1
|
Liang C, Okamoto AA, Karim F, Kawauchi S, Melkonyan L, Danh TB, Mukherjee J. Disruption of normal brain distribution of [ 18F]Nifene to α4β2* nicotinic acetylcholinergic receptors in old B6129SF2/J mice and transgenic 3xTg-AD mice model of Alzheimer's disease: In Vivo PET/CT imaging studies. Neuroimage 2025; 309:121092. [PMID: 39978704 DOI: 10.1016/j.neuroimage.2025.121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
The 3xTg-AD transgenic mouse model develops Aβ plaque and tau pathology and is purported to closely resemble pathological development in the human Alzheimer's disease (AD) brain. Nicotinic acetylcholine receptors (nAChRs) α4β2* subtype, was studied in this mouse model using [18F]nifene PET/CT and compared with non-transgenic B6129SF2/J mice (male and female). Young 2-month old B6129SF2/J exhibited normal [18F]nifene distribution (measured as standard uptake volume ratios, SUVR with cerebellum as reference) thalamus (TH) 3.12> medial prefrontal cortex (mPFC) 2.33> frontal cortex (FC) 2.06> hippocampus-subiculum (HP-SUB) 1.6. At 11-months of age, B6129SF2/J exhibited high, irreversible and non-saturable [18F]nifene binding in mPFC higher than in TH (mPFC 3.8> TH 2.82> FC 1.79> HP-SUB 1.73). The 3xTg-AD also exhibited high mPFC binding, although the region of highest binding within the mPFC was different compared to B6129SF2/J mice (mPFC 2.44> TH 2.27> FC 1.61> HP-SUB 1.48). [125I]IBETA and immunohistochemistry in 3xTg-AD brain slices confirmed Aβ plaques. The TH of 3xTg-AD mice had lower [18F]nifene binding (reduced by approximately 20 %) compared to both, young and old B6129SF2/J, and was significant. The mPFC [18F]nifene binding was significantly higher in the old B6129SF2/J compared to both the young B6129SF2/J and the 3xTg-AD mice (>150 %). Overall, 3xTg-AD transgenic mice had reduced [18F]nifene binding compared to B6129SF2/J controls, suggesting possible effects of Aβ plaques and Tau on α4β2* nAChRs.
Collapse
Affiliation(s)
- Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States
| | - Atsumi A Okamoto
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States
| | - Fariha Karim
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California-Irvine, Irvine, CA, United States
| | - Lusine Melkonyan
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States
| | - Tram B Danh
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA, United States.
| |
Collapse
|
2
|
Shen Y, Nie Q, Xiang W, Chen S, Cao Q, Hong D. The relationship between Alzheimer's disease and intracerebral hemorrhage based on Mendelian randomization. J Alzheimers Dis 2025:13872877251323294. [PMID: 40151895 DOI: 10.1177/13872877251323294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundTraditional epidemiologic studies suggest that Alzheimer's disease (AD) may be associated with intracerebral hemorrhage (ICH).ObjectiveTo explore whether there is a causal relationship between AD and ICH and the underlying mechanisms involved.MethodsMendelian randomization (MR) approach was used to explore causal relationships. The genetic instrumental variables of the candidate genetic instrumental variable AD were obtained from genome-wide association studies. The inverse variance weighted method was the primary method for MR analysis and meta-analysis. The obtained single nucleotide polymorphisms were analyzed for corresponding genes for subsequent pathway enrichment and protein-protein interaction analysis.ResultsFor the single AD dataset, our MR analysis of the AD datasets versus the ICH datasets revealed a genetically predicted causal relationship between AD and ICH (OR 5.947, 95%CI 1.165-30.356, pIVW = 0.032). In addition, the MR-Egger method and MR-PRESSO method revealed no horizontal pleiotropic effect of AD on the risk of ICH. Meta-analysis of each dataset using IVW revealed a final calculated OR of 1.08 (95%CI 1.02-1.15, p = 0.01). Subsequent pathway enrichment analysis revealed that the corresponding genes were involved mainly in the metabolic process of amyloid-β (Aβ) and negatively regulated Aβ formation. In the PPI network analysis, proteins such as ApoE, SROL1, CLU, ABCA7, and AβPP were found to be closely related and located in the key position of the center.ConclusionsWe verified the causal relationship between AD and ICH via MR, and identified the possible pathological mechanisms involved. We also discovered that Aβ plays an important role in this process.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Quirui Nie
- Department of Gerontology, Nanchang First Hospital (the Third Affiliated Hospital, Jiangxi Medical College, Nanchang University), Nanchang, China
| | - WenWen Xiang
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shenjian Chen
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Cao
- Department of Neurology, Saarland University, Homburg, Germany
| | - Daojun Hong
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Thorwald MA, Godoy-Lugo JA, Kerstiens E, Garcia G, Kim M, Shemtov SJ, Silva J, Durra S, O'Day PA, Mack WJ, Hiniker A, Vermulst M, Benayoun BA, Higuchi-Sanabria R, Forman HJ, Head E, Finch CE. Down syndrome with Alzheimer's disease brains have increased iron and associated lipid peroxidation consistent with ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636731. [PMID: 39975068 PMCID: PMC11839036 DOI: 10.1101/2025.02.05.636731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Cerebral microbleeds (MB) are associated with sporadic Alzheimer's Disease (AD) and Down Syndrome with AD (DSAD). Higher MB iron may cause iron mediated lipid peroxidation. We hypothesize that amyloid deposition is linked to MB iron and that amyloid precursor protein (APP) triplication increases iron load and lipid peroxidation. METHODS Prefrontal cortex and cerebellum of cognitively normal (CTL), AD and DSAD ApoE3,3 carriers were examined for proteins that mediated iron metabolism, antioxidant response, and amyloid processing in lipid rafts. RESULTS Iron was 2-fold higher in DSAD than CTL and AD. Iron storage proteins and lipid peroxidation were increased in prefrontal cortex, but not in the cerebellum. The glutathione synthesis protein GCLM was decreased by 50% in both AD and DSAD. Activity of lipid raft GPx4, responsible for membrane repair, was decreased by at least 30% in AD and DSAD. DISCUSSION DSAD shows greater lipid peroxidation than AD consistent with greater MBs and iron load.
Collapse
Affiliation(s)
- Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Elizabeth Kerstiens
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Justine Silva
- Department of Pathology and Laboratory Medicine, University of California, Medical Sciences, Irvine, CA 92617
| | - Salma Durra
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Peggy A O'Day
- Life and Environmental Sciences Department, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Wendy J Mack
- Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, 1975 Zonal Ave Los Angeles, CA 90033
| | - Annie Hiniker
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; 1975 Zonal Ave, Los Angeles, CA 90033
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
- School of Natural Sciences, University of California Merced, 5200 N. Lake Rd., Merced, CA 95343
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Medical Sciences, Irvine, CA 92617
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
- Dornsife College, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089
| |
Collapse
|
4
|
Thorwald MA, Sta Maria NS, Chakhoyan A, O'Day PA, Jacobs RE, Zlokovic B, Finch CE. Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins. J Alzheimers Dis 2025; 103:1180-1190. [PMID: 39894909 DOI: 10.1177/13872877241313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimer's disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD. DFO and other chelators do enter the brain despite some contrary reports. OBJECTIVE Low dose, oral DFO was given in lab chow to wildtype (WT) C57BL/6 mice to evaluate potential impact on iron levels, iron-signaling and storage proteins, and amyloid-β protein precursor (AβPP) and processing enzymes. Young WT mice do not have microbleeds or disrupted blood-brain barrier of AD mice. METHODS Iron was measured by MRI and chemically after two weeks of dietary DFO. Cerebral cortex was examined for changes in iron metabolism, antioxidant signaling, and AβPP processing by western blot. RESULTS DFO decreased brain iron 18% (p < 0.01) estimated by R2 MRI and decreased seven major proteins that mediate iron metabolism by at least 25%. The iron storage proteins ferritin light and heavy chain decreased by at least 30%. AβPP and secretase enzymes also decreased by 30%. CONCLUSIONS WT mice respond to DFO with decreased AβPP, amyloid processing enzymes, and antioxidant repair. Potential DFO treatment for early-stage AD by DFO should consider the benefits of lowered AβPP and secretase enzymes.
Collapse
Affiliation(s)
- Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy A O'Day
- Life and Environmental Sciences Department, University of California, Merced, CA, USA
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Thorwald M, Godoy-Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi-Sanabria R, Forman HJ, Finch CE. Iron associated lipid peroxidation in Alzheimers disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534324. [PMID: 37034750 PMCID: PMC10081222 DOI: 10.1101/2023.03.28.534324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimers disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed postmortem human brain and ApoEFAD mice. AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. ApoE4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron to AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. These novel molecular pathways in iron mediated damage during AD.
Collapse
|
6
|
Valencia-Olvera AC, Balu D, Moore A, Shah M, Ainis R, Xiang B, Saleh Y, Cai D, LaDu MJ, Tai LM. APOE2 Heterozygosity Reduces Hippocampal Soluble Amyloid-β42 Levels in Non-Hyperlipidemic Mice. J Alzheimers Dis 2024; 97:1629-1639. [PMID: 38306049 DOI: 10.3233/jad-231210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-β peptide (Aβ) (EFAD) to evaluate the effect of APOE2 dosage on Aβ pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aβ42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aβ42. These findings offer initial insights on the impact of APOE2 on Aβ pathology.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maitri Shah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Ainis
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Dongming Cai
- Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Research and Development Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
- Geriatric Research Education and Clinical Center (GRECC), Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
8
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
9
|
Jullienne A, Szu JI, Quan R, Trinh MV, Norouzi T, Noarbe BP, Bedwell AA, Eldridge K, Persohn SC, Territo PR, Obenaus A. Cortical cerebrovascular and metabolic perturbations in the 5xFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1220036. [PMID: 37533765 PMCID: PMC10392850 DOI: 10.3389/fnagi.2023.1220036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The 5xFAD mouse is a popular model of familial Alzheimer's disease (AD) that is characterized by early beta-amyloid (Aβ) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan. Methods Male and female 5xFAD and wild type (WT) littermates underwent in vivo 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent "vessel painting" which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter. Results With increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4-12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan. Discussion While the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing Aβ deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing Aβ deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jenny I. Szu
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ryan Quan
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Michelle V. Trinh
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Tannoz Norouzi
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Amanda A. Bedwell
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kierra Eldridge
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Scott C. Persohn
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Boghozian R, Sharma S, Narayana K, Cheema M, Brown CE. Sex and interferon gamma signaling regulate microglia migration in the adult mouse cortex in vivo. Proc Natl Acad Sci U S A 2023; 120:e2302892120. [PMID: 37428916 PMCID: PMC10629543 DOI: 10.1073/pnas.2302892120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Although microglia possess the unique ability to migrate, whether mobility is evident in all microglia, is sex dependent, and what molecular mechanisms drive this, is not well understood in the adult brain. Using longitudinal in vivo two-photon imaging of sparsely labeled microglia, we find a relatively small population of microglia (~5%) are mobile under normal conditions. Following injury (microbleed), the fraction of mobile microglia increased in a sex-dependent manner, with male microglia migrating significantly greater distances toward the microbleed relative to their female counterparts. To understand the signaling pathways involved, we interrogated the role of interferon gamma (IFNγ). Our data show that in male mice, stimulating microglia with IFNγ promotes migration whereas inhibiting IFNγ receptor 1 signaling inhibits them. By contrast, female microglia were generally unaffected by these manipulations. These findings highlight the diversity of microglia migratory responses to injury, its dependence on sex and the signaling mechanisms that modulate this behavior.
Collapse
Affiliation(s)
- Roobina Boghozian
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Craig E. Brown
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BCV6T 2A1, Canada
| |
Collapse
|
11
|
Liang C, Nguyen GA, Danh TB, Sandhu AK, Melkonyan LL, Syed AU, Mukherjee J. Abnormal [ 18 F]NIFENE binding in transgenic 5xFAD mouse model of Alzheimer's disease: In vivo PET/CT imaging studies of α4β2* nicotinic acetylcholinergic receptors and in vitro correlations with Aβ plaques. Synapse 2023; 77:e22265. [PMID: 36749986 PMCID: PMC10148164 DOI: 10.1002/syn.22265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Since cholinergic dysfunction has been implicated in Alzheimer's disease (AD), the effects of Aβ plaques on nicotinic acetylcholine receptors (nAChRs) α4β2* subtype were studied using the transgenic 5xFAD mouse model of AD. Using the PET radiotracer [18 F]nifene for α4β2* nAChRs, in vitro autoradiography and in vivo PET/CT studies in 5xFAD mice were carried out and compared with wild-type (C57BL/6) mice. Ratios of [18 F]nifene binding in brain regions versus cerebellum (CB) in 5xFAD mice brains were for thalamus (TH) = 17, hippocampus-subiculum = 7, frontal cortex (FC) = 5.5, and striatum = 4.7. [125 I]IBETA and immunohistochemistry (IHC) in 5xFAD brain slices confirmed Aβ plaques. Nicotine and acetylcholine displaced [18 F]nifene in 5xFAD mice (IC50 nicotine = 31-73 nM; ACh = 38-83 nM) and C57BL/6 (IC50 nicotine = 16-18 nM; ACh = 34-55 nM). Average [18 F]nifene SUVR (CB as reference) in 5xFAD mice was significantly higher in FC = 3.04 compared to C57BL/6 mice FC = 1.92 (p = .001), whereas TH difference between 5xFAD mice (SUVR = 2.58) and C57BL/6 mice (SUVR = 2.38) was not significant. Nicotine-induced dissociation half life (t1/2 ) of [18 F]nifene for TH were 37 min for 5xFAD mice and 26 min for C57BL/6 mice. Dissociation half life for FC in C57BL/6 mice was 77 min , while no dissociation of [18 F]nifene occurred in the medial prefrontal cortex (mFC) of 5xFAD mice. Coregistration of [18 F]nifene PET with MR suggested that the mPFC, and anterior cingulate (AC) regions exhibited high uptake in 5xFAD mice compared to C57BL/6 mice. Ex vivo [18 F]nifene and in vitro [125 I]IBETA Aβ plaque autoradiography after in vivo PET/CT scan of 5xFAD mouse brain were moderately correlated (r2 = 0.68). In conclusion, 5xFAD mice showed increased non-displaceable [18 F]nifene binding in mPFC.
Collapse
Affiliation(s)
- Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Grace A Nguyen
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Tram B Danh
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Anoopraj K Sandhu
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Lusine L Melkonyan
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Amina U Syed
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
12
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
13
|
Franz CE, Gustavson DE, Elman JA, Fennema-Notestine C, Hagler DJ, Baraff A, Tu XM, Wu TC, DeAnda J, Beck A, Kaufman JD, Whitsel N, Finch CE, Chen JC, Lyons MJ, Kremen WS. Associations Between Ambient Air Pollution and Cognitive Abilities from Midlife to Early Old Age: Modification by APOE Genotype. J Alzheimers Dis 2023; 93:193-209. [PMID: 36970897 PMCID: PMC10827529 DOI: 10.3233/jad-221054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) measures of ambient air pollution are associated with accelerated age-related cognitive impairment, and Alzheimer's disease and related dementias (ADRD). OBJECTIVE We examined associations between air pollution, four cognitive factors, and the moderating role of apolipoprotein E (APOE) genotype in the understudied period of midlife. METHODS Participants were ∼1,100 men in the Vietnam Era Twin Study of Aging. Baseline cognitive assessments were from 2003 to 2007. Measures included past (1993-1999) and recent (3 years prior to baseline assessment) PM2.5 and NO2 exposure, in-person assessment of episodic memory, executive function, verbal fluency, and processing speed, and APOE genotype. Average baseline age was 56 years with a 12-year follow-up. Analyses adjusted for health and lifestyle covariates. RESULTS Performance in all cognitive domains declined from age 56 to 68. Higher PM2.5 exposures were associated with worse general verbal fluency. We found significant exposure-by-APOE genotype interactions for specific cognitive domains: PM2.5 with executive function and NO2 with episodic memory. Higher PM2.5 exposure was related to worse executive function in APOE ɛ4 carriers, but not in non-carriers. There were no associations with processing speed. CONCLUSION These results indicate negative effects of ambient air pollution exposure on fluency alongside intriguing differential modifications of cognitive performance by APOE genotype. APOE ɛ4 carriers appeared more sensitive to environmental differences. The process by which air pollution and its interaction with genetic risk for ADRD affects risk for later life cognitive decline or progression to dementia may begin in midlife.
Collapse
Affiliation(s)
- Carol E. Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Daniel E. Gustavson
- Institute for Behavior Genetics, University of Colorado Boulder, Boulder, CO
| | - Jeremy A. Elman
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Christine Fennema-Notestine
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Radiology, University of California, San Diego, La Jolla, CA
| | - Donald J. Hagler
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Radiology, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Aaron Baraff
- Vietnam Era Twin Registry, VA Puget Sound Health Care, Seattle, WA
| | - Xin M. Tu
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, CA
| | - Tsung-Chin Wu
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, CA
| | - Jaden DeAnda
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Psychology, San Diego State University, San Diego, CA
| | - Asad Beck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | - Joel D. Kaufman
- Epidemiology, Environmental and Occupational Health Sciences, and General Internal Medicine, University of Washington, Seattle, WA
| | - Nathan Whitsel
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
| | - William S. Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| |
Collapse
|
14
|
Manwani B, Finger C, Lisabeth L. Strategies for Maintaining Brain Health: The Role of Stroke Risk Factors Unique to Elderly Women. Stroke 2022; 53:2662-2672. [PMID: 35652344 PMCID: PMC10911965 DOI: 10.1161/strokeaha.121.036894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke risk and prevalence increase with advanced age and women tend to be older than men at the time of their first stroke. Advanced age in women confers unique stroke risks that are beyond reproductive factors. Previous reviews and guidelines have largely focused on risk factors specific to women, with a predominant focus on reproductive factors and, therefore, younger to middle-aged women. This review aims to specifically describe stroke risk factors in elderly women, the population of women where the majority of strokes occur, with a focus on atrial fibrillation, hormone therapy, psychosocial risk factors, and cognitive impairment. Our review suggests that prevention and management of stroke risks that are unique or more prevalent in elderly women needs a coordinated system of care from general physicians, general neurologists, vascular and cognitive neurologists, psychologists, cardiologists, patients, and their caretakers. Early identification and management of the elderly woman-specific and traditional stroke risk factors is key for decreasing stroke burden in elderly women. Increased education among elderly women regarding stroke risk factors and their identification should be considered, and an update to the guidelines for prevention of stroke in women is strongly encouraged.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Texas Health Science Center at Houston (B.M., C.F.)
| | - Carson Finger
- Department of Neurology, University of Texas Health Science Center at Houston (B.M., C.F.)
| | - Lynda Lisabeth
- Department of Epidemiology, University of Michigan, Ann Arbor (L.L.)
| |
Collapse
|
15
|
Marazuela P, Paez-Montserrat B, Bonaterra-Pastra A, Solé M, Hernández-Guillamon M. Impact of Cerebral Amyloid Angiopathy in Two Transgenic Mouse Models of Cerebral β-Amyloidosis: A Neuropathological Study. Int J Mol Sci 2022; 23:ijms23094972. [PMID: 35563362 PMCID: PMC9103818 DOI: 10.3390/ijms23094972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of parenchymal and vascular amyloid-beta (Aβ) are the main hallmarks of Alzheimer’s disease (AD) and Cerebral Amyloid Angiopathy (CAA), respectively. Emerging evidence raises an important contribution of vascular dysfunction in AD pathology that could partially explain the failure of anti-Aβ therapies in this field. Transgenic mice models of cerebral β-amyloidosis are essential to a better understanding of the mechanisms underlying amyloid accumulation in the cerebrovasculature and its interactions with neuritic plaque deposition. Here, our main objective was to evaluate the progression of both parenchymal and vascular deposition in APP23 and 5xFAD transgenic mice in relation to age and sex. We first showed a significant age-dependent accumulation of extracellular Aβ deposits in both transgenic models, with a greater increase in APP23 females. We confirmed that CAA pathology was more prominent in the APP23 mice, demonstrating a higher progression of Aβ-positive vessels with age, but not linked to sex, and detecting a pronounced burden of cerebral microbleeds (cMBs) by magnetic resonance imaging (MRI). In contrast, 5xFAD mice did not present CAA, as shown by the negligible Aβ presence in cerebral vessels and the occurrence of occasional cMBs comparable to WT mice. In conclusion, the APP23 mouse model is an interesting tool to study the overlap between vascular and parenchymal Aβ deposition and to evaluate future disease-modifying therapy before its translation to the clinic.
Collapse
|
16
|
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130:1204-1229. [PMID: 35420918 PMCID: PMC10032582 DOI: 10.1161/circresaha.121.319949] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. This review article focuses on the epidemiology, cause, mechanisms of injury, current treatment strategies, and future research directions of ICH. Incidence of hemorrhagic stroke has increased worldwide over the past 40 years, with shifts in the cause over time as hypertension management has improved and anticoagulant use has increased. Preclinical and clinical trials have elucidated the underlying ICH cause and mechanisms of injury from ICH including the complex interaction between edema, inflammation, iron-induced injury, and oxidative stress. Several trials have investigated optimal medical and surgical management of ICH without clear improvement in survival and functional outcomes. Ongoing research into novel approaches for ICH management provide hope for reducing the devastating effect of this disease in the future. Areas of promise in ICH therapy include prognostic biomarkers and primary prevention based on disease pathobiology, ultra-early hemostatic therapy, minimally invasive surgery, and perihematomal protection against inflammatory brain injury.
Collapse
Affiliation(s)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|