1
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol K, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Christopher Edgar J. Functional and structural maturation of auditory cortex from 2 months to 2 years old. Clin Neurophysiol 2024; 166:232-243. [PMID: 39213880 PMCID: PMC11494624 DOI: 10.1016/j.clinph.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol KL, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Edgar JC. Functional and structural maturation of auditory cortex from 2 months to 2 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597426. [PMID: 38895425 PMCID: PMC11185738 DOI: 10.1101/2024.06.05.597426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (P2m measured using magnetoencephalography, MEG) in a cross-sectional (2 to 24 months) as well as longitudinal cohort (2 to 29 months) of typically developing infants and toddlers. In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. After removing the variance associated with age in both P2m latency and auditory radiation diffusion measures, auditory radiation still accounted for significant variance in P2m latency. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. Findings provide strong support for a contribution of auditory radiation white matter to rapid cortical auditory encoding processes in infants.
Collapse
|
4
|
Moltu SJ, Nordvik T, Rossholt ME, Wendel K, Chawla M, Server A, Gunnarsdottir G, Pripp AH, Domellöf M, Bratlie M, Aas M, Hüppi PS, Lapillonne A, Beyer MK, Stiris T, Maximov II, Geier O, Pfeiffer H. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin Nutr 2024; 43:176-186. [PMID: 38061271 DOI: 10.1016/j.clnu.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION www. CLINICALTRIALS gov; ID:NCT03555019.
Collapse
Affiliation(s)
- Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway.
| | - Tone Nordvik
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Madelaine E Rossholt
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristina Wendel
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Maninder Chawla
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Andres Server
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, 90185 Umeå, Sweden
| | - Marianne Bratlie
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Marlen Aas
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Petra S Hüppi
- Department of Woman, Child and Adolescent Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Lapillonne
- Department of Neonatal Intensive Care, APHP Necker-Enfants Malades Hospital, Paris University, 75015 Paris, France
| | - Mona K Beyer
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Stiris
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norwary
| | - Helle Pfeiffer
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Department of Pediatric Neurology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
5
|
Liu L, Xiang M, Cai X, Wu B, Chen C, Cai N, Ao D. Multi-omics analyses of gut microbiota via 16S rRNA gene sequencing, LC-MS/MS and diffusion tension imaging reveal aberrant microbiota-gut-brain axis in very low or extremely low birth weight infants with white matter injury. BMC Microbiol 2023; 23:387. [PMID: 38057706 PMCID: PMC10699022 DOI: 10.1186/s12866-023-03103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE The goal of this study was to comprehensively investigate the characteristics of gut microbiota dysbiosis and metabolites levels in very low or extremely low birth weight (VLBW/ELBW) infants with white matter injury (WMI). METHODS In this prospective cohort study, preterm infants with gestational age < 32 weeks and weight < 1.5 kg were investigated. Additionally, fecal samples were collected on days zero, 14d and 28d after admission to the intensive care unit. All subjects underwent brain scan via MRI and DTI at a corrected gestational age of 37 ~ 40 weeks. Based on the results of MRI examination, the VLBW/ELBW infants were divided into two groups: WMI and non-WMI. Finally, based on a multi-omics approach, we performed 16S rRNA gene sequencing, LC-MS/MS, and diffusion tension imaging to identify quantifiable and informative biomarkers for WMI. RESULT We enrolled 23 patients with and 48 patients without WMI. The results of 16S RNA sequencing revealed an increase in the number of Staphylococcus and Acinetobacter species in the fecal samples of infants with WMI, as well as increasing levels of S. caprae and A._johnsonii. LEfSe analysis (LDA ≥ 4) showed that the WMI group carried an abundance of Staphylococcus species including S. caprae, members of the phyla Bacteroidota and Actinobacteriota, and Acinetobacter species. A total of 139 metabolic markers were significantly and differentially expressed between WMI and nWMI. KEGG pathway enrichment analysis revealed that the WMI group showed significant downregulation of 17 metabolic pathways including biosynthesis of arginine and primary bile acids. The WMI group showed delayed brain myelination, especially in the paraventricular white matter and splenium of corpus callosum. Staphylococcus species may affect WMI by downregulating metabolites such as cholic acid, allocholic acid, and 1,3-butadiene. Gut microbiota such as Acinetobacter and Bacteroidetes may alter white matter structurally by upregulating metabolites such as cinobufagin. CONCLUSION Based on 16S RNA sequencing results, severe gut microbiota dysbiosis was observed in the WMI group. The results might reveal damage to potential signaling pathways of microbiota-gut-brain axis in gut microbiota. The mechanism was mediated via downregulation of the bile acid biosynthetic pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangsheng Cai
- Guangzhou Cadre Health Management Center, Guangzhou Eleventh People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Benqing Wu
- University of the Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Chaohong Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
6
|
Zhou L, Liu X, Yan X, Liu Y, Xie Y, Sun C. Long-term effects of prenatal magnesium sulfate exposure on nervous system development in preterm-born children. Food Sci Nutr 2023; 11:7061-7069. [PMID: 37970388 PMCID: PMC10630835 DOI: 10.1002/fsn3.3630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
This study used structural magnetic resonance imaging to analyze changes in the gray matter volume (GMV) of preterm-born (PTB) and term-born (TB) children to help elucidate the influence of magnesium sulfate treatment on the nervous system development. A total of 51 subjects were recruited, including 28 PTB and 23 TB children. The intelligence scale and MRI scan were completed at the corrected age of 10 to 16 years. A whole-brain voxel-wise analysis tested the main effect of the status (PTB without magnesium, PTB with magnesium, and TB) using a factorial design in SPM8. The mean volumes of the regions that showed significant group effects on the GMV after the FDR correction were extracted in the common space for each subject. Verbal and full-scale intelligence quotient scores were significantly lower for PTB children without magnesium than for TB children; however, the scores of PTB children with magnesium and TB children were almost identical. Compared with TB children, PTB children had significantly reduced left straight gyrus and left inferior frontal gyrus GMVs; however, the volumes of PTB children with magnesium were closer to those of TB children. Changes in the GMV of the left inferior frontal gyrus were significantly correlated with full-scale and verbal intelligence quotient scores, whereas the lower gestational age at the time of mgsou4 treatment led to a larger GMV of the left inferior frontal gyrus. Brain structural abnormalities could exist in PTB children. The GMVs of the left straight gyrus and left inferior frontal gyrus were significantly reduced in these children. The influence of magnesium sulfate treatment was not significant, but the cognitive levels of these children were significantly increased and almost identical to those of TB children. Initiation of magnesium sulfate treatment during gestation is negatively correlated with the left inferior frontal gyrus GMV.
Collapse
Affiliation(s)
- Le Zhou
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| | - Xinghui Liu
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| | - Xiaoli Yan
- Obstetrics and Gynecology DepartmentThe Southwest Hospital of the Army Medical UniversityChongqingChina
| | - Yingwei Liu
- Obstetrics and Gynecology DepartmentThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yao Xie
- Obstetrics and Gynecology DepartmentSichuan Academy of Medical Sciences – Sichuan Provincial People's HospitalChengduChina
| | - Chuntang Sun
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Merisaari H, Karlsson L, Scheinin NM, Shulist SJ, Lewis JD, Karlsson H, Tuulari JJ. Effect of number of diffusion encoding directions in neonatal diffusion tensor imaging using Tract-Based Spatial Statistical analysis. Eur J Neurosci 2023; 58:3827-3837. [PMID: 37641861 DOI: 10.1111/ejn.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to study the developing brain in early childhood, infants and in utero studies. In infants, number of used diffusion encoding directions has traditionally been smaller in earlier studies down to the minimum of 6 orthogonal directions. Whereas the more recent studies often involve more directions, number of used directions remain an issue when acquisition time is optimized without compromising on data quality and in retrospective studies. Variability in the number of used directions may introduce bias and uncertainties to the DTI scalar estimates that affect cross-sectional and longitudinal study of the brain. We analysed DTI images of 133 neonates, each data having 54 directions after quality control, to evaluate the effect of number of diffusion weighting directions from 6 to 54 with interval of 6 to the DTI scalars with Tract-Based Spatial Statistics (TBSS) analysis. The TBSS analysis was applied to DTI scalar maps, and the mean region of interest (ROI) values were extracted using JHU atlas. We found significant bias in ROI mean values when only 6 directions were used (positive in fractional anisotropy [FA] and negative in fractional anisotropy [MD], axial diffusivity [AD] and fractional anisotropy [RD]), while when using 24 directions and above, the difference to scalar values calculated from 54 direction DTI was negligible. In repeated measures voxel-wise analysis, notable differences to 54 direction DTI were observed with 6, 12 and 18 directions. DTI measurements from data with at least 24 directions may be used in comparisons with DTI measurements from data with higher numbers of directions.
Collapse
Affiliation(s)
- Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Radiology, Turku University Central Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu J Shulist
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Turku Collegium of Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Chen R, Sun C, Liu T, Liao Y, Wang J, Sun Y, Zhang Y, Wang G, Wu D. Deciphering the developmental order and microstructural patterns of early white matter pathways in a diffusion MRI based fetal brain atlas. Neuroimage 2022; 264:119700. [PMID: 36270621 DOI: 10.1016/j.neuroimage.2022.119700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
White matter (WM) of the fetal brain undergoes rapid development to form early structural connections. Diffusion magnetic resonance imaging (dMRI) has shown to be a useful tool to depict fetal brain WM in utero, and many studies have observed increasing fractional anisotropy and decreasing diffusivity in the fetal brain during the second-to-third trimester, whereas others reported non-monotonic changes. Unbiased dMRI atlases of the fetal brain are important for characterizing the developmental trajectories of WM and providing normative references for in utero diagnosis of prenatal abnormalities. To date, the sole fetal brain dMRI atlas was collected from a Caucasian/mixed population and was constructed based on the diffusion tensor model with limited spatial resolution. In this work, we proposed a fiber orientation distribution (FOD) based pipeline for generating fetal brain dMRI atlases, which showed better registration accuracy than a diffusion tensor based pipeline. Based on the FOD-based pipeline, we constructed the first Chinese fetal brain dMRI atlas using 89 dMRI scans of normal fetuses at gestational age between 24 and 38 weeks. Complex non-monotonic trends of tensor- and FOD-derived microstructural parameters in eight WM tracts were observed, which jointly pointed to different phases of microstructural development. Specifically, we speculated that the turning point of the diffusivity trajectory may correspond to the starting point of pre-myelination, based on which, the developmental order of WM tracts can be mapped and the order was in agreement with the order of myelination from histological studies. The normative atlas also provided a reference for the detection of abnormal WM development, such as that in congenital heart disease. Therefore, the established high-order fetal brain dMRI atlas depicted the spatiotemporal pattern of early WM development, and findings may help decipher the distinct microstructural events in utero.
Collapse
Affiliation(s)
- Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuhao Liao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | | | - Yi Sun
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Brain microstructural abnormalities in patients with Wilson’s disease: A systematic review of diffusion tenor imaging studies. Brain Imaging Behav 2022; 16:2809-2840. [DOI: 10.1007/s11682-022-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
10
|
Iwata S, Katayama R, Tsuda K, Lin YC, Kurata T, Kinoshita M, Kawase K, Kato T, Kato S, Hisano T, Oda M, Ohmae E, Takashima S, Araki Y, Saitoh S, Iwata O. Near-infrared light scattering and water diffusion in newborn brains. Ann Clin Transl Neurol 2022; 9:1417-1427. [PMID: 35943446 PMCID: PMC9463954 DOI: 10.1002/acn3.51641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Objective MRI provides useful information regarding brain maturation and injury in newborn infants. However, MRI studies are generally restricted during acute phase, resulting in uncertainty around upstream clinical events responsible for subtle cerebral injuries. Time‐resolved near‐infrared spectroscopy non‐invasively provides the reduced scattering coefficient (μs′), which theoretically reflects tissue structural complexity. This study aimed to test whether μs′ values of the newborn head reflected MRI findings. Methods Between June 2009 and January 2015, 77 hospitalised newborn infants (31.7 ± 3.8 weeks gestation) were assessed at 38.8 ± 1.3 weeks post‐conceptional age. Associations of μs′ values with MRI scores, mean diffusivity and fractional anisotropy were assessed. Results Univariable analysis showed that μs′ values were associated with gestational week (p = 0.035; regression coefficient [B], 0.065; 95% confidence interval [CI], 0.005–0.125), fractional anisotropy in the cortical grey matter (p = 0.020; B, −5.994; 95%CI, −11.032 to −0.957), average diffusivity in the cortical grey matter (p < 0.001; B, −4.728; 95%CI, −7.063 to −2.394) and subcortical white matter (p = 0.001; B, −2.071; 95%CI, −3.311 to −0.832), subarachnoid space (p < 0.001; B, −0.289; 95%CI, −0.376 to −0.201) and absence of brain abnormality (p = 0.042; B, −0.422; 95%CI, −0.829 to −0.015). The multivariable model to explain μs′ values comprised average diffusivity in the subcortical white matter (p < 0.001; B, −2.066; 95%CI, −3.200 to −0.932), subarachnoid space (p < 0.001; B, −0.314; 95%CI, −0.412 to −0.216) and absence of brain abnormality (p = 0.021; B, −0.400; 95%CI, −0.739 to −0.061). Interpretation Light scattering was associated with brain structure indicated by MRI‐assessed brain abnormality and diffusion‐tensor‐imaging‐assessed water diffusivity. When serially assessed in a larger population, μs′ values might help identify covert clinical events responsible for subtle cerebral injury.
Collapse
Affiliation(s)
- Sachiko Iwata
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Reiji Katayama
- Centre for the Study of Medical Education, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Kennosuke Tsuda
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, 70457, Taiwan
| | - Tsuyoshi Kurata
- Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masahiro Kinoshita
- Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Koya Kawase
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takenori Kato
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Shin Kato
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Tadashi Hisano
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Motoki Oda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 434-8601, Japan
| | - Etsuko Ohmae
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 434-8601, Japan
| | - Sachio Takashima
- Yanagawa Institute for Developmental Disabilities, International University of Health and Welfare, Yanagawa, Fukuoka, 832-0813, Japan
| | - Yuko Araki
- Graduate School of Information Sciences, Tohoku University, Sendai City, Miyagi, 980-8579, Japan
| | - Shinji Saitoh
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Osuke Iwata
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
11
|
Vaher K, Galdi P, Blesa Cabez M, Sullivan G, Stoye DQ, Quigley AJ, Thrippleton MJ, Bogaert D, Bastin ME, Cox SR, Boardman JP. General factors of white matter microstructure from DTI and NODDI in the developing brain. Neuroimage 2022; 254:119169. [PMID: 35367650 DOI: 10.1016/j.neuroimage.2022.119169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022] Open
Abstract
Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests that despite global covariance of dMRI metrics in neonates, each metric represents information about specific (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.
Collapse
Affiliation(s)
- Kadi Vaher
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Alan J Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Simon R Cox
- Lothian Birth Cohort Studies group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom.
| |
Collapse
|
12
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
13
|
Yuan S, Liu M, Kim S, Yang J, Barkovich AJ, Xu D, Kim H. Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early neurodevelopment: multimodal MRI study in preterm neonates. Cereb Cortex 2022; 33:357-373. [PMID: 35235643 PMCID: PMC9837610 DOI: 10.1093/cercor/bhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/19/2023] Open
Abstract
The cerebral cortex undergoes rapid microstructural changes throughout the third trimester. Recently, there has been growing interest on imaging features that represent cyto/myeloarchitecture underlying intracortical myelination, cortical gray matter (GM), and its adjacent superficial whitematter (sWM). Using 92 magnetic resonance imaging scans from 78 preterm neonates, the current study used combined T1-weighted/T2-weighted (T1w/T2w) intensity ratio and diffusion tensor imaging (DTI) measurements, including fractional anisotropy (FA) and mean diffusivity (MD), to characterize the developing cyto/myeloarchitectural architecture. DTI metrics showed a linear trajectory: FA decreased in GM but increased in sWM with time; and MD decreased in both GM and sWM. Conversely, T1w/T2w measurements showed a distinctive parabolic trajectory, revealing additional cyto/myeloarchitectural signature inferred. Furthermore, the spatiotemporal courses were regionally heterogeneous: central, ventral, and temporal regions of GM and sWM exhibited faster T1w/T2w changes; anterior sWM areas exhibited faster FA increases; and central and cingulate areas in GM and sWM exhibited faster MD decreases. These results may explain cyto/myeloarchitectural processes, including dendritic arborization, synaptogenesis, glial proliferation, and radial glial cell organization and apoptosis. Finally, T1w/T2w values were significantly associated with 1-year language and cognitive outcome scores, while MD significantly decreased with intraventricular hemorrhage.
Collapse
Affiliation(s)
| | | | | | - Jingda Yang
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anthony James Barkovich
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hosung Kim
- Corresponding author: 2025 Zonal Ave, Los Angeles, CA 90033, USA.
| |
Collapse
|
14
|
Darayi M, Hoffman ME, Sayut J, Wang S, Demirci N, Consolini J, Holland MA. Computational models of cortical folding: A review of common approaches. J Biomech 2021; 139:110851. [PMID: 34802706 DOI: 10.1016/j.jbiomech.2021.110851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.
Collapse
Affiliation(s)
- Mohsen Darayi
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
15
|
Functional Network Development in Sagittal Craniosynostosis Treated With Whole Vault Cranioplasty. J Craniofac Surg 2021; 32:1721-1726. [PMID: 33534301 DOI: 10.1097/scs.0000000000007505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION In this study, the authors seek to clarify the neurological changes before and after whole vault cranioplasty (WVC) in patients born with sagittal craniosynostosis. METHODS A case control study design was performed that included thirty functional MRI scans, from 25 individual patients. Functional MRI and diffusion tension imaging data were analyzed with BioImageSuite (Yale University, USA). 9 functional brain networks were analyzed, with appropriate correlated functional regions of the brain and utilized for analysis. RESULTS Comparing functional MRI the infants after WVC versus infants before WVC group, the after WVC group demonstrated an increased connectivity in the left frontoparietal, secondary (V2), and third (V3) visual networks (P < 0.001). The right frontoparietal (RFPN) had decreased connectivity (P < 0.001). There is also a decrease and increase in anisotropy in the cingulum and precuneus despite surgery, respectively (P < 0.05). Adolescents treated with WVC compared to controls, demonstrated an increased connectivity in the salience and decreased connectivity in the RFPN relative to adolescent controls. CONCLUSIONS Patients born with sagittal craniosynostosis have different connections in infancy in most of the defined cerebral networks compared to controls. After surgery, there are specific connectivity changes that occur in the RFPN, left frontoparietal, V2, and V3 networks, which are areas associated with executive function and emotional control. Changes identified in white matter tract microstructure connections could be influential in changes in functional connectivity. Although, as a child with sagittal craniosynostosis develops, much of the abnormal network connections, seen in infancy preoperatively, corrects to some degree after surgery. However, some aberrancies in the salience and RFPN networks remain potentially affecting executive functioning.
Collapse
|
16
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
18
|
Lemaître H, Augé P, Saitovitch A, Vinçon-Leite A, Tacchella JM, Fillon L, Calmon R, Dangouloff-Ros V, Lévy R, Grévent D, Brunelle F, Boddaert N, Zilbovicius M. Rest Functional Brain Maturation during the First Year of Life. Cereb Cortex 2021; 31:1776-1785. [PMID: 33230520 PMCID: PMC7869100 DOI: 10.1093/cercor/bhaa325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
The first year of life is a key period of brain development, characterized by dramatic structural and functional modifications. Here, we measured rest cerebral blood flow (CBF) modifications throughout babies’ first year of life using arterial spin labeling magnetic resonance imaging sequence in 52 infants, from 3 to 12 months of age. Overall, global rest CBF significantly increased during this age span. In addition, we found marked regional differences in local functional brain maturation. While primary sensorimotor cortices and insula showed early maturation, temporal and prefrontal region presented great rest CBF increase across the first year of life. Moreover, we highlighted a late and remarkably synchronous maturation of the prefrontal and posterior superior temporal cortices. These different patterns of regional cortical rest CBF modifications reflect a timetable of local functional brain maturation and are consistent with baby’s cognitive development within the first year of life.
Collapse
Affiliation(s)
- Hervé Lemaître
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux 33000, France
| | - Pierre Augé
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ana Saitovitch
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Alice Vinçon-Leite
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Jean-Marc Tacchella
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ludovic Fillon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphael Calmon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Volodia Dangouloff-Ros
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphaël Lévy
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - David Grévent
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Francis Brunelle
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Nathalie Boddaert
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Monica Zilbovicius
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| |
Collapse
|
19
|
Lee HJ, Kwon H, Kim JI, Lee JY, Lee JY, Bang S, Lee JM. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age. NEUROIMAGE-CLINICAL 2020; 29:102528. [PMID: 33338967 PMCID: PMC7750449 DOI: 10.1016/j.nicl.2020.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Maturation of specific WM tracts in preterm individuals differs from those of term controls. The elastic net logistic regression model was used to identify altered white matter tracts in the preterm brain. The alteration of the cingulum in the preterm at near-term correlate with neurodevelopmental scores at 18–22 months of age.
Background Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive language processing. Objective The present study aimed to determine whether regional abnormalities in the WM microstructure of very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with neurodevelopmental outcomes at the age of 18–22 months. Methods We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance imaging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. Results We found that the elastic net logistic regression model could classify preterm and full-term neonates with an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, were identified as contributive features for classification. Increased adjusted AD values in the left cingulum pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, p = 0.043). The expressive language and social-emotional composite scores showed a significant positive correlation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], respectively) after FDR correction. Conclusion Our approach suggests that the cingulum pathways of very preterm infants differ from those of full-term infants and significantly contribute to the prediction of the subsequent development of the language and social-emotional domains. This finding could improve our understanding of how specific neural substrates influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early intervention strategies that address developmental delay.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, South Korea
| | - SungKyu Bang
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
20
|
Huynh KM, Xu T, Wu Y, Wang X, Chen G, Wu H, Thung KH, Lin W, Shen D, Yap PT. Probing Tissue Microarchitecture of the Baby Brain via Spherical Mean Spectrum Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3607-3618. [PMID: 32746109 PMCID: PMC7688284 DOI: 10.1109/tmi.2020.3001175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, invo- lving differentiation of neuronal types, dendritic arbori- zation, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To better quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a set of diffusion weightings (i.e., b -values). We decompose the spherical mean profile at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion proce- sses, characterizing restricted and hindered diffusion stemming respectively from intra- and extra-cellular water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ( μ FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show that these indices can be computed for the developing brain for greater sensitivity and specificity to development related changes in tissue microstructure. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.
Collapse
|
21
|
Non-negative data-driven mapping of structural connections with application to the neonatal brain. Neuroimage 2020; 222:117273. [PMID: 32818619 DOI: 10.1016/j.neuroimage.2020.117273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Mapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and brain connectivity. Atlas-based tractography protocols, i.e. a priori defined sets of masks and logical operations in a template space, have been commonly used in the adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results and grey matter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation.
Collapse
|
22
|
Wu D, Chang L, Ernst TM, Caffo BS, Oishi K. Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants. Brain Struct Funct 2020; 225:2431-2445. [PMID: 32804327 DOI: 10.1007/s00429-020-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Large-scale longitudinal neuroimaging studies of the infant brain allow us to map the spatiotemporal development of the brain in its early phase. While the postmenstrual age (PMA) is commonly used as a time index to analyze longitudinal MRI data, the nonlinear relationship between PMA and MRI data imposes challenges for downstream analyses. We propose a mathematical model that provides a Developmental Score (DevS) as a data-driven time index to characterize the brain development based on MRI features. 319 diffusion tensor imaging (DTI) datasets were collected from 87 term-born and 66 preterm-born infants at multiple visits, which were automatically segmented based on the JHU neonatal atlas. The mean diffusivity (MD) and fractional anisotropy (FA) in 126 brain parcels were used in the model to derive DevS. We demonstrate that transforming the time index from PMA to DevS improves the linearity of the longitudinal changes in MD and FA in both gray and white matter structures. More importantly, regional developmental differences in DTI metrics between preterm- and term-born infants were identified more clearly using DevS, e.g. 79 structures showed significantly different regression patterns in MD between preterm- and term-born infants, compared to only 27 structures that showed group differences using PMA as the index. Therefore, the DevS model facilitates linear analyses of DTI metrics in the infant brain, and provides a useful tool to characterize altered brain development due to preterm-birth.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Linda Chang
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenichi Oishi
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Traylor 217, 720 Rutland Ave, Baltimore, MD, 21215, USA.
| |
Collapse
|
23
|
Torres ER, Tumey TA, Dean DC, Kassahun-Yimer W, Lopez-Lambert ED, Hitchcock ME. Non-pharmacological strategies to obtain usable magnetic resonance images in non-sedated infants: Systematic review and meta-analysis. Int J Nurs Stud 2020; 106:103551. [PMID: 32294563 DOI: 10.1016/j.ijnurstu.2020.103551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although the use of sedation is commonly practiced to keep infants still while receiving magnetic resonance imaging, non-pharmacological strategies are a potential alternative. OBJECTIVES The purpose of this study was to determine the success rate of obtaining usable magnetic resonance images in infants with the sole use of non-pharmacological strategies. DESIGN Systematic literature review and meta-analysis SETTING: A search was conducted in PubMed, CINAHL and Cochrane Library. PARTICIPANTS Human infants from birth to 24 months of age who did not receive any sedation or anesthesia during magnetic resonance imaging METHOD: Articles that reported the success rate of obtaining usable images were included. RESULTS Of the 521 non-duplicate articles found, 58 articles were included in the systematic review with sample sizes ranging from 2-457, an average success rate of 87.8%, and an average scan time of 30 min. The most common non-pharmacological technique included feeding and swaddling infants before imaging to encourage infants to sleep during the scan. Meta-analysis performed on 53 articles comprising 3,410 infants found a success rate of 87%, but significant heterogeneity was found (I2 = 98.30%). It was more difficult to obtain usable images solely with non-pharmacological techniques if infants were critically ill or a structural magnetic resonance imaging of the brain was required. CONCLUSION Non-pharmacological techniques are effective for obtaining usable magnetic resonance imaging scans in most but not all infants. Tweetable abstract: Non-pharmacological techniques are effective for obtaining usable magnetic resonance imaging scans in most infants.
Collapse
Affiliation(s)
- Elisa R Torres
- School of Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, United States.
| | - Tyler A Tumey
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr Las Cruces, NM 88001, United States.
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison WI 53705, United States.
| | - Wondwosen Kassahun-Yimer
- Department of Data Science, University of Mississippi Medical Center, School of Population Health,2500 North State Street, Jackson, MS 39216, United States.
| | - Eloise D Lopez-Lambert
- School of Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, United States
| | - Mary E Hitchcock
- Ebling Library, University of Wisconsin-Madison, 750 Highland Ave, Madison WI 53705, United States.
| |
Collapse
|
24
|
Blesa M, Galdi P, Sullivan G, Wheater EN, Stoye DQ, Lamb GJ, Quigley AJ, Thrippleton MJ, Bastin ME, Boardman JP. Peak Width of Skeletonized Water Diffusion MRI in the Neonatal Brain. Front Neurol 2020; 11:235. [PMID: 32318015 PMCID: PMC7146826 DOI: 10.3389/fneur.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Preterm birth is closely associated with cognitive impairment and generalized dysconnectivity of neural networks inferred from water diffusion MRI (dMRI) metrics. Peak width of skeletonized mean diffusivity (PSMD) is a metric derived from histogram analysis of mean diffusivity across the white matter skeleton, and it is a useful biomarker of generalized dysconnectivity and cognition in adulthood. We calculated PSMD and five other histogram based metrics derived from diffusion tensor imaging (DTI) and neurite orientation and dispersion imaging (NODDI) in the newborn, and evaluated their accuracy as biomarkers of microstructural brain white matter alterations associated with preterm birth. One hundred and thirty five neonates (76 preterm, 59 term) underwent 3T MRI at term equivalent age. There were group differences in peak width of skeletonized mean, axial, and radial diffusivities (PSMD, PSAD, PSRD), orientation dispersion index (PSODI) and neurite dispersion index (PSNDI), all p < 10-4. PSFA did not differ between groups. PSNDI was the best classifier of gestational age at birth with an accuracy of 81±10%, followed by PSMD, which had 77±9% accuracy. Models built on both NODDI metrics, and on all dMRI metrics combined, did not outperform the model based on PSNDI alone. We conclude that histogram based analyses of DTI and NODDI parameters are promising new image markers for investigating diffuse changes in brain connectivity in early life.
Collapse
Affiliation(s)
- Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily N. Wheater
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - David Q. Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian J. Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan J. Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James P. Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Hunt D, Dighe M, Gatenby C, Studholme C. Automatic, Age Consistent Reconstruction of the Corpus Callosum Guided by Coherency From In Utero Diffusion-Weighted MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:601-610. [PMID: 31395540 PMCID: PMC7189742 DOI: 10.1109/tmi.2019.2932681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reconstruction of white matter connectivity in the fetal brain from in utero diffusion-weighted magnetic resonance imaging (MRI) faces many challenges, including subject motion, small anatomical scale, and limited image resolution and signal. These issues are compounded by the need to track significant changes in structural connectivity throughout development. We present an automated method for improved reliability and completeness of tract extraction across a wide range of gestational ages, based on the geometry of coherent patterns in streamline tractography, and apply it to the reconstruction of the corpus callosum. This method, focused specifically at addressing the challenges of fetal brain imaging, avoids depending on a tractography atlas, and handles variations in size, shape, and tissue properties of developing brains, both between subjects and across ages. Although tractography from in utero MRI generally suffers from a significant number of misleading and missing pathways, we demonstrate the feasibility of extracting the coherent bundle of the corpus callosum while avoiding inappropriate diversions into other tracts.
Collapse
|
26
|
Edgar JC. Identifying electrophysiological markers of autism spectrum disorder and schizophrenia against a backdrop of normal brain development. Psychiatry Clin Neurosci 2020; 74:1-11. [PMID: 31472015 PMCID: PMC10150852 DOI: 10.1111/pcn.12927] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023]
Abstract
An examination of electroencephalographic and magnetoencephalographic studies demonstrates how age-related changes in brain neural function temporally constrain their use as diagnostic markers. A first example shows that, given maturational changes in the resting-state peak alpha frequency in typically developing children but not in children who have autism spectrum disorder (ASD), group differences in alpha-band activity characterize only a subset of children who have ASD. A second example, auditory encoding processes in schizophrenia, shows that the complication of normal age-related brain changes on detecting and interpreting group differences in neural activity is not specific to children. MRI studies reporting group differences in the rate of brain maturation demonstrate that a group difference in brain maturation may be a concern for all diagnostic brain markers. Attention to brain maturation is needed whether one takes a DSM-5 or a Research Domain Criteria approach to research. For example, although there is interest in cross-diagnostic studies comparing brain measures in ASD and schizophrenia, such studies are difficult given that measures are obtained in one group well after and in the other much closer to the onset of symptoms. In addition, given differences in brain activity among infants, toddlers, children, adolescents, and younger and older adults, creating tasks and research designs that produce interpretable findings across the life span and yet allow for development is difficult at best. To conclude, brain imaging findings show an effect of brain maturation on diagnostic markers separate from (and potentially difficult to distinguish from) effects of disease processes. Available research with large samples already provides direction about the age range(s) when diagnostic markers are most robust and informative.
Collapse
Affiliation(s)
- J Christopher Edgar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
27
|
Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol Appl Neurobiol 2019; 46:413-421. [PMID: 31747472 PMCID: PMC7496638 DOI: 10.1111/nan.12589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) is a leading cause of neurodevelopmental and neurocognitive impairment in childhood and is closely associated with psychiatric disease. The biological and environmental factors that confer risk and resilience for healthy brain development and long‐term outcome after PTB are uncertain, which presents challenges for risk stratification and for the discovery and evaluation of neuroprotective strategies. Neonatal magnetic resonance imaging reveals a signature of PTB that includes dysconnectivity of neural networks and atypical development of cortical and deep grey matter structures. Here we provide a brief review of perinatal factors that are associated with the MRI signature of PTB. We consider maternal and foetal factors including chorioamnionitis, foetal growth restriction, socioeconomic deprivation and prenatal alcohol, drug and stress exposures; and neonatal factors including co‐morbidities of PTB, nutrition, pain and medication during neonatal intensive care and variation conferred by the genome/epigenome. Association studies offer the first insights into pathways to adversity and resilience after PTB. Future challenges are to analyse quantitative brain MRI data with collateral biological and environmental data in study designs that support causal inference, and ultimately to use the output of such analyses to stratify infants for clinical trials of therapies designed to improve outcome.
Collapse
Affiliation(s)
- J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
28
|
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L, Adam-Darque A, Borradori-Tolsa C, Lazeyras F, Hüppi PS. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 2019; 207:116391. [PMID: 31765804 DOI: 10.1016/j.neuroimage.2019.116391] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Nicolas Kunz
- Center of BioMedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
29
|
Zaidi AH, Newburger JW, Wypij D, Stopp C, Watson CG, Friedman KG, Rivkin MJ, Rollins CK. Ascending Aorta Size at Birth Predicts White Matter Microstructure in Adolescents Who Underwent Fontan Palliation. J Am Heart Assoc 2019; 7:e010395. [PMID: 30561261 PMCID: PMC6405606 DOI: 10.1161/jaha.118.010395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background In neonates with single ventricle, smaller ascending aorta diameter is associated with cerebral white matter ( WM ) microstructural abnormalities. We sought to determine whether this association persists into adolescence. Methods and Results Ascending aorta Z scores were obtained from first postnatal echocardiogram. Brain magnetic resonance imaging with diffusion tensor imaging was acquired in adolescence and used to obtain fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity in 33 WM tract regions of interest. Partial Pearson correlation coefficients were evaluated for associations between ascending aorta Z scores and WM microstructure measures, adjusting for sex, age at magnetic resonance imaging, scanner field strength, and Norwood status. Among 42 single ventricle patients aged 10 to 19 years, 31 had undergone the Norwood procedure as neonates. Lower ascending aorta Z scores were associated with lower fractional anisotropy in bilateral pontine crossing tracts ( P=0.02), inferior fronto-occipital fasciculus ( P=0.02), and inferior longitudinal fasciculus ( P=0.01); left cingulum-cingulate bundle ( P=0.01), superior longitudinal fasciculus ( P=0.04), and superior longitudinal fasciculus-temporal component ( P=0.01); and right cingulum-hippocampal bundle (P=0.009) and inferior cerebellar peduncle ( P=0.01). Lower ascending aorta Z scores were associated with higher radial diffusivity and mean diffusivity in a similar regional pattern but not with axial diffusivity. Conclusions In adolescents with single ventricle, smaller aorta diameter at birth is associated with abnormalities of WM microstructure in a subset of WM tracts, mostly those located in deeper brain regions. Our findings suggest that despite multiple intervening medical or surgical procedures, prenatal cerebral blood flow may have a lasting influence on WM microstructure in single-ventricle patients.
Collapse
Affiliation(s)
- Abbas H Zaidi
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - Jane W Newburger
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - David Wypij
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA.,7 Department of Biostatistics Harvard T.H. Chan School of Public Health Boston MA
| | - Christian Stopp
- 1 Department of Cardiology Boston Children's Hospital Boston MA
| | | | - Kevin G Friedman
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - Michael J Rivkin
- 2 Department of Neurology Boston Children's Hospital Boston MA.,3 Department of Psychiatry Boston Children's Hospital Boston MA.,4 Department of Radiology Boston Children's Hospital Boston MA.,6 Department of Neurology Harvard Medical School Boston MA
| | - Caitlin K Rollins
- 2 Department of Neurology Boston Children's Hospital Boston MA.,6 Department of Neurology Harvard Medical School Boston MA
| |
Collapse
|
30
|
Córcoles-Parada M, Giménez-Mateo R, Serrano-Del-Pueblo V, López L, Pérez-Hernández E, Mansilla F, Martínez A, Onsurbe I, San Roman P, Ubero-Martinez M, Clayden JD, Clark CA, Muñoz-López M. Born Too Early and Too Small: Higher Order Cognitive Function and Brain at Risk at Ages 8-16. Front Psychol 2019; 10:1942. [PMID: 31551853 PMCID: PMC6743534 DOI: 10.3389/fpsyg.2019.01942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
Prematurity presents a risk for higher order cognitive functions. Some of these deficits manifest later in development, when these functions are expected to mature. However, the causes and consequences of prematurity are still unclear. We conducted a longitudinal study to first identify clinical predictors of ultrasound brain abnormalities in 196 children born very preterm (VP; gestational age ≤32 weeks) and with very low birth weight (VLBW; birth weight ≤1500 g). At ages 8-16, the subset of VP-VLBW children without neurological findings (124) were invited for a neuropsychological assessment and an MRI scan (41 accepted). Of these, 29 met a rigorous criterion for MRI quality and an age, and gender-matched control group (n = 14) was included in this study. The key findings in the VP-VLBW neonates were: (a) 37% of the VP-VLBW neonates had ultrasound brain abnormalities; (b) gestational age and birth weight collectively with hospital course (i.e., days in hospital, neonatal intensive care, mechanical ventilation and with oxygen therapy, surgeries, and retinopathy of prematurity) predicted ultrasound brain abnormalities. At ages 8-16, VP-VLBW children showed: a) lower intelligent quotient (IQ) and executive function; b) decreased gray and white matter (WM) integrity; (c) IQ correlated negatively with cortical thickness in higher order processing cortical areas. In conclusion, our data indicate that facets of executive function and IQ are the most affected in VP-VLBW children likely due to altered higher order cortical areas and underlying WM.
Collapse
Affiliation(s)
- Marta Córcoles-Parada
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Rocio Giménez-Mateo
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Victor Serrano-Del-Pueblo
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Leidy López
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain.,Department of Psychology, University of Area Andina, Bogotá, Colombia
| | | | - Francisco Mansilla
- Radiology Service, Sta. Cristina Clinic and University Hospital of Albacete, Albacete, Spain
| | - Andres Martínez
- Neonatology Service, University Hospital of Albacete, Albacete, Spain
| | - Ignacio Onsurbe
- Paediatric Neurology Service, University Hospital of Albacete, Albacete, Spain
| | - Paloma San Roman
- Child Psychiatry Service, University Hospital of Albacete, Albacete, Spain
| | - Mar Ubero-Martinez
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain.,Department of Anatomy, Catholic University of Murcia, Murcia, Spain
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Section, Institute of Child Health, University College London, London, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, Institute of Child Health, University College London, London, United Kingdom
| | - Mónica Muñoz-López
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
What is the Functional Difference Between Sagittal With Metopic and Isolated Sagittal Craniosynotosis? J Craniofac Surg 2019; 30:968-973. [DOI: 10.1097/scs.0000000000005288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Lockwood Estrin G, Wu Z, Deprez M, Bertelsen Á, Rutherford MA, Counsell SJ, Hajnal JV. White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:473-485. [PMID: 30864022 PMCID: PMC6647369 DOI: 10.1007/s10334-019-00743-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 11/18/2022]
Abstract
Objective Fetal brain diffusion tensor imaging (DTI) offers quantitative analysis of the developing brain. The objective was to 1) quantify DTI measures across gestation in a cohort of fetuses without brain abnormalities using full retrospective correction for fetal head motion 2) compare results obtained in utero to those in preterm infants. Materials and methods Motion-corrected DTI analysis was performed on data sets obtained at 1.5T from 32 fetuses scanned between 21.29 and 37.57 (median 31.86) weeks. Results were compared to 32 preterm infants scanned at 3T between 27.43 and 37.14 (median 33.07) weeks. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were quantified by region of interest measurements and tractography was performed. Results Fetal DTI was successful in 84% of fetuses for whom there was sufficient data for DTI estimation, and at least one tract could be obtained in 25 cases. Fetal FA values increased and ADC values decreased with age at scan (PLIC FA: p = 0.001; R2 = 0.469; slope = 0.011; splenium FA: p < 0.001; R2 = 0.597; slope = 0.019; thalamus ADC: p = 0.001; R2 = 0.420; slope = − 0.023); similar trends were found in preterm infants. Conclusion This study demonstrates that stable DTI is feasible on fetuses and provides evidence for normative values of diffusion properties that are consistent with aged matched preterm infants. Electronic supplementary material The online version of this article (10.1007/s10334-019-00743-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georgia Lockwood Estrin
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK. .,Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK. .,Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, University of London, London, WC1E 7HX, UK.
| | - ZhiQing Wu
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Maria Deprez
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Álvaro Bertelsen
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.,eHealth and Biomedical Applications Department, Vicomtech, Paseo Mikeletegi 57, 20009, San Sebastián, Spain
| | - Mary A Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
33
|
Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci Rep 2019; 9:3506. [PMID: 30837582 PMCID: PMC6401068 DOI: 10.1038/s41598-019-39922-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/04/2019] [Indexed: 11/22/2022] Open
Abstract
Preterm birth is the most significant problem in contemporary obstetrics accounting for 5–18% of worldwide deliveries. Encephalopathy of prematurity encompasses the multifaceted diffuse brain injury resulting from preterm birth. Current animal models exploring the underlying pathophysiology of encephalopathy of prematurity employ significant insults to generate gross central nervous system abnormalities. To date the exclusive effect of prematurity was only studied in a non-human primate model. Therefore, we aimed to develop a representative encephalopathy of prematurity small animal model only dependent on preterm birth. Time mated New-Zealand white rabbit does were either delivered on 28 (pre-term) or 31 (term) postconceptional days by caesarean section. Neonatal rabbits underwent neurobehavioral evaluation on 32 days post conception and then were transcardially perfuse fixed. Neuropathological assessments for neuron and oligodendrocyte quantification, astrogliosis, apoptosis and cellular proliferation were performed. Lastly, ex-vivo high-resolution Magnetic Resonance Imaging was used to calculate T1 volumetric and Diffusion Tensor Imaging derived fractional anisotropy and mean diffusivity. Preterm birth was associated with a motoric (posture instability, abnormal gait and decreased locomotion) and partial sensory (less pain responsiveness and failing righting reflex) deficits that coincided with global lower neuron densities, less oligodendrocyte precursors, increased apoptosis and less proliferation. These region-specific histological changes corresponded with Magnetic Resonance Diffusion Tensor Imaging differences. The most significant differences were seen in the hippocampus, caudate nucleus and thalamus of the preterm rabbits. In conclusion this model of preterm birth, in the absence of any other contributory events, resulted in measurable neurobehavioral deficits with associated brain structural and Magnetic Resonance Diffusion Tensor Imaging findings.
Collapse
|
34
|
Reduced white matter fractional anisotropy mediates cortical thickening in adults born preterm with very low birthweight. Neuroimage 2019; 188:217-227. [DOI: 10.1016/j.neuroimage.2018.11.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
35
|
Kamino D, Chau V, Studholme C, Liu M, Xu D, James Barkovich A, Ferriero DM, Miller SP, Brant R, Tam EW. Plasma cholesterol levels and brain development in preterm newborns. Pediatr Res 2019; 85:299-304. [PMID: 30635642 PMCID: PMC6433157 DOI: 10.1038/s41390-018-0260-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND To assess whether postnatal plasma cholesterol levels are associated with microstructural and macrostructural regional brain development in preterm newborns. METHODS Sixty preterm newborns (born 24-32 weeks gestational age) were assessed using MRI studies soon after birth and again at term-equivalent age. Blood samples were obtained within 7 days of each MRI scan to analyze for plasma cholesterol and lathosterol (a marker of endogenous cholesterol synthesis) levels. Outcomes were assessed at 3 years using the Bayley Scales of Infant Development, Third Edition. RESULTS Early plasma lathosterol levels were associated with increased axial and radial diffusivities and increased volume of the subcortical white matter. Early plasma cholesterol levels were associated with increased volume of the cerebellum. Early plasma lathosterol levels were associated with a 2-point decrease in motor scores at 3 years. CONCLUSIONS Higher early endogenous cholesterol synthesis is associated with worse microstructural measures and larger volumes in the subcortical white matter that may signify regional edema and worse motor outcomes. Higher early cholesterol is associated with improved cerebellar volumes. Further work is needed to better understand how the balance of cholesterol supply and endogenous synthesis impacts preterm brain development, especially if these may be modifiable factors to improve outcomes.
Collapse
Affiliation(s)
- Daphne Kamino
- Department of Paediatrics, Division of Neurology Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vann Chau
- Department of Paediatrics, Division of Neurology Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin Studholme
- Department of Pediatrics and Department of Bioengineering and Radiology, University of Washington, Seattle, WA
| | - Mengyuan Liu
- Department of Pediatrics and Department of Bioengineering and Radiology, University of Washington, Seattle, WA
| | - Duan Xu
- Departments of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - A. James Barkovich
- Departments of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA,Departments of Pediatrics and Neurology, University of California San Francisco, San Francisco, CA
| | - Donna M. Ferriero
- Departments of Pediatrics and Neurology, University of California San Francisco, San Francisco, CA
| | - Steven P. Miller
- Department of Paediatrics, Division of Neurology Hospital for Sick Children, Toronto, Ontario, Canada,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rollin Brant
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily W.Y. Tam
- Department of Paediatrics, Division of Neurology Hospital for Sick Children, Toronto, Ontario, Canada,Corresponding Author: Emily W.Y. Tam, MDCM, MAS, FRCPC, Hospital for Sick Children, Division of Neurology, 555 University Avenue, Toronto, ON M5G 1X8 Canada, Phone: 416-813-6660, Fax:416-813-6334,
| |
Collapse
|
36
|
Abstract
Despite the advances in neonatal intensive care, the preterm brain remains vulnerable to white matter injury (WMI) and disruption of normal brain development (i.e., dysmaturation). Compared to severe cystic WMI encountered in the past decades, contemporary cohorts of preterm neonates experience milder WMIs. More than destructive lesions, disruption of the normal developmental trajectory of cellular elements of the white and the gray matter occurs. In the acute phase, in response to hypoxia-ischemia and/or infection and inflammation, multifocal areas of necrosis within the periventricular white matter involve all cellular elements. Later, chronic WMI is characterized by diffuse WMI with aberrant regeneration of oligodendrocytes, which fail to mature to myelinating oligodendrocytes, leading to myelination disturbances. Complete neuronal degeneration classically accompanies necrotic white matter lesions, while altered neurogenesis, represented by a reduction of the dendritic arbor and synapse formation, is observed in response to diffuse WMI. Neuroimaging studies now provide more insight in assessing both injury and dysmaturation of both gray and white matter. Preterm brain injury remains an important cause of neurodevelopmental disabilities, which are still observed in up to 50% of the preterm survivors and take the form of a complex combination of motor, cognitive, and behavioral concerns.
Collapse
Affiliation(s)
- Juliane Schneider
- Department of Woman-Mother-Child, Clinic of Neonatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Steven P Miller
- Division of Neurology and Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
37
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Lee JM, Choi YH, Hong J, Kim NY, Kim EB, Lim JS, Kim JD, Park HK, Lee HJ. Bronchopulmonary Dysplasia Is Associated with Altered Brain Volumes and White Matter Microstructure in Preterm Infants. Neonatology 2019; 116:163-170. [PMID: 31112968 DOI: 10.1159/000499487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), an inflammatory disease involving disrupted lung development, is associated with neurodevelopmental outcome in preterm infants. OBJECTIVE This study examined the brain volume and white matter (WM) microstructure in preterm infants at term-equivalent age and explored the effects of BPD on brain development. METHOD We studied 56 preterm infants (33 with BPD and 23 without BPD) with no evidence of focal abnormalities on conventional magnetic resonance imaging (MRI) at term-equivalent age. Regional brain volumes and diffusion tensor images were examined using advanced segmentation techniques to acquire quantitative volume measurements, and the JHU neonatal template was used for the atlas-based analysis. We compared these infants with 22 healthy term infants of a similar postmenstrual age. RESULTS The preterm infants with BPD had smaller cerebral WM (p = 0.005) volumes than the preterm infants without BPD, independent of sex, gestational age, age at MRI scan, and total intracranial volume. Independent of sex, gestational age, and age at MRI scan, the preterm infants with BPD exhibited marked reductions in fractional anisotropy in the corpus callosum (p = 0.006), corticospinal tract (p = 0.003), and superior cerebellar peduncle (p = 0.002) compared with the infants with no BPD, with a significance level of p ≤ 0.008 as a Bonferroni correction for multiple comparisons. CONCLUSION Our study highlights the potential impairing influence of BPD on WM and cerebellar development in preterm infants compared with those without BPD at term-equivalent age, suggesting its clinical significance for neurodevelopment in BPD infants.
Collapse
Affiliation(s)
- Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Na Young Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eun Bee Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jung-Sun Lim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jong Deok Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Neonatology and Developmental Medicine, Hanyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea, .,Division of Neonatology and Developmental Medicine, Hanyang University Seoul Hospital, Seoul, Republic of Korea,
| |
Collapse
|
39
|
Saadani-Makki F, Hagmann C, Balédent O, Makki MI. Early assessment of lateralization and sex influences on the microstructure of the white matter corticospinal tract in healthy term neonates. J Neurosci Res 2018; 97:480-491. [PMID: 30548647 DOI: 10.1002/jnr.24359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/12/2022]
Abstract
We assessed the sex and the lateralization differences in the corticospinal tract (CST) during the early postnatal period. Twenty-five healthy term neonates (13 girls, aged 39.2 ± 1.2 weeks, and 12 boys aged 38.6 ± 3.0 weeks) underwent Diffusion Tensor Imaging (DTI). Fiber tracking was performed to extract bilaterally the CST pathways and to quantify the parallel (E1 ) and perpendicular (E23 ) diffusions, the apparent diffusion coefficient (ADC), and fractional anisotropy (FA). The measurements were performed on the entire CST fibers and on four segments: base of the pons (CST-Po), cerebral peduncles (CST-CP), posterior limb of the internal capsule (CST-PLIC), and corona-radiata (CST-CR). Significantly higher E1 , lower E23, and higher FA in the right compared to the left were noted in the CST-PLIC of the girls. Significantly lower E23 and lower ADC with higher FA in the right compared to left were observed in the CST-CP of the boys. Moreover, the CST-PLIC of the boys had significantly higher E1 in the right compared to the left. There was a significant increase in left CST E1 of boys when compared with girls. Girls had a significantly lower E1 , lower E23 and, lower ADC in the left CST-CP compared with boys. In addition, girls had a significantly lower E23 and higher FA in the right CST-PLIC compared with boys. Sex differences and lateralization in structure-based segments of the CST were found in healthy term infants during early postnatal period. These findings are vital to understanding motor development of healthy term born neonates to better interpret newborn infants with abnormal neurodevelopment.
Collapse
Affiliation(s)
- Fadoua Saadani-Makki
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Olivier Balédent
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Malek I Makki
- MRI Research, CHU Amiens-Picardie, Amiens, France.,MRI Research, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Preterm neuroimaging and neurodevelopmental outcome: a focus on intraventricular hemorrhage, post-hemorrhagic hydrocephalus, and associated brain injury. J Perinatol 2018; 38:1431-1443. [PMID: 30166622 PMCID: PMC6215507 DOI: 10.1038/s41372-018-0209-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
Abstract
Intraventricular hemorrhage in the setting of prematurity remains the most common cause of acquired hydrocephalus. Neonates with progressive post-hemorrhagic hydrocephalus are at risk for adverse neurodevelopmental outcomes. The goal of this review is to describe the distinct and often overlapping types of brain injury in the preterm neonate, with a focus on neonatal hydrocephalus, and to connect injury on imaging to neurodevelopmental outcome risk. Head ultrasound and magnetic resonance imaging findings are described separately. The current state of the literature is imprecise and we end the review with recommendations for future radiologic and neurodevelopmental research.
Collapse
|
41
|
Girault JB, Cornea E, Goldman BD, Knickmeyer RC, Styner M, Gilmore JH. White matter microstructural development and cognitive ability in the first 2 years of life. Hum Brain Mapp 2018; 40:1195-1210. [PMID: 30353962 DOI: 10.1002/hbm.24439] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
White matter (WM) integrity has been related to cognitive ability in adults and children, but it remains largely unknown how WM maturation in early life supports emergent cognition. The associations between tract-based measures of fractional anisotropy (FA) and axial and radial diffusivity (AD, RD) shortly after birth, at age 1, and at age 2 and cognitive measures at 1 and 2 years were investigated in 447 healthy infants. We found that generally higher FA and lower AD and RD across many WM tracts in the first year of life were associated with better performance on measures of general cognitive ability, motor, language, and visual reception skills at ages 1 and 2, suggesting an important role for the overall organization, myelination, and microstructural properties of fiber pathways in emergent cognition. RD in particular was consistently related to ability, and protracted development of RD from ages 1 to 2 years in several tracts was associated with higher cognitive scores and better language performance, suggesting prolonged plasticity may confer cognitive benefits during the second year of life. However, we also found that cognition at age 2 was weakly associated with WM properties across infancy in comparison to child and demographic factors including gestational age and maternal education. Our findings suggest that early postnatal WM integrity across the brain is important for infant cognition, though its role in cognitive development should be considered alongside child and demographic factors.
Collapse
Affiliation(s)
- Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara D Goldman
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
42
|
Zhang Y, Shi J, Wei H, Han V, Zhu WZ, Liu C. Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping. Neuroimage 2018; 185:349-360. [PMID: 30315906 DOI: 10.1016/j.neuroimage.2018.10.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human brain rapidly develops during the first two years following birth. Quantitative susceptibility mapping (QSM) provides information of iron and myelin variations. It is considered to be a valuable tool for studying brain development in early life. In the present work, QSM is performed on neonates, 1-year and 2-year old infants, as well as a group of adults for the purpose of reference. Age-specific templates representing common brain structures are built for each age group. The neonate and infant QSM templates have shown some unique findings compared to conventional T1w and T2w imaging techniques. The contrast between the gray and white matters on the QSM images did not change through brain development from neonate to adult. A linear correlation was found between brain myelination determined in this study and the microscopic myelin degree determined by a previous autopsy study. Also, the magnetic susceptibility values of the cerebral spinal fluid (CSF) exhibit a gradually decreasing trend from birth to 2 years old and to adulthood. The findings suggest that the macromolecular content, myelin, and iron may play the most important contributing factors for the magnetic susceptibility of neonate and infant brain. QSM can be a powerful means to study early brain development and related pathologies that involve alterations in macromolecular content, iron, or brain myelination.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjiang Wei
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA
| | - Victor Han
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunlei Liu
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA.
| |
Collapse
|
43
|
Proper timing for the evaluation of neonatal brain white matter development: a diffusion tensor imaging study. Eur Radiol 2018; 29:1527-1537. [DOI: 10.1007/s00330-018-5665-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
44
|
Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell SJ. Recent advances in diffusion neuroimaging: applications in the developing preterm brain. F1000Res 2018; 7. [PMID: 30210783 PMCID: PMC6107996 DOI: 10.12688/f1000research.15073.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar–cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
45
|
Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N, Huang H. Structural network maturation of the preterm human brain. Neuroimage 2018; 185:699-710. [PMID: 29913282 DOI: 10.1016/j.neuroimage.2018.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022] Open
Abstract
During the 3rd trimester, large-scale neural circuits are formed in the human brain, resulting in a highly efficient and segregated connectome at birth. Despite recent findings identifying important preterm human brain network properties such as rich-club organization, how the structural network develops differentially across brain regions and among different types of connections in this period is not yet known. Here, using high resolution diffusion MRI of 77 preterm-born and full-term neonates scanned at 31.9-41.7 postmenstrual weeks (PMW), we constructed structural connectivity matrices and performed graph-theory-based analyses. Faster increases of nodal efficiency were mainly located at the brain hubs distributed in primary sensorimotor regions, superior-middle frontal, and precuneus regions during 31.9-41.7PMW. Higher rates of edge strength increases were found in the rich-club and within-module connections, compared to other connections. The edge strength of short-range connections increased faster than that of long-range connections. Nodal efficiencies of the hubs predicted individual postmenstrual ages more accurately than those of non-hubs. Collectively, these findings revealed more rapid efficiency increases of the hub and rich-club connections as well as higher developmental rates of edge strength in short-range and within-module connections. These jointly underlie network segregation and differentiated emergence of brain functions.
Collapse
Affiliation(s)
- Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jessica Lee Wisnowski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Chile
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Nancy Rollins
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States.
| |
Collapse
|
46
|
Young JM, Morgan BR, Whyte HEA, Lee W, Smith ML, Raybaud C, Shroff MM, Sled JG, Taylor MJ. Longitudinal Study of White Matter Development and Outcomes in Children Born Very Preterm. Cereb Cortex 2018; 27:4094-4105. [PMID: 27600850 DOI: 10.1093/cercor/bhw221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022] Open
Abstract
Identifying trajectories of early white matter development is important for understanding atypical brain development and impaired functional outcomes in children born very preterm (<32 weeks gestational age [GA]). In this study, 161 diffusion images were acquired in children born very preterm (median GA: 29 weeks) shortly following birth (75), term-equivalent (39), 2 years (18), and 4 years of age (29). Diffusion tensors were computed to obtain measures of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), which were aligned and averaged. A paediatric atlas was applied to obtain diffusion metrics within 12 white matter tracts. Developmental trajectories across time points demonstrated age-related changes which plateaued between term-equivalent and 2 years of age in the majority of posterior tracts and between 2 and 4 years of age in anterior tracts. Between preterm and term-equivalent scans, FA rates of change were slower in anterior than posterior tracts. Partial least squares analyses revealed associations between slower MD and RD rates of change within the external and internal capsule with lower intelligence quotients and language scores at 4 years of age. These results uniquely demonstrate early white matter development and its linkage to cognitive functions.
Collapse
Affiliation(s)
- Julia M Young
- 1 Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin R Morgan
- 1Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Hilary E A Whyte
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Neonatology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wayne Lee
- 1Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mary Lou Smith
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Charles Raybaud
- 1 Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Manohar M Shroff
- 1 Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- 1 Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Ouyang M, Dubois J, Yu Q, Mukherjee P, Huang H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 2018; 185:836-850. [PMID: 29655938 DOI: 10.1016/j.neuroimage.2018.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 02/08/2023] Open
Abstract
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Jessica Dubois
- INSERM, UMR992, CEA, NeuroSpin Center, University Paris Saclay, Gif-sur-Yvette, France
| | - Qinlin Yu
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Pratik Mukherjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
48
|
Knight MJ, Smith-Collins A, Newell S, Denbow M, Kauppinen RA. Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2 Relaxation Anisotropy and Diffusion Tensor Imaging Study. J Neuroimaging 2017; 28:86-94. [PMID: 29205635 DOI: 10.1111/jon.12486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Preterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterized with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multimodal magnetic resonance imaging (MRI). METHODS Infants born very preterm (<32 weeks gestation) and late preterm (33-36 weeks gestation) were scanned at 3 T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analyzed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very preterm and late preterm groups. RESULTS Across widespread regions of WM, T2 is longer in very preterm infants than in late preterm ones. These effects are more prevalent in regions of WM that myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very preterm group, with a bias toward earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fiber and magnetic field, and this effect is modulated by FA. CONCLUSIONS Combined T2 relaxometry and DTI characterizes specific patterns of retarded WM maturation, at term equivalent age, in infants born very preterm relative to late preterm.
Collapse
Affiliation(s)
| | - Adam Smith-Collins
- Clinical Research and Imaging Centre, University of Bristol, UK.,Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Sarah Newell
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Mark Denbow
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Risto A Kauppinen
- School of Experimental Psychology, University of Bristol, UK.,Clinical Research and Imaging Centre, University of Bristol, UK
| |
Collapse
|
49
|
Carey D, Caprini F, Allen M, Lutti A, Weiskopf N, Rees G, Callaghan MF, Dick F. Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure. Neuroimage 2017; 182:429-440. [PMID: 29203455 PMCID: PMC6189523 DOI: 10.1016/j.neuroimage.2017.11.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/19/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2*, PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years, N = 93) revealed expected patterns of increased macromolecular content as well as reduced tissue water content in primary and primary adjacent cortical regions. Mapping across cortical depth within regions showed decreased expression of myelin and related processes – but increased tissue water content – when progressing from the grey/white to the grey/pial boundary, in all regions. Charting developmental change in cortical microstructure cross-sectionally, we found that parameters with sensitivity to tissue myelin (R1 & MT) showed linear increases with age across frontal and parietal cortex (change 0.5–1.0% per year). Overlap of robust age effects for both parameters emerged in left inferior frontal, right parietal and bilateral pre-central regions. Our findings afford an improved understanding of ontogeny in early adulthood and offer normative quantitative MR data for inter- and intra-cortical composition, which may be used as benchmarks in further studies. We mapped multi-parameter maps (MPMs) across and within cortical regions. We charted age effects (ages 18–39) on myelin and related processes. MPMs sensitive to myelin (R1, MT) showed elevated values in primary areas over most cortical depths. R2* map foci tended to overlap MPMs sensitive to myelin (R1, MT). R1 and MT increased with age (0.5–1.0% per year) at mid-depth in frontal and parietal cortex.
Collapse
Affiliation(s)
- Daniel Carey
- The Irish Longitudinal Study on Aging (TILDA), Trinity College Dublin, Dublin 2, Ireland; Centre for Brain and Cognitive Development (CBCD), Birkbeck College, University of London, UK.
| | - Francesco Caprini
- Centre for Brain and Cognitive Development (CBCD), Birkbeck College, University of London, UK
| | - Micah Allen
- Institute of Cognitive Neuroscience, University College London, Queen Square, London, UK; Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, UK
| | - Antoine Lutti
- Institute of Cognitive Neuroscience, University College London, Queen Square, London, UK; Laboratoire de Recherche en Neuroimagerie - LREN, Departement des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Nikolaus Weiskopf
- Institute of Cognitive Neuroscience, University College London, Queen Square, London, UK; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, Queen Square, London, UK; Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, UK
| | - Martina F Callaghan
- Institute of Cognitive Neuroscience, University College London, Queen Square, London, UK
| | - Frederic Dick
- Centre for Brain and Cognitive Development (CBCD), Birkbeck College, University of London, UK; Birkbeck/UCL Centre for Neuroimaging (BUCNI), 26 Bedford Way, London, UK
| |
Collapse
|
50
|
Keunen K, Counsell SJ, Benders MJ. The emergence of functional architecture during early brain development. Neuroimage 2017; 160:2-14. [DOI: 10.1016/j.neuroimage.2017.01.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/12/2023] Open
|