1
|
August I, Gagneux P, Semendeferi K, Marchetto MC. Evolution of Human Susceptibility to Alzheimer's Disease: A Review of Hypotheses and Comparative Evidence. Evol Anthropol 2025; 34:e22054. [PMID: 39806778 DOI: 10.1002/evan.22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Primates rely on memory to navigate both physical and social environments and in humans, loss of memory function leads to devastating consequences. Alzheimer's disease (AD) is a neurodegenerative disease which begins by impacting memory functioning and is ultimately fatal. AD is common across human populations and its prevalence is predicted to rise with increases in the aging population. Despite this, the full AD phenotype has not been observed in any other nonhuman primate species. While a significant amount of research has been devoted to understanding the immediate mechanisms involved in AD pathogenesis in humans, less research has focused on why humans are particularly vulnerable to neurodegenerative diseases like AD. Here we explore hypotheses on the evolution of distinct human susceptibility to AD and place these in the context of findings from comparative neuroanatomical and molecular studies and discuss recent evidence for evolutionary changes protective against AD in the primate lineage.
Collapse
Affiliation(s)
- Isabel August
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
| | - Pascal Gagneux
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| | - Maria Carolina Marchetto
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| |
Collapse
|
2
|
Charvet CJ, de Sousa AA, Vassilopoulos T. Translating time: Challenges, progress, and future directions. Brain Res Bull 2025; 221:111212. [PMID: 39824228 DOI: 10.1016/j.brainresbull.2025.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Mice are the dominant model system to study human health and disease. Yet, there is a pressing need to use diverse model systems to address long-standing issues in biomedical sciences. Mice do not spontaneously recapitulate many of the diseases we seek to study. Accordingly, the relevance of studying mice to understand human disease is limited. We discuss examples associated with limitations of the mouse model, and how the inclusion of a richer array of model systems can help address long standing issues in biomedical sciences. We also discuss a tool called Translating Time, an online resource (www.translatingtime.org) that equates corresponding ages across model systems and humans. The translating time resource can be used to bridge the gap across species and make predictions when data are sparse or unavailable as is the case for human fetal development. Moreover, the Translating Time tool can map findings across species, make inferences about the evolution of shared neuropathologies, and inform the optimal model system for studying human biology in health and in disease. Resources such as these can be utilized to integrate information across diverse model systems to improve the study of human biology in health and disease.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Alexandra A de Sousa
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Zhang C, Jia Q, Zhu L, Hou J, Wang X, Li D, Zhang J, Zhang Y, Yang S, Tu Z, Yan X, Yang W, Li S, Li X, Yin P. Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimers Dement 2024; 20:6287-6304. [PMID: 39015037 PMCID: PMC11497675 DOI: 10.1002/alz.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jiawei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Yiran Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Xin Yan
- Department of Anatomy and NeurobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Sogabe K, Hata J, Yoshimaru D, Hagiya K, Okano HJ, Okano H. Structural MRI analysis of age-related changes and sex differences in marmoset brain volume. Neurosci Res 2024; 206:20-29. [PMID: 38636670 DOI: 10.1016/j.neures.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.
Collapse
Affiliation(s)
- Kazumi Sogabe
- The Jikei University School of Medicine, Japan; Teikyo University Faculty of Medical Technology, Japan
| | - Junichi Hata
- The Jikei University School of Medicine, Japan; Tokyo Metropolitan University, Japan
| | - Daisuke Yoshimaru
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka James Okano
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Keio University Regenerative Medicine Research Center 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
5
|
Liu YS, Baxi M, Madan CR, Zhan K, Makris N, Rosene DL, Killiany RJ, Cetin-Karayumak S, Pasternak O, Kubicki M, Cao B. Brain age of rhesus macaques over the lifespan. Neurobiol Aging 2024; 139:73-81. [PMID: 38643691 DOI: 10.1016/j.neurobiolaging.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.
Collapse
Affiliation(s)
- Yang S Liu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kevin Zhan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nikolaos Makris
- Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. Comparative Analysis of Human-Chimpanzee Divergence in Brain Connectivity and its Genetic Correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597252. [PMID: 38895242 PMCID: PMC11185649 DOI: 10.1101/2024.06.03.597252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
7
|
Li H, Xiang BL, Li X, Li C, Li Y, Miao Y, Ma GL, Ma YH, Chen JQ, Zhang QY, Lv LB, Zheng P, Bi R, Yao YG. Cognitive Deficits and Alzheimer's Disease-Like Pathologies in the Aged Chinese Tree Shrew. Mol Neurobiol 2024; 61:1892-1906. [PMID: 37814108 DOI: 10.1007/s12035-023-03663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is the most common chronic progressive neurodegenerative disease in the elderly. It has an increasing prevalence and a growing health burden. One of the limitations in studying AD is the lack of animal models that show features of Alzheimer's pathogenesis. The tree shrew has a much closer genetic affinity to primates than to rodents and has great potential to be used for research into aging and AD. In this study, we aimed to investigate whether tree shrews naturally develop cognitive impairment and major AD-like pathologies with increasing age. Pole-board and novel object recognition tests were used to assess the cognitive performance of adult (about 1 year old) and aged (6 years old or older) tree shrews. The main AD-like pathologies were assessed by Western blotting, immunohistochemical staining, immunofluorescence staining, and Nissl staining. Our results showed that the aged tree shrews developed an impaired cognitive performance compared to the adult tree shrews. Moreover, the aged tree shrews exhibited several age-related phenotypes that are associated with AD, including increased levels of amyloid-β (Aβ) accumulation and phosphorylated tau protein, synaptic and neuronal loss, and reactive gliosis in the cortex and the hippocampal tissues. Our study provides further evidence that the tree shrew is a promising model for the study of aging and AD.
Collapse
Affiliation(s)
- Hongli Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Cong Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Ying Miao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guo-Lan Ma
- Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu-Hua Ma
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Qing-Yu Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| |
Collapse
|
8
|
He S, Guan Y, Cheng CH, Moore TL, Luebke JI, Killiany RJ, Rosene DL, Koo BB, Ou Y. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age. Front Aging Neurosci 2023; 15:1249415. [PMID: 38020785 PMCID: PMC10646581 DOI: 10.3389/fnagi.2023.1249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective "brain age" metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.
Collapse
Affiliation(s)
- Sheng He
- Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yi Guan
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Chia Hsin Cheng
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Bang-Bon Koo
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Yangming Ou
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Demirci N, Hoffman ME, Holland MA. Systematic cortical thickness and curvature patterns in primates. Neuroimage 2023; 278:120283. [PMID: 37516374 PMCID: PMC10443624 DOI: 10.1016/j.neuroimage.2023.120283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Humans are known to have significant and consistent differences in thickness throughout the cortex, with thick outer gyral folds and thin inner sulcal folds. Our previous work has suggested a mechanical basis for this thickness pattern, with the forces generated during cortical folding leading to thick gyri and thin sulci, and shown that cortical thickness varies along a gyral-sulcal spectrum in humans. While other primate species are expected to exhibit similar patterns of cortical thickness, it is currently unknown how these patterns scale across different sizes, forms, and foldedness. Among primates, brains vary enormously from roughly the size of a grape to the size of a grapefruit, and from nearly smooth to dramatically folded; of these, human brains are the largest and most folded. These variations in size and form make comparative neuroanatomy a rich resource for investigating common trends that transcend differences between species. In this study, we examine 12 primate species in order to cover a wide range of sizes and forms, and investigate the scaling of their cortical thickness relative to the surface geometry. The 12 species were selected due to the public availability of either reconstructed surfaces and/or population templates. After obtaining or reconstructing 3D surfaces from publicly available neuroimaging data, we used our surface-based computational pipeline (https://github.com/mholla/curveball) to analyze patterns of cortical thickness and folding with respect to size (total surface area), geometry (i.e. curvature, shape, and sulcal depth), and foldedness (gyrification). In all 12 species, we found consistent cortical thickness variations along a gyral-sulcal spectrum, with convex shapes thicker than concave shapes and saddle shapes in between. Furthermore, we saw an increasing thickness difference between gyri and sulci as brain size increases. Our results suggest a systematic folding mechanism relating local cortical thickness to geometry. Finally, all of our reconstructed surfaces and morphometry data are available for future research in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Commun Biol 2023; 6:655. [PMID: 37344566 PMCID: PMC10284893 DOI: 10.1038/s42003-023-05034-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Brier A Rigby Dames
- Department of Psychology, University of Bath, Bath, UK
- Department of Computer Science, University of Bath, Bath, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rania Mohamedelhassan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
11
|
Hopkins WD, Li X, Roberts N, Mulholland MM, Sherwood CC, Edler MK, Raghanti MA, Schapiro SJ. Age differences in cortical thickness and their association with cognition in chimpanzee (Pan troglodytes). Neurobiol Aging 2023; 126:91-102. [PMID: 36958104 PMCID: PMC10106435 DOI: 10.1016/j.neurobiolaging.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years. We found that chimpanzees showed global and region-specific thinning of cortex with increasing age. Further, within the elderly cohort, chimpanzees that performed better than average had thicker cortex in frontal, temporal and parietal regions compared to chimpanzees that performed worse than average. Independent of age, we also found sex differences in cortical thickness in 4 brain regions. Males had higher adjusted cortical thickness scores for the caudal anterior cingulate, rostral anterior cingulate, and medial orbital frontal while females had higher values for the inferior parietal cortex. We found no evidence that increasing age nor sex was associated with asymmetries in cortical thickness. Moreover, age-related differences in cognitive function were only weakly associated with asymmetries in cortical thickness. In summary, as has been reported in humans and other primates, elderly chimpanzees show thinner cortex and variation in cortical thickness is associated with general cognitive functions.
Collapse
Affiliation(s)
- William D Hopkins
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX.
| | - Xiang Li
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Michele M Mulholland
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Melissa K Edler
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Steven J Schapiro
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Dash S, Park B, Kroenke CD, Rooney WD, Urbanski HF, Kohama SG. Brain volumetrics across the lifespan of the rhesus macaque. Neurobiol Aging 2023; 126:34-43. [PMID: 36917864 PMCID: PMC10106431 DOI: 10.1016/j.neurobiolaging.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
The rhesus macaque is a long-lived nonhuman primate (NHP) with a brain structure similar to humans, which may represent a valuable translational animal model in which to study human brain aging. Previous magnetic resonance imaging (MRI) studies of age in rhesus macaque brains have been prone to low statistical power, unbalanced sex ratio and lack of a complete age range. To overcome these problems, the current study surveyed structural T1-weighted magnetic resonance imaging scans of 66 animals, 34 females (aged 6-31 years) and 32 males (aged 5-27 years). Differences observed in older animals, included enlargement of the lateral ventricles and a smaller volume in the frontal cortex, caudate, putamen, hypothalamus, and thalamus. Unexpected, greater volume, were measured in older animals in the hippocampus, amygdala, and globus pallidus. There were also numerous differences between males and females with respect to age in both white and gray matter regions. As an apparent model of normative human aging, the macaque is ideal for studying induction and mitigation of neurodegenerative disease.
Collapse
Affiliation(s)
- Steven Dash
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Garin CM, Dhenain M. Mean amplitude of low frequency fluctuations measured by fMRI at 11.7 T in the aging brain of mouse lemur primate. Sci Rep 2023; 13:7970. [PMID: 37198192 DOI: 10.1038/s41598-023-33482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Non-human primates are a critical species for the identification of key biological mechanisms in normal and pathological aging. One of these primates, the mouse lemur, has been widely studied as a model of cerebral aging or Alzheimer's disease. The amplitude of low-frequency fluctuations of blood oxygenation level-dependent (BOLD) can be measured with functional MRI. Within specific frequency bands (e.g. the 0.01-0.1 Hz), these amplitudes were proposed to indirectly reflect neuronal activity as well as glucose metabolism. Here, we first created whole brain maps of the mean amplitude of low frequency fluctuations (mALFF) in young mouse lemurs (mean ± SD: 2.1 ± 0.8 years). Then, we extracted mALFF in old lemurs (mean ± SD: 8.8 ± 1.1 years) to identify age-related changes. A high level of mALFF was detected in the temporal cortex (Brodmann area 20), somatosensory areas (Brodmann area 5), insula (Brodmann areas 13-6) and the parietal cortex (Brodmann area 7) of healthy young mouse lemurs. Aging was associated with alterations of mALFF in somatosensory areas (Brodmann area 5) and the parietal cortex (Brodmann area 7).
Collapse
Affiliation(s)
- Clément M Garin
- UMR 9199, Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses Cedex, France
| | - Marc Dhenain
- UMR 9199, Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
14
|
Mulholland MM, Meguerditchian A, Hopkins WD. Age- and sex-related differences in baboon (Papio anubis) gray matter covariation. Neurobiol Aging 2023; 125:41-48. [PMID: 36827943 PMCID: PMC10308318 DOI: 10.1016/j.neurobiolaging.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/30/2023]
Abstract
Age-related changes in cognition, brain morphology, and behavior are exhibited in several primate species. Baboons, like humans, naturally develop Alzheimer's disease-like pathology and cognitive declines with age and are an underutilized model for studies of aging. To determine age-related differences in gray matter covariation of 89 olive baboons (Papio anubis), we used source-based morphometry (SBM) to analyze data from magnetic resonance images. We hypothesized that we would find significant age effects in one or more SBM components, particularly those which include regions influenced by age in humans and other nonhuman primates (NHPs). A multivariate analysis of variance revealed that individual weighted gray matter covariation scores differed across the age classes. Elderly baboons contributed significantly less to gray matter covariation components including the brainstem, superior parietal cortex, thalamus, and pallidum compared to juveniles, and middle and superior frontal cortex compared to juveniles and young adults (p < 0.05). Future studies should examine the relationship between the changes in gray matter covariation reported here and age-related cognitive decline.
Collapse
Affiliation(s)
- M M Mulholland
- The University of Texas MD Anderson Cancer Center, Bastrop, TX.
| | - A Meguerditchian
- Laboratoire de Psychologie Cognitive UMR7290, LPC, CNRS, Aix-Marseille University, Institute of Language, Communication and the Brain, Marseille, France; Station de Primatologie-Celphedia, UAR846, Rousset, France
| | - W D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
15
|
Sakai T, Hata J, Shintaku Y, Ohta H, Sogabe K, Mori S, Miyabe-Nishiwaki T, Okano HJ, Hamada Y, Hirabayashi T, Minamimoto T, Sadato N, Okano H, Oishi K. The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records. Neuroimage 2023; 273:120096. [PMID: 37031828 DOI: 10.1016/j.neuroimage.2023.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2022] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.
Collapse
Affiliation(s)
- Tomoko Sakai
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Yuta Shintaku
- Wildlife Research Center, Kyoto University, Kyoto, Japan; Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Sogabe
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kenney Krieger Institute, Baltimore, MD, USA
| | - Takako Miyabe-Nishiwaki
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hamada
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
16
|
Kaplan H, Hooper PL, Gatz M, Mack WJ, Law EM, Chui HC, Sutherland ML, Sutherland JD, Rowan CJ, Wann LS, Allam AH, Thompson RC, Michalik DE, Lombardi G, Miyamoto MI, Eid Rodriguez D, Copajira Adrian J, Quispe Gutierrez R, Beheim BA, Cummings DK, Seabright E, Alami S, R. Garcia A, Buetow K, Thomas GS, Finch CE, Stieglitz J, Trumble BC, Gurven MD, Irimia A. Brain volume, energy balance, and cardiovascular health in two nonindustrial South American populations. Proc Natl Acad Sci U S A 2023; 120:e2205448120. [PMID: 36940322 PMCID: PMC10068758 DOI: 10.1073/pnas.2205448120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/24/2023] [Indexed: 03/22/2023] Open
Abstract
Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.
Collapse
Affiliation(s)
- Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, CA82866
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA82866
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA90089
| | - Wendy J. Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - E. Meng Law
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Department of Radiology, The Alfred Health Hospital, Melbourne, VIC3004, Australia
- iBRAIN Research Laboratory, Departments of Neuroscience, Computer Systems and Electrical Engineering, Monash University, Melbourne, VIC3800, Australia
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | | | | | - Christopher J. Rowan
- Renown Institute for Heart and Vascular Health, Reno, NV89502
- School of Medicine, University of Nevada, Reno, NV89557
| | - L. Samuel Wann
- Division of Cardiology, University of New Mexico, Albuquerque, NM87131
| | - Adel H. Allam
- Department of Cardiology, School of Medicine, Al-Azhar University, Al Mikhaym Al Daem, Cairo4334003, Egypt
| | - Randall C. Thompson
- Saint Luke’s Mid America Heart Institute, University of Missouri - Kansas City, Kansas City, MO64111
| | - David E. Michalik
- Department of Pediatrics, School of Medicine, University of California at Irvine, Orange, CA92617
- MemorialCare Miller Children’s and Women’s Hospital, Long Beach, CA90806
| | - Guido Lombardi
- Laboratorio de Paleopatologia, Catedra Pedro Weiss, Universidad Peruana Cayetano Heredia, Lima15102, Peru
| | | | | | | | | | - Bret A. Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | | | - Edmond Seabright
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
| | - Sarah Alami
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Angela R. Garcia
- Scientific Research Core, Phoenix Children’s Hospital, Phoenix, AZ85016
- Department of Child Health, University of Arizona, Tucson, AZ85724
| | - Kenneth Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Gregory S. Thomas
- MemorialCare Health Systems, Fountain Valley, CA92708
- Division of Cardiology, University of California, Irvine, Orange, CA92868
| | - Caleb E. Finch
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, Anthropology and Psychology, University of Southern California, Los Angeles, CA90089
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Toulouse 1 Capitole University, Toulouse31000, France
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
17
|
Cui Y, Huang H, Gao J, Jiang T, Zhang C, Yu S. Mapping blood traits to structural organization of the brain in rhesus monkeys. Cereb Cortex 2022; 33:247-257. [PMID: 35253862 DOI: 10.1093/cercor/bhac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/17/2023] Open
Abstract
Hematological and biochemical blood traits have been linked to brain structural characteristics in humans. However, the relationship between these two domains has not been systematically explored in nonhuman primates, which are crucial animal models for understanding the mechanisms of brain function and developing therapeutics for various disorders. Here we investigated the associations between hematological/biochemical parameters and the brain's gray matter volume and white matter integrity derived from T1-weighted and diffusion magnetic resonance imaging in 36 healthy macaques. We found that intersubject variations in basophil count and hemoglobin levels correlated with gray matter volumes in the anterior cingulum, prefrontal cortex, and putamen. Through interactions between these key elements, the blood parameters' covariation network was linked with that of the brain structures, forming overarching networks connecting blood traits with structural brain features. These networks exhibited hierarchical small-world architecture, indicating highly effective interactions between their constituent elements. In addition, different subnetworks of the brain areas or fiber tracts tended to correlate with unique groups of blood indices, revealing previously unknown brain structural organization. These results provide a quantitative characterization of the interactions between blood parameters and brain structures in macaques and may increase the understanding of the body-brain relationship and the pathogenesis of relevant disorders.
Collapse
Affiliation(s)
- Yue Cui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibin Huang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinquan Gao
- Model R&D Center, Life Biosciences Company Limited, Beijing 100176, China.,Technology Management Center, SAFE Pharmaceutical Technology Company Limited, Beijing 100176, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Colby AE, DeCasien AR, Cooper EB, Higham JP. Greater variability in rhesus macaque ( Macaca mulatta) endocranial volume among males than females. Proc Biol Sci 2022; 289:20220728. [PMID: 36350207 PMCID: PMC9653222 DOI: 10.1098/rspb.2022.0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2023] Open
Abstract
The greater male variability (GMV) hypothesis proposes that traits are more variable among males than females, and is supported by numerous empirical studies. Interestingly, GMV is also observed for human brain size and internal brain structure, a pattern which may have implications for sex-biased neurological and psychiatric conditions. A better understanding of neuroanatomical variability in non-human primates may illuminate whether certain species are appropriate models for these conditions. Here, we tested for sex differences in the variability of endocranial volume (ECV, a proxy for brain size) in a sample of 542 rhesus macaques (Macaca mulatta) from a large pedigreed free-ranging population. We also examined the components of phenotypic variance (additive genetic and residual variance) to tease apart the potential drivers of sex differences in variability. Our results suggest that males exhibit more variable ECVs, and that this pattern reflects either balancing/disruptive selection on male behaviour (associated with alternative male mating strategies) or sex chromosome effects (associated with mosaic patterns of X chromosome gene expression in females), rather than extended neurodevelopment among males. This represents evidence of GMV for brain size in a non-human primate species and highlights the potential of rhesus macaques as a model for sex-biased brain-based disorders.
Collapse
Affiliation(s)
- Abigail E. Colby
- Department of Anthropology, New York University, New York, NY, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Section on Developmental Neurogenomics, National Institutes of Health, Bethesda, MD, USA
| | - Eve B. Cooper
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
19
|
August I, Semendeferi K, Marchetto MC. Brain aging, Alzheimer's disease, and the role of stem cells in primate comparative studies. J Comp Neurol 2022; 530:2940-2953. [PMID: 35929189 DOI: 10.1002/cne.25394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Currently, millions of Americans are living with AD, and this number is predicted to grow with increases in the aging population. Interestingly, despite the prevalence of AD in human populations, the full AD phenotype has not been observed in any nonhuman primate (NHP) species, and it has been suggested that NHPs are immune to neurodegenerative diseases such as AD. Here, we review the typical age-related changes and pathologies in humans along with the neuropathologic changes associated with AD, and we place this information in the context of the comparative neuropathology of NHPs. We further propose the use of induced pluripotent stem cell technology as a way of addressing initial molecular processes and changes that occur in neurons and glia (in both humans and NHPs) when exposed to AD-inducing pathology prior to cell death.
Collapse
Affiliation(s)
- Isabel August
- Department of Anthropology, University of California, San Diego, San Diego, California, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California, San Diego, San Diego, California, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), San Diego, California, USA
| | - Maria Carolina Marchetto
- Department of Anthropology, University of California, San Diego, San Diego, California, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), San Diego, California, USA
| |
Collapse
|
20
|
Ouyang F, Chen X, Liang J, Li J, Jiang Z, Chen Y, Yan Z, Zeng J, Xing S. Population-Average Brain Templates and Application to Automated Voxel-Wise Analysis Pipelines for Cynomolgus Macaque. Neuroinformatics 2022; 20:613-626. [PMID: 34523062 DOI: 10.1007/s12021-021-09545-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The growing number of neuroimaging studies of cynomolgus macaques require extending existing templates to facilitate species-specific application of voxel-wise neuroimaging methodologies. This study aimed to create population-averaged structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) templates for the cynomolgus macaques and apply the templates in fully automated voxel-wise analyses. We presented the development of symmetric and asymmetric MRI and DTI templates from a sample of 63 young male cynomolgus monkeys with the use of optimized template creation approaches. We also generated the associated average tissue probability maps and Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra templates for use with the Statistical Parametric Mapping (SPM), as well as the average fractional anisotropy/skeleton targets for incorporation into tract-based spatial statistics (TBSS) framework. Both asymmetric and symmetric templates in a standardized coordinate space demonstrated low bias and high contrast. Fully automated processing using SPM was accomplished for all native MRI datasets and demonstrated outstanding performance regarding skull-stripping, segmentation, and normalization when using the MRI templates. Automated normalization to the DTI template was excellently achieved for all native DTI images using the TBSS pipeline. The cynomolgus MRI and DTI templates are anticipated to provide a common platform for precise single-subject data analysis and facilitate comparison of neuroimaging findings in cynomolgus monkeys across studies and sites. It is also hoped that the procedures of template creation and fully-automated voxel-wise frameworks will provide a straightforward avenue for investigating brain function, development, and neuro-psychopathological disorders in non-human primate models.
Collapse
Affiliation(s)
- Fubing Ouyang
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xinran Chen
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jiahui Liang
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jianle Li
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zimu Jiang
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yicong Chen
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Shihui Xing
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Epigenetic aging of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics 2022; 17:1774-1785. [PMID: 35603816 DOI: 10.1080/15592294.2022.2080993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic age has emerged as an important biomarker of biological aging. It has revealed that some tissues age faster than others, which is vital to understanding the complex phenomenon of aging and developing effective interventions. Previous studies have demonstrated that humans exhibit heterogeneity in pace of epigenetic aging among brain structures that are consistent with differences in structural and microanatomical deterioration. Here, we add comparative data on epigenetic brain aging for chimpanzees, humans' closest relatives. Such comparisons can further our understanding of which aspects of human aging are evolutionarily conserved or specific to our species, especially given that humans are distinguished by a long lifespan, large brain, and, potentially, more severe neurodegeneration with age. Specifically, we investigated epigenetic aging of the dorsolateral prefrontal cortex and cerebellum, of humans and chimpanzees by generating genome-wide CpG methylation data and applying established epigenetic clock algorithms to produce estimates of biological age for these tissues. We found that both species exhibit relatively slow epigenetic aging in the brain relative to blood. Between brain structures, humans show a faster rate of epigenetic aging in the dorsolateral prefrontal cortex compared to the cerebellum, which is consistent with previous findings. Chimpanzees, in contrast, show comparable rates of epigenetic aging in the two brain structures. Greater epigenetic change in the human dorsolateral prefrontal cortex compared to the cerebellum may reflect both the protracted development of this structure in humans and its greater age-related vulnerability to neurodegenerative pathology.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.,Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,MAEBIOS, Alamogordo, NM 88310, USA
| | - Brenda J Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
22
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
23
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
24
|
Cheng L, Zhang Y, Li G, Wang J, Sherwood C, Gong G, Fan L, Jiang T. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. eLife 2021; 10:e67600. [PMID: 34219649 PMCID: PMC8257252 DOI: 10.7554/elife.67600] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The inferior parietal lobule (IPL) is one of the most expanded cortical regions in humans relative to other primates. It is also among the most structurally and functionally asymmetric regions in the human cerebral cortex. Whether the structural and connectional asymmetries of IPL subdivisions differ across primate species and how this relates to functional asymmetries remain unclear. We identified IPL subregions that exhibited positive allometric in both hemispheres, scaling across rhesus macaque monkeys, chimpanzees, and humans. The patterns of IPL subregions asymmetry were similar in chimpanzees and humans, but no IPL asymmetries were evident in macaques. Among the comparative sample of primates, humans showed the most widespread asymmetric connections in the frontal, parietal, and temporal cortices, constituting leftward asymmetric networks that may provide an anatomical basis for language and tool use. Unique human asymmetric connectivity between the IPL and primary motor cortex might be related to handedness. These findings suggest that structural and connectional asymmetries may underlie hemispheric specialization of the human brain.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Gang Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Center for Language and Brain, Shenzhen Institute of NeuroscienceShenzhenChina
| | - Chet Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
25
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genet 2021; 17:e1009506. [PMID: 33956822 PMCID: PMC8101944 DOI: 10.1371/journal.pgen.1009506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution. Humans are distinguished from other species by several aspects of cognition. While much comparative evolutionary neuroscience has focused on the neocortex, increasing recognition of the cerebellum’s role in cognition and motor processing has inspired considerable new research. Comparative molecular studies, however, generally continue to focus on the neocortex. We sought to characterize potential genetic regulatory traits distinguishing the human cerebellum by undertaking genome-wide epigenetic profiling of the lateral cerebellum, and compared this to the prefrontal cortex of humans, chimpanzees, and rhesus macaque monkeys. We found that humans showed greater differential CpG methylation–an epigenetic modification of DNA that can reflect past or present gene expression–in the cerebellum than the prefrontal cortex, highlighting the importance of this structure in human brain evolution. Humans also specifically show methylation differences at genes involved in neurodevelopment, neuroinflammation, synaptic plasticity, and lipid metabolism. These differences are relevant for understanding processes specific to humans, such as extensive plasticity, as well as pronounced and prevalent neurodegenerative conditions associated with aging.
Collapse
Affiliation(s)
- Elaine E. Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - John J. Ely
- MAEBIOS, Alamogordo, New Mexico, United States of America
| | - Brenda J. Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
26
|
Westerhausen R, Fjell AM, Kompus K, Schapiro SJ, Sherwood CC, Walhovd KB, Hopkins WD. Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (Pan troglodytes) and humans. J Comp Neurol 2021; 529:1584-1596. [PMID: 32978976 PMCID: PMC7987726 DOI: 10.1002/cne.25039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The human corpus callosum exhibits substantial atrophy in old age, which is stronger than what would be predicted from parallel changes in overall brain anatomy. To date, however, it has not been conclusively established whether this accentuated decline represents a common feature of brain aging across species, or whether it is a specific characteristic of the aging human brain. In the present cross-sectional study, we address this question by comparing age-related difference in corpus callosum morphology of chimpanzees and humans. For this purpose, we measured total midsagittal area and regional thickness of the corpus callosum from T1-weighted MRI data from 213 chimpanzees, aged between 9 and 54 years. The results were compared with data drawn from a large-scale human sample which was age-range matched using two strategies: (a) matching by chronological age (human sample size: n = 562), or (b) matching by accounting for differences in longevity and various maturational events between the species (i.e., adjusted human age range: 13.6 to 80.9 years; n = 664). Using generalized additive modeling to fit and compare aging trajectories, we found significant differences between the two species. The chimpanzee aging trajectory compared with the human trajectory was characterized by a slower increase from adolescence to middle adulthood, and by a lack of substantial decline from middle to old adulthood, which, however, was present in humans. Thus, the accentuated decline of the corpus callosum found in aging humans is not a universal characteristic of the aging brain, and appears to be human-specific.
Collapse
Affiliation(s)
- René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, Norway
- Institute of Psychology, University of Tartu, Estonia
| | - Steven J. Schapiro
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
- Department of Experimental Medicine, University of Copenhagen, Denmark
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
27
|
Mulholland MM, Sherwood CC, Schapiro SJ, Raghanti MA, Hopkins WD. Age- and cognition-related differences in the gray matter volume of the chimpanzee brain (Pan troglodytes): A voxel-based morphometry and conjunction analysis. Am J Primatol 2021; 83:e23264. [PMID: 33899958 DOI: 10.1002/ajp.23264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023]
Abstract
Several primate species have been shown to exhibit age-related changes in cognition, brain, and behavior. However, severe neurodegenerative illnesses, such as Alzheimer's disease (AD), were once thought to be uniquely human. Recently, some chimpanzees naturally were documented to develop both neurofibrillary tangles and amyloid plaques, the main characteristics of AD pathology. In addition, like humans and other primates, chimpanzees show similar declines in cognition and motor function with age. Here, we used voxel-based morphometry to examine the relationships among gray matter volume, age, and cognition using magnetic resonance imaging scans previously acquired from chimpanzees (N = 216). We first determined the relationship between age and gray matter volume, identifying the regions that declined with age. With a subset of our sample (N = 103), we also determined differences in gray matter volume between older chimpanzees with higher cognition scores than expected for their age, and older chimpanzees with lower than expected scores. Finally, we ran a conjunction analysis to determine any overlap in brain regions between these two analyses. We found that as chimpanzees age, they lose gray matter in regions associated with cognition. In addition, cognitively healthy older chimpanzees (those performing better for their age) have greater gray matter volume in many brain regions compared with chimpanzees who underperform for their age. Finally, the conjunction analysis revealed that regions of age-related decline overlap with the regions that differ between cognitively healthy chimpanzees and those who underperform. This study provides further evidence that chimpanzees are an important model for research on the neurobiology of aging. Future studies should investigate the effects of cognitive stimulation on both cognitive performance and brain structure in aging nonhuman primates.
Collapse
Affiliation(s)
- Michele M Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.,Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
28
|
Corpus callosum morphology across the lifespan in baboons (Papio anubis): A cross-sectional study of relative mid-sagittal surface area and thickness. Neurosci Res 2021; 171:19-26. [PMID: 33744333 DOI: 10.1016/j.neures.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
The corpus callosum enables integration and coordination of cognitive processing between the cerebral hemispheres. In the aging human brain, these functions are affected by progressive axon and myelin deteriorations, reflected as atrophy of the midsagittal corpus callosum in old age. In non-human primates, these degenerative processes are less pronounced as previous morphometric studies on capuchin monkey, rhesus monkeys, and chimpanzees do not find old-age callosal atrophy. In the present study, we extend these previous findings by studying callosal development of the olive baboon (Papio anubis) across the lifespan and compare it to chimpanzee and human data. For this purpose, total relative (to forebrain volume) midsagittal area, subsectional area, and regional thickness of the corpus callosum were assessed in 91 male and female baboons using non-invasive MRI-based morphometry. The studied age range was 2.5-26.6 years and lifespan trajectories were fitted using general additive modelling. Relative area of the total and anterior corpus callosum showed a positive linear trajectory. That is, both measures increased slowly but continuously from childhood into old age, and no decline was observed in old age. Thus, comparable with all other non-human primates studied to-date, baboons do not show callosal atrophy in old age. This observation lends supports to the notion that atrophy of the corpus callosum is a unique characteristic of human brain aging.
Collapse
|
29
|
Hopkins WD, Mareno MC, Webb SJN, Schapiro SJ, Raghanti MA, Sherwood CC. Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-sectional and longitudinal analyses. Am J Primatol 2021; 83:e23214. [PMID: 33169860 PMCID: PMC7904603 DOI: 10.1002/ajp.23214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Chimpanzees are the species most closely related to humans, yet age-related changes in brain and cognition remain poorly understood. The lack of studies on age-related changes in cognition in chimpanzees is particularly unfortunate in light of the recent evidence demonstrating that this species naturally develops Alzheimer's disease (AD) neuropathology. Here, we tested 213 young, middle-aged, and elderly captive chimpanzees on the primate cognitive test battery (PCTB), a set of 13 tasks that assess physical and social cognition in nonhuman primates. A subset of these chimpanzees (n = 146) was tested a second time on a portion of the PCTB tasks as a means of evaluating longitudinal changes in cognition. Cross-sectional analyses revealed a significant quadratic association between age and cognition with younger and older chimpanzees performing more poorly than middle-aged individuals. Longitudinal analyses showed that the oldest chimpanzees at the time of the first test showed the greatest decline in cognition, although the effect was mild. The collective data show that chimpanzees, like other nonhuman primates, show age-related decline in cognition. Further investigations into whether the observed cognitive decline is associated with AD pathologies in chimpanzees would be invaluable in understanding the comparative biology of aging and neuropathology in primates.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Catherine Mareno
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah J Neal Webb
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute Kent State University, Kent, Ohio 44242, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
30
|
Charvet CJ. Cutting across structural and transcriptomic scales translates time across the lifespan in humans and chimpanzees. Proc Biol Sci 2021; 288:20202987. [PMID: 33563125 DOI: 10.1098/rspb.2020.2987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How the unique capacities of human cognition arose in evolution is a question of enduring interest. It is still unclear which developmental programmes are responsible for the emergence of the human brain. The inability to determine corresponding ages between humans and apes has hampered progress in detecting developmental programmes leading to the emergence of the human brain. I harness temporal variation in anatomical, behavioural and transcriptional variation to determine corresponding ages from fetal to postnatal development and ageing, between humans and chimpanzees. This multi-dimensional approach results in 137 corresponding time points across the lifespan, from embryonic day 44 to approximately 55 years of age, in humans and their equivalent ages in chimpanzees. I used these data to test whether developmental programmes, such as the timeline of prefrontal cortex (PFC) maturation, previously claimed to differ between humans and chimpanzees, do so once variation in developmental schedules is controlled for. I compared the maturation of frontal cortex projections from structural magnetic resonance (MR) scans and from temporal variation in the expression of genes used to track long-range projecting neurons (i.e. supragranular-enriched genes) in chimpanzees and humans. Contrary to what has been suggested, the timetable of PFC maturation is not unusually extended in humans. This dataset, which is the largest with which to determine corresponding ages across humans and chimpanzees, provides a rigorous approach to control for variation in developmental schedules and to identify developmental programmes responsible for unique features of the human brain.
Collapse
|
31
|
Bryant KL, Li L, Eichert N, Mars RB. A comprehensive atlas of white matter tracts in the chimpanzee. PLoS Biol 2020; 18:e3000971. [PMID: 33383575 PMCID: PMC7806129 DOI: 10.1371/journal.pbio.3000971] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage. Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, United States of America
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Zhang X, Li CX, Yan Y, Nair G, Rilling JK, Herndon JG, Preuss TM, Hu X, Li L. In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T. Magn Reson Imaging 2020; 77:194-203. [PMID: 33359631 DOI: 10.1016/j.mri.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. METHODS A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. RESULTS The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. CONCLUSION The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America.
| | - Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Yumei Yan
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Govind Nair
- qMRI Core Facility, NINDS, NIH, Bethesda, MD 20892, United States of America
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA, United States of America; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Xiaoping Hu
- Dept of Bioengineering, University of California, Riverside, CA, United States of America
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
33
|
Vickery S, Hopkins WD, Sherwood CC, Schapiro SJ, Latzman RD, Caspers S, Gaser C, Eickhoff SB, Dahnke R, Hoffstaedter F. Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. eLife 2020; 9:e60136. [PMID: 33226338 PMCID: PMC7723405 DOI: 10.7554/elife.60136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Chimpanzees are among the closest living relatives to humans and, as such, provide a crucial comparative model for investigating primate brain evolution. In recent years, human brain mapping has strongly benefited from enhanced computational models and image processing pipelines that could also improve data analyses in animals by using species-specific templates. In this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12, implementing a standard human image preprocessing framework in chimpanzees. Applying this approach to data from 194 subjects, we find strong evidence for human-like age-related gray matter atrophy in multiple regions of the chimpanzee brain, as well as, a general rightward asymmetry in brain regions.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer CenterBastropUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Steven J Schapiro
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer CenterBastropUnited States
- Department of Experimental Medicine, University of CopenhagenCopenhagenDenmark
| | - Robert D Latzman
- Department of Psychology, Georgia State UniversityAtlantaUnited States
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- JARA-BRAIN, Jülich-Aachen Research AllianceJülichGermany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University HospitalJenaGermany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University HospitalJenaGermany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM-7) Research Centre JülichJülichGermany
| |
Collapse
|
34
|
Lacreuse A, Raz N, Schmidtke D, Hopkins WD, Herndon JG. Age-related decline in executive function as a hallmark of cognitive ageing in primates: an overview of cognitive and neurobiological studies. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190618. [PMID: 32951543 DOI: 10.1098/rstb.2019.0618] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Executive function (EF) is a complex construct that reflects multiple higher-order cognitive processes such as planning, updating, inhibiting and set-shifting. Decline in these functions is a hallmark of cognitive ageing in humans, and age differences and changes in EF correlate with age-related differences and changes in association cortices, particularly the prefrontal areas. Here, we review evidence for age-related decline in EF and associated neurobiological changes in prosimians, New World and Old World monkeys, apes and humans. While EF declines with age in all primate species studied, the relationship of this decline with age-related alterations in the prefrontal cortex remains unclear, owing to the scarcity of neurobiological studies focusing on the ageing brain in most primate species. In addition, the influence of sex, vascular and metabolic risk, and hormonal status has rarely been considered. We outline several methodological limitations and challenges with the goal of producing a comprehensive integration of cognitive and neurobiological data across species and elucidating how ageing shapes neurocognitive trajectories in primates with different life histories, lifespans and brain architectures. Such comparative investigations are critical for fostering translational research and understanding healthy and pathological ageing in our own species. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| | - Naftali Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA.,Max Planck Institute for Human Development, Berlin, Germany
| | - Daniel Schmidtke
- University of Veterinary Medicine, Foundation, Hannover, Germany
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Bastrop, TX, USA
| | - James G Herndon
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat Commun 2020; 11:4207. [PMID: 32826924 PMCID: PMC7442803 DOI: 10.1038/s41467-020-18077-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
The rapid spread of coronavirus SARS-CoV-2 greatly threatens global public health but no prophylactic vaccine is available. Here, we report the generation of a replication-incompetent recombinant serotype 5 adenovirus, Ad5-S-nb2, carrying a codon-optimized gene encoding Spike protein (S). In mice and rhesus macaques, intramuscular injection with Ad5-S-nb2 elicits systemic S-specific antibody and cell-mediated immune (CMI) responses. Intranasal inoculation elicits both systemic and pulmonary antibody responses but weaker CMI response. At 30 days after a single vaccination with Ad5-S-nb2 either intramuscularly or intranasally, macaques are protected against SARS-CoV-2 challenge. A subsequent challenge reveals that macaques vaccinated with a 10-fold lower vaccine dosage (1 × 1010 viral particles) are also protected, demonstrating the effectiveness of Ad5-S-nb2 and the possibility of offering more vaccine dosages within a shorter timeframe. Thus, Ad5-S-nb2 is a promising candidate vaccine and warrants further clinical evaluation.
Collapse
|
36
|
Age-related differences in cerebral blood flow and cortical thickness with an application to age prediction. Neurobiol Aging 2020; 95:131-142. [PMID: 32798960 DOI: 10.1016/j.neurobiolaging.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cerebral cortex thinning and cerebral blood flow (CBF) reduction are typically observed during normal healthy aging. However, imaging-based age prediction models have primarily used morphological features of the brain. Complementary physiological CBF information might result in an improvement in age estimation. In this study, T1-weighted structural magnetic resonance imaging and arterial spin labeling CBF images were acquired in 146 healthy participants across the adult life span. Sixty-eight cerebral cortex regions were segmented, and the cortical thickness and mean CBF were computed for each region. Linear regression with age was computed for each region and data type, and laterality and correlation matrices were computed. Sixteen predictive models were trained with the cortical thickness and CBF data alone as well as a combination of both data types. The age explained more variance in the cortical thickness data (average R2 of 0.21) than in the CBF data (average R2 of 0.09). All 16 models performed significantly better when combining both measurement types and using feature selection, and thus, we conclude that the inclusion of CBF data marginally improves age estimation.
Collapse
|
37
|
Pu R, Wu Z, Yu W, He H, Zhou Z, Wang Z, Zhong J. The association of myelination in the internal capsule with iron deposition in the basal ganglia in macaques: a magnetic resonance imaging study. Quant Imaging Med Surg 2020; 10:1526-1539. [PMID: 32676370 DOI: 10.21037/qims-19-1014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Iron plays a vital role in myelin synthesis and maintenance. A tight association between iron concentration and myelin content has been demonstrated in local brain regions; however, whether such a relationship exists between distant brain regions that are anatomically connected is largely unknown. Methods We conducted an in vivo measurement of iron and myelin content in the brains of 8 young (mean age: 7.7 years) and 8 old (mean age: 24.7 years) macaques by integrating two MRI-based techniques: quantitative susceptibility mapping (QSM) and myelin water fraction (MWF) imaging. We examined the relationship between iron deposition in components of the basal ganglia (BG), and the myelin content of the BG-connecting fiber tract internal capsule (IC) and four more white matter (WM) structures, including the optic tract, and the genu, body, and splenium of the corpus callosum, which are anatomically separate from the BG. Results Spearman's correlation analysis revealed a moderate to high (r=0.528-0.808, P<0.05) positive correlation between the magnetic susceptibility of the BG and the MWF of anatomically connected IC structures during myelin production and maintenance, but little significant correlation was found between the susceptibility of the BG and the MWF of WM structures not anatomically connected to the BG. Conclusions These results advance the understanding of the relationship between iron and myelin, and suggest that future studies should consider the impact that iron concentration in the BG has on the myelination of WM structures that are anatomically connected to the BG.
Collapse
Affiliation(s)
- Run Pu
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Zhe Wu
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.,Techna Institute, University Health Network, Toronto, ON, Canada
| | - Wenwen Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-inspired Intelligence Technology, Shanghai, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Zuofu Zhou
- Department of Radiology, Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-inspired Intelligence Technology, Shanghai, China.,University of Chinese Academy of Sciences, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.,Department of Imaging Sciences, University of Rochester, NY, USA
| |
Collapse
|
38
|
Eichert N, Robinson EC, Bryant KL, Jbabdi S, Jenkinson M, Li L, Krug K, Watkins KE, Mars RB. Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. eLife 2020; 9:e53232. [PMID: 32202497 PMCID: PMC7180052 DOI: 10.7554/elife.53232] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Emma C Robinson
- Biomedical Engineering Department, King’s College LondonLondonUnited Kingdom
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory UniversityAtlantaUnited States
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Biology, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
- Leibniz-Insitute for NeurobiologyMagdeburgGermany
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
39
|
Fritz RG, Zimmermann E, Picq JL, Lautier C, Meier M, Kästner S, Schmidtke D. Sex-specific patterns of age-related cerebral atrophy in a nonhuman primate Microcebus murinus. Neurobiol Aging 2020; 91:148-159. [PMID: 32229027 DOI: 10.1016/j.neurobiolaging.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Steadily aging populations result in a growing need for research regarding age-related brain alterations and neurodegenerative pathologies. By allowing a good translation of results to humans, nonhuman primates, such as the gray mouse lemur Microcebus murinus, have gained attention in this field. Our aim was to examine correlations between atrophy-induced brain alterations and age, with special focus on sex differences in mouse lemurs. For cerebral volumetric measurements, in vivo magnetic resonance imaging was performed on 59 animals (28♀♀/31♂♂) aged between 1.0 to 11.9 years. Volumes of different brain regions, cortical thicknesses, and ventricular expansions were evaluated. Analyses revealed significant brain atrophies with increasing age, particularly around the caudate nucleus, the thalamus, and frontal, parietal, and temporo-occipital regions. Especially old females showed a strong decline in cingulate cortex thickness and had higher values of ventricular expansion, whereas cortical thickness of the splenium and occipital regions decreased mainly in males. Our study, thus, provides first evidence for sex-specific, age-related brain alterations in a nonhuman primate, suggesting that mouse lemurs can help elucidating the mechanism underlying sex disparities in cerebral aging, for which there is mixed evidence in humans.
Collapse
Affiliation(s)
- Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jean-Luc Picq
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France; Laboratoire de Psychopathologie et de Neuropsychologie, Université Paris 8, St Denis, France
| | - Corinne Lautier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
40
|
Bryant KL, Glasser MF, Li L, Jae-Cheol Bae J, Jacquez NJ, Alarcón L, Fields A, Preuss TM. Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex 2019; 118:223-243. [PMID: 30910223 PMCID: PMC6697630 DOI: 10.1016/j.cortex.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
Abstract
There is evidence for enlargement of association cortex in humans compared to other primate species. Expansion of temporal association cortex appears to have displaced extrastriate cortex posteriorly and inferiorly in humans compared to macaques. However, the details of the organization of these recently expanded areas are still being uncovered. Here, we used diffusion tractography to examine the organization of extrastriate and temporal association cortex in chimpanzees, humans, and macaques. Our goal was to characterize the organization of visual and auditory association areas with respect to their corresponding primary areas (primary visual cortex and auditory core) in humans and chimpanzees. We report three results: (1) Humans, chimpanzees, and macaques show expected retinotopic organization of primary visual cortex (V1) connectivity to V2 and to areas immediately anterior to V2; (2) In contrast to macaques, chimpanzee and human V1 shows apparent connectivity with lateral, inferior, and anterior temporal regions, beyond the retinotopically organized extrastriate areas; (3) Also in contrast to macaques, chimpanzee and human auditory core shows apparent connectivity with temporal association areas, with some important differences between humans and chimpanzees. Diffusion tractography reconstructs diffusion patterns that reflect white matter organization, but does not definitively represent direct anatomical connectivity. Therefore, it is important to recognize that our findings are suggestive of species differences in long-distance white matter organization rather than demonstrations of direct connections. Our data support the conclusion that expansion of temporal association cortex, and the resulting posterior displacement of extrastriate cortex, occurred in the human lineage after its separation from the chimpanzee lineage. It is possible, however, that some expansion of the temporal lobe occurred prior to the separation of humans and chimpanzees, reflected in the reorganization of long white matter tracts in the temporal lobe that connect occipital areas to the fusiform gyrus, middle temporal gyrus, and anterior temporal lobe.
Collapse
Affiliation(s)
- Katherine L Bryant
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, MO, USA
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Jason Jae-Cheol Bae
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; College of Medicine, American University of Antigua, USA
| | - Nadine J Jacquez
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Laura Alarcón
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Archie Fields
- Department of Philosophy, University of Calgary, Calgary, Alberta, Canada
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Zhang L, Chen C, Mak MSH, Lu J, Wu Z, Chen Q, Han Y, Li Y, Pi R. Advance of sporadic Alzheimer's disease animal models. Med Res Rev 2019; 40:431-458. [DOI: 10.1002/med.21624] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Lili Zhang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Chen Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Marvin SH Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
| | - Junfeng Lu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Zeqing Wu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Qiuhe Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co LtdGuangzhou China
| | - Rongbiao Pi
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐Sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
42
|
Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA. Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees. J Comp Neurol 2019; 527:1179-1195. [PMID: 30578640 PMCID: PMC6401278 DOI: 10.1002/cne.24610] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 01/01/2023]
Abstract
Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Some degree of astrogliosis is associated with normal aging and degenerative conditions such as Alzheimer's disease (AD) and other dementing illnesses in humans. The recent observation of pathological markers of AD (amyloid plaques and neurofibrillary tangles) in aged chimpanzee brains provided an opportunity to examine the relationships among aging, AD-type pathology, and astrocyte activation in our closest living relatives. Stereologic methods were used to quantify GFAP-immunoreactive astrocyte density and soma volume in layers I, III, and V of the prefrontal and middle temporal cortex, as well as in hippocampal fields CA1 and CA3. We found that the patterns of astrocyte activation in the aged chimpanzee brain are distinct from humans. GFAP expression does not increase with age in chimpanzees, possibly indicative of lower oxidative stress loads. Similar to humans, chimpanzee layer I astrocytes in the prefrontal cortex are susceptible to AD-like changes. Both prefrontal cortex layer I and hippocampal astrocytes exhibit a high degree of astrogliosis that is positively correlated with accumulation of amyloid beta and tau proteins. However, unlike humans, chimpanzees do not display astrogliosis in other cortical layers. These results demonstrate a unique pattern of cortical aging in chimpanzees and suggest that inflammatory processes may differ between humans and chimpanzees in response to pathology.
Collapse
Affiliation(s)
- Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
43
|
Mars RB, O'Muircheartaigh J, Folloni D, Li L, Glasser MF, Jbabdi S, Bryant KL. Concurrent analysis of white matter bundles and grey matter networks in the chimpanzee. Brain Struct Funct 2019; 224:1021-1033. [PMID: 30569281 PMCID: PMC6499872 DOI: 10.1007/s00429-018-1817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/22/2023]
Abstract
Understanding the phylogeny of the human brain requires an appreciation of brain organization of our closest animal relatives. Neuroimaging tools such as magnetic resonance imaging (MRI) allow us to study whole-brain organization in species which can otherwise not be studied. Here, we used diffusion MRI to reconstruct the connections of the cortical hemispheres of the chimpanzee. This allowed us to perform an exploratory analysis of the grey matter structures of the chimpanzee cerebral cortex and their underlying white matter connectivity profiles. We identified a number of networks that strongly resemble those found in other primates, including the corticospinal system, limbic connections through the cingulum bundle and fornix, and occipital-temporal and temporal-frontal systems. Notably, chimpanzee temporal cortex showed a strong resemblance to that of the human brain, providing some insight into the specialization of the two species' shared lineage.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Kubicki M, Baxi M, Pasternak O, Tang Y, Karmacharya S, Chunga N, Lyall AE, Rathi Y, Eckbo R, Bouix S, Mortazavi F, Papadimitriou G, Shenton ME, Westin CF, Killiany R, Makris N, Rosene DL. Lifespan Trajectories of White Matter Changes in Rhesus Monkeys. Cereb Cortex 2019; 29:1584-1593. [PMID: 29701751 PMCID: PMC6418383 DOI: 10.1093/cercor/bhy056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field. Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.
Collapse
Affiliation(s)
- M Kubicki
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - M Baxi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - O Pasternak
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Tang
- Department of EEG Source Imaging, Shanghai Mental Health Center, Shanghai, China
| | - S Karmacharya
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - N Chunga
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - A E Lyall
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Rathi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R Eckbo
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - S Bouix
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - F Mortazavi
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, USA
| | - G Papadimitriou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
| | - C F Westin
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R Killiany
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, USA
| | - N Makris
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, USA
| |
Collapse
|
45
|
Individual variation in longitudinal postnatal development of the primate brain. Brain Struct Funct 2019; 224:1185-1201. [PMID: 30637493 DOI: 10.1007/s00429-019-01829-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
Quantifying individual variation in postnatal brain development can provide insight into cognitive diversity within a population and the aetiology of common neuropsychiatric and neurodevelopmental disorders. Non-invasive studies of the non-human primate can aid understanding of human brain development, facilitating longitudinal analysis during early postnatal development when comparative human populations are difficult to sample. In this study, we perform analysis of a longitudinal MRI dataset of 32 macaques, each with up to five magnetic resonance imaging (MRI) scans acquired between 3 and 36 months of age. Using nonlinear mixed effects model we derive growth trajectories for whole brain, cortical and subcortical grey matter, cerebral white matter and cerebellar volume. We then test the association between individual variation in postnatal tissue volumes and birth weight. We report nonlinear growth models for all tissue compartments, as well as significant variation in total intracranial volume between individuals. We also demonstrate that regional subcortical grey matter varies both in total volume and rate of change between individuals and is associated with differences in birth weight. This supports evidence that birth weight may act as a marker of subsequent brain development and highlights the importance of longitudinal MRI analysis in developmental studies.
Collapse
|
46
|
Lacreuse A, Parr L, Chennareddi L, Herndon JG. Age-related decline in cognitive flexibility in female chimpanzees. Neurobiol Aging 2018; 72:83-88. [PMID: 30237074 PMCID: PMC6215734 DOI: 10.1016/j.neurobiolaging.2018.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Data on cognitive aging in chimpanzees are extremely sparse, yet can provide an invaluable phylogenetic perspective, especially because Alzheimer disease (AD)-like neuropathology has recently been described in the oldest chimpanzee brains. This finding underscores the importance of data on cognitive aging in this fellow hominin, our closest biological relative. We tested 30 female chimpanzees, 12-56 years old, on a computerized analog of the Wisconsin Card Sort test. This test assesses cognitive flexibility, which is severely impaired in normal aging and AD. Subjects selected stimuli according to color or shape; the rewarded dimension (i.e., color or shape) switched without warning and the chimpanzee had to adapt her responses accordingly. We found that increasing age was associated with an increased number of perseverative errors and an increased number of trials to reach criterion in each switching dimension. The number of aborted trials was similar across age groups. These data show that similar to humans, chimpanzees show a clear age-related decline in cognitive flexibility that is already observed at middle age.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst MA, USA
| | - Lisa Parr
- Division of Psychiatry and Behavioral Science, Emory University, Atlanta GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta GA, USA
| | | | - James G Herndon
- Yerkes National Primate Research Center, Emory University, Atlanta GA, USA; Department of Psychology, Emory University, Atlanta GA, USA.
| |
Collapse
|
47
|
Nitzsche B, Boltze J, Ludewig E, Flegel T, Schmidt MJ, Seeger J, Barthel H, Brooks OW, Gounis MJ, Stoffel MH, Schulze S. A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and volumetrical data sets. Neuroimage 2018; 187:93-103. [PMID: 29407456 DOI: 10.1016/j.neuroimage.2018.01.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
Stereotaxic systems and automatic tissue segmentation routines enable neuronavigation as well as reproducible processing of neuroimage datasets. Such systems have been developed for humans, non-human-primates, sheep, and rodents, but not for dogs. Although dogs share important neurofunctional and -anatomical features with humans, and in spite of their importance in translational neuroscience, little is known about the variability of the canine brain morphology and, possibly related, function. Moreover, we lack templates, tissue probability maps (TPM), and stereotaxic brain labels for implementation in standard software utilities such as Statistical Parametric Mapping (SPM). Hence, objective and reproducible, image-based investigations are currently impeded in dogs. We have created a detailed stereotaxic reference frame for dogs including TPM and tissue labels, enabling inter-individual and cross-study neuroimage analysis. T2w datasets were acquired from 16 neurologically inconspicuous dogs of different breeds by 3T MRI. The datasets were averaged after initial preprocessing using linear and nonlinear registration algorithms as implemented in SPM8. TPM for gray (GM) and white matter (WM) as well as cerebrospinal fluid (CSF) were created. Different cortical, subcortical, medullary, and CSF regions were manually labeled to create a spatial binary atlas being aligned with the template. A proof-of-concept for automatic determination of morphological and volumetrical characteristics was performed using additional canine datasets (n = 64) including a subgroup of laboratory beagles (n = 24). Overall, 21 brain regions were labeled using the segmented tissue classes of the brain template. The proof-of-concept trial revealed excellent suitability of the created tools for image processing and subsequent analysis. There was high intra-breed variability in frontal lobe and hippocampus volumes, and noticeable inter-breed corpus callosum volume variation. The T2w brain template provides important, breed-averaged canine brain anatomy features in a spatial standard coordinate system. TPM allows automatic tissue segmentation using SPM and enables unbiased automatic image processing or morphological characterization in different canine breeds. The reported volumetric and morphometric results may serve as a starting point for further research aimed at in vivo analysis of canine brain anatomy and function.
Collapse
Affiliation(s)
- Björn Nitzsche
- Department for Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Institute of Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Eberhard Ludewig
- Clinic Unit of Diagnostic Imaging, University of Veterinary Medicine Vienna, Austria
| | - Thomas Flegel
- Department of Small Animals Medicine, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Martin J Schmidt
- Department of Veterinary Clinical Sciences, Clinic for Small Animals - Neurosurgery, Neuroradiology and Clinical Neurology, Faculty of Veterinary Medicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Johannes Seeger
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department for Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Olivia W Brooks
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sabine Schulze
- Department of Veterinary Clinical Sciences, Clinic for Small Animals - Neurosurgery, Neuroradiology and Clinical Neurology, Faculty of Veterinary Medicine, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
48
|
Pereira-Pedro AS, Rilling JK, Chen X, Preuss TM, Bruner E. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:255-263. [PMID: 29065406 PMCID: PMC5687995 DOI: 10.1159/000481085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| | - James K. Rilling
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Yerkes National Primate Research Center, Emory University, Atlanta, (USA)
| | - Xu Chen
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
| | - Todd M. Preuss
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta (USA)
| | - Emiliano Bruner
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| |
Collapse
|
49
|
Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2733-2741. [PMID: 28729086 DOI: 10.1016/j.bbadis.2017.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
There has been, and continues to be, a dramatic shift in the human population towards older ages necessitating biomedical research aimed at better understanding the basic biology of aging and age-related diseases and facilitating new and improved therapeutic options. As it is not practical to perform the breadth of this research in humans, animal models are necessary to recapitulate the complexity of the aging environment. The mouse model is most frequently chosen for these endeavors, however, they are frequently not the most appropriate model. Non-human primates, on the other hand, are more closely related to humans and recapitulate the human aging process and development of age-related diseases. Extensive aging research has been performed in the well-characterized rhesus macaque aging model. More recently, the common marmoset, a small non-human primate with a shorter lifespan, has been explored as a potential aging model. This model holds particular promise as an aging disease model in part due to the successful creation of transgenic marmosets. Limitations to the use of non-human primates in aging research exist but can be mitigated somewhat by the existence of available resources supported by the National Institutes of Health. This article is part of a Special Issue entitled: Animal models of aging - edited by "Houtkooper Riekelt".
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
50
|
Tsang A, Lebel CA, Bray SL, Goodyear BG, Hafeez M, Sotero RC, McCreary CR, Frayne R. White Matter Structural Connectivity Is Not Correlated to Cortical Resting-State Functional Connectivity over the Healthy Adult Lifespan. Front Aging Neurosci 2017; 9:144. [PMID: 28572765 PMCID: PMC5435815 DOI: 10.3389/fnagi.2017.00144] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/30/2017] [Indexed: 11/13/2022] Open
Abstract
Structural connectivity (SC) of white matter (WM) and functional connectivity (FC) of cortical regions undergo changes in normal aging. As WM tracts form the underlying anatomical architecture that connects regions within resting state networks (RSNs), it is intuitive to expect that SC and FC changes with age are correlated. Studies that investigated the relationship between SC and FC in normal aging are rare, and have mainly compared between groups of elderly and younger subjects. The objectives of this work were to investigate linear SC and FC changes across the healthy adult lifespan, and to define relationships between SC and FC measures within seven whole-brain large scale RSNs. Diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) data were acquired from 177 healthy participants (male/female = 69/108; aged 18-87 years). Forty cortical regions across both hemispheres belonging to seven template-defined RSNs were considered. Mean diffusivity (MD), fractional anisotropy (FA), mean tract length, and number of streamlines derived from DTI data were used as SC measures, delineated using deterministic tractography, within each RSN. Pearson correlation coefficients of rs-fMRI-obtained BOLD signal time courses between cortical regions were used as FC measure. SC demonstrated significant age-related changes in all RSNs (decreased FA, mean tract length, number of streamlines; and increased MD), and significant FC decrease was observed in five out of seven networks. Among the networks that showed both significant age related changes in SC and FC, however, SC was not in general significantly correlated with FC, whether controlling for age or not. The lack of observed relationship between SC and FC suggests that measures derived from DTI data that are commonly used to infer the integrity of WM microstructure are not related to the corresponding changes in FC within RSNs. The possible temporal lag between SC and FC will need to be addressed in future longitudinal studies to better elucidate the links between SC and FC changes in normal aging.
Collapse
Affiliation(s)
- Adrian Tsang
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgary, AB, Canada
| | - Catherine A Lebel
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of CalgaryCalgary, AB, Canada.,Child and Adolescent Imaging Research Program, Alberta Children's Hospital, Alberta Health ServicesCalgary, AB, Canada
| | - Signe L Bray
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of CalgaryCalgary, AB, Canada.,Child and Adolescent Imaging Research Program, Alberta Children's Hospital, Alberta Health ServicesCalgary, AB, Canada
| | - Bradley G Goodyear
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgary, AB, Canada
| | - Moiz Hafeez
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgary, AB, Canada
| | - Roberto C Sotero
- Department of Radiology, University of CalgaryCalgary, AB, Canada
| | - Cheryl R McCreary
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgary, AB, Canada
| | - Richard Frayne
- Department of Radiology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgary, AB, Canada
| |
Collapse
|