-15 years old) for the follow-up birth cohort-study. Concentrations of five parabens and three bisphenols (BPA; BPF; BPS) were measured in morning urine after overnight fasting, using a validated LC-MS/MS method. Attention and concentration were assessed at the clinic with subtests of the Test of Everyday Attention in Children and the Dutch Attention Deficit Hyperactivity Disorder questionnaire (AVL), the latter being filled in by parents. Linear regression analyses were performed, adjusting for urine creatinine concentrations and potential confounding factors. RESULTS 101 (54%) adolescents participated (46 girls; 55 boys). Urinary paraben concentrations were higher in girls than in boys. Methylparaben was positively associated with attention in girls (p ≤ .05; B= -2.836; 95%CI= -5.175;-.497), ethylparaben negatively with hyperactivity (p ≤ .05; B= -1.864; 95%CI= -3.587;-.141). Butylparaben was associated with more optimal scores on parent reported attention. Propylparaben was negatively associated with scores on sustained auditory attention in girls (p ≤ .10; B=.444; 95%CI= -.009;.896). Bisphenol concentrations were not associated with scores on attention and concentration after adjusting for confounders. CONCLUSION In 13-15-year-old Dutch adolescents, urinary concentrations of methylparaben and ethylparaben were associated with better attention and less hyperactivity, whereas a trend toward significance was found between higher urinary propylparaben concentrations and poorer attention. Bisphenol concentrations were not associated with attention and concentration after adjusting for confounders.
Collapse
Affiliation(s)
- Anne B Foreman
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Bruce Hr Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Pieter J J Sauer
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Arend F Bos
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Sietske A Berghuis
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
20
|
Wang Y, Gai T, Zhang L, Chen L, Wang S, Ye T, Zhang W. Neurotoxicity of bisphenol A exposure on Caenorhabditis elegans induced by disturbance of neurotransmitter and oxidative damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114617. [PMID: 36758510 DOI: 10.1016/j.ecoenv.2023.114617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is putatively regarded as an environmental neurotoxicant found in everyday plastic products and materials, however, the possible neurobehavioral adverse consequences and molecular mechanisms in animals have not been clearly characterized. The nematode Caenorhabditis elegans has become a promising animal model for neurotoxicological researches. To investigate the dose-effect relationships of BPA-induced neurotoxicity effects, the locomotion behavior and developmental parameters of the nematode were determined after BPA exposure. The present data demonstrated that BPA caused neurobehavioral toxicities, including head thrashes and body bends inhibition. In addition, when C. elegans was exposed to BPA at a concentration higher than 2 μM, growth and survival rate were decreased. The serotonergic, dopaminergic and GABAergic neurons were damaged by BPA. Furthermore, lower levels of mRNA expression related to dopamine, serotonin and GABA were detected in the worms exposed to 50 μM BPA. Increased SOD-3 expression might be adaptive response to BPA exposure. Moreover, oxidative damage triggered by BPA was manifested by changes in GST-4 expression, accompany with abnormity of ATP synthesis, but not nuclear localization of DAF-16/FOXO. Finally, we showed that epigallocatechin-3-gallate partially rescued BPA-induced reactive oxygen species (ROS) production and neurobehavioral toxicity. Altogether, the neurobehavioral and developmental toxicity of BPA may be induced by neurotransmission abnormity and oxidative damage. The present data imply that oxidative stress is linked to neuronal damage and neurobehavioral harm resulting from developmental BPA exposure.
Collapse
Affiliation(s)
- Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China.
| | - Tingting Gai
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| | - Lianfeng Zhang
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| | - Liangwen Chen
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| | - Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| | - Tao Ye
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| | - Weiru Zhang
- School of Bioengineering, Huainan Normal University, Huainan 232038, Anhui, People's Republic of China
| |
Collapse
|
21
|
Holladay SD. Environmental contaminants, endocrine disruption, and transgender: Can "born that way" in some cases be toxicologically real? Hum Exp Toxicol 2023; 42:9603271231203382. [PMID: 37751728 DOI: 10.1177/09603271231203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Gender is viewed by many as strictly binary based on a collection of body traits typical of a female or male phenotype, presence of a genotype that includes at least one copy of a Y chromosome, or ability to produce either egg or sperm cells. A growing non-binary view is that these descriptors, while compelling, may nonetheless fail to accurately capture an individual's true gender. The position of the American Psychological Association (APA) agrees with this view and is that transgender people are a defendable and real part of the human population. The considerable diversity of transgender expression then argues against any unitary or simple explanations, however, prenatal hormone levels, genetic influences, and early and later life experiences have been suggested as playing roles in development of transgender identities. The present review considers existing and emerging toxicologic data that may also support an environmental chemical contribution to some transgender identities, and suggest the possibility of a growing nonbinary brain gender continuum in the human population.
Collapse
Affiliation(s)
- Steven David Holladay
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Drzewiecki CM, Brinks AS, Sellinger EP, Doshi AD, Koh JY, Juraska JM. Brief postnatal exposure to bisphenol A affects apoptosis and gene expression in the medial prefrontal cortex and social behavior in rats with sex specificity. Neurotoxicology 2023; 94:126-134. [PMID: 36442689 PMCID: PMC9839503 DOI: 10.1016/j.neuro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor found in polycarbonate plastics and exposure in humans is nearly ubiquitous and it has widespread effects on cognitive, emotional, and reproductive behaviors in both humans and animal models. In our laboratory we previously found that perinatal BPA exposure results in a higher number of neurons in the adult male rat prefrontal cortex (PFC) and less play in adolescents of both sexes. Here we examine changes in the rate of postnatal apoptosis in the rat prefrontal cortex and its timing with brief BPA exposure. Because an increased number of neurons in the PFC is a characteristic of a subtype of autism spectrum disorder, we tested social preference following brief BPA exposure and also expression of a small group of genes. Males and females were exposed to BPA from postnatal days (P) 6 through 8 or from P10 through 12. Both exposures significantly decreased indicators of cell death in the developing medial prefrontal cortex in male subjects only. Additionally, males exposed to BPA from P6 - 8 showed decreased social preference and decreased cortical expression of Shank3 and Homer1, two synaptic scaffolding genes that have been implicated in social deficits. There were no significant effects of BPA in the female subjects. These results draw attention to the negative consequences following brief exposure to BPA during early development.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Currently at California National Primate Research Center, University of California-Davis, Davis, CA, 95616, USA
| | - Amara S Brinks
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Elli P Sellinger
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Aditi D Doshi
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA; Currently at Department of Psychology, University of Illinois at Chicago, 1007W Harrison St, Chicago, IL 60607, USA
| | - Jessie Y Koh
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA.
| |
Collapse
|
23
|
D’Cruz SC, Hao C, Labussiere M, Mustieles V, Freire C, Legoff L, Magnaghi-Jaulin L, Olivas-Martinez A, Rodriguez-Carrillo A, Jaulin C, David A, Fernandez MF, Smagulova F. Genome-wide distribution of histone trimethylation reveals a global impact of bisphenol A on telomeric binding proteins and histone acetyltransferase factors: a pilot study with human and in vitro data. Clin Epigenetics 2022; 14:186. [PMID: 36572933 PMCID: PMC9793539 DOI: 10.1186/s13148-022-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To assess the genetic and epigenetic effects promoted by Bisphenol A (BPA) exposure in adolescent males from the Spanish INMA-Granada birth cohort, and in human cells. METHODS DNA methylation was analysed using MEDIP. Repeat number variation in genomic DNA was evaluated, along with the analysis of H3K4me3 by using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Analyses were performed with material extracted from whole blood of the adolescents, complemented by in vitro assessments of human (HeLa) cells exposed to 10 nM BPA, specifically, immunofluorescence evaluation of protein levels, gene expression analysis and ChIP‒qPCR analysis. RESULTS Adolescents in the high urinary BPA levels group presented a higher level of Satellite A (SATA) repetitive region copy numbers compared to those in the low BPA group and a tendency towards increase in telomere length. We also observed decreased DNA methylation at the promoters of the imprinted genes H19, KCNQ1, and IGF2; at LINE1 retroelements; and at the ARID2, EGFR and ESRRA and TERT genes. Genome-wide sequencing revealed increased H3K4me3 occupancy at the promoters of genes encoding histone acetyltransferases, telomeric DNA binding factors and DNA repair genes. Results were supported in HeLa cells exposed to 10 nM BPA in vitro. In accordance with the data obtained in blood samples, we observed higher H3K4me3 occupancy and lower DNA methylation at some specific targets in HeLa cells. In exposed cells, changes in the expression of genes encoding DNA repair factors (ATM, ARID2, TRP53) were observed, and increased expression of several genes encoding telomeric DNA binding factors (SMG7, TERT, TEN1, UPF1, ZBTB48) were also found. Furthermore, an increase in ESR1/ERa was observed in the nuclei of HeLa cells along with increased binding of ESR1 to KAT5, KMT2E and TERF2IP promoters and decreased ESR1 binding at the RARA promoter. The DNA damage marker p53/TP53 was also increased. CONCLUSION In this pilot study, genome-wide analysis of histone trimethylation in adolescent males exposed to BPA revealed a global impact on the expression of genes encoding telomeric binding proteins and histone acetyltransferase factors with similar results in HeLa cells. Nevertheless, larger studies should confirm our findings.
Collapse
Affiliation(s)
- Shereen Cynthia D’Cruz
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Chunxiang Hao
- grid.410747.10000 0004 1763 3680School of Medicine, Linyi University, Linyi, 276000 China
| | - Martin Labussiere
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Vicente Mustieles
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Carmen Freire
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Louis Legoff
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Laura Magnaghi-Jaulin
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Alicia Olivas-Martinez
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain
| | - Andrea Rodriguez-Carrillo
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain
| | - Christian Jaulin
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Arthur David
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Mariana F. Fernandez
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Fatima Smagulova
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
24
|
Lapp HE, Margolis AE, Champagne FA. Impact of a bisphenol A, F, and S mixture and maternal care on the brain transcriptome of rat dams and pups. Neurotoxicology 2022; 93:22-36. [PMID: 36041667 PMCID: PMC9985957 DOI: 10.1016/j.neuro.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Products containing BPA structural analog replacements have increased in response to growing public concern over adverse effects of BPA. Although humans are regularly exposed to a mixture of bisphenols, few studies have examined effects of prenatal exposure to BPA alternatives or bisphenol mixtures. In the present study, we investigate the effect of exposure to an environmentally-relevant, low-dose (150 ug/kg body weight per day) mixture of BPA, BPS, and BPF during gestation on the brain transcriptome in Long-Evans pups and dams using Tag RNA-sequencing. We also examined the association between dam licking and grooming, which also has enduring effects on pup neural development, and the transcriptomes. Associations between licking and grooming and the transcriptome were region-specific, with the hypothalamus having the greatest number of differentially expressed genes associated with licking and grooming in both dams and pups. Prenatal bisphenol exposure also had region-specific effects on gene expression and pup gene expression was affected more robustly than dam gene expression. In dams, the prelimbic cortex had the greatest number of differentially expressed genes associated with prenatal bisphenol exposure. Prenatal bisphenol exposure changed the expression of over 2000 genes in pups, with the majority being from the pup amygdala. We used Gene Set Enrichment Analysis (GSEA) to asses enrichment of gene ontology biological processes for each region. Top GSEA terms were diverse and varied by brain region and included processes known to have strong associations with steroid hormone regulation, cilium-related terms, metabolic/biosynthetic process terms, and immune terms. Finally, hypothesis-driven analysis of genes related to estrogen response, parental behavior, and epigenetic regulation of gene expression revealed region-specific expression associated with licking and grooming and bisphenol exposure that were distinct in dams and pups. These data highlight the effects of bisphenols on multiple physiological process that are highly dependent on timing of exposure (prenatal vs. adulthood) and brain region, and reiterate the contributions of multiple environmental and experiential factors in shaping the brain.
Collapse
Affiliation(s)
- H E Lapp
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA.
| | - A E Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA
| |
Collapse
|
25
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
26
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
Hu P, Pan C, Su W, Vinturache A, Hu Y, Dong X, Ding G. Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6-19 years from NHANES, 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153548. [PMID: 35114227 DOI: 10.1016/j.scitotenv.2022.153548] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Humans are typically exposed to mixtures of environmental endocrine-disrupting chemicals simultaneously, but most studies have considered only a single chemical or a class of similar chemicals. OBJECTIVES We examined the association of exposure to mixtures of 7 chemicals, including 2 phenols [bisphenol A (BPA) and bisphenol S (BPS)], 2 parabens [methylparaben (MeP) and propyl paraben (PrP)], and 3 phthalate metabolites [Mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono (carboxyoctyl) phthalate (MCOP)] with sex steroid hormones. METHODS A total of 1179 children aged 6-19 years who had complete data on both 7 chemicals and sex steroid hormones of estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG) were analyzed from the U.S. National Health and Nutrition Examination Survey 2013-2016. Free androgen index (FAI) calculated by TT/SHBG, and the ratio of TT to E2 (TT/E2) were also estimated. Puberty was defined if TT ≥ 50 ng/dL in boys, E2 ≥ 20 pg/mL in girls; otherwise prepuberty was defined. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were performed to estimate the associations of individual chemical or chemical mixtures with sex hormones. RESULTS The linear regression showed that 2 phenols, 2 parabens, and 3 phthalate metabolites were generally negatively associated with E2, TT, FAI, and TT/E2, while positively with SHBG. Moreover, these associations were more pronounced among pubertal than prepubertal children. The aforementioned associations were confirmed when further applying WQS and BKMR, and the 3 phthalates metabolites were identified to be the most heavily weighing chemicals. CONCLUSIONS Exposure to phenols, parabens, and phthalates, either individuals or as a mixture, was negatively associated with E2, TT, FAI and TT/E2, while positively with SHBG. Those associations were stronger among pubertal children.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
29
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
30
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
31
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [DOI: https:/doi.org/10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Takesono A, Schirrmacher P, Scott A, Green JM, Lee O, Winter MJ, Kudoh T, Tyler CR. Estrogens regulate early embryonic development of the olfactory sensory system via estrogen-responsive glia. Development 2022; 149:dev199860. [PMID: 35023540 PMCID: PMC8881738 DOI: 10.1242/dev.199860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/02/2021] [Indexed: 01/16/2023]
Abstract
Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.
Collapse
Affiliation(s)
- Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Paula Schirrmacher
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Department of Biological and Marine Sciences, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK
| | - Aaron Scott
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jon M Green
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Okhyun Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
33
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [PMID: 34718120 DOI: 10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-β, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-β, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, Alcalá de Henares, Spain
| | - Carmen Muñoz-Moreno
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Nuria Olea-Herrero
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Paula Reventun
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Biochemistry and Molecular Biology Area, Department of Basic Sciences of Health, Alcorcon, Spain
| | - Alba Antón-Cornejo
- Clinical Analysis Service, Principe de Asturias Hospital, Alcalá de Henares, Spain
| | - Marta González-Santander
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)/Facultad de Medicina Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marta Saura
- Universidad de Alcalá, Laboratory of Pathophysiology of the Vascular Wall, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, IRICYS, Department of System Biology/Physiology Unit, Alcalá de Henares, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain.
| |
Collapse
|
34
|
Shin HM, Oh J, Kim K, Busgang SA, Barr DB, Panuwet P, Schmidt RJ, Picciotto IH, Bennett DH. Variability of Urinary Concentrations of Phenols, Parabens, and Triclocarban during Pregnancy in First Morning Voids and Pooled Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16001-16010. [PMID: 34817155 PMCID: PMC8858442 DOI: 10.1021/acs.est.1c04140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Urinary concentrations of phenols, parabens, and triclocarban have been extensively used as biomarkers of exposure. However, because these compounds are quickly metabolized and excreted in urine, characterizing participants' long-term average exposure from a few spot samples is challenging. To examine the variability of urinary concentrations of these compounds during pregnancy, we quantified four phenols, four parabens, and triclocarban in 357 first morning voids (FMVs) and 203 pooled samples collected during the second and third trimesters of 173 pregnancies. We computed intraclass correlation coefficients (ICCs) by the sample type (FMV and pool) across two trimesters and by the number of composite samples in pools, ranging from 2 to 4, within the same trimester. Among the three compounds detected in more than 50% of the samples, the ICCs across two trimesters were higher in pools (0.29-0.68) than in FMVs (0.17-0.52) and the highest ICC within the same trimester was observed when pooling either two or three composites. Methyl paraben and propyl paraben primarily exposed via cosmetic use had approximately 2-3 times higher ICCs than bisphenol A primarily exposed via diet. Our findings support that within-subject pooling of biospecimens can increase the reproducibility of pregnant women's exposure to these compounds and thus could potentially minimize exposure misclassification.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., Department of Earth and Environmental Sciences, University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, TX, 76019, ; Voice: 949-648-1614
| | - Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
| | - Kyunghoon Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, Korea
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Irva Hertz Picciotto
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
| |
Collapse
|
35
|
Castro I, Arroyo R, Aparicio M, Martínez MÁ, Rovira J, Ares S, Cunha SC, Casal S, Oliveira Fernandes J, Schuhmacher M, Nadal M, Rodríguez JM, Fernández L. Dietary Habits and Relationship with the Presence of Main and Trace Elements, Bisphenol A, Tetrabromobisphenol A, and the Lipid, Microbiological and Immunological Profiles of Breast Milk. Nutrients 2021; 13:nu13124346. [PMID: 34959899 PMCID: PMC8708081 DOI: 10.3390/nu13124346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother’s habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.
Collapse
Affiliation(s)
- Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Marina Aparicio
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - María Ángeles Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Susana Ares
- Department of Neonatology, Universitary Hospital La Paz, P° de la Castellana, 261, 28046 Madrid, Spain;
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Jose Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943745
| |
Collapse
|
36
|
Naderi M, Puar P, JavadiEsfahani R, Kwong RWM. Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish. Neurotoxicology 2021; 88:144-154. [PMID: 34808222 DOI: 10.1016/j.neuro.2021.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Dysregulation of the oxytocinergic system and excitation/inhibition (E/I) balance in synaptic transmission and neural circuits are common hallmarks of various neurodevelopmental disorders. Several experimental and epidemiological studies have shown that perinatal exposure to endocrine-disrupting chemicals bisphenol A (BPA) and bisphenol S (BPS) may contribute to a range of childhood neurodevelopmental disorders. However, the effects of BPA and BPS on social-cognitive development and the associated mechanisms remain largely unknown. In this study, we explored the impacts of early developmental exposure (2hpf-5dpf) to environmentally relevant concentrations of BPA, and its analog BPS (0.001, 0.01, and 0.1 μM), on anxiety, social behaviors, and memory performance in 21 dpf zebrafish larvae. Our results revealed that early-life exposure to low concentrations of BPA and BPS elevated anxiety-like behavior, while fish exposed to higher concentrations of these chemicals displayed social deficits and impaired object recognition memory. Additionally, we found that co-exposure with an aromatase inhibitor antagonized BPA- and BPS-induced effects on anxiety levels and social behaviors, while the co-exposure to an estrogen receptor antagonist restored recognition memory in zebrafish larvae. These results indicate that BPA and BPS may affect social-cognitive function through distinct mechanisms. On the other hand, exposure to low BPA/BPS concentrations increased both the mRNA and protein levels of isotocin (zebrafish oxytocin) in the zebrafish brain, whereas a reduction in its mRNA level was observed at higher concentrations. Further, alterations in the transcript abundance of chloride transporters, and molecular markers of gamma-aminobutyric acid (GABA) and glutamatergic systems, were observed in the zebrafish brain, suggesting possible E/I imbalance following BPA or BPS exposure. Collectively, the results of this study demonstrate that early-life exposure to low concentrations of the environmental contaminants BPA and BPS can interfere with the isotocinergic signaling pathway and disrupts the establishment of E/I balance in the developing brain, subsequently leading to the onset of a suite of behavioral deficits and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
37
|
Moreno-Gómez-Toledano R, Arenas MI, Vélez-Vélez E, Saura M, Bosch RJ. New Evidence of Renal and Cardiovascular Alterations Promoted by Bisphenol A. Biomolecules 2021; 11:biom11111649. [PMID: 34827647 PMCID: PMC8615835 DOI: 10.3390/biom11111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is a phenolic compound that is widely used to synthesize plastics as a monomer or additive [...].
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Department of Biological Systems/Physiology, IRYCIS, 28871 Alcalá de Henares, Spain; (M.S.); (R.J.B.)
- Correspondence:
| | - María I. Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Spain;
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, 28040 Madrid, Spain;
| | - Marta Saura
- Universidad de Alcalá, Department of Biological Systems/Physiology, IRYCIS, 28871 Alcalá de Henares, Spain; (M.S.); (R.J.B.)
| | - Ricardo J. Bosch
- Universidad de Alcalá, Department of Biological Systems/Physiology, IRYCIS, 28871 Alcalá de Henares, Spain; (M.S.); (R.J.B.)
| |
Collapse
|
38
|
Guilbert A, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Guichardet K, Philippat C. Associations between a mixture of phenols and phthalates and child behaviour in a French mother-child cohort with repeated assessment of exposure. ENVIRONMENT INTERNATIONAL 2021; 156:106697. [PMID: 34147998 DOI: 10.1016/j.envint.2021.106697] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic phenols and phthalates can interfere with biological pathways involved in brain development. Despite the high within-subject temporal variability of urinary concentrations observed for their metabolites, studies investigating effects of phenols and phthalates on child behaviour often relied on a limited number of spot biospecimens to assess exposure. Besides, the majority did not consider mixture effects. OBJECTIVES To study the combined effect of prenatal exposure to synthetic phenols and phthalates on child behaviour using repeated exposure measurements. METHODS We assessed concentrations of 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites in within-subject pools of multiple urine samples (median = 21 samples per individual pool) collected at two distinct time points during pregnancy in 416 mother-child pairs from the French SEPAGES cohort. Child behaviour was evaluated at two years using the Child Behaviour Checklist 1.5-5 (CBCL). Associations between a mixture of biomarkers of exposure and externalizing and internalizing behaviour scores were studied using adjusted Weighted Quantile Sum (WQS) regressions with a repeated holdout validation (100 repetitions). RESULTS The positive WQS indexes were associated with both the externalizing and internalizing behaviour scores in the whole population, indicating greater risk of behavioural problems. Stratification for child sex suggested stronger associations in girls than boys. On average, girls externalizing and internalizing scores increased by 3.67 points (95% CI: 1.24, 6.10) and 2.47 points (95 %CI: 0.60, 4.33) respectively, for an increase of one tertile in the WQS index, compared with 1.70 points (95 %CI: -0.42, 3.81) and 1.17 points (95 %CI: -0.50, 2.84) in boys. Main contributors for the associations observed in girls were bisphenol A (weight of 18%), triclosan (17%) and monoethyl phthalate (MEP, 15%) for the externalizing score and MEP (19%), mono-benzyl phthalate (MBzP, 19%) and mono-n-butyl phthalate (MnBP, 16%) for the internalizing score. DISCUSSION Our results suggest adverse associations between in utero exposure to a mixture of phenols and phthalates and child behaviour, mainly in girls. Public health consequences may be substantial due to the widespread exposure of the population to these compounds.
Collapse
Affiliation(s)
- Ariane Guilbert
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France; Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | | | | | | | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
39
|
Spiroux de Vendômois J, Bourdineaud JP, Apoteker A, Defarge N, Gaillard E, Lepage C, Testart J, Vélot C. Trans-disciplinary diagnosis for an in-depth reform of regulatory expertise in the field of environmental toxicology and security. Toxicol Res 2021; 37:405-419. [PMID: 34631497 DOI: 10.1007/s43188-020-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Repeated health and environmental scandals, the loss of biodiversity and the recent burst of chronic diseases constantly remind us the inability of public authorities and risk assessment agencies to protect health and the environment. After reviewing the main shortcomings of our evaluation system of chemicals and new technologies, supported by some concrete examples, we develop a number of proposals to reform both the risk assessment agencies and the evaluation processes. We especially propose the establishment of an independent structure, a High Authority of Expertise, supervising, either at European level or at national level, all the evaluation agencies, and ensuring the transparency, the methodology and the deontology of the expertise. In addition to modifying the evaluation protocols, both in their nature and in their content, especially in order to adapt them to current pollutants such as endocrine disruptors, we propose a reform of the expertise processes based on transparency, contradiction, and greater democracy, including close collaboration between the institutional and scientific parties on the one hand and the whole civil society on the other. All the proposals we make are inspired by the desire to prevent, through appropriate mechanisms, the human, health, ecological, but also economic consequences of contemporary technological choices.
Collapse
Affiliation(s)
- Joël Spiroux de Vendômois
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jean-Paul Bourdineaud
- CNRS, UMR 5234, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, University of Bordeaux, Bordeaux, France
| | - Arnaud Apoteker
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Nicolas Defarge
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Institute of Integrative Biology IBZ, Swiss Federal Institute of Technology, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Emilie Gaillard
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Université de Caen-Basse Normandie, Esplanade de la Paix, 14000 Caen, France
| | - Corinne Lepage
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jacques Testart
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France
| | - Christian Vélot
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France.,Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350-RdC, Avenue Jean Perrin, 91405 Orsay, France.,Risk Pole MRSH-CNRS, EA2608, University of Caen, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
40
|
Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021; 461:152924. [PMID: 34474090 DOI: 10.1016/j.tox.2021.152924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
Bisphenol A (BPA) is a chemical compound commonly used in the production of plastics for daily lives and industry. As BPA is well known for its adverse health effects, several alternative materials have been developed. This study comprehensively analyzed the toxicity of BPA and its three substitutes including bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF) on aging, healthspan, and mitochondria using an in vivo Caenorhabditis elegans (C. elegans) model animal and cultured mammalian fibroblast cells. C. elegans treated with 1 mM BPA exhibited abnormalities in the four tested parameters related to development and growth, including delayed development, decreased body growth, reduced reproduction, and abnormal tissue morphology. Exposure to the same concentration of each alternative including TMBPF, which has been proposed as a relatively safe BPA alternative, detrimentally affected at least three of these events. Moreover, all bisphenols (except BPS) remarkably shortened the organismal lifespan and increased age-related changes in neurons. Exposure to BPA and BPF resulted in mitochondrial abnormalities, such as reduced oxygen consumption and mitochondrial membrane potential. In contrast, the ATP levels were noticeably higher after treatment with all bisphenols. In mammalian fibroblast cells, exposure to increasing concentrations of all bisphenols (ranging from 50 μM to 500 μM) caused a severe decrease in cell viability in a dose-dependent manner. BPA increased ATP levels and decreased ROS but did not affect mitochondrial permeability transition pores (mPTP). Notably, TMBPF was the only bisphenol that caused a significant increase in mitochondrial ROS and mPTP opening. These results suggest that the potentially harmful physiological effects of BPA alternatives should be considered.
Collapse
|
41
|
Zhang Y, Mustieles V, Williams PL, Yland J, Souter I, Braun JM, Calafat AM, Hauser R, Messerlian C. Prenatal urinary concentrations of phenols and risk of preterm birth: exploring windows of vulnerability. Fertil Steril 2021; 116:820-832. [PMID: 34238571 DOI: 10.1016/j.fertnstert.2021.03.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore windows of vulnerability to prenatal urinary phenol concentrations and preterm birth. DESIGN Prospective cohort. SETTING A large fertility center in Boston, Massachusetts. PATIENT(S) A total of 386 mothers who sought fertility treatment and gave birth to a singleton between 2005 and 2018. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Singleton live birth with gestational age <37 completed weeks. RESULT(S) Compared with women with non-preterm births, urinary bisphenol A (BPA) concentrations were higher across gestation among women with preterm births, particularly during mid-to-late pregnancy and among those with female infants. Second trimester BPA concentrations were associated with preterm birth (Risk Ratio [RR] 1.24; 95%CI: 0.92, 1.69), which was primarily driven by female (RR 1.40; 95%CI: 1.04, 1.89) and not male (RR 0.85; 95%CI 0.50, 1.46) infants. First trimester paraben concentrations were also associated with preterm birth (RR 1.17; 95%CI: 0.94, 1.46) and similarly the association was only observed for female (RR 1.46; 95% CI: 1.10, 1.94) and not male infants (RR 0.94; 95%CIC: 0.72, 1.23). First trimester urinary bisphenol S concentrations showed a suggested risk of preterm birth (RR 1.25; 95%CI: 0.82, 1.89), although the small case numbers precluded sex-specific examination. CONCLUSION(S) We found preliminary evidence of associations between mid-to-late pregnancy BPA and early pregnancy paraben concentrations with preterm birth among those with female infants only. Preterm birth risk may be compound, sex, and window specific. Given the limited sample size of this cohort, results should be confirmed in larger studies, including fertile populations.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Instituto de Investigación Biosanitaria (IBS), and Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada, Spain
| | - Paige L Williams
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jennifer Yland
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, Massachusetts
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
42
|
Niu Y, Zhu M, Dong M, Li J, Li Y, Xiong Y, Liu P, Qin Z. Bisphenols disrupt thyroid hormone (TH) signaling in the brain and affect TH-dependent brain development in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105902. [PMID: 34218114 DOI: 10.1016/j.aquatox.2021.105902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
There is concern about adverse effects of thyroid hormone (TH) disrupting chemicals on TH-dependent brain development. Bisphenol A (BPA) and its analogues, such as bisphenol F (BPF), are known to have the potential to interfere with TH signaling, but whether they affect TH-dependent brain development is not yet well documented. Here, we conducted the T3-induced Xenopus laevis metamorphosis assay, a model for studying TH signaling disruption, to investigate the effects of BPA and BPF (10-1000 nM) on TH signaling in brains and subsequent brain development. While 48-hr treatment with 1 nM T3 dramatically upregulated TH-response gene expression in X. laevis brains at stage 52, 1000 and/or 100 nM BPA also caused significant transcriptional up-regulation of certain TH-response genes, whereas BPF had slighter effects, suggesting limited TH signaling disrupting activity of BPF in brains relative to BPA at the lack of TH. In the presence of 1 nM T3, 1000 and/or 100 nM of BPF as well as BPA antagonized T3-induced TH-response gene expression, whereas lower concentrations agonized T3 actions on certain TH-response genes, displaying an apparently biphasic effect on TH signaling. After 96 h exposure, T3 induced brain morphological remodeling coupled with cell proliferation and neuronal differentiation, whereas both BPA and BPF generally antagonized T3-induced changes in a concentration-dependent manner, with weak or no effects of bisphenol exposure alone. Overall, all results show that BPA and BPF interfered with TH signaling in Xenopus brains, especially in the presence of TH, and subsequently affected TH-dependent brain development. Given the evolutionary conservation of TH-dependent brain development among vertebrates, our findings from X. laevis warrant further studies to reveal potential influences of bisphenols on TH-dependent brain development in higher vertebrates.
Collapse
Affiliation(s)
- Yue Niu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyan Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071000, China.
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Zhang Y, Mustieles V, Williams PL, Wylie BJ, Souter I, Calafat AM, Demokritou M, Lee A, Vagios S, Hauser R, Messerlian C. Parental preconception exposure to phenol and phthalate mixtures and the risk of preterm birth. ENVIRONMENT INTERNATIONAL 2021; 151:106440. [PMID: 33640694 PMCID: PMC8488320 DOI: 10.1016/j.envint.2021.106440] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Parental preconception exposure to select phenols and phthalates was previously associated with increased risk of preterm birth in single chemical analyses. However, the joint effect of phenol and phthalate mixtures on preterm birth is unknown. METHODS We included 384 female and 211 male (203 couples) participants seeking infertility treatment in the Environment and Reproductive Health (EARTH) Study who gave birth to 384 singleton infants between 2005 and 2018. Mean preconception urinary concentrations of bisphenol A (BPA), parabens, and eleven phthalate biomarkers, including di(2-ethylhexyl) phthalate (DEHP) metabolites, were examined. We used principal component analysis (PCA) with log-Poisson regression and Probit Bayesian Kernel Machine Regression (BKMR) with hierarchical variable selection to examine maternal and paternal phenol and phthalate mixtures in relation to preterm birth. Couple-based BKMR model was fit to assess couples' joint mixtures in relation to preterm birth. RESULTS PCA identified the same four factors for maternal and paternal preconception mixtures. Each unit increase in PCA scores of maternal (adjusted Risk Ratio (aRR): 1.36, 95%CI: 1.00, 1.84) and paternal (aRR: 1.47, 95%CI: 0.90, 2.42) preconception DEHP-BPA factor was positively associated with preterm birth. Maternal and paternal BKMR models consistently presented the DEHP-BPA factor with the highest group Posterior Inclusion Probability (PIP). BKMR models further showed that maternal preconception BPA and mono(2-ethyl-5-hydroxyhexyl) phthalate, and paternal preconception mono(2-ethylhexyl) phthalate were positively associated with preterm birth when the remaining mixture components were held at their median concentrations. Couple-based BKMR models showed a similar relative contribution of paternal (PIP: 61%) and maternal (PIP: 77%) preconception mixtures on preterm birth. We found a positive joint effect on preterm birth across increasing quantiles of couples' total mixture concentrations. CONCLUSION In this prospective cohort of subfertile couples, maternal BPA and DEHP, and paternal DEHP exposure before conception were positively associated with preterm birth. Both parental windows jointly contributed to the outcome. These results suggest that preterm birth may be a couple-based pregnancy outcome.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 18100, Spain
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melina Demokritou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandria Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stylianos Vagios
- Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP). Int J Mol Sci 2021; 22:ijms22115534. [PMID: 34073890 PMCID: PMC8197233 DOI: 10.3390/ijms22115534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA’s known impact on neurodevelopment.
Collapse
|
45
|
Bornehag CG, Engdahl E, Unenge Hallerbäck M, Wikström S, Lindh C, Rüegg J, Tanner E, Gennings C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. ENVIRONMENT INTERNATIONAL 2021; 150:106433. [PMID: 33637302 DOI: 10.1016/j.envint.2021.106433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experimental evidence demonstrates that exposure to bisphenol A (BPA), and the recently introduced alternatives bisphenol S (BPS) and bisphenol F (BPF) alter normal neurodevelopment. More research is needed to evaluate the associations between exposure to individual BPA alternatives and neurodevelopmental outcomes in humans. OBJECTIVE The present study aimed at examining the individual associations between prenatal BPA, BPS and BPF exposure and cognitive outcomes in children at age 7 years. METHOD Women were enrolled in the Swedish Environmental Longitudinal Mother and Child, Asthma and Allergy (SELMA) study, at gestational median week 10.0, and their children were examined for cognitive function at 7 years of age (N = 803). Maternal urinary BPA, BPS, and BPF concentrations were measured at enrollment and childreńs cognitive function at the age of 7 years was measured using the Wechsler Intelligence Scale for Children IV (WISC-IV). RESULTS All three bisphenols were detected in over 90% of the women, where BPA had the highest geometric mean concentrations (1.55 ng/mL), followed by BPF (0.16 ng/mL) and BPS (0.07 ng/mL). Prenatal BPF exposure was associated with decreased full scale IQ (β = -1.96, 95%CI; -3.12; -0.80), as well as with a decrease in all four sub scales covering verbal comprehension, perceptual reasoning, working memory and processing speed. This association corresponded to a 1.6-point lower IQ score for an inter-quartile-range (IQR) change in prenatal BPF exposure (IQR = 0.054-0.350 ng/mL). In sex-stratified analyses, significant associations with full scale IQ were found for boys (β = -2.86, 95%CI; -4.54; -1.18), while the associations for girls did not reach significance (β = -1.38, 95%CI; -2.97; 0.22). No significant associations between BPA nor BPS and cognition were found. DISCUSSION Prenatal exposure to BPF was significantly associated with childreńs cognitive function at 7 years. Since BPF is replacing BPA in numerous consumer products globally, this finding urgently call for further studies.
Collapse
Affiliation(s)
- Carl-Gustaf Bornehag
- Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York City, USA.
| | | | | | | | | | - Joëlle Rüegg
- Karlstad University, Karlstad, Sweden; Uppsala University, Uppsala, Sweden
| | - Eva Tanner
- Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York City, USA
| |
Collapse
|
46
|
Bisphenol F and bisphenol S promote lipid accumulation and adipogenesis in human adipose-derived stem cells. Food Chem Toxicol 2021; 152:112216. [PMID: 33865937 DOI: 10.1016/j.fct.2021.112216] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as substitutes for bisphenol A (BPA), an endocrine disrupting chemical (EDC) with obesogenic activity. We investigated the in vitro effects of BPS and BPF on the adipogenesis of human adipose-derived stem cells (hASCs) exposed to different doses (0.01, 0.1, 1, 10 and 25 μM), stopping the adipogenic process at 7 or 14 days. Intracellular lipid accumulation was quantified by the Oil Red O assay, gene expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAT/enhancer-binding protein (C/EBPα), lipoprotein-lipase (LPL) and fatty acid binding protein 4 (FABP4), by quantitative real-time polymerase chain reaction (qRT-PCR) and protein levels by Western Blot. hASCs with BPF or BPS produced a linear dose-response increase in intracellular lipid accumulation and in gene expression of the adipogenic markers, confirmed by protein levels. Co-treatment ICI 182,780 significantly inhibited BPF- but not BPS-induced lipid accumulation. Given the affinity of bisphenols for diverse nuclear receptors, their obesogenic effects may result from a combination of pathways rather than a single mechanism. Further research is warranted on the manner in which chemicals interfere with adipogenic differentiation. To our best knowledge, this report shows for the first time the obesogenic potential of BPF in hASCs.
Collapse
|
47
|
Rashid H, Alqahtani SS, Alshahrani S. Diet: A Source of Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 20:633-645. [PMID: 31642798 DOI: 10.2174/1871530319666191022100141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. AIM The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. METHODS The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. CONCLUSION The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
48
|
Gill S, Kumara VMR. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021; 10:793. [PMID: 33918242 PMCID: PMC8103521 DOI: 10.3390/cells10040793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney’s Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | | |
Collapse
|
49
|
Jedynak P, Maitre L, Guxens M, Gützkow KB, Julvez J, López-Vicente M, Sunyer J, Casas M, Chatzi L, Gražulevičienė R, Kampouri M, McEachan R, Mon-Williams M, Tamayo I, Thomsen C, Urquiza J, Vafeiadi M, Wright J, Basagaña X, Vrijheid M, Philippat C. Prenatal exposure to a wide range of environmental chemicals and child behaviour between 3 and 7 years of age - An exposome-based approach in 5 European cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144115. [PMID: 33422710 PMCID: PMC7840589 DOI: 10.1016/j.scitotenv.2020.144115] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Studies looking at associations between environmental chemicals and child behaviour usually consider only one exposure or family of exposures. OBJECTIVE This study explores associations between prenatal exposure to a wide range of environmental chemicals and child behaviour. METHODS We studied 708 mother-child pairs from five European cohorts recruited in 2003-2009. We assessed 47 exposure biomarkers from eight chemical exposure families in maternal blood or urine collected during pregnancy. We used the Strengths and Difficulties Questionnaire (SDQ) to evaluate child behaviour between three and seven years of age. We assessed associations of SDQ scores with exposures using an adjusted least absolute shrinkage and selection operator (LASSO) considering all exposures simultaneously and an adjusted exposome-wide association study (ExWAS) considering each exposure independently. RESULTS LASSO selected only copper (Cu) as associated with externalizing behaviour. In the ExWAS, bisphenol A [BPA, incidence rate ratio (IRR): 1.06, 95% confidence interval (95%CI): 1.01;1.12] and mono-n-butyl phthalate (MnBP, IRR: 1.06, 95%CI: 1.00;1.13) were associated with greater risk of externalizing behaviour problems. Cu (IRR: 0.90, 95%CI: 0.82;0.98), perfluoroundecanoate (PFUnDA, IRR: 0.92, 95%CI: 0.84;0.99) and organochlorine compounds (OCs) were associated with lower risk of externalizing behaviour problems, however the associations with OCs were mainly seen among women with insufficient weight gain during pregnancy. Internalizing score worsen in association with exposure to diethyl thiophosphate (DETP, IRR: 1.11, 95%CI: 1.00;1.24) but the effect was driven by the smallest cohort. Internalizing score improved with increased concentration of perfluorooctane sulfonate (PFOS, IRR: 0.92, 95%CI: 0.85;1.00), however the association was driven by the two smallest cohorts with the lowest PFOS concentrations. DISCUSSION This study added evidence on deleterious effects of prenatal exposure to BPA and MnBP on child behaviour. Other associations should be interpreted cautiously since they were not consistent with previous studies or they have not been studied extensively.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France.
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Jordi Julvez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Reus, Spain; ISGlobal, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Social Medicine, University of Crete, Heraklion, Greece; Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | - Mariza Kampouri
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - Rosie McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Ibon Tamayo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - José Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| |
Collapse
|
50
|
Hansen JB, Bilenberg N, Timmermann CAG, Jensen RC, Frederiksen H, Andersson AM, Kyhl HB, Jensen TK. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and5 years from the Odense Child Cohort. Environ Health 2021; 20:24. [PMID: 33712018 PMCID: PMC7955642 DOI: 10.1186/s12940-021-00709-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to the developing brain. Several epidemiological studies have investigated the association between prenatal BPA exposure and neurodevelopment, but the results have been inconclusive. OBJECTIVE To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder (ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children. METHOD In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5 years. Negative binomial and multiple logistic regression analyses were performed to investigate the association between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658 mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-score. RESULTS BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median 1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR = 3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03). CONCLUSION Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older ages, measure their own BPA exposure, and determine if the observed associations persist.
Collapse
Affiliation(s)
- Julie Bang Hansen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Richard Christian Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|