1
|
Pennington AF, Smith MR, Chuke SO, Cornwell CR, Allwood PB, Courtney JG. Effects of Blood Lead Levels <10 µg/dL in School-Age Children and Adolescents: A Scoping Review. Pediatrics 2024; 154:e2024067808F. [PMID: 39352036 DOI: 10.1542/peds.2024-067808f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
CONTEXT Lead exposures among school-age children are a major public health issue. Although the harmful effects of lead exposure during the first years of life are well known, there is not as much understanding of the effects of low levels of lead exposure during later childhood. OBJECTIVES To review the effects of blood lead levels (BLLs) <10 µg/dL in school-age children and adolescents. DATA SOURCES We searched Medline, Embase, Global health, CINAHL, Scopus, and Environmental Science Collection databases between January 1, 2000, and May 11, 2023. STUDY SELECTION We included peer-reviewed English-language articles that presented data on the effects of BLLs <10 µg/dL in individuals ages 5 through 18 years. DATA EXTRACTION Data on country, population, analytic design, sample size, age, BLLs, outcomes, covariates, and results were extracted. RESULTS Overall, 115 of 3180 screened articles met the inclusion criteria. The reported mean or median BLL was <5 µg/dL in 98 articles (85%). Of the included articles, 89 (77%) presented some evidence of an association between BLLs <10 µg/dL during school age and detrimental outcomes in a wide range of categories. The strongest evidence of an association was for the outcomes of intelligence quotient and attention-deficit/hyperactivity disorder diagnoses or behaviors. LIMITATIONS Few articles controlled for BLLs at age <5 years, limiting conclusions about the relation between later BLLs and outcomes. CONCLUSIONS BLLs <10 µg/dL in school-age children and adolescents may be associated with negative outcomes. This review highlights areas that could benefit from additional investigation.
Collapse
Affiliation(s)
- Audrey F Pennington
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Madison R Smith
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Stella O Chuke
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Cheryl R Cornwell
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Paul B Allwood
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Joseph G Courtney
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| |
Collapse
|
2
|
Cernigliaro F, Santangelo A, Nardello R, Lo Cascio S, D'Agostino S, Correnti E, Marchese F, Pitino R, Valdese S, Rizzo C, Raieli V, Santangelo G. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life (Basel) 2024; 14:1084. [PMID: 39337868 PMCID: PMC11433086 DOI: 10.3390/life14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
According to the DSM-5, neurodevelopmental disorders represent a group of heterogeneous conditions, with onset during the developmental period, characterized by an alteration of communication and social skills, learning, adaptive behavior, executive functions, and psychomotor skills. These deficits determine an impairment of personal, social, scholastic, or occupational functioning. Neurodevelopmental disorders are characterized by an increased incidence and a multifactorial etiology, including genetic and environmental components. Data largely explain the role of genetic and environmental factors, also through epigenetic modifications such as DNA methylation and miRNA. Despite genetic factors, nutritional factors also play a significant role in the pathophysiology of these disorders, both in the prenatal and postnatal period, underscoring that the control of modifiable factors could decrease the incidence of neurodevelopmental disorders. The preventive role of nutrition is widely studied as regards many chronic diseases, such as diabetes, hypertension, and cancer, but actually we also know the effects of nutrition on embryonic brain development and the influence of prenatal and preconceptional nutrition in predisposition to various pathologies. These factors are not limited only to a correct caloric intake and a good BMI, but rather to an adequate and balanced intake of macro and micronutrients, the type of diet, and other elements such as exposure to heavy metals. This review represents an analysis of the literature as regards the physiopathological mechanisms by which food influences our state of health, especially in the age of development (from birth to adolescence), through prenatal and preconceptional changes, underlying how controlling these nutritional factors should improve mothers' nutritional state to significantly reduce the risk of neurodevelopmental disorders in offspring. We searched key words such as "maternal nutrition and neurodevelopmental disorders" on Pubmed and Google Scholar, selecting the main reviews and excluding individual cases. Therefore, nutrigenetics and nutrigenomics teach us the importance of personalized nutrition for good health. So future perspectives may include well-established reference values in order to determine the correct nutritional intake of mothers through food and integration.
Collapse
Affiliation(s)
- Federica Cernigliaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Salvatore Lo Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Sofia D'Agostino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | | | - Renata Pitino
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Silvia Valdese
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Carmelo Rizzo
- A.I.Nu.C-International Academy of Clinical Nutrition, 00166 Rome, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Giuseppe Santangelo
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| |
Collapse
|
3
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
4
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
5
|
Kumar D, Awasthi S, Mahdi AA, Singh S, Pandey AK, Agarwal GG, Anish TS, A R S, Kar S, Nair S, Mathew JL, Bhat MA, Mahanta BN, Singh K, Singh CM. Assessment of Blood Lead Level of School Children in 10 Cities of India: A Cross-Sectional Study. Indian J Pediatr 2023:10.1007/s12098-023-04864-7. [PMID: 37919485 DOI: 10.1007/s12098-023-04864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES To assess the blood lead level (BLL) of school children in 10 cities of India. METHODS This multi-centric cross-sectional study enrolled participants from randomly selected schools. Data on demographic details, socioeconomic status (SES) and anthropometric indicators was collected. Samples were collected for assessment of lead level in blood. Inductively coupled plasma-optical emission spectrometry technique was used to assess BLL. RESULTS From April 2019 through February 2020, 2247 participants were recruited from sixty schools (62.6% government schools) with equal gender distribution. The overall median (interquartile range) BLL was 8.8 (4.8, 16.4) µg/dl. The highest median (interquartile range) BLL was in Manipal 30.6 (23.0, 46.7) and lowest in Dibrugarh 4.8 (3.2, 7.0). Overall, 82.5% of participants had BLL above ≤4 µg/dl. Significant negative correlation was observed between BLL and SES (correlation= -0.24, p <0.001), anthropometric indicators (correlation= -0.11, p <0.001), hemoglobin level (correlation= -0.045, p = 0.03) and multivariate regression model showed association with gender, SES and anthropometric indicators. CONCLUSIONS BLL are elevated in urban school going children and there is intercity variation. Hence, urgent focus is needed to reduce exposure to lead in India.
Collapse
Affiliation(s)
- Divas Kumar
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shally Awasthi
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shweta Singh
- Department of Psychiatry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anuj Kumar Pandey
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Girdhar G Agarwal
- Department of Statistics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | | | - Somashekar A R
- Department of Pediatrics, M. S. Ramaiah Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Sonali Kar
- Department of Community Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Suma Nair
- School of Public Health, DY Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Joseph L Mathew
- Department of Pediatric Medicine, Post Graduate Institute of Medical Sciences, Chandigarh, India
| | - Mushtaq A Bhat
- Department of Pediatrics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - B N Mahanta
- Department of Medicine, Assam Medical College, Dibrugarh, Assam, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - C M Singh
- Department of Community & Family Medicine, All India Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
6
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
7
|
Sarıbal GŞ, Canger EM, Yaray K. Evaluation of the radiation protection effectiveness of a lead-free homopolymer in cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:91-101. [PMID: 37002015 DOI: 10.1016/j.oooo.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE The objective was to compare the radiation protection effectiveness of a lead-free thermoplastic homopolymer (Anti-RAD) to conventional lead shielding in cone beam computed tomography (CBCT) exposures. STUDY DESIGN Thermoluminescent dosimeters were placed on a human bone- and soft tissue-equivalent phantom to record equivalent doses in the thyroid gland, thyroid skin, and breast areas. CBCT images were obtained with the following 3 protocols: (1) without radiation shielding; (2) with 0.5-mm lead equivalent lead-containing shielding; and (3) with 0.5-mm lead equivalent Anti-RAD shielding. Independent t tests were used to evaluate the results. RESULTS Compared with exposures without shielding, both lead and Anti-RAD protective devices reduced thyroid gland equivalent doses by approximately 40%, thyroid skin doses by approximately 75%, right breast skin doses by approximately 80%, and left breast skin doses by 75%. The differences in equivalent dose for both types of shielding compared with exposure with no shielding were statistically significant (P ≤ .042). However, there were no significant differences in dose reduction at any site between lead and Anti-RAD shielding (P ≥ .135). CONCLUSIONS Radiation protection equivalent to lead can be provided with the Anti-RAD shield. With the use of this material, disadvantages such as damage to the aprons, lead toxicity, weight of lead aprons, and microbial contamination can be reduced.
Collapse
Affiliation(s)
- Gamze Şirin Sarıbal
- Research Assistant, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.
| | - Emin Murat Canger
- Associate Professor, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University-Kayseri, Turkey
| | - Kadir Yaray
- Department of Radiation Oncology, University of Erciyes Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
8
|
Obeng A, Roh T, Aggarwal A, Uyasmasi K, Carrillo G. The contribution of secondhand tobacco smoke to blood lead levels in US children and adolescents: a cross-sectional analysis of NHANES 2015-2018. BMC Public Health 2023; 23:1129. [PMID: 37308859 DOI: 10.1186/s12889-023-16005-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lead is a major developmental neurotoxicant in children, and tobacco smoke has been suggested as a source of lead exposure in vulnerable populations. This study evaluates the contribution of secondhand tobacco smoke (SHS) to blood lead levels (BLLs) in children and adolescents. METHODS We analyze data from 2,815 participants aged 6-19 years who participated in the National Health and Nutrition Examination Survey (2015-2018) to investigate the association between serum cotinine levels and BLLs. A multivariate linear regression was conducted to estimate geometric means (GMs) and the ratios of GMs after adjusting for all covariates. RESULTS The geometric means of BLLs in study participants aged 6 - 19 years were 0.46 µg/dl (95% CI 0.44, 0.49). After adjusting for relevant participant characteristics, the geometric means of BLLs were 18% (BLL 0.48 µg/dl, 95% CI 0.45, 0.51) and 29% (BLL 0.52 µg/dl, 95% CI 0.46, 0.59) higher in participants who had intermediate serum cotinine levels (0.03 - 3 ng/mL) and those who had high serum cotinine levels (> 3 ng/mL) respectively, compared to participants who had low serum cotinine levels (BLL 0.41 µg/dl, 95% CI 0.38, 0.43). CONCLUSIONS SHS exposure may be a source of BLLs in US children and adolescents. Efforts to reduce lead exposure in children and adolescents should include strategies to reduce SHS exposure.
Collapse
Affiliation(s)
- Alexander Obeng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Kido Uyasmasi
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
Błażewicz A, Grabrucker AM. Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals. Int J Mol Sci 2022; 24:ijms24010308. [PMID: 36613749 PMCID: PMC9820494 DOI: 10.3390/ijms24010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Since hundreds of years ago, metals have been recognized as impacting our body's physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
10
|
Del Rio M, Obeng A, Galkaduwa B, Rodriguez C, Costa C, Chavarria CA, Navarro EA, Avila J, Wekumbura C, Hargrove WL, Hettiarachchi G, Sobin C. An interdisciplinary team-based approach for significantly reducing lower-level lead poisoning in U.S. children. Toxicol Rep 2022; 10:76-86. [PMID: 36590868 PMCID: PMC9794881 DOI: 10.1016/j.toxrep.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Child lead poisoning damages central nervous system, immune, and renal function, and is the longest-standing public health epidemic in U.S. history. While primary prevention is the ultimate goal, secondary intervention is critical for curbing effects among children already exposed. Despite the lowering of child blood lead level (BLL) reference value in 2012 and again in 2021, few changes to secondary intervention approaches have been discussed. This study tested a novel interdisciplinary approach integrating ongoing child BLL-monitoring with education and home mitigation for families living in neighborhoods at high-risk of child lead exposure. In children ages 6 months to 16 years, most of whom had lowest range exposures, we predicted significantly reduced BLLs following intervention. Methods Twenty-one families with 49 children, were offered enrollment when at least 1 child in the family was found to have a BLL > 2.5 µg/dL. Child BLLs, determined by ICPMS, were monitored at 4- to 6-month intervals. Education was tailored to family needs, reinforced through repeated parent engagement, and was followed by home testing reports with detailed case-specific information and recommendations for no-cost/low-cost mitigation. Results Ninety percent of enrolled families complied with the mitigation program. In most cases, isolated, simple-to-mitigate lead hazard sources were found. Most prevalent were consumer products, found in 69% (11/16) of homes. Lead paint was identified in 56% (9/16) of homes. Generalized linear regression with Test Wave as a random effect showed that children's BLLs decreased significantly following the intervention despite fluctuations. Conclusion Lower-level lead poisoning can be reduced through an interdisciplinary approach that combines ongoing child BLL monitoring; repeated, one-on-one parent prevention education; and identification and no-cost/low-cost mitigation of home lead hazards. Biannual child BLL monitoring is essential for detecting and responding to changes in child BLLs, particularly in neighborhoods deemed high-risk for child lead poisoning.
Collapse
Affiliation(s)
- Michelle Del Rio
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | - Alexander Obeng
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | | | - Christina Rodriguez
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | - Crystal Costa
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | - Carlos A. Chavarria
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | | | - Jaleen Avila
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| | | | - William L. Hargrove
- Center for Environmental Resource Management, The University of Texas, El Paso, TX, USA
| | | | - Christina Sobin
- Department of Public Health Sciences, The University of Texas, El Paso, TX, USA
| |
Collapse
|
11
|
Zhang Y, Maimaiti R, Lou S, Abula R, Abulaiti A, Kelimu A. Risk prediction of autism spectrum disorder behaviors among children based on blood elements by nomogram: A cross-sectional study in Xinjiang from 2018 to 2019. J Affect Disord 2022; 318:1-6. [PMID: 36057283 DOI: 10.1016/j.jad.2022.08.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/29/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes of toxic metals and essential elements during childhood may be the risk factor of autism spectrum disorder (ASD). This research established an accurate personalized predictive model of ASD behaviors among children by using the blood element detection index of children in Xinjiang, China. METHODS A total of 1537 children (240 ASD behavior children and 1297 non-ASD behavior children) aged 0-7 were collected from September 2018 to September 2019 in Urumqi Children's Hospital and the health management institute of Xinjiang Medical University. For measuring the copper (Cu), zinc (Zn), magnesium (Mg), iron (Fe), calcium (Ca), lead (Pb), and cadmium (Cd), 80 μL of blood was taken from each participant's ring finger. Univariate logistic regression analysis was used to select predictors, then the multivariate logistic regression was used to establish the predictive model. The discriminability, calibration and clinical validity of the model were evaluated by the receiver operating characteristic (ROC) curve, Hosmer-Lemeshow test and decision curve analysis (DCA). RESULTS Gender, concentrations of Pb, Ca and Zn in children's blood specimens were found to be the independent risk factors of ASD behaviors and were used to develop the nomogram model. The area under the ROC curve (AUC) in the development group (AUC = 0.778) and the validation group (AUC = 0.775) showed the model had discrimination ability. The calibration curve indicated the model was accurate, and the DCA proved its clinical application value. CONCLUSION The nomogram model can be used as a reliable tool to predict the risk of ASD behaviors among children.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China
| | - Rena Maimaiti
- Department of Child Health, Health Management Institute, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830001, PR China
| | - Shan Lou
- Department of Child Health, Health Management Institute, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830001, PR China
| | - Reyila Abula
- Department of Child Health, Urumqi Children's Hospital, Urumqi 830001, PR China
| | - Adila Abulaiti
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China
| | - Asimuguli Kelimu
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China.
| |
Collapse
|
12
|
He H, Zhang Z, Li M. Association between serum folate concentrations and blood lead levels in adolescents: A cross-sectional study. Front Pediatr 2022; 10:941651. [PMID: 36389396 PMCID: PMC9641282 DOI: 10.3389/fped.2022.941651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
As a heavy metal, lead is a common toxic agent. Its accumulation in the body is harmful to physical health, particularly in children and adolescents. Studies have reported that folate may play a protective role in lead exposure. An association between serum folate concentrations (SFC) and blood lead levels (BLL) has been documented in adults, but studies in adolescents are limited. This study investigated the relationship between SFC and BLL in American adolescents. This cross-sectional study collected relevant data on both SFC and BLL of 5,195 adolescents in the NHANES database from 2007 to 2018. Multivariable linear regressions and smooth curve fittings were adopted to evaluate the correlation between BLL and SFC. After adjusting potential confounders, we found negative relationships between BLL and SFC [β = -0.0041 (-0.0063, -0.0019)], and the associations were significant in non-Hispanic Whites, Mexican Americans, and other races but not significant in non-Hispanic blacks (P = 0.139). Furthermore, the negative trends were significant in adolescents aged 16-19 years and females aged 12-15 years but insignificant in males aged 12-15 years (P = 0.172). Therefore, these findings provide a basis for future research on the mechanism of folate in regulating blood lead levels.
Collapse
Affiliation(s)
- Huan He
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Zhan Zhang
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Min Li
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
13
|
Amadi CN, Orish CN, Frazzoli C, Orisakwe OE. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol Biochem Behav 2021; 212:173313. [PMID: 34896416 DOI: 10.1016/j.pbb.2021.173313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Environmental factors have been associated with the etiology of autism spectrum disorder ASD in recent times. The involvement of toxic metals in the generation of reactive oxygen species and their epigenetics effects have been implicated in ASD. This systemic review examines the association of toxic metals with autism in children. A systematic literature search was performed in scientific databases such as PubMed, Google scholar, and Scopus. Case-control studies evaluating toxic metal levels in different tissues of ASD children and comparing them to healthy children (control group) were identified. The Newcastle-Ottawa Scale was used to evaluate the risk of bias of the included studies. Six case-control studies with 425 study subjects met our inclusion criteria. A total of four studies indicated higher levels of As, Pb, Hg, Cd, Al, Sn, Sb, Ba, TI, W, and Zr in whole blood, RBC, in whole blood, RBC, and hair samples of children with autism compared with control suggestive of a greater toxic metal exposure (immediate and long-term). Three studies identified significantly higher concentrations of Cd, Pb and Hg in urine and hair samples of autistic children compared to control suggesting decreased excretion and possible high body burden of these metals. The findings from this review demonstrate that high levels of toxic metals are associated with ASD, therefore, critical care is necessary to reduce body burden of these metals in children with ASD as a major therapeutic strategy.
Collapse
Affiliation(s)
- Cecilia N Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria.
| |
Collapse
|
14
|
Shin K, Lim G, Hong YS, Kim S, Hwang S, Lee J, Sin S, Cho A, Kim Y, Gautam R, Jo J, Acharya M, Maharjan A, Lee D, K C PB, Kim C, Heo Y, Kim HA. Exposure to lead on expression levels of brain immunoglobulins, inflammatory cytokines, and brain-derived neurotropic factor in fetal and postnatal mice with autism-like characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:891-900. [PMID: 34187350 DOI: 10.1080/15287394.2021.1945985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders, and their incidence is increasing worldwide. Increased exposure to environmental metal lead (Pb) has been proposed as a risk factor associated with ASD. In the present study, BTBR T+ tf/J (BTBR) mice with ASD-like behavioral characteristics and control FVB mice were exposed gestationally and/or neonatally to Pb, and compared with highly social FVB mice to investigate neuroimmunological abnormalities. IgG1 and IgG2a levels in fetal brains from BTBR dams exposed to Pb (BTBR-Pb) were significantly higher than those of BTBR-controls (BTBR-C). However, this change did not occur in FVB mice exposed to Pb. The IgG1:IgG2a ratio was higher in both fetal and postnatal brains of BTBR mice compared to FVB animals regardless of Pb exposure. The IL-4:IFN-γ ratio was elevated in BTBR-Pb relative to BTBR-C mice, but this ratio was not markedly affected following Pb exposure in FVB animals. These findings suggest the potential for a Pb-driven predominant TH2-like reactivity profile in brain microenvironment present in BTBR mice. Brain-derived neurotrophic factor was decreased in fetal and postnatal BTBR-Pb brains relative to BTBR-C brains but not in FVB-Pb relative to FVB-C mice. Taken together, data demonstrate that Pb exposure might contribute to developmental brain abnormalities associated with ASD, particularly in individuals with genetic susceptibility to ASD.
Collapse
Affiliation(s)
- KyeongMin Shin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - GyeongDong Lim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - SoNam Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoRyeon Hwang
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JaeHee Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoJung Sin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - AhRang Cho
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - YeonGyeong Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JiHun Jo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Anju Maharjan
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Pramod B K C
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yong Heo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Hyoung-Ah Kim
- Department of Preventive Medicine, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Dufault RJ, Wolle MM, Kingston HMS, Gilbert SG, Murray JA. Connecting inorganic mercury and lead measurements in blood to dietary sources of exposure that may impact child development. World J Methodol 2021; 11:144-159. [PMID: 34322366 PMCID: PMC8299913 DOI: 10.5662/wjm.v11.i4.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pre-natal and post-natal chemical exposures and co-exposures from a variety of sources including contaminated air, water, soil, and food are common and associated with poorer birth and child health outcomes. Poor diet is a contributing factor in the development of child behavioral disorders. Child behavior and learning can be adversely impacted when gene expression is altered by dietary transcription factors such as zinc insufficiency or deficiency or by exposure to toxic substances permitted in our food supply such as mercury, lead, or organophosphate pesticide residue. Children with autism spectrum disorder and attention deficit hyperactivity disorders exhibit decreased or impaired PON1 gene activity which is needed by the body to metabolize and excrete neurotoxic organophosphate pesticides. In this current review we present an updated macroepigenetic model that explains how dietary inorganic mercury and lead exposures from unhealthy diet may lead to elevated blood mercury and/or lead levels and the development of symptoms associated with the autism and attention deficit-hyperactivity disorders. PON1 gene activity may be suppressed by inadequate dietary calcium, selenium, and fatty acid intake or exposures to lead or mercury. The model may assist clinicians in diagnosing and treating the symptoms associated with these childhood neurodevelopmental disorders. Recommendations for future research are provided based on the updated model and review of recently published literature.
Collapse
Affiliation(s)
- Renee J Dufault
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Mesay M Wolle
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - H M Skip Kingston
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - Steven G Gilbert
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
16
|
Guo Y, Deng YH, Ke HJ, Wu JL. Iron Status in Relation to Low-Level Lead Exposure in a Large Population of Children Aged 0-5 Years. Biol Trace Elem Res 2021; 199:1253-1258. [PMID: 32562239 DOI: 10.1007/s12011-020-02253-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
There are limited data regarding low lead exposure and iron status in Chinese children. This study aimed to examine the association between low-level lead exposure and iron status in a large population of children aged 0-5 years. We reviewed the records of children aged 0-5 years who had blood lead, iron, ferritin, and hemoglobin measurements during 2014-2017 at the Guangdong Women and Children Hospital. We identified 17,486 children with a blood lead level < 100 μg/L. Multiple linear and logistic regression analyses were performed to estimate the associations between blood lead levels and blood iron, serum ferritin, and hemoglobin. The mean concentrations of blood lead, iron, ferritin, and hemoglobin were 31.50 μg/L, 7.50 mmol/L, 46.98 ng/mL, and 120.41 g/L, respectively. Adjusting for age and sex, blood lead was negatively correlated with iron (r = - 0.073, p < 0.05), ferritin (r = - 0.043, p < 0.05), and hemoglobin (r = - 0.047, p < 0.05). Compared with the 1st quintile of lead exposure, the 5th quintile of lead exposure was associated with a 0.146 mmol/L decrease in blood iron, a 4.678 ng/mL decrease in serum ferritin, and a 1.245 g/L decrease in hemoglobin. Adjusted odds ratios (95% confidence interval) for the 5th quintile of blood lead were 1.39 (1.25-1.55) for iron deficiency and 1.45 (1.26-1.67) for anemia, relative to the 1st quintile. Our study findings confirmed the previously established association of blood lead levels with decreasing iron status and extended previous findings to even low-level lead exposure in Chinese children.
Collapse
Affiliation(s)
- Yong Guo
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Yu-Hong Deng
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Hai-Jin Ke
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Jie-Ling Wu
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511400, China.
| |
Collapse
|
17
|
Kaur I, Behl T, Aleya L, Rahman MH, Kumar A, Arora S, Akter R. Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8989-9001. [PMID: 33447979 DOI: 10.1007/s11356-020-12255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/27/2020] [Indexed: 04/16/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder of the brain characterized by shortfall in the social portfolio of an individual and abbreviated interactive and communication aspects rendering stereotypical behavior and pitfalls in a child's memory, thinking, and learning capabilities. The incidence of ASD has accelerated since the past decade, portraying environment as one of the primary assets, comprising of metallic components aiming to curb the neurodevelopmental pathways in an individual. Many regulations like Clean Air Act and critical steps taken by countries all over the globe, like Sweden and the USA, have rendered the necessity to study the effects of environmental metallic components on ASD progression. The review focuses on the primary metallic components present in the environment (aluminum, lead, mercury, and arsenic), responsible for accelerating ASD symptoms by a set of general mechanisms like oxidative stress reduction, glycolysis suppression, microglial activation, and metalloprotein disruption, resulting in apoptotic signaling, neurotoxic effects, and neuroinflammatory responses. The effect of these metals can be retarded by certain protective strategies like chelation, dietary correction, certain agents (curcumin, mangiferin, selenium), and detoxification enhancement, which can necessarily halt the neurodegenerative effects.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Paris, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Schulz JH, Wilhelm Stanis SA, Hall DM, Webb EB. Until It's a regulation It's not my fight: Complexities of a voluntary nonlead hunting ammunition program. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111438. [PMID: 33027735 DOI: 10.1016/j.jenvman.2020.111438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Wildlife and human health are at risk of lead exposure from spent hunting ammunition. Lead exposure persists for bald eagles due to bullet fragments in game animal gut piles and unretrieved carcasses, and is also a human health risk when wild game is procured using lead ammunition. Programs encouraging the voluntary use of nonlead ammunition have become a popular approach mitigating these effects. This study explored attitudes and experiences of United States Fish and Wildlife Service (USFWS) staff implementing an outreach program encouraging deer hunters to voluntary use nonlead ammunition on 54 National Wildlife Refuges (NWRs) in the Upper Midwest, U.S. to understand factors affecting program implementation. We conducted 29 semi-structured interviews of USFWS staff along with 60 responses from an open-ended survey question. Twelve themes emerged from the data and were grouped into three broad categories: (1) challenges of dealing with complex issues, (2) importance of messengers and messages, and (3) resistance from staff. Challenges of dealing with complex issues included administrative restraint and uncertainty, scope and scale of program, human health not an agency responsibility, contextual political influences, and public-private collaborations. Importance of messengers and messages included the importance of experience, and salience of human health risk. Finally, resistance from staff included skepticism of the science and motives behind the program, competing priorities for refuge staff, differing perceptions of regulatory and voluntary approaches, cost and availability of nonlead ammunition, and disregard by some about lead ammunition and human health risks. Staff identified numerous challenges implementing the program, many of which were external factors beyond the control of the participants. Understanding the factors affecting program implementation may help guide future efforts encouraging the voluntary use of nonlead ammunition.
Collapse
Affiliation(s)
- John H Schulz
- School of Natural Resources, University of Missouri, 105 Anheuser-Busch Natural Resources Building, Columbia, MO, 65211, USA.
| | - Sonja A Wilhelm Stanis
- School of Natural Resources, University of Missouri, 105 Anheuser-Busch Natural Resources Building, Columbia, MO, 65211, USA.
| | - Damon M Hall
- School of Natural Resources, University of Missouri, 105 Anheuser-Busch Natural Resources Building, Columbia, MO, 65211, USA; Biomedical, Biological and Chemical Engineering, University of Missouri, 215 Agriculture Engineering Building, Columbia, MO, 65211, USA.
| | - Elisabeth B Webb
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, 302 Anheuser-Busch Natural Resources Building, Columbia, MO, 65211, USA.
| |
Collapse
|
19
|
Ijomone OM, Olung NF, Akingbade GT, Okoh COA, Aschner M. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J Trace Elem Med Biol 2020; 62:126638. [PMID: 32891009 PMCID: PMC7655547 DOI: 10.1016/j.jtemb.2020.126638] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Nzube F Olung
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Grace T Akingbade
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
20
|
Sitarik AR, Arora M, Austin C, Bielak LF, Eggers S, Johnson CC, Lynch SV, Kyun Park S, Hank Wu KH, Yong GJM, Cassidy-Bushrow AE. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota. ENVIRONMENT INTERNATIONAL 2020; 144:106062. [PMID: 32871381 PMCID: PMC7572588 DOI: 10.1016/j.envint.2020.106062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lead (Pb) is an environmentally ubiquitous heavy metal associated with a wide range of adverse health effects in children. Both lead exposure and the early life microbiome- which plays a critical role in human development-have been linked to similar health outcomes, but it is unclear if the adverse effects of lead are partially driven by early life gut microbiota dysbiosis. The objective of this study was to examine the association between in utero and postnatal lead levels (measured in deciduous baby teeth) and early life bacterial and fungal gut microbiota in the first year of life. METHODS Data from the Wayne County Health, Environment, Allergy and Asthma Longitudinal Study (WHEALS) birth cohort were analyzed. Tooth lead levels during the 2nd and 3rd trimesters and postnatally (<1 year of age) were quantified using high-resolution microspatial mapping of dentin growth rings. Early life microbiota were measured in stool samples collected at approximately 1 and 6 months of age, using both 16S rRNA (bacterial) and ITS2 (fungal) sequencing. Of the 1,258 maternal-child pairs in WHEALS, 146 had data on both tooth metals and early life microbiome. RESULTS In utero tooth lead levels were significantly associated with gut fungal community composition at 1-month of age, where higher levels of 2nd trimester tooth lead was associated with lower abundances of Candida and Aspergillus and higher abundances of Malassezia and Saccharomyces; 3rd trimester lead was also associated with lower abundances of Candida. Though lead did not significantly associate with the overall structure of the infant gut bacterial community, it associated with the abundance of some specific bacterial taxa, including the increased abundance of Collinsella and Bilophila and a decreased abundance of Bacteroides taxa. CONCLUSIONS The observed associations between lead exposure and infant gut microbiota could play a role in the impact of lead on childhood development. Given the paucity of research examining these associations in humans-particularly for fungal microbiota-further investigation is needed.
Collapse
Affiliation(s)
- Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health System, Detroit, USA.
| | - Manish Arora
- Senator Frank R Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, USA.
| | - Christine Austin
- Senator Frank R Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, USA.
| | | | - Shoshannah Eggers
- Senator Frank R Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, USA.
| | - Christine C Johnson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, USA.
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, USA.
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan, Ann Arbor, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA.
| | - Kuan-Han Hank Wu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, USA.
| | - Germaine J M Yong
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, USA.
| | | |
Collapse
|
21
|
Association between blood lead exposure and mental health in pregnant women: Results from the Japan environment and children's study. Neurotoxicology 2020; 79:191-199. [PMID: 32526257 DOI: 10.1016/j.neuro.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Although environmental lead exposure has decreased, several studies have shown that low-level lead exposure can result in adverse psychological symptoms. However, few studies have examined lead neurotoxicity in pregnant women. We investigated the association between lead exposure and psychological symptoms in pregnant women, and between socio-economic status and blood lead levels. METHODS Blood lead levels were measured in 17,267 pregnant women in the Japan Environment and Children's Study. Odds ratios (ORs) for high blood lead levels were calculated using multinomial logistic regression. Psychological symptoms were assessed using the Kessler Psychological Distress Scale (K6). ORs for depression (K6 ≥ 13 or ≥5) were calculated using logistic regression with adjustment for potential confounders. RESULTS The geometric mean of whole blood lead levels was 0.58 μg/dl (range 0.14-6.75 μg/dl). Higher blood lead levels were associated with older age (OR 1.79, 9 5% confidence interval [CI] 1.46-2.19), unmarried status (OR 1.75, 95 % CI 1.31-2.33), lower household income (OR 1.76, 95 % CI 1.38-2.24), and lower educational attainment (OR 1.34, 95 % CI 1.20-1.48). The percentage of women with K6 scores ≥13 and ≥5 was 3 % and 28.2 %, respectively. There was no significant association between lead exposure and K6 score (K6 ≥ 13: OR 1.00, 95 % CI 0.76-1.32; K6 ≥ 5: OR 0.98, 95 % CI 0.88-1.09). CONCLUSION Our results indicate a small but significant association between higher blood lead levels and lower socio-economic status in a population with low blood lead levels, but no association between low-level lead exposure and psychological symptoms.
Collapse
|
22
|
Guo BQ, Li HB, Liu YY. Association between hair lead levels and autism spectrum disorder in children: A systematic review and meta-analysis. Psychiatry Res 2019; 276:239-249. [PMID: 31121530 DOI: 10.1016/j.psychres.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 01/08/2023]
Abstract
A number of studies measured lead levels in hair from children with autism spectrum disorder (ASD) to detect the relationship between cumulated lead exposure and the development of ASD, but results are inconsistent. We aimed to conduct a systematic review and meta-analysis using the published studies to explore the actual association of hair lead levels with ASD in children. We searched PubMed, Embase, PsycINFO, and Cochrane Library databases (up to December 11, 2018). The random-effects model was applied to summarize effect sizes. Subgroup and meta-regression analyses were performed simultaneously. Twenty eligible studies involving 1787 participants (941 autistic children and 846 healthy subjects) were included. Our results of primary analysis showed that there were no statistically significant differences in the levels of hair lead between children with ASD and healthy individuals (Hedges's g = 0.251; 95% confidence interval: -0.121, 0.623; P = 0.187). We identified 2 sources of between-study heterogeneity: analytical technology and the sample size of patients. Additionally, no publication bias was observed in this meta-analysis. In conclusion, this study does not support the association of hair lead levels with ASD in children, and the involvement of cumulated lead exposure in the occurrence of ASD.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China.
| | - Hong-Bin Li
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China
| | - Ying-Ying Liu
- Key Laboratory of Environmental Pollutants and Health Effects Assessment, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
23
|
Exposure routes and health effects of heavy metals on children. Biometals 2019; 32:563-573. [DOI: 10.1007/s10534-019-00193-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
24
|
Schulz JH, Wilhelm Stanis SA, Webb EB, Li CJ, Hall DM. Communication strategies for reducing lead poisoning in wildlife and human health risks. WILDLIFE SOC B 2019. [DOI: 10.1002/wsb.955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John H. Schulz
- School of Natural ResourcesUniversity of Missouri105 Anheuser‐Busch Natural Resources BuildingColumbiaMO65211USA
| | - Sonja A. Wilhelm Stanis
- School of Natural ResourcesUniversity of Missouri105 Anheuser‐Busch Natural Resources BuildingColumbiaMO65211USA
| | - Elisabeth B. Webb
- U.S. Geological SurveyMissouri Cooperative Fish and Wildlife Research Unit302 Anheuser‐Busch Natural Resources BuildingColumbiaMO65211USA
| | - Christine Jie Li
- School of Natural ResourcesUniversity of Missouri105 Anheuser‐Busch Natural Resources BuildingColumbiaMO65211USA
| | - Damon M. Hall
- School of Natural Resources & Department of BioengineeringUniversity of Missouri105 Anheuser‐Busch Natural Resources BuildingColumbiaMO65211USA
| |
Collapse
|
25
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
26
|
Kim KN, Lim YH, Shin CH, Lee YA, Kim BN, Kim JI, Hwang IG, Hwang MS, Suh JH, Hong YC. Cohort Profile: The Environment and Development of Children (EDC) study: a prospective children’s cohort. Int J Epidemiol 2018; 47:1049-1050f. [DOI: 10.1093/ije/dyy070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Kyoung-Nam Kim
- Institute of Public Health Medical Service, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Centre, Seoul, Republic of Korea
- Environmental Health Centre
| | - Choong Ho Shin
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Department of Public Health Medical Services, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Public Health Medical Services, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Gyun Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongwon, Republic of Korea
| | - Myung Sil Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongwon, Republic of Korea
| | - Jin-Hyang Suh
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongwon, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Centre, Seoul, Republic of Korea
- Environmental Health Centre
| |
Collapse
|
27
|
Saghazadeh A, Ahangari N, Hendi K, Saleh F, Rezaei N. Status of essential elements in autism spectrum disorder: systematic review and meta-analysis. Rev Neurosci 2017; 28:783-809. [DOI: 10.1515/revneuro-2017-0015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/16/2017] [Indexed: 12/15/2022]
Abstract
AbstractAutism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that imposes heavy financial burden on governments and families of affected children. It is considered a multifactorial condition, where trace elements are among environmental factors that may contribute to ASD. Meanwhile, the between-study variance is high. The present systematic review was designed to investigate the difference in trace element measures between patients with ASD and control subjects. Meta-analyses showed that the hair concentrations of chromium (p=0.024), cobalt (p=0.012), iodine (p=0.000), iron (p=0.017), and magnesium (p=0.007) in ASD patients were significantly lower than those of control subjects, while there were higher magnesium levels in the hair of ASD patients compared to that of controls (p=0.010). Patients with ASD had higher blood levels of copper (p=0.000) and lower levels of zinc compared to controls (p=0.021). Further urinary iodine levels in patients with ASD were decreased in comparison with controls (p=0.026). Sensitivity analyses showed that ASD patients in non-Asian but not in Asian countries had lower hair concentrations of chromium compared to controls. Also, such analyses indicated that ASD patients in Asian countries had lower hair zinc concentrations, whereas ASD patients in non-Asian countries had higher hair zinc concentrations in comparison with control subjects. This study found significant differences in the content of trace elements between patients with ASD compared to controls. The findings help highlighting the role of trace elements as environmental factors in the etiology of ASD.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd., Tehran 14194, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran
| | - Narges Ahangari
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran
| | - Kasra Hendi
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran
| | - Fatemeh Saleh
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd., Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 14194, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| |
Collapse
|
28
|
Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:340-368. [PMID: 28716727 DOI: 10.1016/j.pnpbp.2017.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. METHODS We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. RESULTS 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0.77, CI: 0.31 to 1.23). These findings were confirmed by meta-regression analyses indicating that development status of countries significantly influences the overall effect size of mean difference for hair arsenic, cadmium, lead, and mercury between patients with ASD and controls. CONCLUSION The findings help highlighting the role of toxic metals as environmental factors in the etiology of ASD, especially in developing lands. While there are environmental factors other than toxic metals that greatly contribute to the etiology of ASD in developed lands. It would be, thus, expected that classification of ASD includes etiological entities of ASD on the basis of implication of industrial pollutants (developed vs. developing ASD).
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
29
|
Laidlaw MAS, Filippelli G, Mielke H, Gulson B, Ball AS. Lead exposure at firing ranges-a review. Environ Health 2017; 16:34. [PMID: 28376827 PMCID: PMC5379568 DOI: 10.1186/s12940-017-0246-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/30/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lead (Pb) is a toxic substance with well-known, multiple, long-term, adverse health outcomes. Shooting guns at firing ranges is an occupational necessity for security personnel, police officers, members of the military, and increasingly a recreational activity by the public. In the United States alone, an estimated 16,000-18,000 firing ranges exist. Discharge of Pb dust and gases is a consequence of shooting guns. METHODS The objectives of this study are to review the literature on blood lead levels (BLLs) and potential adverse health effects associated with the shooting population. The search terms "blood lead", "lead poisoning", "lead exposure", "marksmen", "firearms", "shooting", "guns", "rifles" and "firing ranges" were used in the search engines Google Scholar, PubMed and Science Direct to identify studies that described BLLs in association with firearm use and health effects associated with shooting activities. RESULTS Thirty-six articles were reviewed that included BLLs from shooters at firing ranges. In 31 studies BLLs > 10 μg/dL were reported in some shooters, 18 studies reported BLLs > 20 μg/dL, 17 studies > 30 μg/d, and 15 studies BLLs > 40 μg/dL. The literature indicates that BLLs in shooters are associated with Pb aerosol discharge from guns and air Pb at firing ranges, number of bullets discharged, and the caliber of weapon fired. CONCLUSIONS Shooting at firing ranges results in the discharge of Pb dust, elevated BLLs, and exposures that are associated with a variety of adverse health outcomes. Women and children are among recreational shooters at special risk and they do not receive the same health protections as occupational users of firing ranges. Nearly all BLL measurements compiled in the reviewed studies exceed the current reference level of 5 μg/dL recommended by the U.S. Centers for Disease Control and Prevention/National Institute of Occupational Safety and Health (CDC/NIOSH). Thus firing ranges, regardless of type and user classification, currently constitute a significant and unmanaged public health problem. Prevention includes clothing changed after shooting, behavioural modifications such as banning of smoking and eating at firing ranges, improved ventilation systems and oversight of indoor ranges, and development of airflow systems at outdoor ranges. Eliminating lead dust risk at firing ranges requires primary prevention and using lead-free primers and lead-free bullets.
Collapse
Affiliation(s)
- Mark A. S. Laidlaw
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, PO Box 71, Bundoora, VIC 3083 Australia
| | - Gabriel Filippelli
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN USA
| | - Howard Mielke
- Tulane University School of Medicine, New Orleans, LA USA
| | - Brian Gulson
- Department of Environmental Sciences, Macquarie University, Sydney, Australia
| | - Andrew S. Ball
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, PO Box 71, Bundoora, VIC 3083 Australia
| |
Collapse
|
30
|
Rogers JT, Venkataramani V, Washburn C, Liu Y, Tummala V, Jiang H, Smith A, Cahill CM. A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. J Neurochem 2016; 138:479-94. [PMID: 27206843 DOI: 10.1111/jnc.13671] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022]
Abstract
Iron supplementation ameliorates the neurotoxicity of the environmental contaminant lead (Pb); however, the mechanism remains undefined. Iron is an essential nutrient but high levels are toxic due to the catalytic generation of destructive hydroxyl radicals. Using human neuroblastoma SH-SY5Y cells to model human neurons, we investigated the effect of Pb on proteins of iron homeostasis: the Alzheimer's amyloid precursor protein (APP), which stabilizes the iron exporter ferroportin 1; and, the heavy subunit of the iron-storage protein, ferritin (FTH). Lead (Pb(II) and Pb(IV) inhibited APP translation and raised cytosolic iron(II). Lead also increased iron regulatory protein-1 binding to the cognate 5'untranslated region-specific iron-responsive element (IRE) of APP and FTH mRNAs. Concurrent iron treatment rescued cells from Pb toxicity by specifically restoring APP synthesis, i.e. levels of the APP-related protein, APLP-2, were unchanged. Significantly, iron/IRE-independent over-expression of APP695 protected SH-SY5Y cells from Pb toxicity, demonstrating that APP plays a key role in maintaining safe levels of intracellular iron. Overall, our data support a model of neurotoxicity where Pb enhances iron regulatory protein/IRE-mediated repression of APP and FTH translation. We propose novel treatment options for Pb poisoning to include chelators and the use of small molecules to maintain APP and FTH translation. We propose the following cascade for Lead (Pb) toxicity to neurons; by targeting the interaction between Iron regulatory protein-1 and Iron-responsive elements, Pb caused translational repression of proteins that control intracellular iron homeostasis, including the Alzheimer's amyloid precursor protein (APP) that stabilizes the iron exporter ferroportin, and the ferroxidase heavy subunit of the iron-storage protein, ferritin. When unregulated, IRE-independent over-expression of APP695 protected SH-SY5Y neurons from Pb toxicity. There is a novel and key role for APP in maintaining safe levels of intracellular iron pertinent to lead toxicity.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
| | - Cecilia Washburn
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yanyan Liu
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vinusha Tummala
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hong Jiang
- State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Ann Smith
- School of Biological Sciences, University of Missouri-K.C., Kansas City, Missouri, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|