1
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Wang N, Jeong I, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Stenersen JM, Reddy JS, Qiao M, Flaherty D, Gunasekaran TI, Yang Z, Jurisch-Yaksi N, Teich AF, Kanekiyo T, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling. CELL GENOMICS 2024; 4:100642. [PMID: 39216475 PMCID: PMC11480862 DOI: 10.1016/j.xgen.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aβ42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.
Collapse
Affiliation(s)
- Hüseyin Tayran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Elanur Yilmaz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Prabesh Bhattarai
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yiyi Ma
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nastasia Nelson
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Nada Kassara
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Ruya Merve Dogru
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Jakob Mørkved Stenersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph S Reddy
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Min Qiao
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Delaney Flaherty
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Tamil Iniyan Gunasekaran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Zikun Yang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew F Teich
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Caghan Kizil
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
2
|
Sepulveda‐Falla D, Vélez JI, Acosta‐Baena N, Baena A, Moreno S, Krasemann S, Lopera F, Mastronardi CA, Arcos‐Burgos M. Genetic modifiers of cognitive decline in PSEN1 E280A Alzheimer's disease. Alzheimers Dement 2024; 20:2873-2885. [PMID: 38450831 PMCID: PMC11032577 DOI: 10.1002/alz.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Rate of cognitive decline (RCD) in Alzheimer's disease (AD) determines the degree of impairment for patients and of burden for caretakers. We studied the association of RCD with genetic variants in AD. METHODS RCD was evaluated in 62 familial AD (FAD) and 53 sporadic AD (SAD) cases, and analyzed by whole-exome sequencing for association with common exonic functional variants. Findings were validated in post mortem brain tissue. RESULTS One hundred seventy-two gene variants in FAD, and 227 gene variants in SAD associated with RCD. In FAD, performance decline of the immediate recall of the Rey-Osterrieth figure test associated with 122 genetic variants. Olfactory receptor OR51B6 showed the highest number of associated variants. Its expression was detected in temporal cortex neurons. DISCUSSION Impaired olfactory function has been associated with cognitive impairment in AD. Genetic variants in these or other genes could help to identify risk of faster memory decline in FAD and SAD patients.
Collapse
Affiliation(s)
- Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Jorge I. Vélez
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
- Universidad del NorteBarranquillaColombia
| | | | - Ana Baena
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Sonia Moreno
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Claudio A. Mastronardi
- Genomics and Predictive Medicine GroupDepartment of Genome SciencesJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
- INPAC Research Group, Fundación Universitaria SanitasBogotáColombia
| | - Mauricio Arcos‐Burgos
- Grupo de Investigación en Psiquiatría (GIPSI)Departamento de PsiquiatríaFacultad de MedicinaInstituto de Investigaciones MédicasUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
3
|
Kong F, Wu T, Dai J, Cai J, Zhai Z, Zhu Z, Xu Y, Sun T. Knowledge domains and emerging trends of Genome-wide association studies in Alzheimer's disease: A bibliometric analysis and visualization study from 2002 to 2022. PLoS One 2024; 19:e0295008. [PMID: 38241287 PMCID: PMC10798548 DOI: 10.1371/journal.pone.0295008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive and behavioral function. Studies have shown that genetic factors are one of the main causes of AD risk. genome-wide association study (GWAS), as a novel and effective tool for studying the genetic risk of diseases, has attracted attention from researchers in recent years and a large number of studies have been conducted. This study aims to summarize the literature on GWAS in AD by bibliometric methods, analyze the current status, research hotspots and future trends in this field. METHODS We retrieved articles on GWAS in AD published between 2002 and 2022 from Web of Science. CiteSpace and VOSviewer software were applied to analyze the articles for the number of articles published, countries/regions and institutions of publication, authors and cited authors, highly cited literature, and research hotspots. RESULTS We retrieved a total of 2,751 articles. The United States had the highest number of publications in this field, and Columbia University was the institution with the most published articles. The identification of AD-related susceptibility genes and their effects on AD is one of the current research hotspots. Numerous risk genes have been identified, among which APOE, CLU, CD2AP, CD33, EPHA1, PICALM, CR1, ABCA7 and TREM2 are the current genes of interest. In addition, risk prediction for AD and research on other related diseases are also popular research directions in this field. CONCLUSION This study conducted a comprehensive analysis of GWAS in AD and identified the current research hotspots and research trends. In addition, we also pointed out the shortcomings of current research and suggested future research directions. This study can provide researchers with information about the knowledge structure and emerging trends in the field of GWAS in AD and provide guidance for future research.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Reddy JS, Qiao M, Flaherty D, Teich AF, Gunasekaran TI, Yang Z, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573893. [PMID: 38260408 PMCID: PMC10802315 DOI: 10.1101/2024.01.02.573893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aβ42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience. Abstract Figure
Collapse
|
5
|
Najar J, Thorvaldsson V, Kern S, Skoog J, Waern M, Zetterberg H, Blennow K, Skoog I, Zettergren A. Polygenic risk scores for Alzheimer's disease in relation to cognitive change: A representative sample from the general population followed over 16 years. Neurobiol Dis 2023; 189:106357. [PMID: 37977433 DOI: 10.1016/j.nbd.2023.106357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Polygenic risk scores for Alzheimer's disease (AD-PRSs) have been associated with cognition. However, few studies have examined the effect of AD-PRS beyond the APOE gene, and the influence of genetic variants related to level of cognitive ability (COG-PRS) on cognitive performance over time in the general older population. METHOD A population-based sample of 965 individuals born in 1930, with genetic and standardized cognitive data on six psychometric tests (Thurstone's picture memory, immediate recall of 10 words, Block design, word fluency, figure identification, delayed recall of 12 items), were examined at age 70, 75, 79, and 85 years. Non-APOE AD-PRSs and COG-PRSs (P < 5e-8, P < 1e-5, P < 1e-3, P < 1e-1) were generated from recent genome-wide association studies. Linear mixed effect models with random intercepts and slope were used to analyze the effect of APOE ε4 allele, AD-PRSs, and COG-PRSs, on cognitive performance and rate of change. Analyses were repeated in samples excluding dementia. RESULTS APOE ε4 and AD-PRS predicted change in cognitive performance (APOE ε4*age: β = -0.03, P < 0.0001 and AD-PRS *age: β = -0.01, P = 0.02). The results remained similar in the sample excluding those with dementia. COG-PRS predicted level of cognitive performance, while APOE ε4 and AD-PRS did not. COG-PRSs did not predict change in cognitive performance. CONCLUSION We found that genetic predisposition of AD predicted cognitive decline among 70-year-olds followed over 16 years, regardless of dementia status, while polygenic risk for general cognitive performance did not.
Collapse
Affiliation(s)
- Jenna Najar
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden; Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging at the Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Valgeir Thorvaldsson
- Department of Psychology, and Centre for Ageing and Health (AGECAP), at the University of Gothenburg, Sweden.
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden.
| | - Johan Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden.
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden.
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden.
| |
Collapse
|
6
|
Mallin M, Hall J, Herlihy M, Gelman EJ, Stone MB. A pilot retrospective study of a physician-directed and genomics-based model for precision lifestyle medicine. Front Med (Lausanne) 2023; 10:1239737. [PMID: 37942418 PMCID: PMC10629614 DOI: 10.3389/fmed.2023.1239737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Precision lifestyle medicine is a relatively new field in primary care, based on the hypothesis that genetic predispositions influence an individual's response to specific interventions such as diet, exercise, and prescription medications. Despite the increase in commercially available genomic testing, few studies have investigated effects of a physician-directed program to optimize chronic disease using genomics-based precision medicine. We performed an pilot, observational cohort study to evaluate effects of the Wild Health program, a physician and health coach service offering genomics-based lifestyle and medical interventions, on biomarkers indicative of chronic disease. 871 patients underwent genomic testing, biomarker testing, and ongoing health coaching after initial medical consultation by a physician. Improvements in several clinically relevant out-of-range biomarkers at baseline were identified in a large proportion of patients treated through lifestyle intervention without the use of prescription medication. Notably, normalization of several biomarkers associated with chronic disease occurred in 47.5% (hemoglobin A1c [HbA1c]), 33.3% (low density lipoprotein particle number [LDL-P]), and 33.2% (C-reactive protein [CRP]). However, due to the inherent limitations of our observational study design and use of retrospective data, ongoing work will be crucial for continuing to shed light on the effectiveness of physician-led, genomics-based lifestyle coaching programs. Future studies would benefit from implementing a randomized controlled study design, tracking specific interventions, and evaluating physiological data, such as BMI.
Collapse
Affiliation(s)
| | - Jane Hall
- Jane Hall Biomed, LLC., Seattle, WA, United States
| | | | | | | |
Collapse
|
7
|
Qian XH, Chen SY, Liu XL, Tang HD. ABCA7-Associated Clinical Features and Molecular Mechanisms in Alzheimer's Disease. Mol Neurobiol 2023; 60:5548-5556. [PMID: 37322288 DOI: 10.1007/s12035-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aβ production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aβ is destroyed by ABCA7 deficiency, leading to reduced clearance of Aβ. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Juul Rasmussen I, Frikke-Schmidt R. Modifiable cardiovascular risk factors and genetics for targeted prevention of dementia. Eur Heart J 2023; 44:2526-2543. [PMID: 37224508 PMCID: PMC10481783 DOI: 10.1093/eurheartj/ehad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Dementia is a major global challenge for health and social care in the 21st century. A third of individuals >65 years of age die with dementia, and worldwide incidence numbers are projected to be higher than 150 million by 2050. Dementia is, however, not an inevitable consequence of old age; 40% of dementia may theoretically be preventable. Alzheimer's disease (AD) accounts for approximately two-thirds of dementia cases and the major pathological hallmark of AD is accumulation of amyloid-β. Nevertheless, the exact pathological mechanisms of AD remain unknown. Cardiovascular disease and dementia share several risk factors and dementia often coexists with cerebrovascular disease. In a public health perspective, prevention is crucial, and it is suggested that a 10% reduction in prevalence of cardiovascular risk factors could prevent more than nine million dementia cases worldwide by 2050. Yet this assumes causality between cardiovascular risk factors and dementia and adherence to the interventions over decades for a large number of individuals. Using genome-wide association studies, the entire genome can be scanned for disease/trait associated loci in a hypothesis-free manner, and the compiled genetic information is not only useful for pinpointing novel pathogenic pathways but also for risk assessments. This enables identification of individuals at high risk, who likely will benefit the most from a targeted intervention. Further optimization of the risk stratification can be done by adding cardiovascular risk factors. Additional studies are, however, highly needed to elucidate dementia pathogenesis and potential shared causal risk factors between cardiovascular disease and dementia.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
10
|
Eissman JM, Wells G, Khan OA, Liu D, Petyuk VA, Gifford KA, Dumitrescu L, Jefferson AL, Hohman TJ. Polygenic resilience score may be sensitive to preclinical Alzheimer's disease changes. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2023; 28:449-460. [PMID: 36540999 PMCID: PMC9888419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is a polygenic disorder with a long prodromal phase, making early diagnosis challenging. Twin studies estimate LOAD as 60-80% heritable, and while common genetic variants can account for 30% of this heritability, nearly 70% remains "missing". Polygenic risk scores (PRS) leverage combined effects of many loci to predict LOAD risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Our group has built and published on a resilience phenotype to model better-than-expected cognition give amyloid pathology burden and hypothesized it may assist in preclinical polygenic risk prediction. Thus, we built a LOAD PRS and a resilience PRS and evaluated both in predicting cognition in a dementia-free cohort (N=254). The LOAD PRS had a significant main effect on baseline memory (β=-0.18, P=1.68E-03). Both the LOAD PRS (β=-0.03, P=1.19E-03) and the resilience PRS (β=0.02, P=0.03) had significant main effects on annual memory decline. The resilience PRS interacted with CSF Aβ on baseline memory (β=-6.04E-04, P=0.02), whereby it predicted baseline memory among Aβ+ individuals (β=0.44, P=0.01) but not among Aβ- individuals (β=0.06, P=0.46). Excluding APOE from PRS resulted in mainly LOAD PRS associations attenuating, but notably the resilience PRS interaction with CSF Aβ and selective prediction among Aβ+ individuals was consistent. Although the resilience PRS is currently somewhat limited in scope from the phenotype's cross-sectional nature, our results suggest that the resilience PRS may be a promising tool in assisting in preclinical disease risk prediction among dementia-free and Aβ+ individuals, though replication and fine-tuning are needed.
Collapse
Affiliation(s)
- Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Greyson Wells
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Omair A. Khan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest, National Laboratory, Richland, WA 99354, USA
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA,
| |
Collapse
|
11
|
Tomassen J, den Braber A, van der Lee SJ, Reus LM, Konijnenberg E, Carter SF, Yaqub M, van Berckel BNM, Collij LE, Boomsma DI, de Geus EJC, Scheltens P, Herholz K, Tijms BM, Visser PJ. Amyloid-β and APOE genotype predict memory decline in cognitively unimpaired older individuals independently of Alzheimer's disease polygenic risk score. BMC Neurol 2022; 22:484. [PMID: 36522743 PMCID: PMC9753236 DOI: 10.1186/s12883-022-02925-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND What combination of risk factors for Alzheimer's disease (AD) are most predictive of cognitive decline in cognitively unimpaired individuals remains largely unclear. We studied associations between APOE genotype, AD-Polygenic Risk Scores (AD-PRS), amyloid-β pathology and decline in cognitive functioning over time in a large sample of cognitively unimpaired older individuals. METHODS We included 276 cognitively unimpaired older individuals (75 ± 10 years, 63% female) from the EMIF-AD PreclinAD cohort. An AD-PRS was calculated including 83 genome-wide significant variants. The APOE gene was not included in the PRS and was analyzed separately. Baseline amyloid-β status was assessed by visual read of [18F]flutemetamol-PET standardized uptake value images. At baseline and follow-up (2.0 ± 0.4 years), the cognitive domains of memory, attention, executive function, and language were measured. We used generalized estimating equations corrected for age, sex and center to examine associations between APOE genotype and AD-PRS with amyloid-β status. Linear mixed models corrected for age, sex, center and education were used to examine associations between APOE genotype, AD-PRS and amyloid-β status, and their interaction on changes in cognitive functioning over time. RESULTS Fifty-two participants (19%) had abnormal amyloid-β, and 84 participants (31%) carried at least one APOE ε4 allele. APOE genotype and AD-PRS were both associated with abnormal amyloid-β status. Increasingly more risk-full APOE genotype, a high AD-PRS and an abnormal amyloid-β status were associated with steeper decline in memory functioning in separate models (all p ≤ 0.02). A model including 4-way interaction term (APOE×AD-PRS×amyloid-β×time) was not significant. When modelled together, both APOE genotype and AD-PRS predicted steeper decline in memory functioning (APOE β(SE)=-0.05(0.02); AD-PRS β(SE)=-0.04(0.01)). Additionally, when modelled together, both amyloid-β status and AD-PRS predicted a steeper decline in memory functioning (amyloid-β β(SE)=-0.07(0.04); AD-PRS β(SE)=-0.04(0.01)). Modelling both APOE genotype and amyloid-β status, we observed an interaction, in which APOE genotype was related to steeper decline in memory and language functioning in amyloid-β abnormal individuals only (β(SE)=-0.13(0.06); β(SE)=-0.22(0.07), respectively). CONCLUSION Our results suggest that APOE genotype is related to steeper decline in memory and language functioning in individuals with abnormal amyloid-β only. Furthermore, independent of amyloid-β status other genetic risk variants contribute to memory decline in initially cognitively unimpaired older individuals.
Collapse
Affiliation(s)
- Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC location VUmc, 1007 MB, Amsterdam, PO Box 7057, The Netherlands.
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Stephen F Carter
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Jin C, Lee B, Shen L, Long Q. Integrating multi-omics summary data using a Mendelian randomization framework. Brief Bioinform 2022; 23:bbac376. [PMID: 36094096 PMCID: PMC9677504 DOI: 10.1093/bib/bbac376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mendelian randomization is a versatile tool to identify the possible causal relationship between an omics biomarker and disease outcome using genetic variants as instrumental variables. A key theme is the prioritization of genes whose omics readouts can be used as predictors of the disease outcome through analyzing GWAS and QTL summary data. However, there is a dearth of study of the best practice in probing the effects of multiple -omics biomarkers annotated to the same gene of interest. To bridge this gap, we propose powerful combination tests that integrate multiple correlated $P$-values without assuming the dependence structure between the exposures. Our extensive simulation experiments demonstrate the superiority of our proposed approach compared with existing methods that are adapted to the setting of our interest. The top hits of the analyses of multi-omics Alzheimer's disease datasets include genes ABCA7 and ATP1B1.
Collapse
Affiliation(s)
- Chong Jin
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
13
|
Chaar DL, Nguyen K, Wang YZ, Ratliff SM, Mosley TH, Kardia SLR, Smith JA, Zhao W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes (Basel) 2022; 13:2150. [PMID: 36421824 PMCID: PMC9691156 DOI: 10.3390/genes13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kim Nguyen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
14
|
Manzali SB, Yu E, Ravona-Springer R, Livny A, Golan S, Ouyang Y, Lesman-Segev O, Liu L, Ganmore I, Alkelai A, Gan-Or Z, Lin HM, Heymann A, Schnaider Beeri M, Greenbaum L. Alzheimer’s Disease Polygenic Risk Score Is Not Associated With Cognitive Decline Among Older Adults With Type 2 Diabetes. Front Aging Neurosci 2022; 14:853695. [PMID: 36110429 PMCID: PMC9468264 DOI: 10.3389/fnagi.2022.853695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesMultiple risk loci for late-onset Alzheimer’s disease (LOAD) have been identified. Type 2 diabetes (T2D) is a risk factor for cognitive decline, dementia and Alzheimer’s disease (AD). We investigated the association of polygenic risk score (PRS) for LOAD with overall cognitive functioning and longitudinal decline, among older adults with T2D.MethodsThe study included 1046 Jewish participants from the Israel Diabetes and Cognitive Decline (IDCD) study, aged ≥ 65 years, diagnosed with T2D, and cognitively normal at baseline. The PRS included variants from 26 LOAD associated loci (at genome-wide significance level), and was calculated with and without APOE. Outcome measures, assessed in 18 months intervals, were global cognition and the specific domains of episodic memory, attention/working memory, executive functions, and language/semantic categorization. Random coefficient models were used for analysis, adjusting for demographic variables, T2D-related characteristics, and cardiovascular factors. Additionally, in a subsample of 202 individuals, we analyzed the association of PRS with the volumes of total gray matter, frontal lobe, hippocampus, amygdala, and white matter hyperintensities. Last, the association of PRS with amyloid beta (Aβ) burden was examined in 44 participants who underwent an 18F-flutemetamol PET scan.ResultsThe PRS was not significantly associated with overall functioning or decline in global cognition or any of the specific cognitive domains. Similarly, following correction for multiple testing, there was no association with Aβ burden and other brain imaging phenotypes.ConclusionOur results suggest that the cumulative effect of LOAD susceptibility loci is not associated with a greater rate of cognitive decline in older adults with T2D, and other pathways may underlie this link.
Collapse
Affiliation(s)
- Sigalit B. Manzali
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Sapir Golan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuxia Ouyang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Orit Lesman-Segev
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Lang Liu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- *Correspondence: Lior Greenbaum,
| |
Collapse
|
15
|
Yang Z, Xue L, Li C, Li M, Xie A. Association between ABCA7 gene polymorphisms and Parkinson's disease susceptibility in a northern Chinese Han population. Neurosci Lett 2022; 784:136734. [PMID: 35709878 DOI: 10.1016/j.neulet.2022.136734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE As a typical member of the ABC transporter superfamily, ABCA7 has been shown to play an important role in stalling the pathogenesis of neurodegenerative disorders through maintaining the normal microglial function, regulating cellular responses to inflammation and ER stress, and modulating lipid metabolism. Variants in the ABCA7 locus have been hypothesized to be correlated with the genetic predisposition of several neurodegenerative disorders. The goal of this study was to examine whether there is a link between three specific single nucleotide polymorphisms in the ABCA7 gene, namely, rs3764650, rs4147929, and rs3752246, with the risk of developing Parkinson's disease (PD) in a northern Chinese Han community. METHODS In this case-control study, we recruited 821 participants, including 411 patients with sporadic PD and 410 independent, healthy controls. A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism genotyping assay was used to identify polymorphisms of the three selected single nucleotide polymorphisms (rs3764650, rs4147929, and rs3752246) of the ABCA7 gene. Sanger sequencing was further applied to identify the accuracy of the genotyping results. The chi-square test was used to compare the frequencies of alleles and genotypes in patients and controls. Odds ratios and 95% confidence intervals were calculated using logistic regression. RESULTS We found significant between-group differences in the alleles (A vs. G, nominal P = 0.014) and dominant models (AA + GA vs. GG, nominal P = 0.015) of rs4147929. Subgroup analysis showed that the frequency of the rs4147929 A allele in male patients with PD was significantly higher than that in male controls (nominal P = 0.036). For the rs3752246 polymorphism, the frequency of the G allele was significantly higher in patients with PD than in controls, and the dominant model fit the data best when considering the nominal P-values (nominal P = 0.019, nominal P = 0.033, respectively). Differences in G allele and genotypes frequencies between patients and controls remained significant in women (nominal P = 0.032 for allele, nominal P = 0.015 for genotype), as well as in individuals aged more than 50 years (nominal P = 0.044, nominal P = 0.020, respectively). No significant differences were observed in allele or genotype frequencies between patients with PD and healthy controls for rs3764650. The frequency of the TCG (rs3764650-rs3752246-rs4147929) haplotype was significantly lower in the PD group than in the healthy control group (odds ratio = 0.772; 95% confidence interval = 0.634-0.940; P = 0.011). CONCLUSION The rs4147929 polymorphism was significantly associated with PD susceptibility in the northern Chinese Han population. The A allele of rs4147929 was a risk factor for developing PD. The TCG haplotype presented a protective role in the pathogenesis of PD. Further studies using larger sample sizes, considering different clinical and biochemical parameters such as the cognitive status of subjects at the same time, are warranted to better clarify the effects of these common variants on the pathogenesis and development of PD.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- The Recording Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjuan Li
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Yoo SY, Han A, Park S, Lee JY. Incidence and Cognitive Decline of Alzheimer's Disease and Other Dementia by Apolipoprotein ε4 Allele Presence: A Community-Based Cohort Study in Korean Elderly. Psychiatry Investig 2022; 19:190-196. [PMID: 35232006 PMCID: PMC8958210 DOI: 10.30773/pi.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the role of apolipoprotein E (APOE) ε4 allele to the incidence of dementia and cognitive decline in a cohort of a Korean community. METHODS From a community-based dementia-free cohort, 357 participants were genotyped. Participants underwent 2 cognitive assessments separated by a hiatus between 6 to 7 years and were diagnosed as healthy control (n=297), Alzheimer's disease (AD) (n=44), and other dementia (n=16) at the second assessment. Incidence risk and onset age of disease according to APOE ε4 presence were analyzed in AD and other dementia. Differences in cognitive decline rate depending on APOE ε4 were also examined across all groups. RESULTS The relative risks and onset age of dementia were not different by the presence of the APOE ε4 allele. Cognitive decline was more prominent in the presence of APOE ε4 allele (score change=7.4) than non-presence (score change=3.1), and this interaction was significant only in the AD group (F=10.51, p=0.003). CONCLUSION The APOE ε4 alleles can be a critical factor in predicting cognitive change for AD in the Korean community population but not in predicting AD incidence. This finding suggest that clinicians consider the presence of APOE ε4 allele examining patients with rapid declining dementia.
Collapse
Affiliation(s)
- So Young Yoo
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Alexander Han
- Department of BioSciences & Department of Statistics, Rice University, Houston, TX, USA
| | - Soowon Park
- Division of Teacher Education, College of General Education for Truth, Sincerity and Love, Kyonggi University, Suwon, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Yu L, Ji H, Zhou M, Guo Y, Liu J, Lei D, Han C, Ma T. ABCA7 rs3764650 Polymorphism is Associated with Delayed Neurocognitive Recovery. Pharmgenomics Pers Med 2022; 15:301-309. [PMID: 35387413 PMCID: PMC8977477 DOI: 10.2147/pgpm.s352810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background Several studies have shown that ATP-binding cassette transporter A7 (ABCA7) gene variation is associated with cognitive impairment. This study was aimed to investigate the relationship between ABCA7 rs3764650 polymorphism and perioperative neurocognitive disorder (pNCD). Methods A total of 132 elderly patients aged 65 and over who underwent elective non-cardiac surgery were enrolled in the study, while 28 healthy volunteers matching age and sex were recruited as the control group. A battery of neuropsychological tests was conducted 1 day before, 7 days, and 3 months after surgeries. Delayed neurocognitive recovery (dNCR) and postoperative mild or major neurocognitive disorder (POCD) were determined using the Z value method. The venous blood sample of the surgical patients was taken before the operation. Genotyping of rs3764650 was performed using polymerase chain reaction amplification and restriction fragment length polymorphism analysis. Results The incidences of dNCR and POCD were 29.7% and 16.8% at 7 days and 3 months after surgery, respectively. The G allele frequency and GG frequency of dNCR patients were significantly higher than that of non-dNCR patients (43.3% vs 28.2%, P=0.035; 23.3% vs 4.2%, P=0.013, respectively) at 7 days following surgery. No significant differences in ABCA7 alleles between POCD and non-POCD patients were observed 3 months postoperatively. Conclusion ABCA7 rs3764650 gene polymorphism is associated with dNCR and GG genotype might be a predisposing factor for postoperative cognitive impairment in Chinese Han elderly populations.
Collapse
Affiliation(s)
- Lu Yu
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| | - Haiyan Ji
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Minmin Zhou
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| | - Yaxin Guo
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Junfeng Liu
- Medical College of Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Daoyun Lei
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Chao Han
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
- Correspondence: Chao Han, Email
| | - Tieliang Ma
- Department of Anesthesiology, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People’s Republic of China
| |
Collapse
|
18
|
Stepler KE, Gillyard TR, Reed CB, Avery TM, Davis JS, Robinson RA. ABCA7, a Genetic Risk Factor Associated with Alzheimer's Disease Risk in African Americans. J Alzheimers Dis 2022; 86:5-19. [PMID: 35034901 PMCID: PMC10984370 DOI: 10.3233/jad-215306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.
Collapse
Affiliation(s)
| | - Taneisha R. Gillyard
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
| | - Calla B. Reed
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
| | - Tyra M. Avery
- Fisk University Department of Life and Physical Sciences, Nashville, TN, USA
| | - Jamaine S. Davis
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renã A.S. Robinson
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
- Vanderbilt University Medical Center Department of Neurology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| |
Collapse
|
19
|
Torvell M, Carpanini SM, Daskoulidou N, Byrne RAJ, Sims R, Morgan BP. Genetic Insights into the Impact of Complement in Alzheimer's Disease. Genes (Basel) 2021; 12:1990. [PMID: 34946939 PMCID: PMC8702080 DOI: 10.3390/genes12121990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The presence of complement activation products at sites of pathology in post-mortem Alzheimer's disease (AD) brains is well known. Recent evidence from genome-wide association studies (GWAS), combined with the demonstration that complement activation is pivotal in synapse loss in AD, strongly implicates complement in disease aetiology. Genetic variations in complement genes are widespread. While most variants individually have only minor effects on complement homeostasis, the combined effects of variants in multiple complement genes, referred to as the "complotype", can have major effects. In some diseases, the complotype highlights specific parts of the complement pathway involved in disease, thereby pointing towards a mechanism; however, this is not the case with AD. Here we review the complement GWAS hits; CR1 encoding complement receptor 1 (CR1), CLU encoding clusterin, and a suggestive association of C1S encoding the enzyme C1s, and discuss difficulties in attributing the AD association in these genes to complement function. A better understanding of complement genetics in AD might facilitate predictive genetic screening tests and enable the development of simple diagnostic tools and guide the future use of anti-complement drugs, of which several are currently in development for central nervous system disorders.
Collapse
Affiliation(s)
- Megan Torvell
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK;
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
20
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
21
|
Pyun JM, Park YH, Lee KJ, Kim S, Saykin AJ, Nho K. Predictability of polygenic risk score for progression to dementia and its interaction with APOE ε4 in mild cognitive impairment. Transl Neurodegener 2021; 10:32. [PMID: 34465370 PMCID: PMC8406896 DOI: 10.1186/s40035-021-00259-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The combinatorial effect of multiple genetic factors calculated as a polygenic risk score (PRS) has been studied to predict disease progression to Alzheimer's disease (AD) from mild cognitive impairment (MCI). Previous studies have investigated the performance of PRS in the prediction of disease progression to AD by including and excluding single nucleotide polymorphisms within the region surrounding the APOE gene. These studies may have missed the APOE genotype-specific predictability of PRS for disease progression to AD. METHODS We analyzed 732 MCI from the Alzheimer's Disease Neuroimaging Initiative cohort, including those who progressed to AD within 5 years post-baseline (n = 270) and remained stable as MCI (n = 462). The predictability of PRS including and excluding the APOE region (PRS+APOE and PRS-APOE) on the conversion to AD and its interaction with the APOE ε4 carrier status were assessed using Cox regression analyses. RESULTS PRS+APOE (hazard ratio [HR] 1.468, 95% CI 1.335-1.615) and PRS-APOE (HR 1.293, 95% CI 1.157-1.445) were both associated with a significantly increased risk of MCI progression to dementia. The interaction between PRS+APOE and APOE ε4 carrier status was significant with a P-value of 0.0378. The association of PRSs with the progression risk was stronger in APOE ε4 non-carriers (PRS+APOE: HR 1.710, 95% CI 1.244-2.351; PRS-APOE: HR 1.429, 95% CI 1.182-1.728) than in APOE ε4 carriers (PRS+APOE: HR 1.167, 95% CI 1.005-1.355; PRS-APOE: HR 1.172, 95% CI 1.020-1.346). CONCLUSIONS PRS could predict the conversion of MCI to dementia with a stronger association in APOE ε4 non-carriers than APOE ε4 carriers. This indicates PRS as a potential genetic predictor particularly for MCI with no APOE ε4 alleles.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea.
| | - Keon-Joo Lee
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Xi J, Ding D, Zhao Q, Liang X, Zheng L, Guo Q, Hong Z, Fu H, Xu J, Xiao Q. Joint Effect of ABCA7 rs4147929 and Body Mass Index on Progression from Mild Cognitive Impairment to Alzheimer's Disease: The Shanghai Aging Study. Curr Alzheimer Res 2021; 17:185-195. [PMID: 32183673 DOI: 10.2174/1567205017666200317095608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Approximately 40 independent Single Nucleotide Polymorphisms (SNPs) have been associated with Alzheimer's Disease (AD) or cognitive decline in genome-wide association studies. OBJECTIVE We aimed to evaluate the joint effect of genetic polymorphisms and environmental factors on the progression from Mild Cognitive Impairment (MCI) to AD (MCI-AD progression) in a Chinese community cohort. METHODS Demographic, DNA and incident AD diagnosis data were derived from the follow-up of 316 participants with MCI at baseline of the Shanghai Aging Study. The associations of 40 SNPs and environmental predictors with MCI-AD progression were assessed using the Kaplan-Meier method with the log-rank test and Cox regression model. RESULTS Rs4147929 at ATP-binding cassette family A member 7 (ABCA7) (AG/AA vs. GG, hazard ratio [HR] = 2.43, 95% confidence interval [CI] 1.24-4.76) and body mass index (BMI) (overweight vs. non-overweight, HR = 0.41, 95% CI 0.22-0.78) were independent predictors of MCI-AD progression. In the combined analyses, MCI participants with the copresence of non-overweight BMI and the ABCA7 rs4147929 (AG/AA) risk genotype had an approximately 6-fold higher risk of MCI-AD progression than those with an overweight BMI and a non-risk genotype (HR = 6.77, 95% CI 2.60-17.63). However, a nonsignificant result was found when participants carried only one of these two risk factors (nonoverweight BMI and AG/AA of ABCA7 rs4147929). CONCLUSION ABCA7 rs4147929 and BMI jointly affect MCI-AD progression. MCI participants with the rs4147929 risk genotype may benefit from maintaining an overweight BMI level with regard to their risk for incident AD.
Collapse
Affiliation(s)
- Jianxiong Xi
- Department of Preventive Medicine and Health Education, School of Public Health, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Qihao Guo
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Zhen Hong
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging Diseases, Shanghai, China
| | - Hua Fu
- Department of Preventive Medicine and Health Education, School of Public Health, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Preventive Medicine and Health Education, School of Public Health, Fudan University, Shanghai, China
| | - Qianyi Xiao
- Department of Preventive Medicine and Health Education, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|
24
|
Bakulski KM, Vadari HS, Faul JD, Heeringa SG, Kardia SL, Langa KM, Smith JA, Manly JJ, Mitchell CM, Benke KS, Ware EB. Cumulative Genetic Risk and APOE ε4 Are Independently Associated With Dementia Status in a Multiethnic, Population-Based Cohort. Neurol Genet 2021; 7:e576. [PMID: 33688582 PMCID: PMC7938646 DOI: 10.1212/nxg.0000000000000576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Alzheimer disease (AD) is a common and costly neurodegenerative disorder. A large proportion of AD risk is heritable, and many genetic risk factors have been identified. The objective of this study was to test the hypothesis that cumulative genetic risk of known AD markers contributed to odds of dementia in a population-based sample. METHODS In the US population-based Health and Retirement Study (waves 1995-2014), we evaluated the role of cumulative genetic risk of AD, with and without the APOE ε4 alleles, on dementia status (dementia, cognitive impairment without dementia, borderline cognitive impairment without dementia, and cognitively normal). We used logistic regression, accounting for demographic covariates and genetic principal components, and analyses were stratified by European and African genetic ancestry. RESULTS In the European ancestry sample (n = 8,399), both AD polygenic score excluding the APOE genetic region (odds ratio [OR] = 1.10; 95% confidence interval [CI]: 1.00-1.20) and the presence of any APOE ε4 alleles (OR = 2.42; 95% CI: 1.99-2.95) were associated with the odds of dementia relative to normal cognition in a mutually adjusted model. In the African ancestry sample (n = 1,605), the presence of any APOE ε4 alleles was associated with 1.77 (95% CI: 1.20-2.61) times higher odds of dementia, whereas the AD polygenic score excluding the APOE genetic region was not significantly associated with the odds of dementia relative to normal cognition 1.06 (95% CI: 0.97-1.30). CONCLUSIONS Cumulative genetic risk of AD and APOE ε4 are both independent predictors of dementia in European ancestry. This study provides important insight into the polygenic nature of dementia and demonstrates the utility of polygenic scores in dementia research.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Harita S. Vadari
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jessica D. Faul
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Steven G. Heeringa
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sharon L.R. Kardia
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Kenneth M. Langa
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jennifer A. Smith
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jennifer J. Manly
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Colter M. Mitchell
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Kelly S. Benke
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erin B. Ware
- From the Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
25
|
Zhou X, Li YYT, Fu AKY, Ip NY. Polygenic Score Models for Alzheimer's Disease: From Research to Clinical Applications. Front Neurosci 2021; 15:650220. [PMID: 33854414 PMCID: PMC8039467 DOI: 10.3389/fnins.2021.650220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of Alzheimer's disease (AD) among the elderly population and its lack of effective treatments make this disease a critical threat to human health. Recent epidemiological and genetics studies have revealed the polygenic nature of the disease, which is possibly explainable by a polygenic score model that considers multiple genetic risks. Here, we systemically review the rationale and methods used to construct polygenic score models for studying AD. We also discuss the associations of polygenic risk scores (PRSs) with clinical outcomes, brain imaging findings, and biochemical biomarkers from both the brain and peripheral system. Finally, we discuss the possibility of incorporating polygenic score models into research and clinical practice along with potential challenges.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Yolanda Y. T. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
- *Correspondence: Nancy Y. Ip,
| |
Collapse
|
26
|
ABCA7 links sterol metabolism to the host defense system: Molecular background for potential management measure of Alzheimer's disease. Gene 2020; 768:145316. [PMID: 33221536 DOI: 10.1016/j.gene.2020.145316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette transporter (ABC) A7 is a membrane protein that belongs to the large family of ABC transporters. It is 54% homologous in amino acid residue sequence to ABCA1 which mediates biogenesis of plasma high density lipoprotein (HDL) from cellular phospholipid and cholesterol with extracellular helical apolipoproteins such as apolipoprotein (apo) A-I. When transfected and expressed, ABCA7 also mediates generation of HDL-like particles but small and of less cholesterol content. However, endogenous ABCA7 is unlikely involved in HDL biogenesis and rather to regulate the host-defense system such as phagocytotic function of the cells. ABCA1 expression is regulated by cellular cholesterol levels, positively by the liver X receptor (LXR) in extrahepatic peripheral cells. However, it is modulated dually in the liver being relevant to transport of cholesterol for its catabolism; positively by LXR and negatively by sterol regulatory element binding protein (SREBP) or hepatic nuclear factor 4α (HNF4α). In contrast, ABCA7 expression was shown to be regulated negatively by the SREBP system so that decrease of cell cholesterol enhances ABCA7 function such as cellular phagocytotic reaction, suggesting that it links cholesterol metabolism to the host defense system. The interest is being build up in ABCA7 as its genomic diversity has been found related to a risk for late-onset Alzheimer's diseases. More recent findings indicate that ABCA7 is involved in metabolism of amyloid β peptide including its phagocytotic clearance. Accordingly, modulation of ABCA7 activity by manipulating cholesterol metabolism may open a new path for management of Alzheimer's disease.
Collapse
|
27
|
Balcar VJ, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Single Nucleotide Polymorphism rs11136000 of CLU Gene (Clusterin, ApoJ) and the Risk of Late-Onset Alzheimer's Disease in a Central European Population. Neurochem Res 2020; 46:411-422. [PMID: 33206315 DOI: 10.1007/s11064-020-03176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Clusterin (CLU; also known as apolipoprotein J, ApoJ) is a protein of inconstant structure known to be involved in diverse processes inside and outside of brain cells. CLU can act as a protein chaperon or protein solubilizer, lipid transporter as well as redox sensor and be anti- or proapoptotic, depending on context. Primary structure of CLU is encoded by CLU gene which contains single nucleotide polymorphisms (SNP's) associated with the risk of late-onset Alzheimer's disease (LOAD). Studying a sample of Czech population and using the case-control association approach we identified C allele of the SNP rs11136000 as conferring a reduced risk of LOAD, more so in females than in males. Additionally, data from two smaller subsets of the population sample suggested a possible association of rs11136000 with diabetes mellitus. In a parallel study, we found no association between rs11136000 and mild cognitive impairment (MCI). Our findings on rs11136000 and LOAD contradict those of some previous studies done elsewhere. We discuss the multiple roles of CLU in a broad range of molecular mechanisms that may contribute to the variability of genetic studies of CLU in various ethnic groups. The above discordance notwithstanding, our conclusions support the association of rs1113600 with the risk of LOAD.
Collapse
Affiliation(s)
- Vladimir J Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia. .,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.
| | - Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Janoutová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
28
|
Mukherjee S, Heath L, Preuss C, Jayadev S, Garden GA, Greenwood AK, Sieberts SK, De Jager PL, Ertekin-Taner N, Carter GW, Mangravite LM, Logsdon BA. Molecular estimation of neurodegeneration pseudotime in older brains. Nat Commun 2020; 11:5781. [PMID: 33188183 PMCID: PMC7666177 DOI: 10.1038/s41467-020-19622-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
The temporal molecular changes that lead to disease onset and progression in Alzheimer's disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score, P = 1.0 × 10-5), Aβ (CERAD score, P = 1.8 × 10-5), and cognitive diagnosis (P = 3.5 × 10-7) of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and show changes in basic cellular functions. Late stage disease pseudotime samples are enriched for late stage AD cases and show changes in neuroinflammation and amyloid pathologic processes. We also identify a set of late stage pseudotime samples that are controls and show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and prevention of amyloid cleavage pathways. In summary, we present a method for ordering patients along a trajectory of LOAD disease progression from brain transcriptomic data.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Sage Bionetworks, Seattle, WA, USA
- Microsoft, Redmond, WA, USA
| | | | | | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | | | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
- Taub Institute, Columbia University Irving Medical Center, New York City, NY, USA
| | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic Florid, Jacksonville, FL, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | | | - Benjamin A Logsdon
- Sage Bionetworks, Seattle, WA, USA.
- Cajal Neuroscience, Seattle, WA, USA.
| |
Collapse
|
29
|
Andrews SJ, McFall GP, Booth A, Dixon RA, Anstey KJ. Association of Alzheimer's Disease Genetic Risk Loci with Cognitive Performance and Decline: A Systematic Review. J Alzheimers Dis 2020; 69:1109-1136. [PMID: 31156182 DOI: 10.3233/jad-190342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The association of Apolipoprotein E (APOE) with late-onset Alzheimer's disease (LOAD) and cognitive endophenotypes of aging has been widely investigated. There is increasing interest in evaluating the association of other LOAD risk loci with cognitive performance and decline. The results of these studies have been inconsistent and inconclusive. We conducted a systematic review of studies investigating the association of non-APOE LOAD risk loci with cognitive performance in older adults. Studies published from January 2009 to April 2018 were identified through a PubMed database search using keywords and by scanning reference lists. Studies were included if they were either cross-sectional or longitudinal in design, included at least one genome-wide significant LOAD risk loci or a genetic risk score, and had one objective measure of cognition. Quality assessment of the studies was conducted using the quality of genetic studies (Q-Genie) tool. Of 2,466 studies reviewed, 49 met inclusion criteria. Fifteen percent of the associations between non-APOE LOAD risk loci and cognition were significant. However, these associations were not replicated across studies, and the majority were rendered non-significant when adjusting for multiple testing. One-third of the studies included genetic risk scores, and these were typically significant only when APOE was included. The findings of this systematic review do not support a consistent association between individual non-APOE LOAD risk and cognitive performance or decline. However, evidence suggests that aggregate LOAD genetic risk exerts deleterious effects on decline in episodic memory and global cognition.
Collapse
Affiliation(s)
- Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kaarin J Anstey
- UNSW Ageing Futures Institute, University of New South Wales, Australia.,School of Psychology, University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| |
Collapse
|
30
|
Investigating APOE, APP-Aβ metabolism genes and Alzheimer's disease GWAS hits in brain small vessel ischemic disease. Sci Rep 2020; 10:7103. [PMID: 32345996 PMCID: PMC7188838 DOI: 10.1038/s41598-020-63183-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant association test identified 3 common variants with a likely protective effect on small vessel ischemic disease (0.54>OR > 0.32, adj. p-value <0.05) (EPHA1 p.M900V and p.V160A and CD33 p.A14V). Moreover, 5/17 APP-Aß catabolism genes were significantly upregulated (LogFC > 1, adj. p-val<0.05) together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology.
Collapse
|
31
|
Perdigão C, Barata MA, Araújo MN, Mirfakhar FS, Castanheira J, Guimas Almeida C. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2020; 14:72. [PMID: 32362813 PMCID: PMC7180223 DOI: 10.3389/fncel.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss. Although AD neuropathological hallmarks are extracellular amyloid plaques and intracellular tau tangles, the best correlate of disease progression is synapse loss. What causes synapse loss has been the focus of several researchers in the AD field. Synapses become dysfunctional before plaques and tangles form. Studies based on early-onset familial AD (eFAD) models have supported that synaptic transmission is depressed by β-amyloid (Aβ) triggered mechanisms. Since eFAD is rare, affecting only 1% of patients, research has shifted to the study of the most common late-onset AD (LOAD). Intracellular trafficking has emerged as one of the pathways of LOAD genes. Few studies have assessed the impact of trafficking LOAD genes on synapse dysfunction. Since endocytic traffic is essential for synaptic function, we reviewed Aβ-dependent and independent mechanisms of the earliest synaptic dysfunction in AD. We have focused on the role of intraneuronal and secreted Aβ oligomers, highlighting the dysfunction of endocytic trafficking as an Aβ-dependent mechanism of synapse dysfunction in AD. Here, we reviewed the LOAD trafficking genes APOE4, ABCA7, BIN1, CD2AP, PICALM, EPH1A, and SORL1, for which there is a synaptic link. We conclude that in eFAD and LOAD, the earliest synaptic dysfunctions are characterized by disruptions of the presynaptic vesicle exo- and endocytosis and of postsynaptic glutamate receptor endocytosis. While in eFAD synapse dysfunction seems to be triggered by Aβ, in LOAD, there might be a direct synaptic disruption by LOAD trafficking genes. To identify promising therapeutic targets and biomarkers of the earliest synaptic dysfunction in AD, it will be necessary to join efforts in further dissecting the mechanisms used by Aβ and by LOAD genes to disrupt synapses.
Collapse
Affiliation(s)
- Catarina Perdigão
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mariana A Barata
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Margarida N Araújo
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Farzaneh S Mirfakhar
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jorge Castanheira
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Guimas Almeida
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|
33
|
Harrison JR, Mistry S, Muskett N, Escott-Price V. From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2020; 74:1271-1283. [PMID: 32250305 PMCID: PMC7242840 DOI: 10.3233/jad-191233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is highly heritable. The effect of many common genetic variants, single nucleotide polymorphisms (SNPs), confer risk. Variants are clustered in areas of biology, notably immunity and inflammation, cholesterol metabolism, endocytosis, and ubiquitination. Polygenic scores (PRS), which weight the sum of an individual's risk alleles, have been used to draw inferences about the pathological processes underpinning AD. OBJECTIVE This paper aims to systematically review how AD PRS are being used to study a range of outcomes and phenotypes related to neurodegeneration. METHODS We searched the literature from July 2008-July 2018 following PRISMA guidelines. RESULTS 57 studies met criteria. The AD PRS can distinguish AD cases from controls. The ability of AD PRS to predict conversion from mild cognitive impairment (MCI) to AD was less clear. There was strong evidence of association between AD PRS and cognitive impairment. AD PRS were correlated with a number of biological phenotypes associated with AD pathology, such as neuroimaging changes and amyloid and tau measures. Pathway-specific polygenic scores were also associated with AD-related biologically relevant phenotypes. CONCLUSION PRS can predict AD effectively and are associated with cognitive impairment. There is also evidence of association between AD PRS and other phenotypes relevant to neurodegeneration. The associations between pathway specific polygenic scores and phenotypic changes may allow us to define the biology of the disease in individuals and indicate who may benefit from specific treatments. Longitudinal cohort studies are required to test the ability of PGS to delineate pathway-specific disease activity.
Collapse
Affiliation(s)
- Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Sumit Mistry
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Natalie Muskett
- Cardiff University Medical School, University Hospital of Wales, Cardiff, UK
| | - Valentina Escott-Price
- Dementia Research Institute & the MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Sinha N, Berg CN, Shaw A, Gluck MA. ABCA7 Genotype Moderates the Effect of Aerobic Exercise Intervention on Generalization of Prior Learning in Healthy Older African Americans. J Alzheimers Dis 2020; 74:309-318. [PMID: 32039842 PMCID: PMC11131599 DOI: 10.3233/jad-190723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
African Americans are at elevated risk for age-related cognitive decline, with double the prevalence of Alzheimer's disease (AD) compared to Caucasians Americans. Various behavioral, biological, and lifestyle factors may underlie this health disparity, but little is known about the relative importance and interactions among these different risk factors in African Americans. While the neuroprotective effects of aerobic exercise on biomarkers are well established, few studies have examined the differential benefits of exercise based on genetic risk for AD. Furthermore, evidence is limited regarding the potential moderating effects of ABCA7, a gene known to confer significantly greater AD risk in African Americans. In a case-control matched sample of 56 healthy older African Americans, we investigated the effect of an aerobic exercise intervention on a hippocampus-related assessment of generalization following rule learning, in individuals who were carriers of the ABCA7 rs3764650 non-risk (TT) or high-risk (GG) genotype. Following the exercise-intervention, the non-risk group made significantly fewer generalization errors, while there was no improvement in generalization for the high-risk group. For the controls, no changes in generalization scores were observed regardless of genotype status. Our results indicate that the ongoing adverse effects of ABCA7 high-risk genotype may diminish the benefits associated with aerobic exercise. As such, the potential disease-modifying effects of aerobic exercise on AD-related neuropathology may be limited to carriers of the ABCA7 rs3764650 non-risk genotype.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Chelsie N. Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Ashlee Shaw
- Office of Programs for Access and Inclusion, Princeton University, Princeton, NJ, USA
| | - Mark A. Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
35
|
Validation of a priori candidate Alzheimer's disease SNPs with brain amyloid-beta deposition. Sci Rep 2019; 9:17069. [PMID: 31745181 PMCID: PMC6863876 DOI: 10.1038/s41598-019-53604-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
The accumulation of brain amyloid β (Aβ) is one of the main pathological hallmarks of Alzheimer’s disease (AD). However, the role of brain amyloid deposition in the development of AD and the genetic variants associated with this process remain unclear. In this study, we sought to identify associations between Aβ deposition and an a priori evidence based set of 1610 genetic markers, genotyped from 505 unrelated individuals (258 Aβ+ and 247 Aβ−) enrolled in the Australian Imaging, Biomarker & Lifestyle (AIBL) study. We found statistically significant associations for 6 markers located within intronic regions of 6 genes, including AC103796.1-BDNF, PPP3R1, NGFR, KL, ABCA7 & CALHM1. Although functional studies are required to elucidate the role of these genes in the accumulation of Aβ and their potential implication in AD pathophysiology, our findings are consistent with results obtained in previous GWAS efforts.
Collapse
|
36
|
Berg CN, Sinha N, Gluck MA. The Effects of APOE and ABCA7 on Cognitive Function and Alzheimer's Disease Risk in African Americans: A Focused Mini Review. Front Hum Neurosci 2019; 13:387. [PMID: 31749691 PMCID: PMC6848225 DOI: 10.3389/fnhum.2019.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
African Americans have double the prevalence of Alzheimer's disease (AD), as compared to European Americans. However, the underlying causes of this health disparity are due to a multitude of environmental, lifestyle, and genetic factors that are not yet fully understood. Here, we review the effects of the two largest genetic risk factors for AD in African Americans: Apolipoprotein E (APOE) and ABCA7. We will describe the direct effects of genetic variation on neural correlates of cognitive function and report the indirect modulating effects of genetic variation on modifiable AD risk factors, such as aerobic fitness. As a means of integrating previous findings, we present a novel schematic diagram to illustrate the many factors that contribute to AD risk and impaired cognitive function in older African Americans. Finally, we discuss areas that require further inquiry, and stress the importance of racially diverse and representative study populations.
Collapse
Affiliation(s)
- Chelsie N. Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| | | | - Mark A. Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
37
|
Talebi M, Delpak A, Khalaj-Kondori M, Sadigh-Eteghad S, Talebi M, Mehdizadeh E, Majdi A. ABCA7 and EphA1 Genes Polymorphisms in Late-Onset Alzheimer's Disease. J Mol Neurosci 2019; 70:167-173. [PMID: 31659653 DOI: 10.1007/s12031-019-01420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Large-scale genome-wide studies have revealed the role of several genes and their respective single-nucleotide polymorphisms (SNPs) in the pathophysiology of late-onset Alzheimer's disease (LOAD). Here, the frequencies of ABCA7 SNPs rs3764650 and rs4147929 and EphA1 SNP rs11771145 were assessed and compared in LOAD patients and healthy subjects. In a case-control study, 110 patients with LOAD (case) and 88 healthy unrelated age- and gender-matched individuals (control), both from Azeri descent, were enrolled. DNA was extracted from blood samples using the salting out method, and the genotyping was performed by RFLP-PCR for rs3764650, rs4147929, and rs11771145 polymorphisms. Electrophoresis was carried out on agarose gel. Sequencing was utilized for confirmation of the results. No differences were found in the frequencies of ABCA7 SNP rs3764650 and EphA1 SNP rs11771145 between healthy subjects and LOAD patients. However, a significant difference was revealed in the frequencies of AA (p = 0.042, OR = 0.150; 95%CI = 0.005-1.410) and GG (p = 0.009, OR = 1.716; 95%CI = 0.918-3.218) genotypes of ABCA7 SNP rs4147929 between the mentioned groups. This study showed that ABCA7 SNP rs4147929 might be a predisposing factor for LOAD. However, such an association was not found between ABCA7 SNP rs3764650 as well as EphA1 SNP rs11771145 and LOAD. These results must be confirmed in other ethnic groups.
Collapse
Affiliation(s)
- Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azra Delpak
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Talebi
- Health Center of East Azerbaijan Province, Tabriz, Iran
| | - Elham Mehdizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 2019; 138:201-220. [PMID: 30903345 PMCID: PMC6660495 DOI: 10.1007/s00401-019-01994-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
39
|
Zhang C, Hu R, Zhang G, Zhe Y, Hu B, He J, Wang Z, Qi X. A Weighted Genetic Risk Score Based on Four APOE-Independent Alzheimer’s Disease Risk Loci May Supplement APOE E4 for Better Disease Prediction. J Mol Neurosci 2019; 69:433-443. [DOI: 10.1007/s12031-019-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
40
|
Chaudhury S, Brookes KJ, Patel T, Fallows A, Guetta-Baranes T, Turton JC, Guerreiro R, Bras J, Hardy J, Francis PT, Croucher R, Holmes C, Morgan K, Thomas AJ. Alzheimer's disease polygenic risk score as a predictor of conversion from mild-cognitive impairment. Transl Psychiatry 2019; 9:154. [PMID: 31127079 PMCID: PMC6534556 DOI: 10.1038/s41398-019-0485-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 11/08/2022] Open
Abstract
Mild-cognitive impairment (MCI) occurs in up to one-fifth of individuals over the age of 65, with approximately a third of MCI individuals converting to dementia in later life. There is a growing necessity for early identification for those at risk of dementia as pathological processes begin decades before onset of symptoms. A cohort of 122 individuals diagnosed with MCI and followed up for a 36-month period for conversion to late-onset Alzheimer's disease (LOAD) were genotyped on the NeuroChip array along with pathologically confirmed cases of LOAD and cognitively normal controls. Polygenic risk scores (PRS) for each individual were generated using PRSice-2, derived from summary statistics produced from the International Genomics of Alzheimer's Disease Project (IGAP) genome-wide association study. Predictability models for LOAD were developed incorporating the PRS with APOE SNPs (rs7412 and rs429358), age and gender. This model was subsequently applied to the MCI cohort to determine whether it could be used to predict conversion from MCI to LOAD. The PRS model for LOAD using area under the precision-recall curve (AUPRC) calculated a predictability for LOAD of 82.5%. When applied to the MCI cohort predictability for conversion from MCI to LOAD was 61.0%. Increases in average PRS scores across diagnosis group were observed with one-way ANOVA suggesting significant differences in PRS between the groups (p < 0.0001). This analysis suggests that the PRS model for LOAD can be used to identify individuals with MCI at risk of conversion to LOAD.
Collapse
Affiliation(s)
| | | | - Tulsi Patel
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - Abigail Fallows
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | | | - James C Turton
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - Rita Guerreiro
- UK Dementia Research Institute at University College London and ION Department of Neurodegenerative Disease, London, UK
| | - Jose Bras
- UK Dementia Research Institute at University College London and ION Department of Neurodegenerative Disease, London, UK
| | - John Hardy
- UK Dementia Research Institute at University College London and ION Department of Neurodegenerative Disease, London, UK
| | - Paul T Francis
- Brains for Dementia Research Resource, Wolfson CARD, King's College London, London, UK
| | | | - Clive Holmes
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kevin Morgan
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - A J Thomas
- Institute of Neuroscience Biomedical Research Building Campus for Ageing and Vitality Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
41
|
Berg CN, Sinha N, Gluck MA. ABCA7 Risk Genotype Diminishes the Neuroprotective Value of Aerobic Fitness in Healthy Older African Americans. Front Aging Neurosci 2019; 11:73. [PMID: 31024289 PMCID: PMC6466967 DOI: 10.3389/fnagi.2019.00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023] Open
Abstract
Although the association of ABCA7 risk variants with Alzheimer's disease (AD) has been established worldwide, its effect size on the relative odds of being diagnosed with AD is significantly higher in African Americans. Across ethnicities, two common ABCA7 loci (rs115550680 and rs3764650) have been confirmed to increase the risk of AD. While ABCA7 rs115550680 has been linked to the development of late-onset AD in African Americans, no association between ABCA7 variant rs3764650 and AD has been found in this population. In order to elucidate the influence of ABCA7 rs3764650 on AD risk in African Americans, we sought to investigate the relationship between this variant, aerobic fitness, and cognition. The present study tested the hypothesis that in African Americans, ABCA7 rs3764650 confers an indirect risk for AD via its interaction with aerobic fitness, a modifiable lifestyle factor known to attenuate AD-related neuropathology. In a case-control sample of 100 healthy African Americans, we observed that ABCA7 rs3764650 genotype modulates the association between aerobic fitness and a cognitive assessment of generalization following rule learning. For carriers of the non-risk genotype, higher levels of aerobic fitness were significantly associated with fewer generalization errors, while carriers of the risk genotype did not show any relationship between aerobic fitness and generalization. Our findings imply that ABCA7 rs3764650 risk genotype may diminish the neuroprotective effects of aerobic fitness, and, they suggest differing risk patterns between cognitive decline and fitness by ABCA7 genotype. Thus, in African Americans the interactive effects of ABCA7 rs3764650 and aerobic fitness likely compound overall ABCA7-related AD risk, and may contribute to health disparities whereby African Americans are at a higher risk for dementia, with double the prevalence of AD.
Collapse
Affiliation(s)
| | | | - Mark A. Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
42
|
The Contribution of Genetic Factors to Cognitive Impairment and Dementia: Apolipoprotein E Gene, Gene Interactions, and Polygenic Risk. Int J Mol Sci 2019; 20:ijms20051177. [PMID: 30866553 PMCID: PMC6429136 DOI: 10.3390/ijms20051177] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Although it has been studied for years, the pathogenesis of AD is still controversial. Genetic factors may play an important role in pathogenesis, with the apolipoprotein E (APOE) gene among the greatest risk factors for AD. In this review, we focus on the influence of genetic factors, including the APOE gene, the interaction between APOE and other genes, and the polygenic risk factors for cognitive function and dementia. The presence of the APOE ε4 allele is associated with increased AD risk and reduced age of AD onset. Accelerated cognitive decline and abnormal internal environment, structure, and function of the brain were also found in ε4 carriers. The effect of the APOE promoter on cognition and the brain was confirmed by some studies, but further investigation is still needed. We also describe the effects of the associations between APOE and other genetic risk factors on cognition and the brain that exhibit a complex gene⁻gene interaction, and we consider the importance of using a polygenic risk score to investigate the association between genetic variance and phenotype.
Collapse
|
43
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Liu G, Zhang Y, Wang L, Xu J, Chen X, Bao Y, Hu Y, Jin S, Tian R, Bai W, Zhou W, Wang T, Han Z, Zong J, Jiang Q. Alzheimer's Disease rs11767557 Variant Regulates EPHA1 Gene Expression Specifically in Human Whole Blood. J Alzheimers Dis 2019; 61:1077-1088. [PMID: 29332039 DOI: 10.3233/jad-170468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large-scale genome-wide association studies have reported EPHA1 rs11767557 variant to be associated with Alzheimer's disease (AD) risk in the European population. However, it is still unclear how this variant functionally contributes to the underlying disease pathogenesis. The rs11767557 variant is located approximately 3 kb upstream of EPHA1 gene. We think that rs11767557 may modify the expression of nearby genes such as EPHA1 and further cause AD risk. Until now, the potential association between rs11767557 and the expression of nearby genes has not been reported in previous studies. Here, we evaluate the potential expression association between rs11767557 and EPHA1 using multiple large-scale eQTLs datasets in human brain tissues and the whole blood. The results show that rs11767557 variant could significantly regulate EPHA1 gene expression specifically in human whole blood. These findings may further provide important supplementary information about the regulating mechanisms of rs11767557 variant in AD risk.
Collapse
Affiliation(s)
- Guiyou Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jianyong Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Xiaoyun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Yunjuan Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Rui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weiyang Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhifa Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jian Zong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
45
|
Li W, Qiu Q, Sun L, Li X, Xiao S. Short-term adverse effects of the apolipoprotein E ε4 allele over language function and executive function in healthy older adults. Neuropsychiatr Dis Treat 2019; 15:1855-1861. [PMID: 31371959 PMCID: PMC6628858 DOI: 10.2147/ndt.s183064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/10/2019] [Indexed: 01/14/2023] Open
Abstract
Background: The 4 allele of the apolipoprotein E (APOE) gene is known as a risk factor for cognitive impairment. How APOE ε polymorphism affects the language and executive functions of healthy aging subjects remains less clear. Purpose: In this follow-up study, the relationship between APOE status and cognitive performance across various cognitive domains in healthy individuals (without dementia or mild cognitive impairment (MCI)) over 60 years old was investigated. Patients and methods: Based on multiplex amplification refractory mutation system polymerase chain reaction (PCR), 228 subjects (n=228; mean age: 70.59±8.07 years old; male %=40.8%) were divided into three groups, e2 (ε2/ε2 and ε2/ε3, n=35), e3 (ε3/ε3, n=152), and e4 (ε2/ε4, ε3/ε4, and ε4/ε4, n=41). Results: There was no statistical difference (p>0.05) in the general demographic data and neuropsychological tests among the three groups on the baseline; however, e4 group showed a greater drop rate (p<0.05) versus non-carriers on verbal fluency (e2: -0.043±0.221; e3: -0.081±0.239; e4: 0.069±0.329) and Webster picture completion (e2: 0.055±0.281; e3: 0.083±0.428; e4: 0.438±1.280) over the subsequent one year. Conclusion: The findings suggest that possession of the APOE ε4 allele predicted a higher decline on tasks of language function and executive function in healthy elderly. And further research is required to determine whether strengthening the training of language function and executive function will delay the occurrence of cognitive impairment.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Porter T, Burnham SC, Savage G, Lim YY, Maruff P, Milicic L, Peretti M, Ames D, Masters CL, Martins RN, Rainey-Smith S, Rowe CC, Salvado O, Taddei K, Groth D, Verdile G, Villemagne VL, Laws SM. A Polygenic Risk Score Derived From Episodic Memory Weighted Genetic Variants Is Associated With Cognitive Decline in Preclinical Alzheimer's Disease. Front Aging Neurosci 2018; 10:423. [PMID: 30620773 PMCID: PMC6305908 DOI: 10.3389/fnagi.2018.00423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Studies of Alzheimer’s disease risk-weighted polygenic risk scores (PRSs) for cognitive performance have reported inconsistent associations. This inconsistency is particularly evident when PRSs are assessed independent of APOE genotype. As such, the development and assessment of phenotype-specific weightings to derive PRSs for cognitive decline in preclinical AD is warranted. To this end a episodic memory-weighted PRS (emPRS) was derived and assessed against decline in cognitive performance in 226 healthy cognitively normal older adults with high brain Aβ-amyloid burden participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. The effect size for decline in a verbal episodic memory was determined individually for 27 genetic variants in a reference sample (n = 151). These were then summed to generate a emPRS either including APOE (emPRSc¯APOE) or excluding APOE (emPRSs¯APOE). Resultant emPRS were then evaluated, in a test sample (n = 75), against decline in global cognition, verbal episodic memory and a pre-Alzheimer’s cognitive composite (AIBL-PACC) over 7.5 years. The mean (SD) age of the 226 participants was 72.2 (6.6) years and 116 (51.3%) were female. Reference and test samples did not differ significantly demographically. Whilst no association of emPRSs were observed with baseline cognition, the emPRSc¯APOE was associated with longitudinal global cognition (-0.237, P = 0.0002), verbal episodic memory (-0.259, P = 0.00003) and the AIBL-PACC (-0.381, P = 0.02). The emPRSs¯APOE was also associated with global cognition (-0.169, P = 0.021) and verbal episodic memory (-0.208, P = 0.004). Stratification by APOE ε4 revealed that the association between the emPRS and verbal episodic memory was limited to carriage of no ε4 or one ε4 allele. This was also observed for global cognition. The emPRS and rates of decline in AIBL-PACC were associated in those carrying one ε4 allele. Overall, the described novel emPRS has utility for the prediction of decline in cognition in preclinical AD. This study provides evidence to support the further use and evaluation of phenotype weightings in PRS development.
Collapse
Affiliation(s)
- Tenielle Porter
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - Samantha C Burnham
- CSIRO Health and Biosecurity, Parkville, VIC, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,CogState Ltd., Melbourne, VIC, Australia
| | - Lidija Milicic
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - Madeline Peretti
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. Vincent's Health, The University of Melbourne, Kew, VIC, Australia.,National Ageing Research Institute, Parkville, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | | | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Simon M Laws
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|
47
|
Sinha N, Reagh ZM, Tustison NJ, Berg CN, Shaw A, Myers CE, Hill D, Yassa MA, Gluck MA. ABCA7 risk variant in healthy older African Americans is associated with a functionally isolated entorhinal cortex mediating deficient generalization of prior discrimination training. Hippocampus 2018; 29:527-538. [PMID: 30318785 DOI: 10.1002/hipo.23042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
Using high-resolution resting state functional magnetic resonance imaging (fMRI), the present study tested the hypothesis that ABCA7 genetic risk differentially affects intra-medial temporal lobe (MTL) functional connectivity between MTL subfields, versus internetwork connectivity of the MTL with the medial prefrontal cortex (mPFC), in nondemented older African Americans. Although the association of ABCA7 risk variants with Alzheimer's disease (AD) has been confirmed worldwide, its effect size on the relative odds of being diagnosed with AD is significantly higher in African Americans. However, little is known about the neural correlates of cognitive function in older African Americans and how they relate to AD risk conferred by ABCA7. In a case-control fMRI study of 36 healthy African Americans, we observed ABCA7 related impairments in behavioral generalization that was mediated by dissociation in entorhinal cortex (EC) resting state functional connectivity. Specifically, ABCA7 risk variant was associated with EC-hippocampus hyper-synchronization and EC-mPFC hypo-synchronization. Carriers of the risk genotype also had a significantly smaller anterolateral EC, despite our finding no group differences on standardized neuropsychological tests. Our findings suggest a model where impaired cortical connectivity leads to a more functionally isolated EC at rest, which translates into aberrant EC-hippocampus hyper-synchronization resulting in generalization deficits. While we cannot identify the exact mechanism underlying the observed alterations in EC structure and network function, considering the relevance of Aβ in ABCA7 related AD pathogenesis, the results of our study may reflect the synergistic reinforcement between amyloid and tau pathology in the EC, which significantly increases tau-induced neuronal loss and accelerates synaptic alterations. Finally, our results add to a growing literature suggesting that generalization of learning may be a useful tool for assessing the mild cognitive deficits seen in the earliest phases of prodromal AD, even before the more commonly reported deficits in episodic memory arise.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Zachariah M Reagh
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Chelsie N Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ashlee Shaw
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Catherine E Myers
- Neurobiology Research Laboratory VA New Jersey Health Care System East Orange, NJ.,Pharmacology Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Diane Hill
- Office of University-Community Partnerships, Rutgers University-Newark, Newark, New Jersey
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
48
|
Porter T, Burnham SC, Milicic L, Savage G, Maruff P, Lim YY, Li QX, Ames D, Masters CL, Rainey-Smith S, Rowe CC, Salvado O, Groth D, Verdile G, Villemagne VL, Laws SM. Utility of an Alzheimer’s Disease Risk-Weighted Polygenic Risk Score for Predicting Rates of Cognitive Decline in Preclinical Alzheimer’s Disease: A Prospective Longitudinal Study. J Alzheimers Dis 2018; 66:1193-1211. [DOI: 10.3233/jad-180713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tenielle Porter
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health,
| | - Samantha C. Burnham
- eHealth, CSIRO Health and Biosecurity, Parkville, VIC, Australia
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Lidija Milicic
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health,
| | - Greg Savage
- Department of Psychology, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, NSW, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- CogState Ltd., Melbourne, VIC, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. Vincent’s Health, The University of Melbourne, Kew, VIC, Australia
- National Ageing Research Institute, Parkville, VIC, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Olivier Salvado
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Victor L. Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Simon M. Laws
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Co-operative Research Centre for Mental Health,
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | | |
Collapse
|
49
|
Todd M, Schneper L, Vasunilashorn SM, Notterman D, Ullman MT, Goldman N. Apolipoprotein E, cognitive function, and cognitive decline among older Taiwanese adults. PLoS One 2018; 13:e0206118. [PMID: 30339707 PMCID: PMC6195295 DOI: 10.1371/journal.pone.0206118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (APOE) genotype is believed to play a role in the onset of dementia, though less is known about its relationship with non-pathogenic age-related cognitive decline. We assessed whether APOE was a risk factor for cognitive decline among older Taiwanese adults using nationally representative data. General cognition was measured longitudinally over eleven years; domain-specific cognitive assessments of working memory, declarative learning and three aspects of attention (executive function, alerting, and orientation) were performed once. Having at least one risky APOE allele was associated with more rapid longitudinal cognitive decline compared to those with no risky alleles. Some evidence from the cross-sectional analysis of domain-specific cognitive assessments suggested that APOE genotype may be more closely associated with working memory and declarative learning than with attention. Most genetic studies of cognition include only populations of European descent; extension is crucial. This study confirmed the association between APOE genotype and the rate of cognitive decline in a predominantly Han Chinese population. Additional studies on diverse populations are warranted.
Collapse
Affiliation(s)
- Megan Todd
- Columbia Aging Center, Columbia University, New York, New York, United States of America
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sarinnapha M. Vasunilashorn
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Michael T. Ullman
- Department of Neuroscience, Georgetown University, Washington, D.C., United States of America
| | - Noreen Goldman
- Office of Population Research and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
50
|
Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 2018; 29:241-260. [DOI: 10.1515/revneuro-2017-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
AbstractAlzheimer’s disease (AD) is one of the most common neurodegenerative disorders mainly affecting elderly people. It is characterized by progressive loss of memory and cognitive function. More than 95% of AD cases are related to sporadic or late-onset AD (LOAD). The etiology of LOAD is still unclear. It has been reported that environmental factors and epigenetic alterations play a significant role in AD pathogenesis. Furthermore, recently, genome-wide association studies (GWAS) identified 10 novel risk genes:ABCA7,APOE,BIN1,CD2AP,CD33,CLU,CR1,MS4A6A,MS4A4E, andPICALM, which play an important role for LOAD. In this review, the therapeutic approaches of AD by epigenetic modifications have been discussed. Nowadays, HDAC inhibitors have clinically proven its activity for epigenetic modifications. Furthermore, we try to establish the relationship between HDAC inhibitors and above mentioned LOAD risk genes. Finally, we are hoping that this review may open new area of research for AD treatment.
Collapse
|