1
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
2
|
Taube W, Lauber B. Changes in the cortical GABAergic inhibitory system with ageing and ageing-related neurodegenerative diseases. J Physiol 2024. [PMID: 39722574 DOI: 10.1113/jp285656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The human cortical inhibitory system is known to play a vital role for normal brain development, function, and plasticity. GABA is the most prominent inhibitory neurotransmitter in the CNS and is a key regulator not only for motor control and motor learning, but also for cognitive processes. With ageing and many neurodegenerative pathologies, a decline in GABAergic function in several cortical regions together with a reduced ability to task-specifically modulate and increase inhibition in the primary motor cortex has been observed. This decline in intracortical inhibition is associated with impaired motor control but also with diminished motor-cognitive (i.e. dual-tasking) and cognitive performance (e.g. executive functions). Furthermore, more general well-being such as sleep quality, stress resistance or non-specific pain perception are also associated with reduced GABA functioning. The current review highlights the interplay between changes in GABAergic function and changes in motor control, motor-cognitive and cognitive performance associated with healthy ageing, as well as in seniors with neurodegenerative diseases such as mild cognitive impairment. Furthermore, recent evidence highlighting the ability to up- or downregulate cortical inhibition by means of physical exercise programs is presented and discussed.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
McGregor KM, Novak T, Nocera JR, Mammino K, Wolf SL, Krishnamurthy LC. Examination of acute spin exercise on GABA levels in aging and stroke: The EASE study protocol. PLoS One 2024; 19:e0297841. [PMID: 39008457 PMCID: PMC11249249 DOI: 10.1371/journal.pone.0297841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Changes in regional levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) may indicate the potential for favorable responses to the treatment of stroke affecting the upper extremity. By selectively altering GABA levels during training, we may induce long-term potentiation and adjust excitatory/inhibitory balance (E/I balance). However, the impact of this alteration may be limited by neural damage or aging. Aerobic exercise has been shown to increase GABA levels in the sensorimotor cortex and improve motor learning by widening the dynamic range of E/I balance. The cross-sectional project, Effects of Acute Exercise on Functional Magnetic Resonance Spectroscopy Measures of GABA in Aging and Chronic Stroke (EASE), is designed to assess the functional relevance of changes in GABA concentration within the sensorimotor cortex before and after an acute aerobic exercise session. METHODS/DESIGN EASE will enroll 30 participants comprised of healthy younger adults (18-35 years; n = 10), older adults (60+ years; n = 10), and persons with chronic stroke (n = 10) affecting distal upper extremity function. We will use resting magnetic resonance spectroscopy to measure all participants' GABA levels at rest before and after aerobic exercise. In addition, we will employ functional magnetic resonance spectroscopy using motor skill acquisition and recall tasks in healthy adults. We hypothesize that acute aerobic exercise will increase resting sensorimotor GABA concentration and that higher GABA resting levels will predict better motor learning performance on measures taken both inside and outside the magnet. We also hypothesize that a higher dynamic range of GABA during task-based spectroscopy in healthy adults will predict better motor skill acquisition and recall. DISCUSSION The EASE project will evaluate the effect of acute exercise on GABA levels as a biomarker of upper extremity motor skill learning with two populations (aging adults and those with chronic stroke). We predict that acute exercise, higher sensorimotor GABA levels, and broader dynamic range will be related to better motor skill acquisition.
Collapse
Affiliation(s)
- Keith M. McGregor
- Birmingham VA Geriatric Research Education and Clinical Center, Birmingham VA Health Care System, Birmingham, Alabama, United States of America
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham School of Health Professions, Birmingham, Alabama, United States of America
| | - Thomas Novak
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joe R. Nocera
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kevin Mammino
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
| | - Steven L. Wolf
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lisa C. Krishnamurthy
- Atlanta VA Health Care System, Decatur, Georgia, United States of America
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech and Emory, Atlanta, Georgia, United States of America
- Department of Physics & Astronomy, Georgia State University, Atlanta, Georgia, United States of America
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
6
|
McMackin R, Tadjine Y, Fasano A, Mitchell M, Heverin M, Awiszus F, Nasseroleslami B, Carson RG, Hardiman O. Examining short interval intracortical inhibition with different transcranial magnetic stimulation-induced current directions in ALS. Clin Neurophysiol Pract 2024; 9:120-129. [PMID: 38595691 PMCID: PMC11002888 DOI: 10.1016/j.cnp.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To establish if induced current direction across the motor cortex alters the sensitivity of transcranial magnetic stimulation (TMS)-evoked short-interval intracortical inhibition (SICI) as an ALS biomarker. Methods Threshold tracking-TMS was undertaken in 35 people with ALS and 39 controls. Using a coil orientation which induces posterior-anterior (PA)-directed current across the motor cortex, SICI (1 ms and 3 ms interstimulus intervals) and intracortical facilitation (ICF, 10 ms interstimulus interval) were recorded. SICI3ms was also recorded using a coil orientation which induces anterior-posterior (AP)-directed current across the motor cortex. Results At group level, SICI3ms-PA (AUROC = 0.7), SICI3ms-AP (AUROC = 0.8) and SICI1ms (AUROC = 0.66) were substantially lower in those with ALS, although there was considerable interindividual heterogeneity. Averaging across interstimulus intervals (ISIs) marginally improved SICIPA sensitivity (AUROC = 0.76). Averaging SICI values across ISIs and orientations into a single SICI measure did not substantially improve sensitivity (AUROC = 0.81) compared to SICI3ms-AP alone. SICI3ms-AP and SICI3ms-PA did not significantly correlate (rho = 0.19, p = 0.313), while SICI1ms-PA and SICI3ms-PA did (rho = 0.37, p = 0.006). Further, those with ALS with the lowest SICI3ms-PA were not those with the lowest SICI3ms-AP. ICF was similar between groups (AUROC = 0.50). Conclusions SICIPA and SICIAP are uncorrelated measures of motor cortical inhibitory functions which are useful as distinct, unequally affected, measures of disinhibition in ALS. Significance Examining both SICIPA and SICIAP may facilitate more comprehensive characterisation of motor cortical disinhibition in ALS.
Collapse
Affiliation(s)
- Roisin McMackin
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Yasmine Tadjine
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Antonio Fasano
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Matthew Mitchell
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, University of Dublin, Ireland
- School of Psychology, Queen's University Belfast
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Remahi S, Mabika M, Côté S, Iorio-Morin C, Near J, Hui SCN, Edden RAE, Théoret H, Whittingstall K, Lepage JF. Neurotransmitter levels in the basal ganglia are associated with intracortical circuit activity of the primary motor cortex in healthy humans. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110892. [PMID: 37952692 DOI: 10.1016/j.pnpbp.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.
Collapse
Affiliation(s)
- Sarah Remahi
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Madora Mabika
- University of Galway, School of Medicine, Galway, Ireland
| | - Samantha Côté
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Christian Iorio-Morin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Surgery, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jamie Near
- Physical Sciences Platform, SunnyBrook Health Sciences Center, Toronto, Canada
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hugo Théoret
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montréal, Canada
| | - Kevin Whittingstall
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada.
| |
Collapse
|
8
|
Paparella G, De Riggi M, Cannavacciuolo A, Costa D, Birreci D, Passaretti M, Angelini L, Colella D, Guerra A, Berardelli A, Bologna M. Interhemispheric imbalance and bradykinesia features in Parkinson's disease. Brain Commun 2024; 6:fcae020. [PMID: 38370448 PMCID: PMC10873583 DOI: 10.1093/braincomms/fcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
In patients with Parkinson's disease, the connectivity between the two primary motor cortices may be altered. However, the correlation between asymmetries of abnormal interhemispheric connections and bradykinesia features has not been investigated. Furthermore, the potential effects of dopaminergic medications on this issue remain largely unclear. The aim of the present study is to investigate the interhemispheric connections in Parkinson's disease by transcranial magnetic stimulation and explore the potential relationship between interhemispheric inhibition and bradykinesia feature asymmetry in patients. Additionally, we examined the impact of dopaminergic therapy on neurophysiological and motor characteristics. Short- and long-latency interhemispheric inhibition was measured in 18 Parkinson's disease patients and 18 healthy controls, bilaterally. We also assessed the corticospinal and intracortical excitability of both primary motor cortices. We conducted an objective analysis of finger-tapping from both hands. Correlation analyses were performed to explore potential relationships among clinical, transcranial magnetic stimulation and kinematic data in patients. We found that short- and long-latency interhemispheric inhibition was reduced (less inhibition) from both hemispheres in patients than controls. Compared to controls, finger-tapping movements in patients were slower, more irregular, of smaller amplitudes and characterized by a progressive amplitude reduction during movement repetition (sequence effect). Among Parkinson's disease patients, the degree of short-latency interhemispheric inhibition imbalance towards the less affected primary motor cortex correlated with the global clinical motor scores, as well as with the sequence effect on the most affected hand. The greater the interhemispheric inhibition imbalance towards the less affected hemisphere (i.e. less inhibition from the less to the most affected primary motor cortex than that measured from the most to the less affected primary motor cortex), the more severe the bradykinesia in patients. In conclusion, the inhibitory connections between the two primary motor cortices in Parkinson's disease are reduced. The interhemispheric disinhibition of the primary motor cortex may have a role in the pathophysiology of specific bradykinesia features in patients, i.e. the sequence effect.
Collapse
Affiliation(s)
- Giulia Paparella
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | | | - Donato Colella
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua 35131, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| |
Collapse
|
9
|
Herrero Babiloni A, Jodoin M, Provost C, Charlebois-Plante C, De Koninck BP, Apinis-Deshaies A, Lavigne GJ, De Beaumont L. Females with painful temporomandibular disorders present higher intracortical facilitation relative to pain-free controls. Clin Oral Investig 2023; 28:12. [PMID: 38129743 DOI: 10.1007/s00784-023-05412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study aimed to investigate cortical excitability differences in the primary motor cortex (M1) hand representation between individuals with temporomandibular disorders (TMD) and healthy controls. We assessed resting motor thresholds, motor-evoked potentials (MEPs), intracortical inhibition, and intracortical facilitation and explored potential associations with clinical and psychosocial characteristics in the TMD group. MATERIALS AND METHODS We recruited 36 female participants with TMD and 17 pain-free controls. Transcranial magnetic stimulation (TMS) was used to assess M1 cortical excitability. Correlations between clinical and psychosocial factors and cortical excitability measures were also evaluated. RESULTS Patients with TMD showed significantly higher intracortical facilitation at 12 ms (z = 1.98, p = 0.048) and 15 ms (z = 2.65, p = 0.008) when compared to controls. Correlations revealed associations between intracortical facilitation and pain interference, sleep quality, depressive symptoms, and pain catastrophizing in the TMD group. CONCLUSIONS Females with TMD exhibit heightened motor cortex intracortical facilitation in the hand representation, potentially indicating altered cortical excitability beyond the motor face area. This suggests a role for cortical excitability in TMD pathophysiology, influenced by psychosocial factors. CLINICAL RELEVANCE Understanding cortical excitability in TMD may inform targeted interventions. Psychosocial variables may play a role in cortical excitability, emphasizing the multidimensional nature of TMD-related pain. Further research is needed to confirm and expand upon these findings, with potential implications for the management of TMD and related pain conditions.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada.
| | - Marianne Jodoin
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Catherine Provost
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Camille Charlebois-Plante
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Beatrice P De Koninck
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Amelie Apinis-Deshaies
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Gilles J Lavigne
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Curtin D, Cadwallader CJ, Taylor EM, Andrews SC, Stout JC, Hendrikse JJ, Chong TTJ, Coxon JP. Ageing attenuates exercise-enhanced motor cortical plasticity. J Physiol 2023; 601:5733-5750. [PMID: 37917116 DOI: 10.1113/jp285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiorespiratory exercise is known to modulate motor cortical plasticity in young adults, but the influence of ageing on this relationship is unknown. Here, we compared the effects of a single session of cardiorespiratory exercise on motor cortical plasticity in young and older adults. We acquired measures of cortical excitatory and inhibitory activity of the primary motor cortex using transcranial magnetic stimulation (TMS) from 20 young (mean ± SD = 25.30 ± 4.00 years, 14 females) and 20 older (mean ± SD = 64.10 ± 6.50 years, 11 females) healthy adults. Single- and paired-pulse TMS measurements were collected before and after a 20 min bout of high-intensity interval cycling exercise or an equivalent period of rest, and again after intermittent theta burst stimulation (iTBS). In both young (P = 0.027, Cohen's d = 0.87) and older adults (P = 0.006, Cohen's d = 0.85), there was an increase in glutamatergic excitation and a reduction in GABAergic inhibition from pre- to postexercise. However, in contrast to younger adults, older adults showed an attenuated plasticity response to iTBS following exercise (P = 0.011, Cohen's d = 0.85). These results demonstrate an age-dependent decline in cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults. Our findings align with the hypothesis that the capacity for cortical plasticity is altered in older age. KEY POINTS: Exercise enhances motor cortical plasticity in young adults, but how ageing influences this effect is unknown. Here, we compared primary motor cortical plasticity responses in young and older adults before and after a bout of high-intensity interval exercise and again after a plasticity-inducing protocol, intermittent theta burst stimulation. In both young and older adults, exercise led to an increase in glutamatergic excitation and a reduction in GABAergic inhibition. Our key result was that older adults showed an attenuated plasticity response to theta burst stimulation following exercise, relative to younger adults. Our findings demonstrate an age-dependent decline in exercise-enhanced cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults.
Collapse
Affiliation(s)
- Dylan Curtin
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claire J Cadwallader
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Eleanor M Taylor
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sophie C Andrews
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Julie C Stout
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joshua J Hendrikse
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Trevor T-J Chong
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James P Coxon
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Bai Z, Zhu F, Lou X, Zhang JJ, Jin M, Qin W, Tang C, Li J, Lu J, Lin J, Jin L, Qi Q, Fong KNK. Considerable effects of lateralization and aging in intracortical excitation and inhibition. Front Neurosci 2023; 17:1269474. [PMID: 38033537 PMCID: PMC10687141 DOI: 10.3389/fnins.2023.1269474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Findings based on the use of transcranial magnetic stimulation and electromyography (TMS-EMG) to determine the effects of motor lateralization and aging on intracortical excitation and inhibition in the primary motor cortex (M1) are inconsistent in the literature. TMS and electroencephalography (TMS-EEG) measures the excitability of excitatory and inhibitory circuits in the brain cortex without contamination from the spine and muscles. This study aimed to investigate the effects of motor lateralization (dominant and non-dominant hemispheres) and aging (young and older) and their interaction effects on intracortical excitation and inhibition within the M1 in healthy adults, measured using TMS-EMG and TMS-EEG. Methods This study included 21 young (mean age = 28.1 ± 3.2 years) and 21 older healthy adults (mean age = 62.8 ± 4.2 years). A battery of TMS-EMG measurements and single-pulse TMS-EEG were recorded for the bilateral M1. Results Two-way repeated-measures analysis of variance was used to investigate lateralization and aging and the lateralization-by-aging interaction effect on neurophysiological outcomes. The non-dominant M1 presented a longer cortical silent period and larger amplitudes of P60, N100, and P180. Corticospinal excitability in older participants was significantly reduced, as supported by a larger resting motor threshold and lower motor-evoked potential amplitudes. N100 amplitudes were significantly reduced in older participants, and the N100 and P180 latencies were significantly later than those in young participants. There was no significant lateralization-by-aging interaction effect in any outcome. Conclusion Lateralization and aging have independent and significant effects on intracortical excitation and inhibition in healthy adults. The functional decline of excitatory and inhibitory circuits in the M1 is associated with aging.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Feifei Zhu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Lou
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Minxia Jin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Wenting Qin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Chaozheng Tang
- Capacity Building and Continuing Education Center, National Health Commission of the People's Republic of China, Beijing, China
| | - Jie Li
- School of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jiani Lu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Lin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Qi Qi
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Martino D. What can epidemiological studies teach on the pathophysiology of adult-onset isolated dystonia? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:21-60. [PMID: 37482393 DOI: 10.1016/bs.irn.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Several demographic and environmental factors may play an important role in determining the risk of developing adult-onset isolated dystonia (AOID) and/or modifying its course. However, epidemiologic studies have provided to date only partial insight on the disease mechanisms that are actively influenced by these factors. The age-related increase in female predominance in both patients diagnosed with AOID and subjects carrying its putative mediational phenotype suggests sexual dimorphism that has been demonstrated for mechanisms related to blepharospasm and cervical dystonia. The opposite relationship that spread and spontaneous remission of AOID have with age suggests age-related decline of compensatory mechanisms that protect from the progression of AOID. Epidemiological studies focusing on environmental risk factors yielded associations only with specific forms of AOID, even for those factors that are not likely to predispose exclusively to specific focal forms (for example, only writing dystonia was found associated with head trauma, and only blepharospasm with coffee intake). Other factors show biological plausibility of their mechanistic role for specific forms, e.g., dry eye syndrome or sunlight exposure for blepharospasm, scoliosis for cervical dystonia, repetitive writing for writing dystonia. Overall, the relationship between environment and AOID remains complex and incompletely defined. Both hypothesis-driven preclinical studies and well-designed cross-sectional or prospective clinical studies are still necessary to decipher this intricate relationship.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Health Sciences Centre, Hospital Drive NW, Calgary, AB, Canada; The Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Nuara A, Bazzini MC, Cardellicchio P, Scalona E, De Marco D, Rizzolatti G, Fabbri-Destro M, Avanzini P. The value of corticospinal excitability and intracortical inhibition in predicting motor skill improvement driven by action observation. Neuroimage 2023; 266:119825. [PMID: 36543266 DOI: 10.1016/j.neuroimage.2022.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition. Subsequently, half of the participants (AOT-group) were asked to observe and then execute a right-hand dexterity task, while the controls had to observe a no-action video before practicing the same task. AOT participants showed greater performance improvement relative to controls. More importantly, the amount of improvement in the AOT group was predicted by the amplitude of corticospinal modulation during action observation and, even more, by the amount of intracortical inhibition induced by action observation. These relations were specific for the AOT group, while the same patterns were not found in controls. Taken together, our findings demonstrate that the efficacy of AOT in promoting motor learning is rooted in the capacity of action observation to modulate the trainee's motor system excitability, especially its intracortical inhibition. Our study not only enriches the picture of the neurophysiological effects induced by action observation onto the observer's motor excitability, but linking them to the efficacy of AOT, it also paves the way for the development of models predicting the outcome of training procedures based on the observation of other's actions.
Collapse
Affiliation(s)
- Arturo Nuara
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy.
| | | | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Emilia Scalona
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università degli studi di Brescia, Italia
| | - Doriana De Marco
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy
| | | | | | - Pietro Avanzini
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
| |
Collapse
|
15
|
Ahern KB, Garzon JF, Yuruk D, Saliba M, Ozger C, Vande Voort JL, Croarkin PE. Long-Interval Intracortical Inhibition and the Cortical Silent Period in Youth. Biomedicines 2023; 11:biomedicines11020409. [PMID: 36830945 PMCID: PMC9953741 DOI: 10.3390/biomedicines11020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The cortical silent period (CSP) and long-interval intracortical inhibition (LICI) are putative markers of γ-aminobutyric acid receptor type B (GABAB)-mediated inhibitory neurotransmission. We aimed to assess the association between LICI and CSP in youths. METHODS We analyzed data from three previous studies of youth who underwent CSP and LICI measurements with transcranial magnetic stimulation and electromyography. We assessed CSP and LICI association using Spearman rank correlation tests and multiple linear regression analyses adjusted for demographic and clinical covariates. RESULTS The sample included 16 healthy participants and 45 participants with depression. The general mean (SD) age was 15.5 (1.7), 14.3 (1.7) for healthy participants, and 15.9 (1.6) years for participants with depression. Measures were nonnormally distributed (Shapiro-Wilk, p < 0.001). CSP and LICI were not correlated at 100-millisecond (ρ = -0.2421, p = 0.06), 150-millisecond (ρ = -0.1612, p = 0.21), or 200-millisecond (ρ = -0.0507, p = 0.70) interstimulus intervals using Spearman rank correlation test. No correlations were found in the multiple regression analysis (p = 0.35). CONCLUSIONS Although previous studies suggest that cortical silent period and long-interval intracortical inhibition measure GABAB receptor-mediated activity, these biomarkers were not associated in our sample of youths. Future studies should focus on the specific physiologic and pharmacodynamic properties assessed by CSP and LICI in younger populations.
Collapse
Affiliation(s)
- Kelly B. Ahern
- Mayo Clinic Alix School of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - Juan F. Garzon
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Deniz Yuruk
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Maria Saliba
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Can Ozger
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Jennifer L. Vande Voort
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
| | - Paul E. Croarkin
- Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
- Mayo Clinic Department of Psychiatry and Psychology, 200 First St. SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2557
| |
Collapse
|
16
|
Van Ruitenbeek P, Santos Monteiro T, Chalavi S, King BR, Cuypers K, Sunaert S, Peeters R, Swinnen SP. Interactions between the aging brain and motor task complexity across the lifespan: balancing brain activity resource demand and supply. Cereb Cortex 2022; 33:6420-6434. [PMID: 36587289 PMCID: PMC10183738 DOI: 10.1093/cercor/bhac514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) older adults show more brain activation compared with younger adults at low task complexity levels, and (iii) disproportionately increase brain activation with increased task complexity, but (iv) show smaller (or no) increases in brain activation at the highest complexity levels. To test these hypotheses, performance on a bimanual tracking task at 4 complexity levels and associated brain activation were assessed in 3 age groups (20-40, 40-60, and 60-80 years, n = 99). All age groups showed decreased tracking accuracy and increased brain activation with increased task complexity, with larger performance decrements and activation increases in the older age groups. Older adults exhibited increased brain activation at a lower complexity level, but not the predicted failure to further increase brain activity at the highest complexity level. We conclude that older adults show more brain activation than younger adults and preserve the capacity to deploy increased neural resources as a function of task demand.
Collapse
Affiliation(s)
- P Van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - S Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Health & Kinesiology; University of Utah, 250 South 1850 East, Salt Lake City, Utah 84112
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Agoralaan Gebouw A, 3590,Diepenbeek, Belgium
| | - S Sunaert
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - R Peeters
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences,Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| |
Collapse
|
17
|
Redondo-Camós M, Cattaneo G, Alviarez-Schulze V, Delgado-Gallén S, España-Irla G, Solana-Sanchez J, Perellón-Alfonso R, Albu S, Tormos JM, Pascual-Leone A, Bartres-Faz D. Long-interval intracortical inhibition in primary motor cortex related to working memory in middle-aged adults. Front Psychol 2022; 13:998062. [PMID: 36248602 PMCID: PMC9559215 DOI: 10.3389/fpsyg.2022.998062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Excitability of the primary motor cortex measured with TMS has been associated with cognitive dysfunctions in patient populations. However, only a few studies have explored this relationship in healthy adults, and even fewer have considered the role of biological sex. Methods Ninety-seven healthy middle-aged adults (53 male) completed a TMS protocol and a neuropsychological assessment. Resting Motor Threshold (RMT) and Long-Interval Intracortical Inhibition (LICI) were assessed in the left motor cortex and related to attention, episodic memory, working memory, reasoning, and global cognition composite scores to evaluate the relationship between cortical excitability and cognitive functioning. Results In the whole sample, there was a significant association between LICI and cognition; specifically, higher motor inhibition was related to better working memory performance. When the sample was broken down by biological sex, LICI was only associated with working memory, reasoning, and global cognition in men. No associations were found between RMT and cognitive functions. Conclusion Greater intracortical inhibition, measured by LICI, could be a possible marker of working memory in healthy middle-aged adults, and biological sex plays a critical role in this association.
Collapse
Affiliation(s)
- María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Vanessa Alviarez-Schulze
- Departamento de Ciencias del Comportamiento, Escuela de Psicología, Universidad Metropolitana, Caracas, Venezuela
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sanchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Alvaro Pascual-Leone,
| | - David Bartres-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- David Bartres-Faz,
| |
Collapse
|
18
|
Krishnamurthy LC, Paredes Spir I, Rocha NO, Soher BJ, Auerbach EJ, Crosson BA, Krishnamurthy V. The association between language-based task-functional magnetic resonance imaging hemodynamics and baseline GABA+ and glutamate-glutamine measured in pre-supplementary motor area: A pilot study in an aging model. Front Psychiatry 2022; 13:904845. [PMID: 36046162 PMCID: PMC9421126 DOI: 10.3389/fpsyt.2022.904845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a natural phenomenon that elicits slow and progressive cerebrovascular and neurophysiological changes that eventually lead to cognitive decline. The objective of this pilot study is to examine the association of GABA+ and glutamate-glutamine (Glx) complex with language-based blood oxygen level dependent (BOLD) hemodynamics in an aging model. More specifically, using standard BOLD we will first attempt to validate whether previously reported findings for BOLD amplitude and resting neurochemical relationships hold in an aging model. Secondly, we will investigate how our recently established neurosensitized task-BOLD energetics relate to resting GABA+ and Glx, especially accounting for titration of task difficulty. To support the above endeavors, we optimize the baseline fitting for edited magnetic resonance spectroscopy (MRS) difference spectra to sensitize GABA+ and Glx concentrations to aging-related differences. We identify a spline-knot spacing of 0.6ppm to yield the optimal aging-related differences in GABA+ and Glx. The optimized MRS values were then graduated to relate to task-BOLD hemodynamics. Our results did not replicate previous findings that relate task-BOLD amplitude and resting GABA+ and Glx. However, we did identify neurochemistry relationships with the vascularly-driven dispersion component of the hemodynamic response function, specifically in older participants. In terms of neuro-sensitized BOLD energetics and the underlying role of GABA+ and Glx, our data suggests that the task demands are supported by both neurometabolites depending on the difficulty of the task stimuli. Another novelty is that we developed task-based functional parcellation of pre-SMA using both groups. In sum, we are the first to demonstrate that multimodal task-fMRI and MRS studies are beneficial to improve our understanding of the aging brain physiology, and to set the platform to better inform approaches for clinical care in aging-related neurovascular diseases. We also urge future studies to replicate our findings in a larger population incorporating a lifespan framework.
Collapse
Affiliation(s)
- Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Isabella Paredes Spir
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Natalie O. Rocha
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Brian J. Soher
- Center for Advanced MR Development, Department of Radiology, Duke University, Durham, NC, United States
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Edward J. Auerbach
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Bruce A. Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
19
|
Heise KF, Rueda-Delgado L, Chalavi S, King BR, Monteiro TS, Edden RAE, Mantini D, Swinnen SP. The interaction between endogenous GABA, functional connectivity, and behavioral flexibility is critically altered with advanced age. Commun Biol 2022; 5:426. [PMID: 35523951 PMCID: PMC9076638 DOI: 10.1038/s42003-022-03378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and cognitive domains, with potentially the strongest impact on those behaviors that require a high level of dynamic control. Our analysis integrated behavior and modulation of interhemispheric phase-based connectivity during dynamic motor-state transitions with endogenous GABA concentration in adult human volunteers. We provide converging evidence for age-related differences in the preferred state of endogenous GABA concentration for more flexible behavior. We suggest that the increased interhemispheric connectivity observed in the older participants represents a compensatory neural mechanism caused by phase-entrainment in homotopic motor cortices. This mechanism appears to be most relevant in the presence of a less optimal tuning of the inhibitory tone as observed during healthy aging to uphold the required flexibility of behavioral action. Future work needs to validate the relevance of this interplay between neural connectivity and GABAergic inhibition for other domains of flexible human behavior.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.
- KU Leuven Brain Institute, Leuven, Belgium.
| | - Laura Rueda-Delgado
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- School of Psychology, Trinity College Dublin, Dublin, 2, Ireland
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
- Department of Health & Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Thiago Santos Monteiro
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
20
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
21
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Impact of interhemispheric inhibition on bimanual movement control in young and old. Exp Brain Res 2022; 240:687-701. [PMID: 35020040 PMCID: PMC8858275 DOI: 10.1007/s00221-021-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/23/2021] [Indexed: 12/05/2022]
Abstract
Interhemispheric interactions demonstrate a crucial role for directing bimanual movement control. In humans, a well-established paired-pulse transcranial magnetic stimulation paradigm enables to assess these interactions by means of interhemispheric inhibition (IHI). Previous studies have examined changes in IHI from the active to the resting primary motor cortex during unilateral muscle contractions; however, behavioral relevance of such changes is still inconclusive. In the present study, we evaluated two bimanual tasks, i.e., mirror activity and bimanual anti-phase tapping, to examine behavioral relevance of IHI for bimanual movement control within this behavioral framework. Two age groups (young and older) were evaluated as bimanual movement control demonstrates evident behavioral decline in older adults. Two types of IHI with differential underlying mechanisms were measured; IHI was tested at rest and during a motor task from the active to the resting primary motor cortex. Results demonstrate an association between behavior and short-latency IHI in the young group: larger short-latency IHI correlated with better bimanual movement control (i.e., less mirror activity and better bimanual anti-phase tapping). These results support the view that short-latency IHI represents a neurophysiological marker for the ability to suppress activity of the contralateral side, likely contributing to efficient bimanual movement control. This association was not observed in the older group, suggesting age-related functional changes of IHI. To determine underlying mechanisms of impaired bimanual movement control due to neurological disorders, it is crucial to have an in-depth understanding of age-related mechanisms to disentangle disorder-related mechanisms of impaired bimanual movement control from age-related ones.
Collapse
|
23
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
24
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
25
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
26
|
Verstraelen S, Cuypers K, Maes C, Hehl M, Van Malderen S, Levin O, Mikkelsen M, Meesen RLJ, Swinnen SP. Neurophysiological modulations in the (pre)motor-motor network underlying age-related increases in reaction time and the role of GABA levels - a bimodal TMS-MRS study. Neuroimage 2021; 243:118500. [PMID: 34428570 PMCID: PMC8547554 DOI: 10.1016/j.neuroimage.2021.118500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
It has been argued that age-related changes in the neurochemical and neurophysiological properties of the GABAergic system may underlie increases in reaction time (RT) in older adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as how both properties explain interindividual differences in RT, are not yet fully understood. In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task-related neurophysiological modulations in corticospinal excitability (CSE), and primary motor cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were assessed during the preparatory and premotor period of a delayed choice RT task. Data were collected from 25 young (aged 18-33 years) and 28 older (aged 60-74 years) healthy adults. Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related neurophysiological modulations as well as individual differences in RT. In contrast, in young adults, neither task-related neurophysiological modulations, nor individual differences in RT were associated with SMC GABA+ levels. In conclusion, this study contributes to a comprehensive initial understanding of how age-related differences in neurochemical properties and neurophysiological processes are related to increases in RT.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium.
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Mark Mikkelsen
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
27
|
Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Exp Brain Res 2021; 239:3431-3438. [PMID: 34499187 DOI: 10.1007/s00221-021-06218-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Participation in physical activity benefits brain health and function. Cognitive function generally demonstrates a noticeable effect of physical activity, but much less is known about areas responsible for controlling movement, such as primary motor cortex (M1). While more physical activity may support M1 plasticity in older adults, the neural mechanisms underlying this beneficial effect remain poorly understood. Aging is inevitably accompanied by diminished motor performance, and the extent of plasticity may also be less in older adults compared with young. Motor complications with aging may, perhaps unsurprisingly, contribute to reduced physical activity in older adults. While the development of non-invasive brain stimulation techniques have identified that human M1 is a crucial site for learning motor skills and recovery of motor function after injury, a considerable lack of knowledge remains about how physical activity impacts M1 with healthy aging. Reducing impaired neural activity in older adults may have important implications after neurological insult, such as stroke, which is more common with advancing age. Therefore, a better understanding about the effects of physical activity on M1 processes and motor learning in older adults may promote healthy aging, but also allow us to facilitate recovery of motor function after neurological injury. This article will initially provide a brief overview of the neurophysiology of M1 in the context of learning motor skills, with a focus on healthy aging in humans. This information will then be proceeded by a more detailed assessment that focuses on whether physical activity benefits motor function and human M1 processes.
Collapse
|
28
|
Gann MA, King BR, Dolfen N, Veldman MP, Chan KL, Puts NAJ, Edden RAE, Davare M, Swinnen SP, Mantini D, Robertson EM, Albouy G. Hippocampal and striatal responses during motor learning are modulated by prefrontal cortex stimulation. Neuroimage 2021; 237:118158. [PMID: 33991699 PMCID: PMC8351752 DOI: 10.1016/j.neuroimage.2021.118158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Kimberly L Chan
- Advanced Imaging Research Center, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Nicolaas A J Puts
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience; King's College London, SE5 8AF London, United Kingdom
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Marco Davare
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, UB8 3PN Uxbridge, United Kingdom
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB Glasgow, United Kingdom
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
29
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
30
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
31
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Berardelli A, Suppa A. The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol 2021; 132:1358-1366. [PMID: 33781703 DOI: 10.1016/j.clinph.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In healthy subjects, the long-term potentiation (LTP)-like plasticity of the primary motor cortex (M1) induced by intermittent theta-burst stimulation (iTBS) can be boosted by modulating gamma (γ) oscillations through transcranial alternating current stimulation (tACS). γ-tACS also reduces short-interval intracortical inhibition (SICI). We tested whether the effects of γ-tACS differ between young (YA) and older adults (OA). METHODS Twenty YA (27.2 ± 2.7 years) and twenty OA (65.3 ± 9.5 years) underwent iTBS-γ tACS and iTBS-sham tACS in randomized sessions. In a separate session, we delivered γ-tACS alone and recorded SICI during stimulation. RESULTS iTBS-sham tACS produced comparable motor evoked potential (MEP) facilitation between groups. While iTBS-γ tACS boosted MEP facilitation in both the YA and OA groups, the magnitude of its effect was significantly lower in OA. Similarly, γ-tACS-induced modulation of GABA-A-ergic neurotransmission, as tested by SICI, was reduced in OA. The effect of iTBS-γ tACS negatively correlated with the age of OA subjects. CONCLUSIONS Mechanisms underlying the effects of γ oscillations on LTP-like plasticity become less efficient in older adults. This could reflect age-related changes in neural elements of M1 resonant to γ oscillations, including GABA-A-ergic interneurons. SIGNIFICANCE The beneficial effect of γ-tACS on iTBS-induced plasticity is reduced in older adults.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Francesco Asci
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy.
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| |
Collapse
|
32
|
Maes C, Cuypers K, Heise KF, Edden RAE, Gooijers J, Swinnen SP. GABA levels are differentially associated with bimanual motor performance in older as compared to young adults. Neuroimage 2021; 231:117871. [PMID: 33607278 PMCID: PMC8275071 DOI: 10.1016/j.neuroimage.2021.117871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Although gamma aminobutyric acid (GABA) is of particular importance for efficient motor functioning, very little is known about the relationship between regional GABA levels and motor performance. Some studies suggest this relation to be subject to age-related differences even though literature is scarce. To clarify this matter, we employed a comprehensive approach and investigated GABA levels within young and older adults across multiple motor tasks as well as multiple brain regions. Specifically, 30 young and 30 older adults completed a task battery of three different bimanual tasks. Furthermore, GABA levels were obtained within bilateral primary sensorimotor cortex (SM1), bilateral dorsal premotor cortex, the supplementary motor area and bilateral dorsolateral prefrontal cortex (DLPFC) using magnetic resonance spectroscopy. Results indicated that older adults, as compared to their younger counterparts, performed worse on all bimanual tasks and exhibited lower GABA levels in bilateral SM1 only. Moreover, GABA levels across the motor network and DLPFC were differentially associated with performance in young as opposed to older adults on a manual dexterity and bimanual coordination task but not a finger tapping task. Specifically, whereas higher GABA levels related to better manual dexterity within older adults, higher GABA levels predicted poorer bimanual coordination performance in young adults. By determining a task-specific and age-dependent association between GABA levels across the cortical motor network and performance on distinct bimanual tasks, the current study advances insights in the role of GABA for motor performance in the context of aging.
Collapse
Affiliation(s)
- Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium; REVAL Research Institute, Hasselt University, Diepenbeek, Belgium.
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Richard A E Edden
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Jolien Gooijers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| |
Collapse
|
33
|
Bell T, Stokoe M, Harris AD. Macromolecule suppressed GABA levels show no relationship with age in a pediatric sample. Sci Rep 2021; 11:722. [PMID: 33436899 PMCID: PMC7804253 DOI: 10.1038/s41598-020-80530-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
The inhibitory neurotransmitter γ-Aminobutyric acid (GABA) plays a crucial role in cortical development. Therefore, characterizing changes in GABA levels during development has important implications for the study of healthy development and developmental disorders. Brain GABA levels can be measured non-invasively using GABA-edited magnetic resonance spectroscopy (MRS). However, the most commonly used editing technique to measure GABA results in contamination of the GABA signal with macromolecules (MM). Therefore, GABA measured using this technique is often referred to as GABA+ . While few in number, previous studies have shown GABA+ levels increase with age during development. However, these studies are unable to specify whether it is specifically GABA that is increasing or, instead, if levels of MM increase. In this study, we use a GABA-editing technique specifically designed to suppress the MM signal (MM-supp GABA). We find no relationship between MM-supp GABA and age in healthy children aged 7-14 years. These findings suggest that the relationship between GABA+ and age is driven by changes in MM levels, not by changes in GABA levels. Moreover, these findings highlight the importance of accounting for MM levels in MRS quantification.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada.
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada
| |
Collapse
|
34
|
Lissemore JI, Mulsant BH, Rajji TK, Karp JF, Reynolds CF, Lenze EJ, Downar J, Chen R, Daskalakis ZJ, Blumberger DM. Cortical inhibition, facilitation and plasticity in late-life depression: effects of venlafaxine pharmacotherapy. J Psychiatry Neurosci 2021; 46:E88-E96. [PMID: 33119493 PMCID: PMC7955845 DOI: 10.1503/jpn.200001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Late-life depression is often associated with non-response or relapse following conventional antidepressant treatment. The pathophysiology of late-life depression likely involves a complex interplay between aging and depression, and may include abnormalities in cortical inhibition and plasticity. However, the extent to which these cortical processes are modifiable by antidepressant pharmacotherapy is unknown. METHODS Sixty-eight patients with late-life depression received 12 weeks of treatment with open-label venlafaxine, a serotonin-norepinephrine reuptake inhibitor (≤ 300 mg/d). We combined transcranial magnetic stimulation of the left motor cortex with electromyography recordings from the right hand to measure cortical inhibition using contralateral cortical silent period and paired-pulse short-interval intracortical inhibition paradigms; cortical facilitation using a paired-pulse intracortical facilitation paradigm; and short-term cortical plasticity using a paired associative stimulation paradigm. All measures were collected at baseline, 1 week into treatment (n = 23) and after approximately 12 weeks of treatment. RESULTS Venlafaxine did not significantly alter cortical inhibition, facilitation or plasticity after 1 or 12 weeks of treatment. Improvements in depressive symptoms during treatment were not associated with changes in cortical physiology. LIMITATIONS The results presented here are specific to the motor cortex. Future work should investigate whether these findings extend to cortical areas more closely associated with depression, such as the dorsolateral prefrontal cortex. CONCLUSION These findings suggest that antidepressant treatment with venlafaxine does not exert meaningful changes in motor cortical inhibition or plasticity in late-life depression. The absence of changes in motor cortical physiology, alongside improvements in depressive symptoms, suggests that age-related changes may play a role in previously identified abnormalities in motor cortical processes in latelife depression, and that venlafaxine treatment does not target these abnormalities.
Collapse
Affiliation(s)
- Jennifer I Lissemore
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Benoit H Mulsant
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Tarek K Rajji
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Jordan F Karp
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Charles F Reynolds
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Eric J Lenze
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Jonathan Downar
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Robert Chen
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Zafiris J Daskalakis
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Daniel M Blumberger
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| |
Collapse
|
35
|
Ferland MC, Therrien-Blanchet JM, Proulx S, Klees-Themens G, Bacon BA, Dang Vu TT, Théoret H. Transcranial Magnetic Stimulation and H 1-Magnetic Resonance Spectroscopy Measures of Excitation and Inhibition Following Lorazepam Administration. Neuroscience 2020; 452:235-246. [PMID: 33246064 DOI: 10.1016/j.neuroscience.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
This study aimed at better understanding the neurochemistry underlying transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ± 5.4 years old) participated in a double-blind, crossover, placebo-controlled study, where participants underwent TMS and MRS two hours after drug intake (placebo or lorazepam; 2.5 mg). Neuronavigated TMS measures reflecting cortical inhibition and excitation were obtained in the left primary motor cortex. Sensorimotor cortex and occipital cortex MRS data were acquired using a 3T scanner with a MEGA-PRESS sequence, allowing water-referenced [GABA] and [Glx] (glutamate + glutamine) quantification. Lorazepam administration decreased occipital [GABA], decreased motor cortex excitability and increased GABAA-receptor mediated motor cortex inhibition (short intracortical inhibition (SICI)). Lorazepam intake did not modulate sensorimotor [GABA] and TMS measures of intra-cortical facilitation, long-interval cortical inhibition, cortical silent period, and resting motor threshold. Furthermore, higher sensorimotor [GABA] was associated with higher cortical inhibition (SICI) following lorazepam administration, suggesting that baseline sensorimotor [GABA] may be valuable in predicting pharmacological or neuromodulatory treatment response. Finally, the differential effects of lorazepam on MRS and TMS measures, with respect to GABA, support the idea that TMS measures of cortical inhibition reflect synaptic GABAergic phasic inhibitory activity while MRS reflects extrasynaptic GABA.
Collapse
Affiliation(s)
| | | | | | | | | | - Thien Thanh Dang Vu
- Center for Studies in Behavioral Neurobiology and Perform Center, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Qc, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de l'Hôpital Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Age-related GABAergic differences in the primary sensorimotor cortex: A multimodal approach combining PET, MRS and TMS. Neuroimage 2020; 226:117536. [PMID: 33186716 PMCID: PMC7894275 DOI: 10.1016/j.neuroimage.2020.117536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 01/15/2023] Open
Abstract
Healthy aging is associated with mechanistic changes in gamma-aminobutyric acid (GABA), the most abundant inhibitory neurotransmitter in the human brain. While previous work mainly focused on magnetic resonance spectroscopy (MRS)-based GABA+ levels and transcranial magnetic stimulation (TMS)-based GABAA receptor (GABAAR) activity in the primary sensorimotor (SM1) cortex, the aim of the current study was to identify age-related differences in positron emission tomography (PET)-based GABAAR availability and its relationship with GABA+ levels (i.e. GABA with the contribution of macromolecules) and GABAAR activity. For this purpose, fifteen young (aged 20–28 years) and fifteen older (aged 65–80 years) participants were recruited. PET and MRS images were acquired using simultaneous time-of-flight PET/MR to evaluate age-related differences in GABAAR availability (distribution volume ratio with pons as reference region) and GABA+ levels. TMS was applied to identify age-related differences in GABAAR activity by measuring short-interval intracortical inhibition (SICI). Whereas GABAAR availability was significantly higher in the SM cortex of older as compared to young adults (18.5%), there were neither age-related differences in GABA+ levels nor SICI. A correlation analysis revealed no significant associations between GABAAR availability, GABAAR activity and GABA+ levels. Although the exact mechanisms need to be further elucidated, it is possible that a higher GABAAR availability in older adults is a compensatory mechanism to ensure optimal inhibitory functionality during the aging process.
Collapse
|
37
|
Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2020; 224:117394. [PMID: 32987106 DOI: 10.1016/j.neuroimage.2020.117394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, there has been an increasing number of studies combining transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). MRS provides a manner to non-invasively investigate molecular concentrations in the living brain and thus identify metabolites involved in physiological and pathological processes. Particularly the MRS-detectable metabolites glutamate, the major excitatory neurotransmitter, and gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, are of interest when combining TMS and MRS. TMS is a non-invasive brain stimulation technique that can be applied either as a neuromodulation or neurostimulation tool, specifically targeting glutamatergic and GABAergic mechanisms. The combination of TMS and MRS can be used to evaluate alterations in brain metabolite levels following an interventional TMS protocol such as repetitive TMS (rTMS) or paired associative stimulation (PAS). MRS can also be combined with a variety of non-interventional TMS protocols to identify the interplay between brain metabolite levels and measures of excitability or receptor-mediated inhibition and facilitation. In this review, we provide an overview of studies performed in healthy and patient populations combining MRS and TMS, both as a measurement tool and as an intervention. TMS and MRS may reveal complementary and comprehensive information on glutamatergic and GABAergic neurotransmission. Potentially, connectivity changes and dedicated network interactions can be probed using the combined TMS-MRS approach. Considering the ongoing technical developments in both fields, combined studies hold future promise for investigations of brain network interactions and neurotransmission.
Collapse
Affiliation(s)
- Koen Cuypers
- Department of Movement Sciences, Group Biomedical Sciences, Movement Control & Neuroplasticity Research Group, KU Leuven, 3001 Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590 Diepenbeek, Belgium
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Kettegård Allé 30, 26500 Hvidovre, Denmark.
| |
Collapse
|
38
|
Droby A, Fleysher L, Petracca M, Podranski K, Xu J, Fabian M, Marjańska M, Inglese M. Lower cortical gamma-aminobutyric acid level contributes to increased connectivity in sensory-motor regions in progressive MS. Mult Scler Relat Disord 2020; 43:102183. [DOI: 10.1016/j.msard.2020.102183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
39
|
Seo HS, Jeong EK, Choi S, Kwon Y, Park HJ, Kim I. Changes of Neurotransmitters in Youth with Internet and Smartphone Addiction: A Comparison with Healthy Controls and Changes after Cognitive Behavioral Therapy. AJNR Am J Neuroradiol 2020; 41:1293-1301. [PMID: 32616578 DOI: 10.3174/ajnr.a6632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/01/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Neurotransmitter changes in youth addicted to the Internet and smartphone were compared with normal controls and in subjects after cognitive behavioral therapy. In addition, the correlations between neurotransmitters and affective factors were investigated. MATERIALS AND METHODS Nineteen young people with Internet and smartphone addiction and 19 sex- and age-matched healthy controls (male/female ratio, 9:10; mean age, 15.47 ± 3.06 years) were included. Twelve teenagers with Internet and smartphone addiction (male/female ratio, 8:4; mean age, 14.99 ± 1.95 years) participated in 9 weeks of cognitive behavioral therapy. Meshcher-Garwood point-resolved spectroscopy was used to measure γ-aminobutyric acid and Glx levels in the anterior cingulate cortex. The γ-aminobutyric acid and Glx levels in the addicted group were compared with those in controls and after cognitive behavioral therapy. The γ-aminobutyric acid and Glx levels correlated with clinical scales of Internet and smartphone addiction, impulsiveness, depression, anxiety, insomnia, and sleep quality. RESULTS Brain parenchymal and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were higher in subjects with Internet and smartphone addiction (P = .028 and .016). After therapy, brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were decreased (P = .034 and .026). The Glx level was not statistically significant in subjects with Internet and smartphone addiction compared with controls and posttherapy status. Brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios correlated with clinical scales of Internet and smartphone addictions, depression, and anxiety. Glx/Cr was negatively correlated with insomnia and sleep quality scales. CONCLUSIONS The high γ-aminobutyric acid levels and disrupted balance of γ-aminobutyric acid-to-Glx including glutamate in the anterior cingulate cortex may contribute to understanding the pathophysiology and treatment of Internet and smartphone addiction and associated comorbidities.
Collapse
Affiliation(s)
- H S Seo
- From the Department of Radiology (H.S.S.), Korea University Ansan Hospital, Ansan, Korea
| | - E-K Jeong
- Utah Center for Advanced Imaging Research (E.-K.J.), University of Utah, Salt Lake City, Utah
| | - S Choi
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - Y Kwon
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - H-J Park
- Department of Nuclear Medicine (H.-J.P.), Yonsei University College of Medicine, Seoul, Korea
| | - I Kim
- Siemens Healthcare (I.K.), Seoul, Korea
| |
Collapse
|
40
|
King BR, Rumpf JJ, Verbaanderd E, Heise KF, Dolfen N, Sunaert S, Doyon J, Classen J, Mantini D, Puts NAJ, Edden RAE, Albouy G, Swinnen SP. Baseline sensorimotor GABA levels shape neuroplastic processes induced by motor learning in older adults. Hum Brain Mapp 2020; 41:3680-3695. [PMID: 32583940 PMCID: PMC7416055 DOI: 10.1002/hbm.25041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.
Collapse
Affiliation(s)
- Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium
| | | | - Elvire Verbaanderd
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Kirstin F Heise
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven and University Hospital Leuven (UZ Leuven), Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Forensic and Neurodevelopmental Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,LBI-KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
41
|
Harasym D, Turco CV, Nicolini C, Toepp SL, Jenkins EM, Gibala MJ, Noseworthy MD, Nelson AJ. Fitness Level Influences White Matter Microstructure in Postmenopausal Women. Front Aging Neurosci 2020; 12:129. [PMID: 32547386 PMCID: PMC7273967 DOI: 10.3389/fnagi.2020.00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Aerobic exercise has both neuroprotective and neurorehabilitative benefits. However, the underlying mechanisms are not fully understood and need to be investigated, especially in postmenopausal women, who are at increased risk of age-related disorders such as Alzheimer’s disease and stroke. To advance our understanding of the potential neurological benefits of aerobic exercise in aging women, we examined anatomical and functional responses that may differentiate women of varying cardiorespiratory fitness using neuroimaging and neurophysiology. A total of 35 healthy postmenopausal women were recruited (59 ± 3 years) and cardiorespiratory fitness estimated (22–70 mL/kg/min). Transcranial magnetic stimulation was used to assess -aminobutyric acid (GABA) and glutamate (Glu) receptor function in the primary motor cortex (M1), and magnetic resonance spectroscopy (MRS) was used to quantify GABA and Glu concentrations in M1. Magnetic resonance imaging was used to assess mean cortical thickness (MCT) of sensorimotor and frontal regions, while the microstructure of sensorimotor and other white matter tracts was evaluated through diffusion tensor imaging. Regression analysis revealed that higher fitness levels were associated with improved microstructure in pre-motor and sensory tracts, and the hippocampal cingulum. Fitness level was not associated with MCT, MRS, or neurophysiology measures. These data indicate that, in postmenopausal women, higher cardiorespiratory fitness is linked with preserved selective white matter microstructure, particularly in areas that influence sensorimotor control and memory.
Collapse
Affiliation(s)
- Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - E Madison Jenkins
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada.,Department of Radiology, McMaster University, Hamilton, ON, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
42
|
Verstraelen S, van Dun K, Duque J, Fujiyama H, Levin O, Swinnen SP, Cuypers K, Meesen RLJ. Induced Suppression of the Left Dorsolateral Prefrontal Cortex Favorably Changes Interhemispheric Communication During Bimanual Coordination in Older Adults-A Neuronavigated rTMS Study. Front Aging Neurosci 2020; 12:149. [PMID: 32547388 PMCID: PMC7272719 DOI: 10.3389/fnagi.2020.00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Recent transcranial magnetic stimulation (TMS) research indicated that the ability of the dorsolateral prefrontal cortex (DLPFC) to disinhibit the contralateral primary motor cortex (M1) during motor preparation is an important predictor for bimanual motor performance in both young and older healthy adults. However, this DLPFC-M1 disinhibition is reduced in older adults. Here, we transiently suppressed left DLPFC using repetitive TMS (rTMS) during a cyclical bimanual task and investigated the effect of left DLPFC suppression: (1) on the projection from left DLPFC to the contralateral M1; and (2) on motor performance in 21 young (mean age ± SD = 21.57 ± 1.83) and 20 older (mean age ± SD = 69.05 ± 4.48) healthy adults. As predicted, without rTMS, older adults showed compromised DLPFC-M1 disinhibition as compared to younger adults and less preparatory DLPFC-M1 disinhibition was related to less accurate performance, irrespective of age. Notably, rTMS-induced DLPFC suppression restored DLPFC-M1 disinhibition in older adults and improved performance accuracy right after the local suppression in both age groups. However, the rTMS-induced gain in disinhibition was not correlated with the gain in performance. In sum, this novel rTMS approach advanced our mechanistic understanding of how left DLPFC regulates right M1 and allowed us to establish the causal role of left DLPFC in bimanual coordination.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hakuei Fujiyama
- Discipline of Psychology, Exercise Science, Chiropractic and Counselling College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med 2020; 9:jcm9030741. [PMID: 32182904 PMCID: PMC7141192 DOI: 10.3390/jcm9030741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Guglielmo Torre
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
- Correspondence: ; Tel.: +6-225-418-825
| | - Stefano Campi
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Erika Albo
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Marco Bravi
- Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| |
Collapse
|
44
|
Zivari Adab H, Chalavi S, Monteiro TS, Gooijers J, Dhollander T, Mantini D, Swinnen SP. Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. Neuroimage 2020; 209:116530. [PMID: 31931154 DOI: 10.1016/j.neuroimage.2020.116530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N = 95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.
Collapse
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thiago S Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Cuypers K, Verstraelen S, Maes C, Hermans L, Hehl M, Heise KF, Chalavi S, Mikkelsen M, Edden R, Levin O, Sunaert S, Meesen R, Mantini D, Swinnen SP. Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: A multimodal TMS-MRS study. Neuroimage 2019; 208:116470. [PMID: 31863914 PMCID: PMC9652063 DOI: 10.1016/j.neuroimage.2019.116470] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 01/15/2023] Open
Abstract
Establishing the associations between magnetic resonance spectroscopy (MRS)-assessed gamma-aminobutyric acid (GABA) levels and transcranial magnetic stimulation (TMS)-derived ‘task-related’ modulations in GABAA receptor-mediated inhibition and how these associations change with advancing age is a topic of interest in the field of human neuroscience. In this study, we identified the relationship between GABA levels and task-related modulations in GABAA receptor-mediated inhibition in the dominant (left) and non-dominant (right) sensorimotor (SM) cortices. GABA levels were measured using edited MRS and task-related GABAA receptor-mediated inhibition was measured using a short-interval intracortical inhibition (SICI) TMS protocol during the preparation and premotor period of a choice reaction time (CRT) task in 25 young (aged 18–33 years) and 25 older (aged 60–74 years) adults. Our results demonstrated that GABA levels in both SM voxels were lower in older adults as compared to younger adults; and higher SM GABA levels in the dominant as compared to the non-dominant SM voxel pointed to a lateralization effect, irrespective of age group. Furthermore, older adults showed decreased GABAA receptor-mediated inhibition in the preparation phase of the CRT task within the dominant primary motor cortex (M1), as compared to young adults. Finally, results from an exploratory correlation analysis pointed towards positive relationships between MRS-assessed GABA levels and TMS-derived task-related SICI measures. However, after correction for multiple comparisons none of the correlations remained significant.
Collapse
Affiliation(s)
- K Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.
| | - S Verstraelen
- REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium
| | - C Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - L Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - M Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - K-F Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - S Chalavi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - M Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - R Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - O Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - S Sunaert
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Radiology, University Hospitals Leuven, Gasthuisberg, UZ, Leuven, Belgium
| | - R Meesen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium
| | - D Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - S P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
46
|
Mooney RA, Ackerley SJ, Rajeswaran DK, Cirillo J, Barber PA, Stinear CM, Byblow WD. The Influence of Primary Motor Cortex Inhibition on Upper Limb Impairment and Function in Chronic Stroke: A Multimodal Study. Neurorehabil Neural Repair 2019; 33:130-140. [PMID: 30744527 DOI: 10.1177/1545968319826052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Stroke is a leading cause of adult disability owing largely to motor impairment and loss of function. After stroke, there may be abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory function within primary motor cortex (M1), which may have implications for residual motor impairment and the potential for functional improvements at the chronic stage. OBJECTIVE To quantify GABA neurotransmission and concentration within ipsilesional and contralesional M1 and determine if they relate to upper limb impairment and function at the chronic stage of stroke. METHODS Twelve chronic stroke patients and 16 age-similar controls were recruited for the study. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Threshold tracking paired-pulse transcranial magnetic stimulation protocols were used to examine short- and long-interval intracortical inhibition and late cortical disinhibition. Magnetic resonance spectroscopy was used to evaluate GABA concentration. RESULTS Short-interval intracortical inhibition was similar between patients and controls ( P = .10). Long-interval intracortical inhibition was greater in ipsilesional M1 compared with controls ( P < .001). Patients who did not exhibit late cortical disinhibition in ipsilesional M1 were those with greater upper limb impairment and worse function ( P = .002 and P = .017). GABA concentration was lower within ipsilesional ( P = .009) and contralesional ( P = .021) M1 compared with controls, resulting in an elevated excitation-inhibition ratio for patients. CONCLUSION These findings indicate that ipsilesional and contralesional M1 GABAergic inhibition are altered in this small cohort of chronic stroke patients. Further study is warranted to determine how M1 inhibitory networks might be targeted to improve motor function.
Collapse
Affiliation(s)
| | | | | | - John Cirillo
- 1 The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
47
|
Longitudinal assessment of 1H-MRS (GABA and Glx) and TMS measures of cortical inhibition and facilitation in the sensorimotor cortex. Exp Brain Res 2019; 237:3461-3474. [PMID: 31734787 DOI: 10.1007/s00221-019-05691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/09/2019] [Indexed: 01/05/2023]
Abstract
The purpose of the present study was to investigate the long-term stability of water-referenced GABA and Glx neurometabolite concentrations in the sensorimotor cortex using MRS and to assess the long-term stability of GABA- and glutamate-related intracortical excitability using transcranial magnetic stimulation (TMS). Healthy individuals underwent two sessions of MRS and TMS at a 3-month interval. A MEGA-PRESS sequence was used at 3 T to acquire MRS signals in the sensorimotor cortex. Metabolites were quantified by basis spectra fitting and metabolite concentrations were derived using unsuppressed water reference scans accounting for relaxation and partial volume effects. TMS was performed using published standards. After performing stability and reliability analyses for MRS and TMS, reliable change indexes were computed for all measures with a statistically significant test-retest correlation. No significant effect of time was found for GABA, Glx and TMS measures. There was an excellent ICC and a strong correlation across time for GABA and Glx. Analysis of TMS measure stability revealed an excellent ICC for rMT CSP and %MSO and a fair ICC for 2 ms SICI. There was no significant correlation between MRS and TMS measures at any time point. This study shows that MRS-GABA and MRS-Glx of the sensorimotor cortex have good stability over a 3-month period, with variability across time comparable to that reported in other brain areas. While resting motor threshold, %MSO and CSP were found to be stable and reliable, other TMS measures had greater variability and lesser reliability.
Collapse
|
48
|
Cuypers K, Maes C, Swinnen SP. Aging and GABA. Aging (Albany NY) 2019; 10:1186-1187. [PMID: 29905530 PMCID: PMC6046222 DOI: 10.18632/aging.101480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Celine Maes
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Ruitenberg MFL, Cassady KE, Reuter-Lorenz PA, Tommerdahl M, Seidler RD. Age-Related Reductions in Tactile and Motor Inhibitory Function Start Early but Are Independent. Front Aging Neurosci 2019; 11:193. [PMID: 31417396 PMCID: PMC6682653 DOI: 10.3389/fnagi.2019.00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with declines in motor and somatosensory function. Some of these motor declines have been linked to age-related reductions in inhibitory function. Here we examined whether tactile surround inhibition also changes with age and whether these changes are associated with those in the motor domain. We tested a group of 56 participants spanning a wide age range (18-76 years old), allowing us to examine when age differences emerge across the lifespan. Participants performed tactile and motor tasks that have previously been linked to inter- and intra-hemispheric inhibition in the somatosensory and motor systems. The results showed that aging is associated with reductions in inhibitory function in both the tactile and motor systems starting around 40 years of age; however, age effects in the two systems were not correlated. The independent effects of age on tactile and motor inhibitory function suggest that distinct mechanisms may underlie age-related reductions in inhibition in the somatosensory and motor systems.
Collapse
Affiliation(s)
- Marit F L Ruitenberg
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.,Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | - Kaitlin E Cassady
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | | | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Levin O, Weerasekera A, King BR, Heise KF, Sima DM, Chalavi S, Maes C, Peeters R, Sunaert S, Cuypers K, Van Huffel S, Mantini D, Himmelreich U, Swinnen SP. Sensorimotor cortex neurometabolite levels as correlate of motor performance in normal aging: evidence from a 1H-MRS study. Neuroimage 2019; 202:116050. [PMID: 31349070 DOI: 10.1016/j.neuroimage.2019.116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with gradual alterations in the neurochemical characteristics of the brain, which can be assessed in-vivo with proton-magnetic resonance spectroscopy (1H-MRS). However, the impact of these age-related neurochemical changes on functional motor behavior is still poorly understood. Here, we address this knowledge gap and specifically focus on the neurochemical integrity of the left sensorimotor cortex (SM1) and the occipital lobe (OCC), as both regions are main nodes of the visuomotor network underlying bimanual control. 1H-MRS data and performance on a set of bimanual tasks were collected from a lifespan (20-75 years) sample of 86 healthy adults. Results indicated that aging was accompanied by decreased levels of N-acetylaspartate (NAA), glutamate-glutamine (Glx), creatine + phosphocreatine (Cr) and myo-inositol (mI) in both regions, and decreased Choline (Cho) in the OCC region. Lower NAA and Glx levels in the SM1 and lower NAA levels in the OCC were related to poorer performance on a visuomotor bimanual coordination task, suggesting that NAA could serve as a potential biomarker for the integrity of the motor system supporting bimanual control. In addition, lower NAA, Glx, and mI levels in the SM1 were found to be correlates of poorer dexterous performance on a bimanual dexterity task. These findings highlight the role for 1H-MRS to study neurochemical correlates of motor performance across the adult lifespan.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium.
| | - Akila Weerasekera
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Bradley R King
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Kirstin F Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, B-3590, Diepenbeek, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|